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Abstract
The advent of byte-addressable non-volatile memory (NVM)
technologies has enabled the development of low-latency
high-throughput durable applications, i.e., applications that
are capable of recovering from full-system crashes. However,
programming such applications is error-prone as efficiency
gains often require fine-grained (programmer-controlled)
management of low-level persistence instructions.

We propose Mangosteen, a high-level programming frame-
work that allows developers to transform an existing lineariz-
able in-memory application to a corresponding durably lin-
earizable version using NVM. Our framework’s API consists
of a set of callback hooks that interpose on an application’s
request processing flow with minimal developer effort. Man-
gosteen executes client operations on DRAM and persists
their effects using binary instrumentation and redo logging.
Mangosteen’s concurrency control facilitates batching of read-
write requests to minimize the cost of persistence, while al-
lowing read-only requests to execute concurrently. A novel
intra-batch deduplication mechanism further reduces persis-
tence overheads for common OLTP workloads. Our empirical
evaluation results show that Mangosteen-enabled applications
outperform state-of-the-art solutions across the entire spec-
trum of read-write ratios. In particular, the Mangosteen-based
version of Redis demonstrates throughput gains of between
2×–5× in comparison to prior work.

1 Introduction

In-memory storage applications (e.g., Redis, Memcached)
are popular alternatives to traditional disk-oriented databases
for both analytical and transactional workloads [41]. The
advent of non-volatile memory (NVM) hardware such as Intel
Optane and CXL Memory-Semantic SSDs [39] has driven
the development of high-performance durable (aka failure
atomic) versions of such in-memory applications [29, 50].
NVM is byte-addressable and greatly reduces the cost of
persistency. However, achieving the purported benefits of
NVM for complex existing applications is challenging.

First, the latency and memory bandwidth of existing NVM
hardware is not yet comparable to DRAM [49]. NVM reads
measure 2x slower and writes 3x slower than even the slowest
DRAM. As a result, NVM cannot be used directly as a drop-in
replacement for DRAM in existing in-memory applications
without incurring a substantial performance overhead.

Second, correct recovery after failures is challenging since
program failures may occur at any point, potentially leaving
the application in an inconsistent state. To ensure correctness,
the system must be made crash-consistent, i.e., guaranteed
to recover into a consistent state after a failure. Here, a range
of correctness conditions have been defined such as persis-
tent atomicity [18], (buffered) durable linearizability [24] and
recoverable linearizability [2] (see [1] for a survey). These de-
fine correctness in terms of both failure atomicity (in the event
of a crash, an operation either occurs in its entirety or not at
all), and consistency (concurrent operations can be understood
in terms of sequential executions of the operations).

Unfortunately, achieving both correctness and good per-
formance with NVM is notoriously difficult. Existing NVM
interfaces require programmers to explicitly use costly persis-
tence instructions (such as fences) to achieve durability. As
a result, they must tread a thin line between avoiding unnec-
essary persistence instructions to achieve good performance
and ensuring the desired correctness properties.

To address this issue, recent research proposed higher
level abstractions, such as persistent transactional memory
(PTM) [12, 35, 43], persistent object libraries [9, 42], and
failure-atomic sections (FASEs) [8, 19, 23], to facilitate dura-
bility. From a programming perspective, these approaches
are still non-trivial to use because of source annotation effort,
compiler modifications or explicit library calls that need to
be added for each durable update [35]. Furthermore, they re-
quire programmers to reason which parts of their code need
to be made transactionally durable. This is particularly dif-
ficult and error-prone for large legacy codebases with com-
plex existing dependencies (e.g. libraries and memory alloca-
tors) [30–32,47]. As an alternative, Zhang et al. [50] proposed
a framework that exploits dynamic binary instrumentation
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(DBI) [7] to make persistence support more transparent. How-
ever, their framework relies on undo logging which requires a
high number of fence operations and does not exploit concur-
rency to achieve performance gains on multicore hardware.

In this paper, we present Mangosteen, a new framework
for transforming existing in-memory applications to exploit
NVM on modern multi-core hardware. Mangosteen provides
a high-level API consisting of a small set of callback hooks to
interpose on an application’s request processing with minimal
developer effort. The Mangosteen runtime executes client
requests concurrently on a DRAM copy of the application
state. It exploits DBI to transparently persist the effects of up-
date requests in a persistent redo log, which are then applied
asynchronously to a persistent copy of the application state on
NVM. In comparison to existing high-level persistence frame-
works, Mangosteen achieves state-of-the-art performance on
a range of real-world workloads.

