
This paper is included in the Proceedings of the
2024 USENIX Annual Technical Conference.

July 10–12, 2024 • Santa Clara, CA, USA
978-1-939133-41-0

Open access to the Proceedings of the
2024 USENIX Annual Technical Conference

is sponsored by

CPC: Flexible, Secure, and Efficient CVM Maintenance
with Confidential Procedure Calls

Jiahao Chen, Institute of Parallel and Distributed Systems, SEIEE, Shanghai Jiao Tong
University; Engineering Research Center for Domain-specific Operating Systems, Ministry
of Education; Shanghai Key Laboratory of Scalable Computing and Systems, Shanghai Jiao

Tong University; Zeyu Mi and Yubin Xia, Institute of Parallel and Distributed Systems,
SEIEE, Shanghai Jiao Tong University; Engineering Research Center for Domain-specific

Operating Systems, Ministry of Education, China; Haibing Guan, Shanghai Key Laboratory
of Scalable Computing and Systems, Shanghai Jiao Tong University; Haibo Chen, Institute

of Parallel and Distributed Systems, SEIEE, Shanghai Jiao Tong University; Engineering
Research Center for Domain-specific Operating Systems, Ministry of Education; Shanghai

Key Laboratory of Scalable Computing and Systems, Shanghai Jiao Tong University

https://www.usenix.org/conference/atc24/presentation/chen-jiahao

CPC: Flexible, Secure, and Efficient CVM Maintenance

with Confidential Procedure Calls

Jiahao Chen
1,2,3

, Zeyu Mi
1,2
�, Yubin Xia

1,2
, Haibing Guan

3
, and Haibo Chen

1,2,3

1
Institute of Parallel and Distributed Systems, SEIEE, Shanghai Jiao Tong University

2
Engineering Research Center for Domain-specific Operating Systems, Ministry of Education, China

3
Shanghai Key Laboratory of Scalable Computing and Systems, Shanghai Jiao Tong University

Abstract

Confidential virtual machines (CVMs), while providing

strong data privacy for cloud tenants, pose significant chal-

lenges to VM maintenance like live migration and snapshot-

ting. Traditional host-based maintenance, while applicable to

conventional VMs, is infeasible for CVMs due to the lack

of trust in the host and the prevention of mandated intrusive

access from the host. State-of-the-art approaches depend on

non-trivial modifications to hardware and firmware and thus

lead to notable compromises in security and/or performance.

Furthermore, such approaches lack flexibility for upgrades

and cross-platform compatibility, hindering the popularity of

CVMs on the cloud.

In this paper, we introduce Confidential Procedure Calls

(CPCs), a flexible approach to the efficient and secure exe-

cution of CVM maintenance modules from within the guest.

We have implemented prototypes on two leading CVM plat-

forms. Our prototype on AMD SEV showcases the high per-

formance of CPCs, with 3× (resource reclamation) or even

138× (live migration) faster than existing approaches. Our

prototype on ARM CCA further confirms CPCs’ outstand-

ing security and flexibility.

1 Introduction

Confidential virtual machines (CVMs), which effectively

safeguard the privacy of cloud tenants against curious or ma-

licious host software stacks, are increasingly popular in ma-

jor cloud vendors like AWS and Google Cloud. As such,

mainstream hardware vendors have released their respective

CVM support such as AMD SEV [4], ARM CCA [7], and

Intel TDX [36]. These approaches typically make the guest

internal data inaccessible to the host software stack by en-

crypting the CVM’s private memory and isolating its internal

states.

However, such approaches present grand challenges for

VM maintenance such as live migration and VM snapshot-

ting, which are crucial for cloud operations, as evidenced by

the widespread deployment shown in Table 1. For example,

�
Corresponding author: Zeyu Mi (yzmizeyu@sjtu.edu.cn).

Table 1: Common maintenance examples on the cloud.

Description Use Cases

Host-driven

The host directly accesses the

internal data of the guests to

realize these services.

(Live) Migration [19, 26]

Snapshot [11, 25, 52]

Disaster Recovery [18]

Guest-driven

The tenant installs host agen-

ts in VMs that bridge the

host-guest semantic gap and

work in conjunction with the

host software stack.

Logging [9, 16, 27]

Security Scanning [1, 12, 46]

Monitoring [13, 28, 29]

Backup [15]

Resource Reclamation [41]

cloud vendors rely on live VM migration to upgrade infras-

tructure and optimize deployment strategies without having

to stop VMs. Meanwhile, cloud tenants depend on mainte-

nance services like monitoring and security scanning to guar-

antee the secure and stable operations of their workloads.

Traditional maintenance approaches typically require ei-

ther intrusive accesses from the host to the guest (host-

driven) or the deployment of agent software within the guest

to access its internal data (guest-driven). In the CVM sce-

nario, such conventional approaches become impractical, be-

cause CVMs essentially block intrusive and direct host ac-

cesses to the guest, and the guest denies the untrusted agent

software provided by the host.

State-of-the-art approaches to addressing the above chal-

lenges mandate non-trivial modifications to the firmware

and/or hardware by CVM hardware vendors [38, 44, 45, 50,

51]. In particular, they transfer maintenance functionalities,

which the host software stack cannot perform, to more priv-

ileged components such as the firmware with higher privi-

leges to access the private guest data. However, such an ap-

proach has several limitations. First, it lacks sufficient flexi-

bility to support the wide variety of customization services

listed in Table 1, primarily due to the difficulties in mod-

ifying firmware and hardware. The lack of cross-platform

compatibility exacerbates this inflexibility, as these methods

are confined to specific hardware platforms. Second, this ap-

proach enlarges the firmware’s code base and complicates

its interactions with the host and guest, making it more vul-

nerable to security breaches [59,68,76–78,89,90,99]. Given

that the firmware acts as the universal trusted computing base

USENIX Association 2024 USENIX Annual Technical Conference 1065

yzmizeyu@sjtu.edu.cn

(TCB) for the entire system, any reduction in its security

poses risks to both the guest and host. Lastly, current meth-

ods encounter significant performance issues in critical sce-

narios. For instance, on AMD SEV platforms, the firmware

runs on the AMD Secure Processor (AMD-SP), whose lim-

ited computing power becomes a bottleneck for maintenance

operations. According to our tests, it imposes an overhead of

1,986× in live migration scenarios (§7.4).

A fundamental issue with current approaches lies in their

inappropriate choice of vantage point for maintenance oper-

ations. We argue that a more attractive option to explore is

to position the tenant-trusted maintenance modules within

the guest, especially since mechanisms like upcalls exist

for hosts to activate specific guest functions. Nonetheless,

directly applying existing mechanisms to support in-CVM

maintenance modules faces two challenges. First, these in-

CVM maintenance activities can lead to performance degra-

dation due to resource contention with the guest work-

load, potentially leaving the maintenance function resource-

starved when initiated by the host. According to our tests, this

can result in about a 3× slowdown in resource reclamation

scenarios (§7.3). Second, certain maintenance tasks, such as

disaster recovery [11, 18, 25, 52], have strong fault tolerance

requirements to work correctly even when the guest OS fails.

Current methods fail to provide them with isolated execution

environments.

To reduce resource contention with the guest OS, a new

design should allow the maintenance module to access sep-

arate computing resources, thereby ensuring its efficiency.

Additionally, for specific maintenance tasks requiring isola-

tion from the guest OS, the maintenance modules should run

within protected execution environments. Therefore, the key

to addressing the issues lies in exploring a new mechanism

capable of providing the host with the semantics of host in-

vocation of targeted maintenance operations with separate

and protected resources.

We observe that while current CVMs limit the host’s in-

trusive access to the guest’s data plane, the hypervisor still

exerts influence over the control plane. The data plane refers

to the guest’s code logic and data processing, whereas the

control plane involves the host’s management of physical

resource allocation and reclamation for the guest, such as

scheduling vCPUs. Leveraging such residual control planes,

we come up with an idea that extends the semantics of vCPU

scheduling into the semantics of host invocations of main-

tenance procedures.

Based on this idea, this paper introduces Confidential

Procedure Call (CPC), a flexible, secure, and efficient mech-

anism for CVM maintenance. CPCs enable the host to in-

voke maintenance functions agreed and trusted by the guest

via scheduling vCPUs for the host (hvCPUs). Their bound

CPCs thus operate on these dedicated vCPU threads without

competition with other guest workloads. Cloud tenants can

develop and customize maintenance functions within CPCs,

leading to enhanced flexibility and efficiency free from fac-

tors such as firmware and guest workloads. The internal code

and data of the CPCs, forming their data plane, are safe-

guarded by the CVM. The host only triggers and suspends

these CPCs through the legitimate control plane outside the

CVM, akin to traditional vCPUs, without security degrada-

tion on the CVM.

To further protect the critical maintenance modules from

potential attacks by a misbehaving guest OS in scenarios

such as disaster recovery and snapshot [11, 18, 25, 52], we

introduce Confidential Page Table Isolation (CPTI), which is

a new intra-CVM isolation method that is compatible with all

current leading CVM platforms [4,7,36]. This technique aids

CVMs in creating internal isolated execution environments

specifically for CPCs so that they can achieve complete iso-

lation of their code and data from the guest OS. This enables

the CPCs to execute securely in accordance with the cloud

tenant’s initial setup plans, even under attack attempts from

a compromised guest OS.

We have implemented CPC prototypes on AMD SEV-

SNP and ARM CCA platforms. The AMD-based prototype

demonstrates the excellent performance of CPCs on real ma-

chines. Freed from the constraints of AMD-SPs, CPCs can

encrypt and extract private data at more than 340× the speed

of current approaches. In a resource reclamation scenario,

CPCs obtain sufficient computing power for the maintenance

modules under busy guests and thus reclaim free memory 3×

faster than the current virtio frontends. In the live migration

test, CPCs are 138× faster than the current AMD-SP-based

solution. Although no hardware is available for ARM CCA,

we implemented CPCs and CPTI on the official simulator to

verify the security and excellent cross-platform compatibility

of our design.

In summary, the contributions of the paper are:

• We systematically analyze the dilemma of current main-

stream CVM platforms on maintenance operations.
• We propose CPCs, a new mechanism bridging the

semantic gap between the host and in-guest mainte-

nance procedures, to support flexible, secure, and effi-

cient CVM maintenance.
• We show CPC’s security improvements on the overall

system through the prototype implemented on the ARM

CCA platform.
• We show the performance advantages of CPCs over ex-

isting approaches by conducting performance experi-

ments on the AMD SEV-SNP platform.

2 Background and Motivation

2.1 Mainstream CVMs

CVM platforms protect cloud tenants’ VM instances in

trusted execution environments (TEEs) isolated from the

host. The current mainstream CVM platforms are AMD

1066 2024 USENIX Annual Technical Conference USENIX Association

CVM

Kernel
Apps

Kernel

Host

KVM
QEMU

Apps

Firmware

& VM Shim

S1PT

S1PT

S3

Checker

VM Entry/Exit Memory AccessConfiguration Access Deny

Physical

Memory

Guest DomainHost Domain Infrastructure Domain

S2PT

Figure 1: The architecture overview of mainstream CVM plat-

forms. The hypervisor in the figure is exemplified by QEMU/KVM.

"S1PT" refers to the stage-1 page table, which translates CVM’s

guest virtual addresses (GVAs) to guest physical addresses (GPAs),

or host’s virtual addresses (VAs) to physical addresses (PAs).

"S2PT" stands for the stage-2 page table, which translates CVM’s

GPAs to host physical addresses (HPAs). The S2PTs for the pri-

vate memory on ARM CCA and Intel TDX platforms are checked

and configured by the trusted infrastructure domain, while those of

AMD SEV are configured directly by the host.

SEV [4], ARM CCA [7], and Intel TDX [36]. Their architec-

tures can all be summarized in Figure 1, where the system

is divided into three domains: the host domain controlled

by the cloud vendor, the guest domain running the tenant’s

VM instances, and the infrastructure domain consisting of

the trusted firmware and hardware. Both cloud vendors and

tenants place trust in the infrastructure domain and the privi-

leged software in their domains.

CVM platforms primarily rely on preventing intrusive ac-

cess by the host to the guest’s private memory and registers

as their core protection mechanism at runtime. This protec-

tion is typically achieved through encryption and isolation.

As shown in Figure 1, for encryption, the guest memory is

divided into private memory (in blue), which is isolated from

the host, and shared memory (in red), which can be accessed

from the host. Each time a guest writes to its private mem-

ory, the data is encrypted by the hardware automatically, and

when the guest reads data from its private memory, it is auto-

matically decrypted inside the CPU. Both of the operations

are transparent to the guest.

For memory isolation, CVM platforms also provide

additional stage-3 memory isolation mechanisms (S3

checker) [32, 35, 47], such as RMP for AMD platforms and

GPT for ARM platforms. These mechanisms record the own-

ership of the physical memory and block all host access to

guests’ private memory. The configuration of S3 checkers is

typically done by the trusted firmware beyond the hosts’ con-

trol.

Furthermore, the isolation of vCPU states is accomplished

through trusted firmware or hardware filtering so that the host

can only access the necessary portion of the vCPU states

when serving guests.