Mangosteen’s design is carefully optimized for perfor-
mance. Mangosteen’s concurrency control allows read-
only requests to execute in parallel and employs flat-
combining [20] to batch execution of read-write requests.
This facilitates a novel intra-batch deduplication mechanism
to further reduce persistence overheads for common OLTP
workloads. Overall, Mangosteen is able to persist update ef-
fects using just 2 persistent fences per batch on the critical
path, and another 2 persistent fences per batch to make them
durable asynchronously on the persistent copy of the applica-
tion state.

Unlike prior approaches based on redo logging, Mangos-
teen’s binary instrumentation only needs to intercept write
instructions. Mangosteen also enables applications to use their
existing memory allocators unmodified, and employs a novel
split allocation scheme to avoid unnecessary overhead for
updates to transient memory that do not need to be persisted
for correct recovery.

For our empirical evaluation, we compared Mangosteen’s
performance against state-of-the-art persistence frameworks –
Persimmon [50] and Romulus [12]. For that, we implemented
two prototypes of Mangosteen-enabled applications: a per-
sistent version of Redis and a persistent key-value store com-
patible with the LevelDB API. Our results demonstrate that
both prototypes achieve throughput gains of between 2× –
5× compared to the Persimmon-based version of Redis [50],
and 2.8×–6.5× compared to RomulusDB, a LevelDB API
implementation based on Romulus PTM [12].

Overview. The paper is organized as follows. In the next sec-
tion we give background necessary to understand the rest of
the paper. We then describe the high-level design of Mangos-
teen including its API and runtime architecture (§3). Next,
we give details of Mangosteen’s core algorithms and opti-
mizations it employs to achieve good performance (§4). We
present a sketch of the correctness argument in §5, and the
performance analysis in §6. We present related work in §7
and finally, §8 concludes the paper.

2 Preliminaries

Memory model. The interaction between NVM and both
language and hardware memory models are well studied [24,
26, 37]. Throughout this paper, to enable us to focus on the
core design principles of Mangosteen, our high-level models
assume sequential consistency [27] enhanced with persistency
operations: pwb(x) (i.e., persistent write back of location x),
pfence and psync to manage NVM updates [26].

We assume pwb(x) tags the given location x as a location
to be flushed; tagged locations are only guaranteed to be per-
sisted after the execution of psync. Additionally, we assume
a persist barrier pfence [12, 24, 36]), which separates differ-
ent epochs [34]. A pwb’d write followed by a pfence, further
followed by a second write are persisted in order. The dif-
ferences between these instructions are further illustrated in
Example 1 in Appendix A.

We implement pwb and psync using the PMDK API [40],
in particular by functions pmem_flush and pmem_drain, re-
spectively. Although operation pfence appears in our pseu-
docode, it is currently not supported directly by any architec-
ture, and hence, as in prior work (e.g., [12]), is implemented
by the more heavyweight pmem_drain operation [12].

Correctness guarantees. Mangosteen supports durable lin-
earizability [24] as its main correctness guarantee. As in stan-
dard linearizability [22], a durably linearizable concurrent ex-
ecution is correct with respect to its (sequential) specification
iff it can be linearized in a manner consistent with the order of
non-overlapping requests to form a history of its specification.
In addition, a durably linearizable object must ensure failure
atomicity, i.e., completed operations are never lost (even after
a crash), while incomplete operations may either be discarded
completely or be kept in their entirety. With respect to live-
ness, Mangosteen provides deadlock freedom [21] (i.e., in the
absence of system crashes, some operation that has been pre-
viously invoked is guaranteed to eventually return) under the
assumption the original application is (at least) deadlock-free.

3 Mangosteen Design

Mangosteen functions as a generic wrapper for a linearizable
application that resides in volatile memory (DRAM), allow-
ing the application to handle concurrent requests in a fault
tolerant (recoverable) manner. We next describe the Mangos-
teen framework’s API and how it can be integrated with an
existing application (§3.1). We then give an overview of the
key architectural features of the Mangosteen runtime (§3.2).

3.1 Mangosteen API

The Mangosteen framework is implemented as a user-level
library. Mangosteen’s application programming interface
is given in Listing 1. The API consists of 6 callback
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functions through which the Mangosteen framework inter-
acts with the application. A framework initialization func-
tion (mangosteenInit) takes as its arguments pointers to the
implementations of each callback. Two of the callbacks
(initAppClient and destroyAppClient) are executed once for every
application client, while the remaining callbacks are executed
once for each client request.

1 int initMangosteen(/*... Callback fn ptrs ...*/, int mode);
2

3 void* initAppClient(void *params);
4 void destroyAppClient(void *c);
5 void deserializeRequest(void *c, void *req);
6 bool isReadOnly(void *c);
7 void processRequest(void *c);
8 mangoResponse* getResponse(void *c);

Listing 1: Mangosteen API

The framework is flexible in that it supports both an RPC
mode and a local mode (as indicated by an additional mode

argument to mangosteenInit). RPC mode targets settings where
clients interact with the application over a network. Local
mode can be used for integration of persistent data structures
into a standalone application.

To use Mangosteen in the RPC mode, the application devel-
oper must implement all callbacks in Listing 1 though for most
applications this can be achieved using simple wrapper func-
tions around existing application code. For the local mode,
the applications are only required to implement isReadOnly

and processRequest, and call ClientCmd (§3.2) directly to execute
requests.
KV Store Example (RPC Mode). We next describe a basic
in-memory key-value (KV) store to illustrate how a developer
can integrate with the Mangosteen API. We first give the core
functionality of an initial (non-persistent) version of the KV
store (Listing 2). 1 Its state consists of an array store that is
initialized in initKVStore (line 16). The store supports two op-
erations, getValueAtIndex and putValueAtIndex (lines 20 and 25),
which get and set respectively the value at a given index into
the array. Both operations take, as an argument, a client con-
text object c that identifies the client issuing the command (c
->id), the command itself (c->currCmd) and a buffer to store
the response (c->response). The handleRequest function (line 31)
dispatches to the appropriate operation according to the type
of the current command (c->currCmd->type). On return from
handleRequest, the store’s networking layer (not shown) replies
to the client with the response contained in c->resp.

1 char *store;
2

3 typedef struct kvCmd {
4 enum {PUT, GET} type;
5 unsigned int index;
6 char value[VAL_SZ];
7 } kvCmd;
8

9 typedef struct kvClient {
10 int id;
11 kvCmd* currCmd;

1For simplicity we omit bounds-checking and error-handling and assume
fixed-size values.

12 char resp[RESP_SZ];
13 } kvClient;
14

15

16 void initKVStore() {
17 store = malloc(STORE_SZ * VAL_SZ);
18 }
19

20 void getValueAtIndex(kvClient *c) {
21 memcpy(c->resp,
22 &store[c->currCmd->index * VAL_SZ], VAL_SZ);
23 }
24

25 void putValueAtIndex(kvClient *c) {
26 memcpy(&store[c->currCmd->index * VAL_SZ],
27 c->currCmd->value, VAL_SZ);
28 memcpy(c->resp, "OK",2);
29 }
30

31 void handleRequest(kvClient *c) {
32 if(c->currCmd->type == PUT)
33 putValueAtIndex(c);
34 else
35 getValueAtIndex(c);
36 }

Listing 2: Basic In-Memory KV Store

Mangosteen Integration. Listings 3 and 4 illustrate how
to use the Mangosteen API to create a durable version of
the in-memory KV store. The application first initializes
its state as usual using initKVStore (Listing 3). It then in-
vokes initMangosteen to start the Mangosteen framework’s run-
time (see §3.2), passing as parameters function pointers to
implementations of the Mangosteen API callbacks and con-
figuring Mangosteen to use RPC mode.

Mangosteen invokes the first callback, initAppClient (List-
ing 4, line 1), whenever a new client is initialized, e.g. when
a client first connects to the application in RPC mode. The
KV store application uses this callback to initialize a new
client context object (line 2). The structure of this object is
application-specific and remains opaque to Mangosteen, but
is passed as a parameter to subsequent application callbacks
during request processing. The params argument contains a
unique client identifier that the application can optionally
record within the client object. When a client terminates, Man-
gosteen invokes a corresponding destroyAppClient callback to
allow the application to clean up (line 7).

The deserializeRequest callback performs application-
specific deserialization of an incoming request req (line 11).
Mangosteen assumes the deserialized request is stored in an
application-specific location in opaqueCtx. For our basic KV
store, no complex deserialization is required and the location
of the request buffer is recorded directly in currCmd.

The isReadOnly callback (line 15) allows the application to
indicate to Mangosteen which requests (if any) do not modify
the application’s state. This enables Mangosteen to exploit
read-read concurrency for improved performance. For the
KV store, getValueAtIndex is considered read-only, whereas
putValueAtIndex is read-write since it modifies store.