It is also worth noting that side-channel attacks and denial-

of-service (DoS) attacks are not considered in the threat

model of CVMs. Thus, the host OS still controls various

resources, such as vCPU scheduling and physical memory

management.

2.2 Dilemma of CVM Maintenance

Both cloud vendors and tenants perform maintenance oper-

ations on VMs to ensure the security, efficiency, and cost-

effectiveness of cloud computing [1, 9–16, 18, 25, 27–29, 46].

However, CVMs make the traditional methods of mainte-

nance no longer feasible. These failed maintenance opera-

tions can be grouped into two categories: host-driven and

guest-driven as shown in Table 1.

Host-driven maintenance refers to a set of transparent

maintenance operations performed by cloud vendors on the

guest [11,18,25]. These operations include tasks like migrat-

ing VM instances, disaster recovery, and taking snapshots.

Traditionally, these operations rely on the hypervisor’s intru-

sive access to the guest’s internal states, but CVMs prevent

such access, making traditional maintenance methods inef-

fective.

On the other hand, guest-driven maintenance services are

embraced by cloud tenants to ensure the long-term security

and efficiency of their VMs and workloads [1, 9, 10, 12–16,

27–29, 46]. For example, tenants install security agents pro-

vided by the cloud vendor for additional security services.

Such maintenance services are built on the additional infor-

mation collected by the in-guest agents. However, according

to CVM’s threat model, tenants refuse to install the untrusted

agent software provided by cloud vendors and distrust all of

the host software stack. Therefore, guest-driven maintenance

services are also disabled by CVMs.

The absence of maintenance poses challenges for both

cloud vendors and tenants, hindering the widespread adop-

tion of CVMs in cloud computing. Cloud vendors encounter

higher costs, deployment difficulties, and infrastructure up-

grade challenges. Similarly, cloud tenants face obstacles in

ensuring the security and stability of their workloads, along

with additional self-maintenance expenses.

2.3 Limitations of Existing Approaches

Current primary approaches involve the CVM hardware ven-

dors integrating the maintenance modules into the infrastruc-

ture domain, typically the firmware, and exporting additional

interfaces for the host [38, 44, 45, 50, 51]. However, such ap-

proaches have several limitations.

First, the infrastructure-based approach lacks flexibility.

Unlike the guest and host domains, which can be flexibly de-

fined, upgrading the infrastructure domain is more difficult.

This limits current approaches to relatively fixed and generic

maintenance scenarios [11, 18, 19, 25, 26, 52], and makes it

difficult to adapt to the scenarios that are customized by

cloud vendors and are constantly evolving [1,9,12,13,16,27–

29, 46], such as various monitoring services and frequently

USENIX Association 2024 USENIX Annual Technical Conference 1067

 0
 4
 8

Baseline Vanilla

1.02

(a)

 1800

 1850

 1900

 1950

 2000

 2050

 2100

T
im

e
 C

o
n

s
u

m
p

ti
o

n
 (

s
) 2,025.67

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

1-VM 2-VM 3-VM 4-VM 5-VM 6-VM 7-VM

B
a
n
d
w

id
th

 (
M

B
/s

)

Extraction Insertion

(b)

1.92

0.96

0.64
0.48 0.39

0.32 0.27

1.86

0.93

0.60
0.50

0.36 0.30 0.26

Figure 2: Time consumption for CVM live migration and per-

formance of AMD-SPs on AMD platforms. Figure (a) depicts the

time consumption of the live migration for a traditional VM and

a CVM with identical configurations on the same machine. The

source and destination instances are also located on the same ma-

chine to minimize the impact of unstable networks on the results.

"Baseline" represents the time consumption for traditional VMs,

while "Vanilla" represents the time consumption for the SEV CVMs.

Figure (b) illustrates the bandwidth of CVM memory extraction and

insertion based on the AMD-SP for different numbers of CVMs.

The data represents the average bandwidth across all the CVMs.

updated security scanning policies. The inflexibility is fur-

ther evident in the absence of cross-platform compatibility

and alignment. Specifically, infrastructure-based approaches

from various hardware vendors are exclusive to their own

platforms, and their development progress also varies greatly.

For instance, ARM CCA currently lacks an officially deter-

mined migration solution [48], and Intel TDX lacks an avail-

able snapshot implementation. These issues result in incon-

sistent CVM maintenance practices and increase the develop-

ment efforts required by cloud vendors and tenants to adapt

to each platform.

Second, they lead to a degradation of security. Moving

maintenance functionalities from the untrusted hypervisor to

the infrastructure domain increases the TCB for all parties in

the system. The complexity and extended interfaces make the

infrastructure domain more vulnerable [34, 59, 68, 76–78, 89,

90,99]. Take ARM CCA as an example, its infrastructure do-

main is very compact, and according to previous work [83],

the tiny Realm Management Monitor (RMM) with only 3.2K

LOCs is formally verified to ensure security. Introducing ad-

ditional functionalities into it exposes the RMM to larger at-

tack surfaces and makes verification more challenging.

Finally, existing approaches suffer from performance is-

sues. Take the AMD SEV platform as an example, which

is currently the most widely deployed CVM platform. It

relies on the trusted firmware working on the ARM-based

AMD Secure Processor (AMD-SP) in the SoC. However, the

AMD-SP has very limited computing power. This results in

performance bottlenecks for certain maintenance scenarios.

According to our test, the firmware-based live migration is

nearly 1,985.95× slower than normal VMs on the same ma-

chine, as demonstrated in Figure 2a. Upon analysis, we found

that the primary overhead comes from two steps: the extrac-

tion step involves encrypting and extracting memory pages

from the source CVM, and the insertion step involves insert-

ing and decrypting memory pages into the destination CVM.

So we further tested these two steps on the machine, an AMD

platform with 128 cores and 502GB of memory supporting

the SEV-SNP feature. As shown in Figure 2b, the AMD-SP

only provides a throughput of 1.92MB per second for CVM

memory extraction, and 1.86MB per second for insertion. As

the number of CVMs increases, this computing power is fur-

ther shared out, resulting in the inverse trend as shown in

the figure. Such throughput would completely collapse many

important maintenance services, such as the disaster recov-

ery service provided by Azure, which needs to be built on a

constant snapshot data throughput of more than 100MB per

second [18]. The low throughput also clarifies the data in Fig-

ure 2a, where simultaneous memory extraction and insertion

of the source and destination instances respectively on the

same machine would result in a throughput of only 0.93 to

0.96MB per second on both sides. Consequently, the migra-

tion of the CVM with 2GB of memory takes over 2 thousand

seconds to complete.

In addition, certain upcoming maintenance solutions are

based on nested virtualization [51, 65]. However, they still

cannot get rid of the three limitations mentioned above.

Specifically, they need to rely on specific hardware features

to support the L1 hypervisor with the guest OS running in the

L2 VM. Such approaches not only depend on specific hard-

ware platforms but also significantly increase the guest TCB

by the L1 hypervisor, while performance is degraded by the

lengthy VM exit handling of nested virtualization.

3 System Design Overview

The limitations of current approaches motivate us to question

the validity of the current technological route that relies on

modifying the infrastructure domain, and to explore an alter-

native design that meets the following objectives:

• Flexibility: Our design should allow cloud vendors and

tenants to flexibly customize and update maintenance

modules without having to suspend or migrate the VMs,

or even reboot the physical machine. Additionally, the

design should ensure compatibility with all major CVM

solutions without hardware modifications.

• Security: The design should uphold the security of

CVMs. The clear security boundary between the guest

and host must be maintained, without new attack sur-

faces introduced for both sides.

• Efficiency: The design should mitigate performance

limitations on maintenance modules caused by factors

such as AMD-SPs or guest workloads.

Observation and Key Idea. The root cause of existing ap-

proaches’ limitations lies in the inappropriate choice of van-

tage point for maintenance modules. We choose to place

maintenance modules in the guest. While mechanisms like

upcalls already support host calls to functional modules in

the guest, seemingly sufficient for moving maintenance mod-

ules into the guest OS, this approach has two challenges.

1068 2024 USENIX Annual Technical Conference USENIX Association

First, these in-CVM maintenance activities can lead to per-

formance degradation due to resource competition with the

guest workload, potentially leaving the maintenance function

resource-starved when initiated by the host. Second, certain

critical maintenance scenarios require isolating the mainte-

nance modules from the potentially compromised guest OS,

such as security logging and disaster recovery [18]. How-

ever, current mechanisms cannot provide such isolated exe-

cution environments for the maintenance modules. We con-

clude that these challenges stem from the semantic gap in the

current mechanism. This prompts us to explore a new design

that supports the host invoking the target maintenance op-

erations with additional resources that are separate and pro-

tected.

Fortunately, we observe that while the CVM restricts the

host’s influence on the guest in the data plane, it retains con-

trol in the control plane. Building upon this observation, we

come up with the basic idea for our design, extending the

semantics of vCPU scheduling into the semantics of host

invocations of maintenance procedures. Based on this fun-

damental idea, we further design a comprehensive solution

for CVM maintenance, which we call Confidential Procedure

Calls (CPCs).

As shown in Figure 3, CPCs are new entities trusted by

cloud tenants in the guest domain, and each of them contains

a maintenance procedure to be invoked by the host. They

operate on a distinct set of vCPUs called hvCPUs (vCPUs for

hosts), while the guest OS uses gvCPUs (vCPUs for guests).

gvCPUs are involved in scheduling within the host kernel

and provide ongoing support to the guest OS with the same

behavior as traditional vCPUs. While hvCPUs do not partic-

ipate in the standard host kernel scheduling. Instead, once

associated with a specific CPC by the guest OS, the hvCPU

thread relinquishes CPU resources to the host and enters a

sleep state. When a maintenance task arises, the host can ini-

tiate the execution of the corresponding CPC by scheduling

the relevant hvCPU.

During the startup of a CVM, hvCPUs and CPCs are cre-

ated and initialized. First, the CVM partitions the vCPUs into

gvCPUs and hvCPUs at startup. The guest OS recognizes

only gvCPUs as the CPU abstraction and runs on them. Next,

the CPC loader within the guest OS packages the necessary

maintenance modules into CPCs and loads them onto the

hvCPUs based on the tenant’s definitions. It also establishes

their execution contexts. Since the CPC loader and mainte-

nance modules are compiled and packaged with other guest

components, both of them can be validated by existing CVM

attestation. The CPC loader then registers the mapping be-

tween CPCs with different maintenance functions and hvC-

PUs to the CPC monitor in the host via hypercalls. This al-

lows the CPC monitor to distinguish between gvCPUs and

hvCPUs and obtain the corresponding maintenance seman-

tic for each hvCPU. Finally, the CPC monitor places hvCPU

 FW & VM Shim

CPC Loading

Control-flow

Transition

Data Access

gvCPU

Host

gvCPU
gvCPU

gvCPU

Migration
Ballooning

CVM CPC

Migration

CPTI

Snapshot

Scheduler

CPC Monitor

hvCPUgvCPU

CPC
Loader

Guest OS

Guest Domain

Host Domain

Figure 3: The architecture overview of CPCs.

threads into a sleep state and invokes the corresponding hvC-

PUs according to the incoming maintenance scenarios.

In the runtime of the CVM, if the cloud vendor initiates a

maintenance operation, such as migration or snapshot, the hy-

pervisor actively activates the relevant hvCPUs through the

CPC monitor, allowing the corresponding maintenance func-

tions to start working. When the guest requires specific main-

tenance services, such as security logging and kernel scan-

ning, the host triggers corresponding CPCs based on the no-

tifications from the guest or a pre-planned schedule provided

by the tenant.

Assumptions and Threat Model. Based on the mainte-

nance scenarios, the operation modes of CPCs are catego-

rized into normal mode and secure mode. In normal mode,

we adhere to the existing threat model of CVMs, maintaining

a clear security boundary between the guest and host. The un-

trusted host software stacks all run outside the CVM and do

not have access to any in-CVM state, while the trusted CPCs

established by the guest operate entirely within the CVM.

Both the guest and host software assume that the hardware

is correctly implemented and trust the firmware and software

provided by hardware vendors.

In secure mode, tenants activate Confidential Page Table

Isolation (CPTI) for critical CPCs, to establish isolation be-

tween the maintenance modules and the guest OS. This sce-

nario is reasonable and practical, especially given the exten-

sive code base and the large number of vulnerabilities of the

guest kernel [22,62,72,91,92]. Upon the initial launch of the

CVM, the cloud tenant places trust in both the guest domain

and the infrastructure domain, and configures CPTI, which

remains unmodifiable thereafter. Once the guest workload

starts, the tenant no longer trusts any components within the

guest domain, except for the CPCs protected by CPTI. The

critical functions in these CPCs, such as snapshots and disas-

ter recovery, can provide correct services to the tenant based

on the initial settings, even in the presence of an errored guest

OS.

USENIX Association 2024 USENIX Annual Technical Conference 1069

Host

CPC

Monitor

Sched.

Guest OS

CVM
CPC

Core

Tasks

Yield

Termination

State

Reset

Auth

Token

Token

Validation

Control PlaneData Plane

 F

W
 &

 V
M

 S
h

im

Figure 4: CPC state machine with the in-host control plane and

in-CVM data plane.