The processRequest callback (line 21) interposes on the ap-
plication’s core request processing logic. For the KV store ex-
ample it is a simple wrapper around the handleRequest function.
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Mangosteen assumes that the results of request processing
are recorded in opaqueCtx, e.g., in the KV store they are stored
in a client c’s response buffer c->resp.

The last callback, getResponse, allows Mangosteen to extract
the response (line 25). It returns a mangoResponse object consist-
ing of a pointer to the start of the response (i.e. c->resp for
the KV store) and the size of the response. The Mangosteen
runtime then responds to the client.

1 int main() {
2 initKVStore();
3

4 initMangosteen(&initAppClient,
5 &deserializeRequest,
6 &isReadOnly,
7 &processRequest,
8 &destroyAppClient,
9 &getResponse,

10 MODE_RPC);
11 return 0;
12 }

Listing 3: Mangosteen Initialization

1 void *initAppClient(void *params) {
2 kvClient* c = malloc(sizeof(kvClient));
3 c->id = *(int*)params;
4 return c;
5 }
6

7 void destroyAppClient(void *opaqueCtx) {
8 free(opaqueCtx);
9 }

10

11 void deserializeRequest(void *opaqueCtx, void *req) {
12 ((kvClient*)opaqueCtx)->currCmd = (kvCmd*)req;
13 }
14

15 bool isReadOnly(void *opaqueCtx) {
16 if(((kvClient*)opaqueCtx)->currCmd->type == PUT)
17 return false;
18 return true;
19 }
20

21 void processRequest(void *opaqueCtx) {
22 handleRequest((kvClient*)opaqueCtx);
23 }
24

25 mangoResponse *getResponse(void *opaqueCtx) {
26 kvClient *c = (kvClient*)opaqueCtx;
27 mangoResponse *mResponse = malloc(sizeof(mangoResponse));
28 mResponse->response = c->resp;
29 mResponse->size = VAL_SZ;
30 return mResponse;
31 }

Listing 4: KV Store Implementation of Mangosteen Callbacks

3.2 Architecture Overview

An overview of the Mangosteen architecture is given in Fig. 1.
It consists of two main components:

(1) the frontend, which stores the application state in DRAM
and processes client requests concurrently, and

(2) the backend, which interfaces with the frontend using a
persistent redo log and also persists the application state
in NVM, enabling recovery.

clientCmd(ctx)

Response(r)

InstrumentationDRAM 

writes/reads

deserialize

Request(req)

Frontend
Concurrency Control

RO RW

isReadOnly(ctx)

processRequest(ctx)

Frontend 
App State

Backend 
App State

processRequest(ctx)

REDO records for 

write/mmap/munmap

Thread Pool

BackendNVM

DRAM

Request

Response

REDO Log

Figure 1: Architecture overview

Initialization. When the application starts it calls
mangosteenInit to initialize the Mangosteen runtime.
Mangosteen initialization follows the approach of [50].
The frontend executes within the application process. It
first allocates the shared redo log in persistent memory, in
addition to a persistent region table that the backend will
use to record mapped regions in the application’s address
space. The frontend then checkpoints itself using CRIU [13],
a Linux process checkpointing tool. This checkpoint serves
as a base image of the application’s address space during
recovery. The frontend then forks to create the backend and
blocks until the backend initialization completes.

To initialize itself, the backend maps relevant parts of its
address space to persistent memory. To achieve this it cre-
ates a persistent memory region for all application memory
regions listed in /proc/self/maps except the stack, read-
only regions and the redo log. Each persistent memory region
is a contiguous chunk of NVM backed by a file. The backend
records the set of persistent memory regions in the persistent
region table. Once backend initialization completes, its vir-
tual address space memory mappings are identical to that of
the frontend. The frontend then initializes a pool of worker
threads (and in RPC mode an event loop for each thread) and
begins processing client requests.
Request processing. When a client first establishes a connec-
tion with Mangosteen, it is assigned a thread from the Thread
Manager pool, which allocates and initializes a thread-local
Mangosteen client context and triggers the Mangosteen API’s
initAppClient callback (§3.1). Clients then submit requests
to be executed, with each submitted request handled by the
thread responsible for the client in RPC mode, and the client
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thread itself in local mode.
Mangosteen deserializes requests in an application-specific

manner using the deserializeRequest callback (see Fig. 1). It
then passes the resulting client context object to the frontend’s
concurrency control mechanism (see clientCmd(ctx) in Fig. 1).
Mangosteen executes read-only (RO) operations in parallel
and batches execution of read-write (RW) operations using
flat-combining [20] (§4.1). Before responding to the client,
the frontend persists updates from RW operations in a persis-
tent redo log (implemented as a fixed size ring-buffer) (§4.2).
To capture updates in a transparent fashion, Mangosteen uses
a DBI framework (DynamoRIO [5]) to intercept write in-
structions and memcpy operations. To minimize the cost of
persistence, Mangosteen employs a novel intra-batch dedu-
plication mechanism to filter redundant updates (§4.3). Once
the updates for a RW command are persisted in the redo log,
a response is returned to the client.

The Mangosteen backend asynchronously copies entries
from the persistent redo log and applies the updates to an
NVM copy of the DRAM application state. Once the changes
to the NVM copy are persisted, the backend removes the
corresponding entries from the redo log (§4.3).

Recovery. During recovery from a crash, Mangosteen first re-
stores the CRIU checkpoint and then forks. Next, the backend
iterates over the region table and remaps all persistent mem-
ory regions. The backend then processes all committed entries
in the redo log and applies their updates (§4.3, Fig. 4). Once
the backend is finished, the frontend iterates over the region
table and recreates all memory mappings in DRAM. Finally,
it copies data from the corresponding regions in persistent
memory and resumes execution.

4 Optimizing Transparent Persistence

While transparency is valuable in the context of persistent
memory, it cannot come at the cost of performance. In this
section we describe in detail how Mangosteen’s design en-
sure high performance, in particular its concurrency con-
trol scheme (§4.1), binary instrumentation (§4.2), persistence
mechanisms (§4.3) and memory allocation (§4.4).

4.1 Mangosteen Concurrency Control

The Mangosteen concurrency control ensures durably lin-
earizable [24] execution of commands supported by the un-
derlying data store API. Its implementation aims to maximize
concurrency while minimizing the cost of read-write com-
mands persistence. To achieve this, we chose to support full
read-only command parallelism while forgoing read-write
vs read-only and read-write vs read-write parallelism for the
sake of optimizing the persistent memory performance.

As in [12], the read-write commands are batched via flat-
combining [20] and executed under an exclusive lock. How-

1 when notified ClientCmd(ctx)
2 if isReadOnly(ctx) then
3 while true do
4 rFlag[i]← true;
5 if ¬wrFlag then
6 processRequest(ctx);
7 rFlag[i]← false;
8 break;
9 else

10 rFlag[i]← false;
11 while wrFlag do pause;

12 else
13 (ctx, status)[i]← (ctx, READY);
14 while true do
15 if status[i] = STARTED then
16 while status[i] ≠ DONE do pause;
17 if status[i] = DONE then break;
18 if ¬wrFlag then
19 if CAS(wrFlag, false, true) then
20 readySet ← ∅;
21 repeat
22 forall { j ∣ status[ j] = READY}

do
23 status[ j]← STARTED;
24 readySet ← readySet∪ { j};
25 until ∀k.¬rFlag[k];
26 start_tx();
27 forall j ∈ readySet do
28 processRequest(ctx[ j]);
29 end_tx();
30 forall j ∈ readySet do

status[ j]← DONE;
31 wrFlag← false;

32 trigger Response(getResponse(ctx));
Figure 2: Client request handler executed by thread i

ever, unlike [12], we use binary instrumentation to convert
the batched commands into a stream of elementary store in-
structions, which are then deduplicated and appended to a
redo log via pwb. This reduces the overall amount of data
that needs to be persisted per batch, and ensures that the per-
sistent memory is always accessed sequentially on a critical
path. Furthermore, as we discuss in §4.3, persisting a batch
only requires 1 persistent fence (pfence) and 1 persistent sync
(psync) instruction (as opposed to 3 pfences and 1 psync per
transaction in [12]), amortizing the cost of synchronous per-
sistence across multiple read-write commands.

Overall, our concurrency control implementation (Figure 2)
follows the writer-preference lock (C-RW-WP) algorithm
of [6], which we adapt to a multi-core setting and integrate
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with flat combining, as we explain below. Once a frontend
thread i finishes receiving and deserializing a client request,
it creates an opaque client request context ctx, and calls
the client request handler ClientCmd with ctx as argument
(line 2.1). The thread then calls isReadOnly (line 2.2) to de-
termine the request type, and based on the outcome proceeds
to execute either the read-only (lines 2.3–2.11) or the read-
write (lines 2.13–2.31) request handling branch. Upon com-
pletion of either branch, the response is returned to the client
in line 2.32. Below, we will refer to a thread executing in the
read-only branch as a reader and a thread executing in the
read-write branch as a writer.