4 CPC Design

In this section, we commence with a detailed introduction of

the state machine of CPCs in §4.1 to explain the execution

procedures of CPC-based maintenance tasks. We then intro-

duce the security mode that should be activated in specific

critical scenarios in §4.2. In §4.3, we discuss how to opti-

mize the CPC code to reduce guest’s development efforts.

Finally, to address the practical challenges arising from the

mutual distrust between the host and guest in CVM-based

maintenance, we propose a set of abort protocols for cloud

computing in §4.4.

4.1 CPC State Machine

The core maintenance logic of a CPC is designed as a state

machine driven by both the in-host control plane and the in-

guest data plane, as shown in Figure 4.

On the in-host control plane side, the hypervisor modules

invoke the CPC monitor’s encapsulated interfaces to initi-

ate maintenance operations. The CPC monitor then awakens

and reschedules the corresponding hvCPU based on the re-

quested semantics. This hvCPU thread then enters the CVM

for processing the maintenance task on the data plane, which

remains confidential to the host. Once the maintenance task

has been completed, it proactively makes a specific hypercall

to generate a VM exit to the host. Finally, the CPC monitor

suspends this hvCPU thread again to free up the occupied

computing resources.

On the in-guest data plane side, the maintenance proce-

dure can be split into four primary steps:

• Token Validation: Before executing the core function-

ality of a CPC, it must validate the authorization token

set by the guest to confirm whether the guest OS permits

this execution. This step ensures that the unintended

CPC invocations are avoided.
• Core Tasks: After authorization confirmation, the CPC

executes the core maintenance functions bound to it.
• Yield Termination: Upon completing the core func-

tionalities, the CPC clears the authorization token and

makes a hypercall to notify the CPC monitor, which re-

sults in the suspension of its hvCPU thread.
• State Reset: When the host reactivates the CPC, it re-

turns to the first step to reassess whether execution is

S1PT

& IVT

Access

& INTR.

SeCPC

S1PT

& IVT

Access

& INTR.

Guest OS

GPA HPA

Access DenyMem. Access SeCPC TCB Untrusted Part

Trusted S2PT

Figure 5: Triple table isolation of CPTI. "Trusted S2PT", "S1PT"

and "IVT" in blue respectively correspond to the three layers of

isolation introduced in §4.2.

currently permissible. This design enables the CPC to

be repeatedly invoked as needed.

By splitting the control plane and data plane, the CPC

state machine maintains a clear security boundary between

the host and guest, ensuring no security degradation on the

CVM. Meanwhile, the host can precisely invoke the desired

maintenance tasks through the semantics bridged by CPCs.

4.2 Confidential Page Table Isolation

There is a gap between the current CPC approach and tradi-

tional approaches as well as infrastructure-based approaches.

The guest cannot modify host or infrastructure components,

but it can access the code and data within CPCs. This gap

makes CPCs inadequate for certain scenarios [11, 18, 25].

For example, tenants require access to the security logging

services to retrieve diagnostic information even in the event

of a guest OS crash or compromise. They may also need a

snapshot service for data recovery. In such cases, the cor-

responding CPC should be able to execute the tenant’s pre-

defined functions reliably even in the presence of a misbe-

having guest OS. Therefore, we need to explore a design for

making CPCs reliable and secure in these scenarios, which

we call secure CPCs (SeCPCs).

Hecate [65] addressed this challenge by using the AMD

VMPL (Virtual Machine Privilege Level) feature, which runs

the maintenance modules in the L1 hypervisor in VMPL0,

isolated from the guest kernel in VMPL1. However, as men-

tioned in the paper, "Other new confidential VM technologies

such as Intel TDX and ARM Realm lack a VMPL-like iso-

lation inside their confidential VMs.", this solution is only

applicable to AMD platforms and limits the cross-platform

compatibility of SeCPCs. Fortunately, we observe that stage-

2 page tables for guest private memory on the other two ma-

jor CVM platforms are trusted for the protection of infras-

tructure domains. This allows us to design the Confidential

Page Table Isolation (CPTI) technique, depicted in Figure 5,

making SeCPCs compatible with all CVM platforms. CPTI

consists of the following three layers of isolation.

Stage-2 Page Table Isolation: Traditionally, all vCPUs

in a VM share the same view of the guest physical address

(GPA) space controlled by the shared stage-2 page table.

1070 2024 USENIX Annual Technical Conference USENIX Association

However, with CPTI, a separate stage-2 page table is es-

tablished by the trusted firmware for the hvCPU where the

SeCPC resides. This enables the hvCPU to access GPA re-

gions beyond the private memory views of other vCPUs. By

storing critical data and code of SeCPCs in these isolated

GPA regions, a compromised guest OS running on other vC-

PUs cannot modify SeCPCs after the secure mode is acti-

vated. Moreover, when the hvCPUs of SeCPCs share the

same physical cores with other vCPUs, the trusted firmware

flushes the TLBs on demand to enhance the isolation. This

design achieves CVM internal isolation for ARM CCA and

Intel TDX platforms. It should be noted that this approach is

not applicable on AMD platforms where the untrusted host

directly controls the S2PT without check by the infrastruc-

ture domain, so a VMPL-based scheme should be adopted

instead.

Furthermore, to minimize the memory footprint of the ad-

ditional stage-2 page tables, trusted firmware reuses most

of the existing page table entries (PTEs) in the root of the

hvCPU’s stage-2 page table, and only rebuilds a few new

ones for the isolated GPA regions.

Stage-1 Page Table Isolation: Simply isolating the stage-

2 address translation is insufficient. A malicious guest kernel

may modify the stage-1 page table of an SeCPC to remap

its GVA to the unprotected GPA regions. To address this is-

sue, the SeCPC builds its own independent stage-1 page ta-

ble within the isolated memory, effectively mitigating such

remapping attacks.

Interrupt Vector Table Isolation: In order to prevent a

malicious guest kernel from disrupting the execution flow of

SeCPCs by sending Inter-Processor Interrupts (IPIs) or trig-

gering other unexpected interrupts, separate interrupt vector

tables (IVTs) with secure handlers are established in the iso-

lated memory as shown in Figure 5. This ensures the stable

execution of SeCPC’s code.

SeCPCs are set by the tenant once at the beginning of the

CVM startup and cannot be reset or changed thereafter. Un-

like normal CPCs, they do not check guest authorization to-

kens, ensuring that they consistently execute the core func-

tions specified by the tenant upon being scheduled. With the

three layers of isolation provided by CPTI, SeCPCs can op-

erate reliably and as expected throughout the lifecycle of the

CVM.

4.3 Optimizations for CPC Development

Improper implementations of CPCs by cloud tenants lead to

extensive development efforts and compromised security. To

further enhance the practicality of CPCs, we propose four op-

timizations for CPC development.

Optimization 1: Following the philosophy of separat-

ing the control plane from the data plane. For example, in

the case of snapshot operations, the CPC only needs to be

equipped with tiny operators for the encrypted extraction of

Table 2: Description of generic maintenance operators.

Name Description

Memory Encryption

Extraction (MEE)

Encrypt and extract the private data

from the target GPA to the host domain.

State Encryption

Extraction (SEE)

Encrypt and extract the private states

from the target vCPU to the host domain.

Memory Decryption

Insertion (MDI)

Insert and decrypt the private data to the

target GPA in CVM.

State Decryption

Insertion (SDI)

Insert and decrypt the private states to the

target vCPU in CVM.

private memory and vCPU states. Other steps involved in the

snapshot operations, such as image splicing and file building,

can be offloaded to the host. Since the extracted data is en-

crypted, the tenant’s privacy cannot be compromised by these

offloaded steps.

Optimization 2: Reusing generic operators in multiple

scenarios. The data-extracting operators mentioned above

can be reused for other maintenance operations, such as mi-

gration and security logging. By adopting these generic op-

erators outlined in Table 2, tenants’ development efforts on

CPCs can be effectively reduced.

Optimization 3: Open sourcing for public validation.

Cloud vendors can contribute to open-sourcing certain main-

tenance modules, such as security scanning and monitoring.

This allows for open testing and verification, enabling ten-

ants to reuse these components directly or with additional

customizing privacy filters at low development costs.

Optimization 4: Distinction between CPC and SeCPC

scenarios. It is worth noting that implementing SeCPCs

requires more efforts compared to normal CPCs. Since

SeCPCs require the three layers of isolation and cannot share

guest OS modules at runtime, they need to additionally imple-

ment the functionalities on their own. Consequently, imple-

menting maintenance operations without isolation require-

ments in normal CPCs can significantly decrease develop-

ment efforts.

With the optimizations recommended above, cloud tenants

can minimize development efforts while guaranteeing CVM

security.

4.4 Confidential Abort Protocol

In most cases, additional resources for maintenance are

charged [2, 30, 31]. However, in certain scenarios, the cloud

vendor offers maintenance for free (or at a discount), such as

during service trials or resource reclamation for overcommit-

ment [2,17,24]. This allows dishonest tenants to temporarily

obtain hvCPUs beyond the host billing for other workloads.

This can be addressed through a straightforward approach

named Confidential Abort Protocol (CAP), where the basic

idea is that dishonest tenants only hurt themselves. Take re-

source reclamation and migration scenarios as examples.

USENIX Association 2024 USENIX Annual Technical Conference 1071

For a CPC-Reclamation, the host only needs to set a

throughput threshold based on the economic value of the re-

claimed resources. When the CPC cannot provide a suffi-

cient amount of reclaimed resources, the host assumes that

the free resources in the guest are depleted and stops CPC-

Reclamation. A dishonest guest cannot excessively divert

resources from the hvCPU to avoid reclaiming below the

threshold. On the other hand, if it deceptively commits un-

recoverable resources to the host to boost throughput, it will

error out due to those resources being taken without any dam-

age to the host.

In the case of CPC-Migration, the host can set a migra-

tion time limit. Specifically, since the migration time is pro-

portional to the size of the guest memory, the host can accu-

rately estimate the reasonable CPU time that CPC-Migration

should occupy. When the time limit expires, the host just de-

schedules the CPC-Migration. A dishonest guest that over-

appropriates hvCPU resources will cause the migration to

not complete, resulting in errors in its destination instance.

In summary, cloud vendors can utilize CAP as a practical

way to prevent resource encroachment. For other potential

scenarios, CAP can also be extended by aligning to the basic

idea and examples mentioned above.

5 Implementation

We have implemented prototypes of CPCs and their corre-

sponding use cases on both the AMD SEV and ARM CCA

platforms. The AMD use cases are implemented for the per-

formance evaluation on real-world machines. Meanwhile,

implementing the SeCPC use cases on the ARM CCA plat-

form, which lacks a VMPL-like feature, demonstrates the se-

curity and cross-platform compatibility of (Se)CPCs.

5.1 CPCs on AMD Platforms

We implemented CPCs using QEMU/KVM on an AMD plat-

form that supports the SEV-SNP technology. The host ker-

nel version is Linux 6.1.0-rc4 and the guest kernel version is

Linux 6.2.0.

First, since common maintenance operations like migra-

tion and resource reclamation are usually initiated through

the QEMU command line and implemented within QEMU,

we integrated the CPC Monitor into QEMU to collaborate

more closely with these modules. Modules in QEMU call

the CPC monitor’s interface to awaken the corresponding

hvCPU thread and invoke the desired CPC. Once the CPC

completes its task, it triggers a hypercall CPC_FINISH and

KVM forwards the handling to QEMU so that the CPC

monitor can suspend the hvCPU thread. The modifications

to QEMU amounted to approximately 870 lines of code

(LOCs).

Second, we introduced a set of CPC-related hypercalls like

CPC_FINISH and CPC_HVCPU_REGISTER to the KVM

module in the host kernel. The host kernel simply forwards

these hypercalls to the CPC Monitor in QEMU for further

processing. Adjustments to the host kernel amounted to ap-

proximately 280 LOCs.

Finally, we developed CPC use cases within the guest ker-

nel and AMD SVSM [5, 20]. We rectified the failure of the

isolcpus kernel command-line parameter under AMD SEV-

SNP and utilized it to designate certain vCPUs as hvCPUs.

The following four use cases were developed:

CPC-Ballooning: We transplanted the frontend of virtio-

balloon to a CPC. When the backend in QEMU attempts

memory reclamation, it activates CPC-Ballooning through

the CPC monitor to collect the guest’s free memory.

CPC-Snapshot: We implemented an SeCPC with an

MEE operator (as listed in Table 2) in the VMPL0 SVSM,

which is isolated from the guest kernel in VMPL1. When the

QEMU intends to retrieve encrypted data from the CVM to

assemble the image, the CPC monitor activates this SeCPC

and submits the target GPAs.

CPC-SecureLog: To ensure the security of critical logs

from being tampered with by the guest kernel, we imple-

mented an SeCPC in the SVSM to preserve the logs in the

isolated VMPL0 memory. Meanwhile, the CPC monitor can

utilize CPC-Snapshot to obtain the encrypted security logs

and forward them to the cloud tenant.

CPC-LiveMigration: Since the current official live migra-

tion scheme is not yet adapted to SEV-SNP [38], for compar-

ison, we implement CPCs in a non-SNP SEV environment.

According to the optimizations suggested in §4.3, we only

implement the MEE and SEE operators within the CPC of

the source CVM and reuse the modules of QEMU on the

host side to transfer the encrypted data. Similarly, only MDI

and SDI operators are implemented within the CPC at the

destination.

5.2 CPCs on ARM Platforms

We implemented the ARM CCA prototype on the

FVP_Base_RevC_2xAEMvA platform, which is the only

available platform supporting the Realm Management Exten-

sion (RME). Both the guest and host utilize the Linux 6.2.0-

rc1 kernel, while the VMM is KVMTOOL 3.18.0.

First, we implemented the CPTI prototype in the Realm

Management Monitor (RMM) by providing separate S2PTs

for SeCPCs. The RMM configures the vttbr_el2 register to

the address of the corresponding S2PT root for each vCPU

upon entering the Realm, instead of sharing the same copy

for all vCPUs. Additionally, RMM exports an RSI (Realm

Services Interface [8]) to the guest to register the range of

protected memory accessible only by the SeCPC. Once the

initial configuration is complete for the SeCPC, any subse-

quent attempts to modify the configuration are rejected to

maintain isolation even if the guest kernel is compromised.

Next, in the host kernel, we modified the RMI (Realm

Management Interface [8]) that creates Realms. This modifi-

cation requires the host to allocate additional memory pages

1072 2024 USENIX Annual Technical Conference USENIX Association

to the RMM for building the necessary additional S2PT struc-

tures required for CPTI. Additionally, the host forwards all

CPC-related hypercalls to the CPC monitor in KVMTOOL

for further processing.

Finally, within the guest, we utilize the CPTI support of

RMM to implement two SeCPC use cases: CPC-Snapshot

and CPC-SecureLog. The CPC-Snapshot contains an MEE

operator that encrypts and exports private memory data

within the protected SeCPC. On the other hand, the CPC-

SecureLog persistently records security logs in CPTI mem-

ory and also allows CPC-Snapshot to export its logs in the

encrypted format defined by the tenants.

6 Security Analysis

In this section, we analyze the overall system security of

CPCs from the perspective of the infrastructure domain, host

domain, guest domain, and SeCPC, respectively.

6.1 Compacting Infrastructure Domain

The analysis regarding CPCs’ modifications in the infrastruc-

ture domain is based on the ARM prototypes, given that the

firmware of Intel TDX and AMD SEV is not open-source.

Normal CPCs without CPTI do not introduce any modi-

fications to the infrastructure domain. For maintenance op-

erations that require the SeCPC support, our prototype in-

troduces only 242 LOCs to the RMM. These modifications

enable the RMM to configure the hvCPUs corresponding

to SeCPCs with isolated stage-2 page tables. Compared to

the RMM with 15K LOCs we used, and the version with

only 3.2K LOCs which was formally verified in previous

work [83], the modification introduced by CPTI is rela-

tively small. In contrast, with the implementation of two

simple maintenance operations, CPC-Snapshot and CPC-

SecureLog, the guest code increased by 1,749 LOCs, which

is 7.23× more than the modification of CPTI in RMM. Ob-

viously, if more and more maintenance operations are imple-

mented in the infrastructure domain, it will seriously inflate

its TCB, while the SeCPC support is a one-time modifica-

tion.

6.2 Isolation between Host and Guest

The security of the CPC design is ensured not only by main-

taining a compact infrastructure domain but also by strictly

maintaining a clear security boundary between the host and

guest. This design philosophy aligns with original CVM so-

lutions, ensuring that the security of the host and guest is not

degraded. In the following sections, we will analyze the secu-

rity of each party separately, considering potential risks from

both the host and guest perspectives.

Guest Security. We acknowledge that neither the CPC de-

sign nor the infrastructure-based approaches can eliminate

the impacts of vulnerabilities in maintenance modules on the

guest. However, our design offers the following four security

advantages. First, compared to the size of the guest OS, most

maintenance modules are relatively small, especially after be-

ing optimized as discussed in §4.3. Second, flexible CPCs

can be updated and fixed more quickly than inflexible infras-

tructure domains. Third, CPTI can be used not only to protect

SeCPCs but also to limit CPC’s access to the guest OS. This

isolation helps minimize the impact of CPCs on the guest

OS in the event of errors. Finally, this design provides guests

with the flexibility to choose the necessary maintenance func-

tions without bloating their TCBs for a large number of main-

tenance modules uniformly provided by the infrastructure

domain. This makes them immune to non-essential mainte-

nance module vulnerabilities.

On the other hand, CPCs do not introduce new immature

guest-host interaction mechanisms. Instead, they utilize the

mature hypercall mechanism to notify the host upon comple-

tion of maintenance tasks. This process only exports the se-

mantic of task completion to the host, without exposing any

additional internal CVM states.

Host Security. Based on the ARM platform prototype,

most of the newly introduced code base, including the CPC

monitor, resides in the user-level VMM. The host kernel

only needs to forward CPC-related hypercalls to the user-

level VMM and provide additional memory to the RMM to

support the CPTI technology, which modifies less than 150

LOCs. Even after accounting for the code changes of the in-

frastructure domain in §6.1, the impact of CPCs on the host’s

TCB is negligible.

From another perspective, the host kernel does not record

the hvCPU and maintenance semantic information registered

by the guest. In its view, all hvCPUs and gvCPUs are con-

sistent with the behavior of traditional vCPUs. This consis-

tency also guarantees the same level of security as the origi-

nal CVMs.

6.3 Resilience of SeCPCs

We developed two maintenance operations, CPC-Snapshot

and CPC-SecureLog, using SeCPCs on both AMD SEV and

ARM CCA platforms to evaluate the resilience of SeCPCs in

the event of guest OS errors. After configuring these SeCPCs

during the CVM startup, we intentionally tampered with the

internal data and code within them from the guest kernel. As

a result, the attacks were mitigated and the SeCPCs worked

correctly as expected. CPC-SecureLog correctly recorded

and protected the security logs, while CPC-Snapshot success-

fully encrypted and exported the internal critical data. This

experiment highlights the resilience of SeCPCs and their po-

tential for more CVM security tools. Additionally, by imple-

menting SeCPCs on the two significantly different CVM plat-

forms, the compatibility and practicality of our design are fur-

ther validated.

7 Performance Evaluation

In this section, we will compare the CPC-based use cases

with existing solutions on AMD platforms to answer the fol-

USENIX Association 2024 USENIX Annual Technical Conference 1073

15K
30K

1-VM 2-VM 3-VM 4-VM 5-VM 6-VM 7-VM 8-VM

14.65K 14.53K 13.98K 14.03K 14.08K 13.81K 13.83K 13.97K

5M
10M
15M
20M
25M
30M
35M
40M

E
x
tr

a
c
ti
o

n
 O

v
e

rh
e

a
d

o
n

 P
e

r
P

a
g

e
 (

C
y
c
le

)

AMD-SP CPC-MEE CPC-MEE-AESNI

4.99M
9.97M

15.01M
19.88M

24.84M
29.87M

34.98M
39.80M

3.29M 3.29M 3.28M 3.29M 3.29M 3.29M 3.28M 3.28M

Figure 6: Encrypted Memory Extraction. The number of cycles required to cryptographically extract each memory page. Lower is better.

"AMD-SP" refers to all CVMs simultaneously encrypting and extracting guest memory via the AMD-SP. "CPC-MEE" involves using the

MEE operator in CPC-Snapshot to encrypt and extract memory, the encryption algorithm is AES-CFB. "CPC-MEE-AESNI" stands for using

the AES-NI extension on x86 to further accelerate the AES used by CPC-Snapshot.

lowing questions:

• From the micro-operation perspective, what is the per-

formance advantage of CPCs compared to existing so-

lutions limited by the AMD-SP?
• In resource reclamation scenarios, how much perfor-

mance improvement can CPC-based use cases achieve

compared to the current scheme by reducing resource

contention with the guest workloads?
• In live migration scenarios, what is the performance im-

provement of a CPC-based solution compared to the ex-

isting AMD-SP-based solution?

7.1 Experimental Setup

We conducted experiments on an AMD platform with the

SEV-SNP feature, which is equipped with two AMD EPYC

7T83 64-core CPUs, 502 GB of DRAM, and a 1024 GB SSD.

To demonstrate the performance and scalability benefits of

CPCs compared to existing schemes, we present three case

studies.

First, we compare CPC-Snapshot with the current

firmware-based memory transferring scheme to demonstrate

the significant performance limitations of the original ap-

proach and highlight the scalability advantages of the CPC

design. (§7.2)

Next, we evaluate CPC-Ballooning against the virtio-

balloon in existing SEV CVMs to illustrate the efficiency

of CPCs in resource reclamation scenarios alongside busy

guests. (§7.3)

Finally, we examine CPC-LiveMigration in comparison to

the current firmware-based solution, emphasizing its advan-

tages in live migration scenarios. (§7.4)

7.2 Case Study: Confidential Data Extraction

with CPC-Snapshot

Guest memory extraction is the fundamental primitive on

which most VM maintenance operations rely, such as mi-

gration, snapshot, and security scanning. CPC-Snapshot

achieves this primitive via the Memory Encryption Extrac-

tion (MEE) operator as listed in Table 2, whereas current

SEV CVMs require AMD-SP for encryption extraction of in-

ternal protected memory. We conducted a performance com-

parison on CVMs with 1 vCPU and 2 GB of RAM, as de-

picted in the first data set of Figure 6. The results indicate that

CPC-Snapshot, utilizing the AES-CFB algorithm for mem-

ory encryption, achieves a 34.07% faster performance com-

pared to the current scheme in a single CVM scenario. The

improvement is mainly due to the performance advantage

of a host processor compared to the AMD-SP as a copro-

cessor. It could be better because our implementation of the

AES-CFB algorithm is simple for minimizing the code base

for this SeCPC. We then utilize the AES-NI extension on

x86 to accelerate it, and the performance advantage of CPC-

Snapshot reaches up to 340.61× that of the baseline.

To further explore the impact of the multi-tenant environ-

ment on the cloud, we increased the number of CVMs. As

illustrated in the 2nd to 8th data sets of Figure 6, the current

scheme experiences significant performance degradation due

to contention for the use of the AMD-SP as the number of

CVMs increases. The overhead required to extract each page

on average is proportional to the number of CVMs. In con-

trast, both the software and hardware-accelerated versions of

CPC-Snapshot demonstrate excellent scalability.

7.3 Case Study: Resource Reclamation with

CPC-Ballooning

We enabled the virtio-balloon in SEV CVMs as the baseline

and further transplanted the frontend into CPC-Ballooning.

The CVMs of the baseline and CPC-Ballooning both had 1

vCPU and 8GB of memory, and we compared the speed of

collecting 1GB of guest internal free memory. First, we ex-

ecuted and exited the "memhog" process in the guest to en-

sure that at least 4GB of free memory was available for host

reclamation [55]. Then, we performed CPU-intensive decom-

pression calculations to make the guest busy and recorded

their time consumption of reclaiming the 1GB of memory.

The results, presented in the first set of data in Figure 7, re-

veal that although the baseline performs similarly to CPC-

Ballooning when the guest is idle, it is 3.05× slower than

CPC-Ballooning when the guest is busy. This is due to the

fact that the baseline has severe CPU resource competition

with the guest workload, whereas the CPC enables the host to

provide separate CPU resources, which accelerates the main-

tenance modules. We will further discuss the situation when

host resources are insufficient in §8.

1074 2024 USENIX Annual Technical Conference USENIX Association

 0

 20

 40

 60

 80

 100

 120

 140

1-vCPU 2-vCPU 3-vCPU 4-vCPU 5-vCPU 6-vCPU 7-vCPU 8-vCPUT
im

e
 C

o
n
s
u
m

p
ti
o
n
 (

s
)

Baseline CPC Baseline-OC CPC-OC

64.55 62.20 58.93 61.16 62.87 63.34 59.56 60.26

21.13 20.68 20.49 20.25 20.81 21.33 22.91 22.47

124.56 120.44 121.00 122.72
113.44 117.38 117.93 117.28

24.69 23.99 24.52 24.76 24.67 25.56 25.15 25.76

Figure 7: Time consumption for memory reclamation. "Baseline" represents the current CVM, "CPC" represents the CVM with the CPC-

Ballooning, and "OC" represents two busy CVMs in a 2× overcommitment environment.

In Figure 8, we recorded the performance of two guest

workloads, Untar and Sysbench-Thrd [49], under the balloon-

ing operation. Even though CPC-Ballooning improves the

speed of free memory reclamation, there is still a significant

performance degradation of the guest workloads due to the

stress the ballooning operation puts on the guest’s memory

management and interrupt subsystem. We can see that main-

tenance modules tightly coupled to the guest OS may lead

to substantial performance impacts on the guest even after

obtaining independent physical resources. However, the to-

tal completion of guest workloads is still improved over the

same time period for the shorter reclaim duration.