Read-only branch. Once in the read-only branch, a reader i
enters a while loop where it attempts to acquire a shared lock.
To this end, it first sets its entry rFlag[i] in a shared memory
array rFlag to true (line 2.4) to announce its intention to per-
form a read-only command. (To prevent false sharing among
the readers, the entries in rFlag are cache-line aligned.) It
then inspects wrFlag (line 2.5) to determine whether there is
a concurrently executing writer. If not, the reader proceeds to
execute the read-only request (line 2.6) using a main mem-
ory copy of the data store state, and sets rFlag[i] to false

(line 2.7). It then breaks from the while loop and returns the
response. Note that a writer will only able to acquire an ex-
clusive lock once all concurrently executing readers have set
their rFlag entries to false (see below).

If wrFlag is set, the reader first assigns false to rFlag[i]
(line 2.10) to allow a writer that set wrFlag to complete the
exclusive lock acquisition. It then proceeds to execute a busy-
waiting loop in line 2.11 until wrFlag becomes false. The
pause instruction suspends the thread for a short time duration
to optimize busy waiting. Once wrFlag indicates a shared lock
is available, the reader goes back to the beginning of the while
loop to retry the shared lock acquisition.

Read-write branch. Upon entering the read-write branch,
a writer i first advertises ctx as ready for processing by setting
ctx[i] to ctx and status[i] to READY (line 2.13). (Both arrays
are cache-line aligned to avoid false sharing among the writ-
ers.) It then enters a while loop where it attempts to acquire an
exclusive lock by setting wrFlag to true via a compare-and-
swap (CAS) instruction (line 2.19). To minimize the cache
invalidation traffic caused by CAS, the writer first reads the
current value of wrFlag, and only proceeds with CAS, if it
finds wrFlag = false (line 2.18).

A writer, which is able to acquire an exclusive lock, be-
comes a combiner, and is responsible for processing all the
read-write commands that have been advertized in ctx. To
this end, it first executes the loop in lines 2.22–2.24 to ensure
all shared locks previously acquired by the readers have been
released. While in this loop, the combiner collects in readySet
the indices of the status array entries corresponding to the
read-write commands that are ready to be processed. It also

flags these commands as STARTED thus causing the remaining
(non-combiner) writers to abandon any further attempts to ac-
quire the exclusive lock. These writers then proceed directly
to line 2.16 where they await the completion of their requests
by the combiner. This early notification mechanism helps to
avoid unnecessary querying of wrFlag by non-combiners thus
reducing the number of non-local shared memory accesses.

Once the combiner validates all shared locks have been
relinquished, it calls start_tx to activate the instrumenta-
tion state machine (Figure 3). (To prevent start_tx from
being instrumented, it is implemented as a DynamoRIO
clean call [14].) The combiner then proceeds to execute
the read-write commands occupying the entries ctx[ j] for
each j ∈ readySet under instrumentation, which in particular,
causes all subsequent write instructions to be aggregated and
deduplicated by the instrumentation code (see §4.3). Once
the combiner finishes processing the advertized commands,
it issues a DynamoRIO clean call to end_tx, which disables
instrumentation, and persists the accumulated write records to
the redo log (see §4.3). The combiner then proceeds to flag the
processed commands as DONE (line 2.30), which enables the
writers awaiting their completion to respond to their clients
(lines 2.17 and 2.32). Further details of our deduplication and
persistence implementations can be found in §4.3.

4.2 Minimizing Combiner Instrumentation
Mangosteen relies on program instrumentation at the front-
end to capture the effects of commands that modify the ap-
plication’s persistent state. While this simplifies the task of
the persistent memory programmer, it is crucial the instru-
mentation is lightweight since it is on the critical path. To
ensure this, Mangosteen exploits redo logging and the concur-
rency control mechanism described in the previous section to
minimize the number of instrumented instructions.

Read-write commands. Write instructions in RW commands
may modify the application’s persistent state, and hence need
to be instrumented.