 0

 0.5

 1

 0 10 20 30 40 50 60 70 80

N
o
rm

al
iz

ed
 P

er
fo

rm
an

ce

Time(s)

Baseline
CPC

(a) Untar

 0

 0.5

 1

 0 10 20 30 40 50 60 70 80

N
o
rm

al
iz

ed
 P

er
fo

rm
an

ce

Time(s)

Baseline
CPC

(b) Sysbench-Thrd

Figure 8: CPC’s impact on guest workloads. Figure (a) and

Figure (b) show the performance of a guest running Untar and

Sysbench-Thrd, respectively, under the ballooning operation.

We then tested in busy guests with different numbers of

vCPUs and observed that the baseline performance did not

improve significantly, and thus CPC maintains its advantage

by a factor of about 3. We further explored the performance

comparison between the two solutions in the scenario where

the cloud vendor overcommitted vCPUs. As depicted by the

two light-colored bars in Figure 7, the reclamation speed of

the baseline decreases by a factor of two in the scenario of 2×

vCPU overcommitment. This is because the frontend of the

baseline halves in performance as the amount of guest vCPU

resources halves. In contrast, the CPC-Ballooning maintains

stable performance, thereby increasing the performance ad-

vantage to approximately 5×.

7.4 Case Study: CVM Live Migration with

CPC-LiveMigration

We utilized CPC-LiveMigration to free the SEV live migra-

tion from AMD-SPs’ restrictions. We tested this on SEV

CVMs with 1 vCPU and 2 GB of memory and recorded

the total time for the live migration. To minimize instabil-

ity caused by the network, the source instance and destina-

tion instance ran on the same machine. All vCPUs of the

instances were bound to different physical cores on the same

NUMA node. Our baseline is traditional VMs, and the op-

ponent is the current solution based on AMD-SPs (vanilla).

The results, as depicted in Figure 9, show that free from

the limitations of the AMD-SP, CPC-LiveMigration achieves

a 55.90× performance improvement compared to the exist-

ing approach. This improvement comes mainly from our

efficient AES-GCM software implementation ported from

mbedtls [39] making our operators (MEE and MDI in Ta-

ble 2) nearly 60 times faster than the AMD-SP.

Although CPC-LiveMigration has greatly improved the

migration efficiency, there is still a 35.53× overhead from the

baseline. We hypothesized that this gap came from the over-

head of encryption and decryption. To address this, we accel-

erated the MEE and MDI operators with the AES-NI exten-

sion again, but the improvement was only 19.54%, with the

28.59× overhead from the baseline. The further breakdown

of the AES-GCM algorithm used by CPC-LiveMigration re-

vealed that the overhead lay primarily within the GCM en-

coding, not the AES. Therefore acceleration for AES does

not provide further significant performance improvement. To

investigate the upper bound on migration performance for the

current CVM architecture, we replaced the AES-GCM algo-

rithm with a simple memcpy operation, thus eliminating the

additional overhead due to cryptography and encoding. This

resulted in a further speedup of 43.72% and reduced the gap

with normal VMs to 16.09×.

 0

 25

 50

Single Double

1.02 1.02

36.24 36.51
29.16 29.32

16.41 16.66

 1800
 2200
 2600
 3000
 3400
 3800
 4200

L
iv

e
 M

ig
ra

ti
o

n
 T

o
ta

l
T

im
e

 (
s
)

Baseline

Vanilla

CPC

CPC-aesni

CPC-memcpy2,025.67

4,036.33

Figure 9: Time consumption for live migration. "Baseline" repre-

sents the time consumed for traditional VMs, "Vanilla" represents

the time consumed for current SEV CVMs, "CPC" represents the

time consumed for CPC-LiveMigration, "CPC-aesni" represents ac-

celerating CPC-LiveMigration with the AES-NI extension. "CPC-

memcpy" represents accelerating CPC-LiveMigration without data

transformations. "Single" represents the time consumed when one

instance is migrated. "Double" represents the time consumed when

two identical instances are migrated simultaneously.

Based on these findings, we can summarize that CPC-

LiveMigration significantly improves the speed of SEV live

USENIX Association 2024 USENIX Annual Technical Conference 1075

migration. However, there is still overhead compared to tradi-

tional virtualization. Cryptographic and encoding algorithms

are the primary source of the overhead. Even assuming that

the hardware can accelerate these two steps to close to the

overhead of a simple memory copy, there still remains a non-

negligible gap compared to traditional VMs that require no

extra copies. Future research should explore more methods,

such as multi-threading and pipeline, to further accelerate it.

In addition, current SEV firmware interfaces do not support

post-copy live migration [69], which could be supported by

CPC-LiveMigration for further acceleration.

We further conducted speed tests for 2-instance migration.

The results demonstrate that the vanilla experiences a signifi-

cant drop in performance, nearly doubling the time consump-

tion. However, CPC-LiveMigration maintains its efficiency,

achieving a remarkable speedup of 137.66× with AES-NI

acceleration. The substantial decrease in vanilla performance

aligns with the inverse trend illustrated in Figure 2b of §2.3.

In real-world scenarios, where numerous CVM instances are

present on such 128-core platforms, this performance degra-

dation becomes more serious. This further highlights the sub-

stantial performance advantage of CPCs.

We also tested the throughput of guest workloads during

the live migration to explore the impact on guest workload.

As shown in Figure 10, no significant performance degrada-

tion (< 9%) was observed on both the vanilla and CPC ver-

sions compared to the baseline. This is attributed to the high

degree of decoupling between the CPC code logic and the

guest OS, resulting in minimal interference with each other’s

performance.

 0

 0.5

 1

 1.5

 0 5 10 15 20

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

Time(s)

Vanilla
CPC

(a) Memcached

 0.5

 0.75

 1

 1.25

 0 5 10 15 20

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

Time(s)

Vanilla
CPC

(b) Sysbench-Thrd

Figure 10: Normalized throughput of guest workloads under

live migration. Figure (a) and Figure (b) show the performance of

a guest running Memcached [40] and Sysbench-Thrd, respectively,

under the live migration operation.

8 Discussion and Limitations

Compatibility for more secure VMs. In addition to the

previously mentioned platforms, our design can be adapted

to more CVM platforms [21, 36, 43, 74, 75, 80, 81]. This

adaptation relies solely on the host’s scheduling of vCPUs

and trusted S2PTs (or AMD VMPL). For example, Intel

TDX [36] offers shared S2PTs and secure S2PTs, with the

TDX module protecting only the secure S2PTs. When im-

plementing CPTI, the TDX module must ganrantee the se-

curity of SeCPCs by the secure S2PTs. This ensures that

in the event of a collaboration between the host and a com-

promised guest to attack SeCPC data through shared S2PTs,

their attempt will fail due to the distinct memory keys for

secure S2PTs and shared S2PTs. Furthermore, we observed

that AP-TEE (CoVE) [21], an emerging CVM approach on

RISC-V, also employs host-controlled vCPU scheduling and

trusted S2PTs. Consequently, our design can be tailored to

this platform with a few modifications to the TEE Security

Manager (TSM). It is essential to note that CPC presents

unique advantages to each CVM platform. For instance, our

prototype achieved remarkable performance improvements

on AMD platforms, whereas primarily focused on enhanc-

ing firmware security and the intra-CVM isolation for ARM

CCA platforms.

Moreover, our design relocates more maintenance mod-

ules from the hypervisor to the guest, benefiting secure vir-

tualization schemes that are influenced by the size of the in-

kernel hypervisor [60, 87, 88, 95, 97, 100, 102].

Further technological route comparisons. We investigated

alternative solutions, all of which present notable limitations

for CVMs. Delegating services in other CVMs [50,71,82,86,

105] would rapidly deplete the allowable instances on AMD

and Intel platforms with hardware restrictions on CVM quan-

tity [3, 45]. Additionally, eBPF-based services are closely

coupled to the guest OS, making isolation challenging. Plac-

ing guest code snippets to the host for execution, as with hy-

perupcalls [55], results in potential guest code logic exposure.

Even if host access to such snippets is regulated through hard-

ware modifications, it could compromise the well-defined

security boundaries of CVMs, introducing more complex-

ity and potential development errors. For example, the host

could gather additional information from the guest code snip-

pets, compromising the guests’ KASLR through the pointers

to critical guest kernel functions and structures. Furthermore,

hardware modifications are impractical given the slow hard-

ware development of the CVM platforms.

Isolation between SeCPCs. While in accordance with the

threat models presented in this paper, all SeCPCs are TCBs

of cloud tenants and the isolation between them is deemed

non-essential, our design can still be extended to scenarios

where SeCPCs inherently mistrust each other. Specifically,

each critical maintenance module in an SeCPC can be iso-

lated from other SeCPCs by using CPTI based on its dedi-

cated S2PTs. On AMD platforms, an SeCPC monitor can be

placed in CPL0 of VMPL0 and all the SeCPCs can be iso-

lated in VMPL1 or in CPL3 of VMPL0.

Overhead of SeCPCs. When the AMD VMPL feature is

not present, the CPTI technology must rely on trusted S2PTs.

This design introduces additional S2PT switching compared

to traditional VMs, potentially leading to overhead. Given

the unavailability of ARM CCA hardware, we approximate

this based on two prior studies, TxIntro [85] and Black-

Box [70], which employ multiple S2PTs for isolated soft-

ware within a single VM. As these studies demonstrate min-

1076 2024 USENIX Annual Technical Conference USENIX Association

imal overhead, we anticipate that the overhead associated

with SeCPCs will also be minimal.

Reactive services from guests. CPC-based services can be

invoked not only by the host but also by the guest. There

are two methods to implement such services. First, the guest

actively notifies the host via hypercalls to schedule specific

hvCPUs to trigger the corresponding services. Second, the

trusted firmware provides more interfaces for the guest to

configure the handling of specific events. For instance, the

guest can utilize the trusted firmware to revoke the write per-

mission of particular protected data from the S2PT, causing a

page fault when an internal misbehaving component attempts

to change the data and is intercepted by the trusted firmware.

Subsequently, the trusted firmware can redirect the execution

flow to a designated guest handler, which will then invoke the

appropriate CPC to handle the event based on the tenant’s

pre-setting.

Resource isolation. CPCs offer isolated CPU resources for

maintenance modules, and SeCPCs can additionally provide

memory isolation. However, in certain scenarios, mainte-

nance modules may need to leverage the internal data struc-

ture and semantics of the guest OS. Consequently, they can-

not be completely isolated from the guest workloads, as illus-

trated in Figure 8.

Flexible resource allocation. CPCs can be applied to both

CVMs and traditional VMs to achieve flexibility in adjusting

guests’ resources. This can be extended to scenarios such as

serverless computing [6, 37, 42, 61, 73, 84], online resource

scheduling [64,79,93,101,104], and harvest VMs [54,63,98,

103]. Its potential for higher execution density and resource

utilization is worth exploring in future work.

Extra CPUs. CPCs require additional vCPU threads, which

could pose challenges when host resources are scarce. How-

ever, this is an infrequent situation as the additional CPU

usage by CPCs is typically brief. The CPUs occupied by

CPCs are relinquished once the maintenance tasks are fin-

ished. Meanwhile, in such situations, the hvCPU can still ac-

quire computing power by obtaining CPU time slices from

the gvCPUs of the same CVM. This merely downgrades the

performance to original schemes with resource contention.

Support for security tools. The CPTI technology has the

ability to defend against compromised guest kernels in emer-

gencies. Therefore, it has the potential to be further devel-

oped into more useful security tools for CVMs like debug-

ging tools. It is reasonable to expect the tenants who choose

CVMs to have higher security requirements, and such use

cases will be explored in future work.

9 Related Work

Transformed vCPU abstraction. Several works novelly

transform the vCPU abstraction to address various system

issues [23,33,57,58,66,85,96]. gVisor [33], Enarx [23], En-

clavisor [66], and Song et al. [96] transform vCPUs into user-

level application threads to further meet the requirements

for secure containers, efficient scheduling, and secure run-

times. Dune [57] uses virtualization hardware to provide a

process, rather than a machine abstraction. It improves the

performance of certain applications while ensuring isolation.

Based on Dune, IX [58] further places the network appli-

cation logic as the data plane in the guest, and exports the

resource management as the control plane left to the host.

CPCs transform the vCPU abstraction into the procedure ab-

straction, with the control plane for the host and the data

plane hiding in the guest.

In-TEE security. To mitigate the potential vulnerabilities

posed by the huge code base in TEE, several works fo-

cus on reducing the TCB or implementing internal isola-

tion. SCONE [56] achieves TCB reduction by eliminating

the LibOS and protects particular syscalls using a shim C li-

brary. Meanwhile, Occlum [94] shrinks the TCB by isolating

applications within the same enclave through SFI. Lighten-

clave [67] proposes a hardware extension that prevents the

host from tampering with the page table, and it employs the

Intel MPK to establish efficient and secure internal isolation

within SGX based on this extension. For CVMs, the huge

code base of the guest kernel also could not be ignored for

practicality. SeCPCs, enabled by CPTI, effectively safeguard

specific maintenance components during emergencies.

In-VM maintenance. Some previous work explored the

technological route of in-VM maintenance. Apart from

the solutions mentioned earlier based on nested virtualiza-

tion [51, 65], VEIL [53] also utilizes the VMPL on AMD

SEV-SNP platforms to protect critical system services. They

all rely on specific CVM platforms. Additionally, TxIn-

tro [85], similar to CPCs, utilizes in-VM core planting to in-

troduce an implanted core running VMI code into the guest

VM’s space. However, its internal isolation relies on trusted

hosts, which is not allowed in CVM. Moreover, the lack of se-

mantics makes implanted cores to be continuously scheduled

like normal vCPUs, leading to reduced resource utilization.

10 Conclusion

This paper introduces Confidential Procedure Calls (CPCs),

a novel approach to enhancing the flexibility, security, and

efficiency of CVM maintenance by bridging the semantic

gap between the host and in-CVM maintenance modules.

Our prototypes implemented on the leading CVM platforms

demonstrate that the design achieves all the three objectives.

Perhaps this brick of maintenance patched by CPCs can im-

prove the practicality of CVMs and facilitate their large-scale

popularization on the cloud.

11 Acknowledgments

We sincerely thank the anonymous reviewers for their in-

sightful suggestions. This work was partially supported by

National Key R&D Program of China (2023YFB4503702)

and NSFC (No. 62372287 and 61925206).

USENIX Association 2024 USENIX Annual Technical Conference 1077

References

[1] Alibaba Security White Paper International Edition.

https://resource.alibabacloud.com/whitepaper/

alibaba-cloud-security-whitepaper---internationa

l-edition-v20-2020_1717. Referenced December 2023.

[2] Amazon CloudWatch Pricing. https://aws.amazon.com/

cn/cloudwatch/pricing/. Referenced December 2023.

[3] AMD SEV Secure Nested Paging Firmware ABI Speci-

fication. https://www.amd.com/content/dam/amd/en/

documents/epyc-technical-docs/specifications/

56860.pdf. Referenced May 2024.

[4] AMD SEV-SNP: Strengthening VM Iso-

lation with Itegrity Protection and More.

https://www.amd.com/system/files/TechDocs/

SEV-SNP-strengthening-vm-isolation-wit

h-integrity-protection-and-more.pdf. Referenced

May 2023.

[5] AMD SVSM. https://github.com/AMDESE/linux-svsm.

Referenced May 2023.

[6] Apache OpenWhisk: Open Source Serverless Cloud Plat-

form. https://openwhisk.apache.org/. Referenced May

2024.

[7] ARM CCA Hardware Architecture. https://developer.

arm.com/documentation/ddi0615/latest/. Referenced

May 2023.

[8] ARM CCA: Realm Management Monitor specification.

https://developer.arm.com/documentation/den0125/

0300/Arm-CCA-Software-Architecture. Referenced

January 2024.

[9] AWS CloudWatch agent. https://docs.aws.amazon.

com/AmazonCloudWatch/latest/monitoring/

Install-CloudWatch-Agent.html. Referenced De-

cember 2023.

[10] AWS CodeDeploy agent. https://docs.aws.amazon.com/

codedeploy/latest/userguide/codedeploy-agent.

html. Referenced December 2023.

[11] AWS Hibernation. https://docs.aws.amazon.com/

AWSEC2/latest/UserGuide/Hibernate.html. Refer-

enced December 2023.

[12] AWS Inspector agent. https://docs.aws.amazon.com/

inspector/v1/userguide/inspector_agents.html.

Referenced December 2023.

[13] AWS Monitor agent. https://learn.microsoft.

com/en-us/azure/azure-monitor/agents/

agents-overview. Referenced December 2023.

[14] AWS Pipelines agent. https://learn.microsoft.com/

en-us/azure/devops/pipelines/agents/agents?

view=azure-devops&tabs=yaml%2Cbrowser. Refer-

enced December 2023.

[15] Azure Backup MARS agent. https://learn.microsoft.

com/en-us/azure/backup/install-mars-agent. Refer-

enced December 2023.

[16] Azure Log analytics agent. https://learn.

microsoft.com/en-us/azure/azure-monitor/agents/

log-analytics-agent. Referenced December 2023.

[17] Azure Migrate pricing. https://azure.microsoft.com/

en-us/pricing/details/azure-migrate/. Referenced

December 2023.

[18] Azure Site Recovery. https://learn.

microsoft.com/en-us/azure/site-recovery/

site-recovery-overview. Referenced December

2023.

[19] Azure: What is cloud migration?

https://azure.microsoft.com/en-us/

resources/cloud-computing-dictionary/

what-is-cloud-migration. Referenced December

2023.

[20] COCONUT SVSM. https://github.com/

coconut-svsm/svsm. Referenced May 2023.

[21] Confidential VM Extension (CoVE) on RISC-V. https://

github.com/riscv-non-isa/riscv-ap-tee. Referenced

March 2024.

[22] CVE of Linux. https://cve.mitre.org/cgi-bin/

cvekey.cgi?keyword=linux. Referenced January 2024.

[23] Enarx. https://enarx.dev/docs/technical/

syscall-proxy. Referenced December 2023.

[24] Free Cloud Migration Services on AWS. https://aws.

amazon.com/free/migration/. Referenced December

2023.

[25] Google Cloud: Create and manage disk snapshots.

https://cloud.google.com/compute/docs/disks/

create-snapshots. Referenced December 2023.

[26] Google Cloud: Live migration process during mainte-

nance events. https://cloud.google.com/compute/

docs/instances/live-migration-process. Referenced

December 2023.

[27] Google Cloud Logging Agent. https://cloud.google.

com/logging/docs/agent/logging. Referenced Decem-

ber 2023.

[28] Google Cloud Monitoring Agent. https://cloud.google.

com/monitoring/agent/monitoring. Referenced Decem-

ber 2023.

[29] Google Cloud Ops Agent. https://cloud.google.com/

monitoring/agent/ops-agent. Referenced December

2023.

[30] Google Cloud: Price of Cloud Logging. https://cloud.

google.com/stackdriver/pricing#logging-costs.

Referenced December 2023.

[31] Google Cloud: Price of Cloud Monitoring. https://cloud.

google.com/stackdriver/pricing#monitoring-costs.

Referenced December 2023.

[32] Granule Protection Tables in TF-A. https://www.

trustedfirmware.org/docs/tfa_tech_forum_2021_

10_21_gpt.pdf. Referenced December 2023.

1078 2024 USENIX Annual Technical Conference USENIX Association

https://resource.alibabacloud.com/whitepaper/alibaba-cloud-security-whitepaper---internationa
https://resource.alibabacloud.com/whitepaper/alibaba-cloud-security-whitepaper---internationa
l-edition-v20-2020_1717
https://aws.amazon.com/cn/cloudwatch/pricing/
https://aws.amazon.com/cn/cloudwatch/pricing/
https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/specifications/56860.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/specifications/56860.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/specifications/56860.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-wit
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-wit
h-integrity-protection-and-more.pdf
https://github.com/AMDESE/linux-svsm
https://openwhisk.apache.org/
https://developer.arm.com/documentation/ddi0615/latest/
https://developer.arm.com/documentation/ddi0615/latest/
https://developer.arm.com/documentation/den0125/0300/Arm-CCA-Software-Architecture
https://developer.arm.com/documentation/den0125/0300/Arm-CCA-Software-Architecture
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Install-CloudWatch-Agent.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Install-CloudWatch-Agent.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Install-CloudWatch-Agent.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/codedeploy-agent.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/codedeploy-agent.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/codedeploy-agent.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Hibernate.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Hibernate.html
https://docs.aws.amazon.com/inspector/v1/userguide/inspector_agents.html
https://docs.aws.amazon.com/inspector/v1/userguide/inspector_agents.html
https://learn.microsoft.com/en-us/azure/azure-monitor/agents/agents-overview
https://learn.microsoft.com/en-us/azure/azure-monitor/agents/agents-overview
https://learn.microsoft.com/en-us/azure/azure-monitor/agents/agents-overview
https://learn.microsoft.com/en-us/azure/devops/pipelines/agents/agents?view=azure-devops&tabs=yaml%2Cbrowser
https://learn.microsoft.com/en-us/azure/devops/pipelines/agents/agents?view=azure-devops&tabs=yaml%2Cbrowser
https://learn.microsoft.com/en-us/azure/devops/pipelines/agents/agents?view=azure-devops&tabs=yaml%2Cbrowser
https://learn.microsoft.com/en-us/azure/backup/install-mars-agent
https://learn.microsoft.com/en-us/azure/backup/install-mars-agent
https://learn.microsoft.com/en-us/azure/azure-monitor/agents/log-analytics-agent
https://learn.microsoft.com/en-us/azure/azure-monitor/agents/log-analytics-agent
https://learn.microsoft.com/en-us/azure/azure-monitor/agents/log-analytics-agent
https://azure.microsoft.com/en-us/pricing/details/azure-migrate/
https://azure.microsoft.com/en-us/pricing/details/azure-migrate/
https://learn.microsoft.com/en-us/azure/site-recovery/site-recovery-overview
https://learn.microsoft.com/en-us/azure/site-recovery/site-recovery-overview
https://learn.microsoft.com/en-us/azure/site-recovery/site-recovery-overview
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-cloud-migration
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-cloud-migration
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-cloud-migration
https://github.com/coconut-svsm/svsm
https://github.com/coconut-svsm/svsm
https://github.com/riscv-non-isa/riscv-ap-tee
https://github.com/riscv-non-isa/riscv-ap-tee
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=linux
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=linux
https://enarx.dev/docs/technical/syscall-proxy
https://enarx.dev/docs/technical/syscall-proxy
https://aws.amazon.com/free/migration/
https://aws.amazon.com/free/migration/
https://cloud.google.com/compute/docs/disks/create-snapshots
https://cloud.google.com/compute/docs/disks/create-snapshots
https://cloud.google.com/compute/docs/instances/live-migration-process
https://cloud.google.com/compute/docs/instances/live-migration-process
https://cloud.google.com/logging/docs/agent/logging
https://cloud.google.com/logging/docs/agent/logging
https://cloud.google.com/monitoring/agent/monitoring
https://cloud.google.com/monitoring/agent/monitoring
https://cloud.google.com/monitoring/agent/ops-agent
https://cloud.google.com/monitoring/agent/ops-agent
https://cloud.google.com/stackdriver/pricing#logging-costs
https://cloud.google.com/stackdriver/pricing#logging-costs
https://cloud.google.com/stackdriver/pricing#monitoring-costs
https://cloud.google.com/stackdriver/pricing#monitoring-costs
https://www.trustedfirmware.org/docs/tfa_tech_forum_2021_10_21_gpt.pdf
https://www.trustedfirmware.org/docs/tfa_tech_forum_2021_10_21_gpt.pdf
https://www.trustedfirmware.org/docs/tfa_tech_forum_2021_10_21_gpt.pdf

[33] gvisor. https://gvisor.dev/. Referenced December

2023.

[34] INTEL-SA-01036. https://www.intel.com/

content/www/us/en/security-center/advisory/

intel-sa-01036.html. Referenced May 2024.

[35] Intel Trust Domain Extensions (Intel TDX) Module Base

Architecture Specification. https://cdrdv2-public.

intel.com/795471/intel-tdx-module-1.

5-base-spec-348549003.pdf. Referenced December

2023.

[36] Intel® Trust Domain Extensions (Intel®

TDX). https://www.intel.com/content/

www/us/en/developer/articles/technical/

intel-trust-domain-extensions.html. Referenced

May 2023.

[37] Knative is an Open-Source Enterprise-level solution to

build Serverless and Event Driven Applications. https://

knative.dev/docs/. Referenced May 2024.

[38] Live Migration on AMD SEV. https://github.com/

AMDESE/qemu/tree/sev_live_migration_v4. Refer-

enced December 2023.

[39] Mbed TLS. https://github.com/Mbed-TLS/mbedtls.

Referenced January 2024.

[40] Memcached. https://memcached.org/. Referenced Jan-

uary 2024.

[41] Memory ballooning. https://en.wikipedia.org/wiki/

Memory_ballooning. Referenced December 2023.

[42] OpenFaas: Serverless Functions, Made Simple. https://

www.openfaas.com/. Referenced May 2024.

[43] pKVM of AVF architecture. https://source.android.

com/docs/core/virtualization/architecture. Refer-

enced December 2023.

[44] Realm Management Monitor specification. https://

documentation-service.arm.com/static/

6361431cc5a70d2cdb15fe1b?token=. Referenced

December 2023.

[45] Secure Encrypted Virtualization API Version

0.24. https://www.amd.com/content/dam/

amd/en/documents/epyc-technical-docs/

programmer-references/55766_SEV-KM_API_

Specification.pdf. Referenced December 2023.

[46] Security Center agent of Alibaba Cloud. https://

www.alibabacloud.com/help/en/security-center/

user-guide/install-the-security-center-agent.

Referenced December 2023.

[47] SEV Secure Nested Paging Firmware ABI Specifica-

tion. https://www.amd.com/system/files/TechDocs/

56860.pdf. Referenced December 2023.

[48] Support for Arm CCA VMs on Linux. https://lwn.net/

Articles/921482/. Referenced January 2024.

[49] Sysbench. https://github.com/akopytov/sysbench.

Referenced January 2024.

[50] TD Migration Architecture Specifica-

tion. https://cdrdv2-public.intel.

com/733578/intel-tdx-module-1.