Unlike prior work that combines DBI with undo log-
ging [50], Mangosteen’s redo logging does not need to im-
mediately persist data for intercepted write instructions. In-
stead it only needs to add an address to a hashset, which can
be implemented efficiently as inline instrumentation without
needing an expensive DynamoRIO ‘clean call’ [14]. Further-
more, many large updates are implemented as calls to memcpy
which can be intercepted by Mangosteen directly. Similar to
prior work, Mangosteen assumes data on the stack is transient
and filters any associated writes by checking if the destination
address is below the stack pointer rsp (also see [50]).

For read instructions within RW commands, we observe
that due to Mangosteen’s flat-combining concurrency con-
trol mechanism, batches of RW commands are effectively
executed sequentially by the same combiner thread. As a re-
sult, read instructions within a RW command cannot observe
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conflicting updates from another concurrently executing RW
command. Therefore, in contrast to prior approaches based
on redo logging (e.g. [44]), it is unnecessary for Mangosteen
to instrument read instructions within RW commands.

Read-only commands. In contrast to RW commands, for
RO commands we assume the application’s persistent state
is never modified nor accessed at the same time as RW com-
mands. This means that no instrumentation is required for
read or write instructions in RO commands. We note that
for RO commands front-end threads still execute under the
control of our DBI framework, but we found the overhead to
be minimal in the absence of any instrumentation.

4.3 Optimizing Persistence

Apart from synchronization and instrumentation overheads, a
key performance concern for the Mangosteen frontend is the
cost of storing updates in the persistent redo log. As shown in
previous empirical work [48], persisting to NVM efficiently
involves minimizing (i) the amount of data to persist and (ii)
the number of fence instructions needed for correctness. We
next describe how Mangosteen employs write deduplication
and batch redo logging to meet these objectives.

Write deduplication. As discussed in the previous section,
Mangosteen’s frontend instrumentation (Figure 3) is respon-
sible for capturing the effects of relevant write instructions
and storing them in a persistent redo log. A straightforward
implementation of frontend redo logging involves persisting
an update for every relevant write instruction. However, this
approach wastes persistent memory bandwidth when there
are multiple updates to the same memory location, since the
effects of earlier updates in the same batch of advertised com-
mands are no longer relevant.

To minimize the amount of data that needs to be persisted
to the redo log, Mangosteen deduplicates updates before per-
sisting them. A challenge here is that write instructions that
modify the same location in memory may have different
granularities and alignments. Furthermore, the deduplication
mechanism is on the critical path, so it must be carefully
designed to minimize performance overheads.

To overcome these challenges, the Mangosteen deduplica-
tion algorithm (lines 6–12 in Figure 3) employs a thread-local
hash table (H) to record the addresses modified by the write
instructions within a batch of commands. The hash table is
implemented as an array of 64-bit integers and uses open ad-
dressing with linear probing as a collision resolution scheme.
The array’s starting address is cache line aligned, and the
entries are tightly packed without any internal padding. This
allows a set of adjacent entries to be loaded together on each
lookup thus optimizing the linear probing.

Each entry in the hash table represents the start of an
aligned memory block of size BLOCK_SIZE bytes. This ap-
proach allows us to coalesce small non-overlapping writes

1 when called start_tx()
2 instr_status← ACTIVE;
3 (head, tail)← (rb_head, rb_tail);
4 when called write(addr, size)
5 pre: instr_status = ACTIVE

6 x1 ← ⌊addr/BLOCK_SIZE⌋;
7 x2 ← ⌊(addr+ size)/BLOCK_SIZE⌋;
8 for a ← x1 to x2 by BLOCK_SIZE do
9 i ← a % length(H);

// linear probing
10 while H[i] ≠ null∧H[i] ≠ a do
11 i ← (i+1) % length(H);
12 H[i]← a;

13 when called mmap(addr, size)
14 pre: instr_status = ACTIVE

15 rb_enque(⟨MMAP, addr, size⟩);
16 pfence();
17 p_rb_tail← tail;
18 pwb(p_rb_tail);
19 pfence();
20 when called end_tx()
21 instr_status← IDLE;
22 forall k = 0..length(H)−1 do
23 if H[k] ≠ null then
24 memcpy(&blk, H[k], BLOCK_SIZE);
25 rb_enque(⟨REDO, H[k], blk⟩);
26 H[k]← null;

27 rb_enque(⟨COMMIT⟩);
28 pfence();
29 p_rb_tail← tail;
30 pwb(p_rb_tail);
31 psync();
32 (rb_head, rb_tail)← (head, tail);
33 function rb_enque(R)
34 if (tail+1) % ringBufSize ≠ head then
35 tail← (tail+1) % ringBufSize;
36 ringBuf[tail]← R;
37 pwb(ringBuf[tail]);
38 else
39 while true do
40 head← p_rb_head;
41 if (tail+1) % ringBufSize = head then

pause else break;