5-td-migration-spec-348550002.pdf. Referenced

December 2023.

[51] TDX Module TD Partitioning Architecture

Specification. https://www.intel.com/

content/www/us/en/content-details/773039/

intel-tdx-module-v1-5-td-partitioning-architect

ure-specification.html. Referenced December 2023.

[52] VMWare: Take a Snapshot of a Virtual

Machine. https://docs.vmware.com/en/

VMware-vSphere/7.0/com.vmware.vsphere.vm_admin.

doc/GUID-9720B104-9875-4C2C-A878-F1C351A4F3D8.

html. Referenced December 2023.

[53] Adil Ahmad, Botong Ou, Congyu Liu, Xiaokuan Zhang, and

Pedro Fonseca. Veil: A protected services framework for

confidential virtual machines. In Proceedings of the 28th

ACM International Conference on Architectural Support for

Programming Languages and Operating Systems, Volume 4,

ASPLOS ’23, page 378–393, New York, NY, USA, 2024. As-

sociation for Computing Machinery.

[54] Pradeep Ambati, Iñigo Goiri, Felipe Vieira Frujeri, Alper

Gun, Ke Wang, Brian Dolan, Brian Corell, Sekhar Pasupuleti,

Thomas Moscibroda, Sameh Elnikety, Marcus Fontoura, and

Ricardo Bianchini. Providing slos for resource-harvesting

vms in cloud platforms. In 14th USENIX Symposium on

Operating Systems Design and Implementation, OSDI 2020,

Virtual Event, November 4-6, 2020, pages 735–751. USENIX

Association, 2020.

[55] Nadav Amit and Michael Wei. The design and implemen-

tation of hyperupcalls. In Haryadi S. Gunawi and Ben-

jamin C. Reed, editors, 2018 USENIX Annual Technical Con-

ference, USENIX ATC 2018, Boston, MA, USA, July 11-13,

2018, pages 97–112. USENIX Association, 2018.

[56] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas

Knauth, André Martin, Christian Priebe, Joshua Lind, Di-

vya Muthukumaran, Dan O’Keeffe, Mark Stillwell, David

Goltzsche, David M. Eyers, Rüdiger Kapitza, Peter R. Piet-

zuch, and Christof Fetzer. SCONE: secure linux containers

with intel SGX. In Kimberly Keeton and Timothy Roscoe,

editors, 12th USENIX Symposium on Operating Systems De-

sign and Implementation, OSDI 2016, Savannah, GA, USA,

November 2-4, 2016, pages 689–703. USENIX Association,

2016.

[57] Adam Belay, Andrea Bittau, Ali José Mashtizadeh, David

Terei, David Mazières, and Christos Kozyrakis. Dune: Safe

user-level access to privileged CPU features. In Chandu

Thekkath and Amin Vahdat, editors, 10th USENIX Sympo-

sium on Operating Systems Design and Implementation,

OSDI 2012, Hollywood, CA, USA, October 8-10, 2012, pages

335–348. USENIX Association, 2012.

[58] Adam Belay, George Prekas, Ana Klimovic, Samuel Gross-

man, Christos Kozyrakis, and Edouard Bugnion. IX: A pro-

tected dataplane operating system for high throughput and

low latency. In Jason Flinn and Hank Levy, editors, 11th

USENIX Association 2024 USENIX Annual Technical Conference 1079

https://gvisor.dev/
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-01036.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-01036.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-01036.html
https://cdrdv2-public.intel.com/795471/intel-tdx-module-1.5-base-spec-348549003.pdf
https://cdrdv2-public.intel.com/795471/intel-tdx-module-1.5-base-spec-348549003.pdf
https://cdrdv2-public.intel.com/795471/intel-tdx-module-1.5-base-spec-348549003.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://knative.dev/docs/
https://knative.dev/docs/
https://github.com/AMDESE/qemu/tree/sev_live_migration_v4
https://github.com/AMDESE/qemu/tree/sev_live_migration_v4
https://github.com/Mbed-TLS/mbedtls
https://memcached.org/
https://en.wikipedia.org/wiki/Memory_ballooning
https://en.wikipedia.org/wiki/Memory_ballooning
https://www.openfaas.com/
https://www.openfaas.com/
https://source.android.com/docs/core/virtualization/architecture
https://source.android.com/docs/core/virtualization/architecture
https://documentation-service.arm.com/static/6361431cc5a70d2cdb15fe1b?token=
https://documentation-service.arm.com/static/6361431cc5a70d2cdb15fe1b?token=
https://documentation-service.arm.com/static/6361431cc5a70d2cdb15fe1b?token=
https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/programmer-references/55766_SEV-KM_API_Specification.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/programmer-references/55766_SEV-KM_API_Specification.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/programmer-references/55766_SEV-KM_API_Specification.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/programmer-references/55766_SEV-KM_API_Specification.pdf
https://www.alibabacloud.com/help/en/security-center/user-guide/install-the-security-center-agent
https://www.alibabacloud.com/help/en/security-center/user-guide/install-the-security-center-agent
https://www.alibabacloud.com/help/en/security-center/user-guide/install-the-security-center-agent
https://www.amd.com/system/files/TechDocs/56860.pdf
https://www.amd.com/system/files/TechDocs/56860.pdf
https://lwn.net/Articles/921482/
https://lwn.net/Articles/921482/
https://github.com/akopytov/sysbench
https://cdrdv2-public.intel.com/733578/intel-tdx-module-1.5-td-migration-spec-348550002.pdf
https://cdrdv2-public.intel.com/733578/intel-tdx-module-1.5-td-migration-spec-348550002.pdf
https://cdrdv2-public.intel.com/733578/intel-tdx-module-1.5-td-migration-spec-348550002.pdf
https://www.intel.com/content/www/us/en/content-details/773039/intel-tdx-module-v1-5-td-partitioning-architect
https://www.intel.com/content/www/us/en/content-details/773039/intel-tdx-module-v1-5-td-partitioning-architect
https://www.intel.com/content/www/us/en/content-details/773039/intel-tdx-module-v1-5-td-partitioning-architect
ure-specification.html
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.vm_admin.doc/GUID-9720B104-9875-4C2C-A878-F1C351A4F3D8.html
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.vm_admin.doc/GUID-9720B104-9875-4C2C-A878-F1C351A4F3D8.html
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.vm_admin.doc/GUID-9720B104-9875-4C2C-A878-F1C351A4F3D8.html
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.vm_admin.doc/GUID-9720B104-9875-4C2C-A878-F1C351A4F3D8.html

USENIX Symposium on Operating Systems Design and Im-

plementation, OSDI ’14, Broomfield, CO, USA, October 6-8,

2014, pages 49–65. USENIX Association, 2014.

[59] Robert Buhren, Shay Gueron, Jan Nordholz, Jean-Pierre

Seifert, and Julian Vetter. Fault attacks on encrypted general

purpose compute platforms. In Gail-Joon Ahn, Alexander

Pretschner, and Gabriel Ghinita, editors, Proceedings of the

Seventh ACM Conference on Data and Application Security

and Privacy, CODASPY 2017, Scottsdale, AZ, USA, March

22-24, 2017, pages 197–204. ACM, 2017.

[60] Jiahao Chen, Dingji Li, Zeyu Mi, Yuxuan Liu, Binyu Zang,

Haibing Guan, and Haibo Chen. Security and performance in

the delegated user-level virtualization. In 17th USENIX Sym-

posium on Operating Systems Design and Implementation

(OSDI 23), pages 209–226, Boston, MA, July 2023. USENIX

Association.

[61] Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu

Yan, Chenggang Qin, Qixuan Wu, and Haibo Chen. Cat-

alyzer: Sub-millisecond startup for serverless computing

with initialization-less booting. In Proceedings of the

Twenty-Fifth International Conference on Architectural Sup-

port for Programming Languages and Operating Systems,

ASPLOS ’20, page 467–481, New York, NY, USA, 2020. As-

sociation for Computing Machinery.

[62] Pedro Fonseca, Rodrigo Rodrigues, and Björn B. Branden-

burg. SKI: Exposing kernel concurrency bugs through

systematic schedule exploration. In 11th USENIX Sym-

posium on Operating Systems Design and Implementation

(OSDI 14), pages 415–431, Broomfield, CO, October 2014.

USENIX Association.

[63] Alexander Fuerst, Stanko Novakovic, Iñigo Goiri, Gohar Ir-

fan Chaudhry, Prateek Sharma, Kapil Arya, Kevin Broas, Eu-

gene Bak, Mehmet Iyigun, and Ricardo Bianchini. Memory-

harvesting vms in cloud platforms. In Babak Falsafi, Michael

Ferdman, Shan Lu, and Thomas F. Wenisch, editors, AS-

PLOS ’22: 27th ACM International Conference on Archi-

tectural Support for Programming Languages and Operat-

ing Systems, Lausanne, Switzerland, 28 February 2022 - 4

March 2022, pages 583–594. ACM, 2022.

[64] Yu Gan, Mingyu Liang, Sundar Dev, David Lo, and Christina

Delimitrou. Sage: Practical and scalable ml-driven perfor-

mance debugging in microservices. In Proceedings of the

26th ACM International Conference on Architectural Sup-

port for Programming Languages and Operating Systems,

ASPLOS ’21, pages 135–151, New York, NY, USA, 2021.

Association for Computing Machinery.

[65] Xinyang Ge, Hsuan-Chi Kuo, and Weidong Cui. Hecate:

Lifting and shifting on-premises workloads to an untrusted

cloud. In Heng Yin, Angelos Stavrou, Cas Cremers, and

Elaine Shi, editors, Proceedings of the 2022 ACM SIGSAC

Conference on Computer and Communications Security,

CCS 2022, Los Angeles, CA, USA, November 7-11, 2022,

pages 1231–1242. ACM, 2022.

[66] Jinyu Gu, Xinyue Wu, Bojun Zhu, Yubin Xia, Binyu Zang,

Haibing Guan, and Haibo Chen. Enclavisor: A hardware-

software co-design for enclaves on untrusted cloud. IEEE

Trans. Computers, 70(10):1598–1611, 2021.

[67] Jinyu Gu, Bojun Zhu, Mingyu Li, Wentai Li, Yubin Xia,

and Haibo Chen. A hardware-software co-design for ef-

ficient intra-enclave isolation. In Kevin R. B. Butler and

Kurt Thomas, editors, 31st USENIX Security Symposium,

USENIX Security 2022, Boston, MA, USA, August 10-12,

2022, pages 3129–3145. USENIX Association, 2022.

[68] Felicitas Hetzelt and Robert Buhren. Security analysis of en-

crypted virtual machines. In Proceedings of the 13th ACM

SIGPLAN/SIGOPS International Conference on Virtual Ex-

ecution Environments, VEE 2017, Xi’an, China, April 8-9,

2017, pages 129–142. ACM, 2017.

[69] Michael R. Hines, Umesh Deshpande, and Kartik Gopalan.

Post-copy live migration of virtual machines. SIGOPS Oper.

Syst. Rev., 43(3):14–26, jul 2009.

[70] Alexander Van’t Hof and Jason Nieh. BlackBox: A Con-

tainer Security Monitor for Protecting Containers on Un-

trusted Operating Systems. In Proceedings of the 16th

USENIX Symposium on Operating Systems Design and Im-

plementation (OSDI 22), pages 683–700, Carlsbad, CA, July

2022. USENIX Association.

[71] Zhichao Hua, Jinyu Gu, Yubin Xia, Haibo Chen, Binyu Zang,

and Haibing Guan. vTZ: Virtualizing ARM TrustZone. In

26th USENIX Security Symposium (USENIX Security 17),

pages 541–556, Vancouver, BC, August 2017. USENIX As-

sociation.

[72] Yongzhe Huang, Vikram Narayanan, David Detweiler, Kaim-

ing Huang, Gang Tan, Trent Jaeger, and Anton Burtsev.

KSplit: Automating device driver isolation. In 16th USENIX

Symposium on Operating Systems Design and Implementa-

tion (OSDI 22), pages 613–631, Carlsbad, CA, July 2022.

USENIX Association.

[73] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-

Che Tsai, Anurag Khandelwal, Qifan Pu, Vaishaal Shankar,

Joao Carreira, Karl Krauth, Neeraja Yadwadkar, Joseph E.

Gonzalez, Raluca Ada Popa, Ion Stoica, and David A. Pat-

terson. Cloud programming simplified: A berkeley view on

serverless computing, 2019.

[74] Dingji Li, Zeyu Mi, Chenhui Ji, Yifan Tan, Binyu Zang, Haib-

ing Guan, and Haibo Chen. Bifrost: Analysis and Optimiza-

tion of Network I/O Tax in Confidential Virtual Machines. In

2023 USENIX Annual Technical Conference (USENIX ATC

23), pages 1–15, Boston, MA, July 2023. USENIX Associa-

tion.

[75] Dingji Li, Zeyu Mi, Yubin Xia, Binyu Zang, Haibo Chen,

and Haibing Guan. TwinVisor: Hardware-Isolated Confiden-

tial Virtual Machines for ARM. In Proceedings of the ACM

SIGOPS 28th Symposium on Operating Systems Principles,

SOSP ’21, page 638–654, New York, NY, USA, 2021. Asso-

ciation for Computing Machinery.

[76] Mengyuan Li, Yinqian Zhang, Zhiqiang Lin, and Yan Soli-

hin. Exploiting unprotected I/O operations in amd’s se-

cure encrypted virtualization. In Nadia Heninger and

Patrick Traynor, editors, 28th USENIX Security Symposium,

USENIX Security 2019, Santa Clara, CA, USA, August 14-16,

2019, pages 1257–1272. USENIX Association, 2019.

1080 2024 USENIX Annual Technical Conference USENIX Association

[77] Mengyuan Li, Yinqian Zhang, Huibo Wang, Kang Li, and

Yueqiang Cheng. CIPHERLEAKS: breaking constant-time

cryptography on AMD SEV via the ciphertext side chan-

nel. In Michael D. Bailey and Rachel Greenstadt, editors,

30th USENIX Security Symposium, USENIX Security 2021,

August 11-13, 2021, pages 717–732. USENIX Association,

2021.

[78] Mengyuan Li, Yinqian Zhang, Huibo Wang, Kang Li, and

Yueqiang Cheng. Tlb poisoning attacks on amd secure en-

crypted virtualization. In Proceedings of the 37th Annual

Computer Security Applications Conference, ACSAC ’21,

page 609–619, New York, NY, USA, 2021. Association for

Computing Machinery.

[79] Qian Li, Bin Li, Pietro Mercati, Ramesh Illikkal, Charlie

Tai, Michael Kishinevsky, and Christos Kozyrakis. Rambo:

Resource allocation for microservices using bayesian opti-

mization. IEEE Computer Architecture Letters, 20(1):46–49,

2021.

[80] Shih-Wei Li, John S. Koh, and Jason Nieh. Protecting Cloud

Virtual Machines from Hypervisor and Host Operating Sys-

tem Exploits. In Proceedings of the 28th USENIX Security

Symposium (USENIX Security 19), pages 1357–1374, Santa

Clara, CA, August 2019. USENIX Association.

[81] Shih-Wei Li, Xupeng Li, Ronghui Gu, Jason Nieh, and

John Zhuang Hui. Formally Verified Memory Protection for

a Commodity Multiprocessor Hypervisor. In Proceedings

of the 30th USENIX Security Symposium (USENIX Security

21), pages 3953–3970. USENIX Association, August 2021.

[82] Wenhao Li, Yubin Xia, Long Lu, Haibo Chen, and Binyu

Zang. Teev: virtualizing trusted execution environments on

mobile platforms. In Proceedings of the 15th ACM SIG-

PLAN/SIGOPS International Conference on Virtual Execu-

tion Environments, VEE 2019, page 2–16, New York, NY,

USA, 2019. Association for Computing Machinery.

[83] Xupeng Li, Xuheng Li, Christoffer Dall, Ronghui Gu, Jason

Nieh, Yousuf Sait, and Gareth Stockwell. Design and Veri-

fication of the ARM Confidential Compute Architecture. In

Proceedings of the 16th USENIX Symposium on Operating

Systems Design and Implementation (OSDI 22), pages 465–

484, Carlsbad, CA, July 2022. USENIX Association.

[84] Qingyuan Liu, Yanning Yang, Dong Du, Yubin Xia, Ping

Zhang, Jia Feng, James R. Larus, and Haibo Chen. Har-

monizing efficiency and practicability: Optimizing resource

utilization in serverless computing with Jiagu. In 2024

USENIX Annual Technical Conference (USENIX ATC 24),

Santa Clara, CA, July 2024. USENIX Association.

[85] Yutao Liu, Yubin Xia, Haibing Guan, Binyu Zang, and Haibo

Chen. Concurrent and consistent virtual machine introspec-

tion with hardware transactional memory. In 20th IEEE In-

ternational Symposium on High Performance Computer Ar-

chitecture, HPCA 2014, Orlando, FL, USA, February 15-19,

2014, pages 416–427. IEEE Computer Society, 2014.

[86] Yutao Liu, Tianyu Zhou, Kexin Chen, Haibo Chen, and

Yubin Xia. Thwarting memory disclosure with efficient

hypervisor-enforced intra-domain isolation. In Proceedings

of the 22nd ACM SIGSAC Conference on Computer and

Communications Security, CCS ’15, page 1607–1619, New

York, NY, USA, 2015. Association for Computing Machin-

ery.

[87] José Martins, Adriano Tavares, Marco Solieri, Marko

Bertogna, and Sandro Pinto. Bao: A Lightweight Static Par-

titioning Hypervisor for Modern Multi-Core Embedded Sys-

tems. In Marko Bertogna and Federico Terraneo, editors,

Workshop on Next Generation Real-Time Embedded Systems

(NG-RES 2020), volume 77 of Open Access Series in Infor-

matics (OASIcs), pages 3:1–3:14, Dagstuhl, Germany, 2020.

Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

[88] Zeyu Mi, Dingji Li, Haibo Chen, Binyu Zang, and Haibing

Guan. (Mostly) Exitless VM Protection from Untrusted Hy-

pervisor through Disaggregated Nested Virtualization. In

Srdjan Capkun and Franziska Roesner, editors, Proceedings

of the 29th USENIX Security Symposium, USENIX Security

2020, August 12-14, 2020, pages 1695–1712. USENIX As-

sociation, 2020.

[89] Mathias Morbitzer, Manuel Huber, and Julian Horsch. Ex-

tracting secrets from encrypted virtual machines. In Gail-

Joon Ahn, Bhavani Thuraisingham, Murat Kantarcioglu, and

Ram Krishnan, editors, Proceedings of the Ninth ACM Con-

ference on Data and Application Security and Privacy, CO-

DASPY 2019, Richardson, TX, USA, March 25-27, 2019,

pages 221–230. ACM, 2019.

[90] Mathias Morbitzer, Manuel Huber, Julian Horsch, and

Sascha Wessel. Severed: Subverting amd’s virtual machine

encryption. In Angelos Stavrou and Konrad Rieck, edi-

tors, Proceedings of the 11th European Workshop on Systems

Security, EuroSec@EuroSys 2018, Porto, Portugal, April 23,

2018, pages 1:1–1:6. ACM, 2018.

[91] Vikram Narayanan, Abhiram Balasubramanian, Charlie Ja-

cobsen, Sarah Spall, Scott Bauer, Michael Quigley, Aftab

Hussain, Abdullah Younis, Junjie Shen, Moinak Bhat-

tacharyya, and Anton Burtsev. LXDs: Towards isolation of

kernel subsystems. In 2019 USENIX Annual Technical Con-

ference (USENIX ATC 19), pages 269–284, Renton, WA, July

2019. USENIX Association.

[92] Vikram Narayanan, Yongzhe Huang, Gang Tan, Trent Jaeger,

and Anton Burtsev. Lightweight kernel isolation with virtu-

alization and vm functions. In Proceedings of the 16th ACM

SIGPLAN/SIGOPS International Conference on Virtual Ex-

ecution Environments, VEE ’20, page 157–171, New York,

NY, USA, 2020. Association for Computing Machinery.

[93] Krzysztof Rzadca, Pawel Findeisen, Jacek Swiderski, Prze-

myslaw Zych, Przemyslaw Broniek, Jarek Kusmierek, Pawel

Nowak, Beata Strack, Piotr Witusowski, Steven Hand, and

John Wilkes. Autopilot: Workload autoscaling at google. In

Proceedings of the Fifteenth European Conference on Com-

puter Systems, EuroSys ’20, New York, NY, USA, 2020. As-

sociation for Computing Machinery.

[94] Youren Shen, Hongliang Tian, Yu Chen, Kang Chen, Runji

Wang, Yi Xu, Yubin Xia, and Shoumeng Yan. Occlum: Se-

cure and efficient multitasking inside a single enclave of intel

USENIX Association 2024 USENIX Annual Technical Conference 1081

SGX. In James R. Larus, Luis Ceze, and Karin Strauss, ed-

itors, ASPLOS ’20: Architectural Support for Programming

Languages and Operating Systems, Lausanne, Switzerland,

March 16-20, 2020, pages 955–970. ACM, 2020.

[95] Le Shi, Yuming Wu, Yubin Xia, Nathan Dautenhahn, Haibo

Chen, Binyu Zang, and Jinming Li. Deconstructing Xen.

In Proceedings of the 24th Annual Network and Distributed

System Security Symposium, NDSS 2017, San Diego, Califor-

nia, USA, February 26 - March 1, 2017. The Internet Society,

2017.

[96] Xiang Song, Jicheng Shi, Haibo Chen, and Binyu Zang.

Schedule processes, not vcpus. In Proceedings of the 4th

Asia-Pacific Workshop on Systems, APSys ’13, New York,

NY, USA, 2013. Association for Computing Machinery.

[97] Udo Steinberg and Bernhard Kauer. NOVA: A

Microhypervisor-Based Secure Virtualization Architec-

ture. In Proceedings of the 5th European Conference on

Computer Systems, EuroSys ’10, page 209–222, New York,

NY, USA, 2010. Association for Computing Machinery.

[98] Yawen Wang, Kapil Arya, Marios Kogias, Manohar Vanga,

Aditya Bhandari, Neeraja J. Yadwadkar, Siddhartha Sen,

Sameh Elnikety, Christos Kozyrakis, and Ricardo Bianchini.

Smartharvest: harvesting idle cpus safely and efficiently

in the cloud. In Antonio Barbalace, Pramod Bhatotia,

Lorenzo Alvisi, and Cristian Cadar, editors, EuroSys ’21:

Sixteenth European Conference on Computer Systems, On-

line Event, United Kingdom, April 26-28, 2021, pages 1–16.

ACM, 2021.

[99] Luca Wilke, Jan Wichelmann, Mathias Morbitzer, and

Thomas Eisenbarth. Sevurity: No security without integrity

: Breaking integrity-free memory encryption with minimal

assumptions. In 2020 IEEE Symposium on Security and Pri-

vacy, SP 2020, San Francisco, CA, USA, May 18-21, 2020,

pages 1483–1496. IEEE, 2020.

[100] Chiachih Wu, Zhi Wang, and Xuxian Jiang. Taming Hosted

Hypervisors with (Mostly) Deprivileged Execution. In Pro-

ceedings of the 20th Annual Network and Distributed Sys-

tem Security Symposium, NDSS 2013, San Diego, California,

USA, February 24-27, 2013. The Internet Society, 2013.

[101] Hailong Yang, Alex Breslow, Jason Mars, and Lingjia Tang.

Bubble-flux: Precise online qos management for increased

utilization in warehouse scale computers. SIGARCH Com-

put. Archit. News, 41(3):607–618, jun 2013.

[102] Fengzhe Zhang, Jin Chen, Haibo Chen, and Binyu Zang.

CloudVisor: Retrofitting Protection of Virtual Machines in

Multi-Tenant Cloud with Nested Virtualization. In Proceed-

ings of the 23rd ACM Symposium on Operating Systems Prin-

ciples, SOSP ’11, page 203–216, New York, NY, USA, 2011.

Association for Computing Machinery.

[103] Yanqi Zhang, Iñigo Goiri, Gohar Irfan Chaudhry, Rodrigo

Fonseca, Sameh Elnikety, Christina Delimitrou, and Ricardo

Bianchini. Faster and cheaper serverless computing on har-

vested resources. In Robbert van Renesse and Nickolai Zel-

dovich, editors, SOSP ’21: ACM SIGOPS 28th Symposium

on Operating Systems Principles, Virtual Event / Koblenz,

Germany, October 26-29, 2021, pages 724–739. ACM, 2021.

[104] Yunqi Zhang, Michael A. Laurenzano, Jason Mars, and

Lingjia Tang. Smite: Precise qos prediction on real-system

smt processors to improve utilization in warehouse scale

computers. In Proceedings of the 47th Annual IEEE/ACM

International Symposium on Microarchitecture, MICRO-47,

pages 406–418, USA, 2014. IEEE Computer Society.

[105] Shixuan Zhao, Mengyuan Li, Yinqian Zhang, and Zhiqiang

Lin. vsgx: Virtualizing sgx enclaves on amd sev. In 2022

IEEE Symposium on Security and Privacy (SP), pages 321–

336, 2022.

1082 2024 USENIX Annual Technical Conference USENIX Association

	Introduction
	Background and Motivation
	Mainstream CVMs
	Dilemma of CVM Maintenance
	Limitations of Existing Approaches

	System Design Overview
	CPC Design
	CPC State Machine
	Confidential Page Table Isolation
	Optimizations for CPC Development
	Confidential Abort Protocol

	Implementation
	CPCs on AMD Platforms
	CPCs on ARM Platforms

	Security Analysis
	Compacting Infrastructure Domain
	Isolation between Host and Guest
	Resilience of SeCPCs

	Performance Evaluation
	Experimental Setup
	Case Study: Confidential Data Extraction with CPC-Snapshot
	Case Study: Resource Reclamation with CPC-Ballooning
	Case Study: CVM Live Migration with CPC-LiveMigration

	Discussion and Limitations
	Related Work
	Conclusion
	Acknowledgments