Figure 3: Instrumentation State Machine

within the same BLOCK_SIZE byte memory range into a sin-
gle redo log entry, but may lead to write amplification if most
writes are smaller than BLOCK_SIZE bytes. In our empirical
evaluation (§6), we found that BLOCK_SIZE = 32 bytes gives
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1 (b_head, b_tail)← (p_rb_head, p_rb_tail);
2 while b_head ≠ b_tail do /* Startup */
3 proc_redo_record(ringBuf[b_head]);
4 b_head← (b_head+1) % ringBufSize;

5 notify_ready(frontend);
6 while true do /* Main loop */
7 if b_head ≠ b_tail then
8 proc_redo_record(ringBuf[b_head]);
9 b_head← (b_head+1) % ringBufSize;

10 else
11 while true do
12 b_tail← p_rb_tail;
13 if b_head = b_tail then pause else

break;

14 function proc_redo_record(R)
15 if R = ⟨REDO, addr, blk⟩ then
16 memcpy(addr, blk, BLOCK_SIZE);
17 forall w ∈ [addr, addr+BLOCK_SIZE) do

pwb(w);
18 else if R = ⟨MMAP, addr, size⟩ then

// Map page-aligned pmem region
// [addr,addr+ size)

19 p_mmap(addr,size);
20 pfence();
21 else if R = ⟨COMMIT⟩ then
22 pfence();
23 p_rb_head← b_head;
24 pwb(p_rb_head);
25 psync()

Figure 4: Backend thread

the best results for most of the workloads we considered.
Whenever an instruction to write a payload of size size

to an address addr is intercepted by the instrumentation
(line 3.4), it computes the addresses x1 and x2 of the first
and the last BLOCK_SIZE-aligned blocks falling within the
range [addr, addr + size) (lines 3.6–7). It then inserts the
addresses x1 + i ⋅ BLOCK_SIZE for all integers i such that
0 ≤ i ≤ (x2 − x1)/BLOCK_SIZE into the hash table (lines 3.9–
12) using linear probing to resolve collisions (lines 3.10–11)2.

The hash table is statically allocated to fit into the CPU
cache, and is not dynamically resized. Instead, whenever its
load factor becomes too high for linear probing to work ef-
ficiently (60% in our implementation), the newly produced
addresses are not stored in the hash table, but instead spilled
into a separate overflow buffer. (This is not shown in the
pseudocode in Figure 3 for clarity.)

2Note that since both BLOCK_SIZE and length(H) are typically powers
of 2, the computations performed by the write handler can be implemented
efficiently using bitwise operations.

The overflow buffer is implemented as a collection of dy-
namically allocated integer arrays each of which is cache
line aligned and fits into the CPU cache. The addresses are
added to the overflow buffer in the order of their generation,
and are not deduplicated. Our experimental evaluation shows
that most batches produced by the workloads we studied can
be processed in full without using the overflow buffer thus
maximizing the deduplication benefits.

Batched Redo Logging. The content of the persistent redo
log is stored in a ring buffer ringBuf of size ringBufSize on
NVM. New records are added to the redo log by the frontend
and are removed (consumed) by the backend. The two end
points are synchronized using persistent head (p_rb_head)
and tail (p_rb_tail) indices stored on NVM. For efficiency,
wherever possible, both frontend and backend use cached
copies of these indices and defer their persistent updates un-
til it is necessary for durability. Details of the log handling
mechanism at both frontend and backend are discussed below.

Frontend redo log handling The logic of the redo log han-
dling at the frontend is shown as a part of the instrumentation
state machine pseudocode in Figure 3. The frontend caches
the latest known values of p_rb_head and p_rb_tail in the
shared variables rb_head and rb_tail, respectively. These vari-
ables are copied into thread-local variables head and tail

by a combiner thread before it starts processing a new batch
of read-write requests (line 3.3).

Once all the read-write requests in the current batch have
been executed, the combiner calls end_tx (line 3.20) where
it executes the following steps for each non-null address A
stored in the deduplication hash table H (lines 3.22–26). First,
it creates a REDO record R consisting of A and the block of
data pointed by A, which it fetches directly from the main
memory (line 3.24). It then executes the following logic to
add R to the persistent log.

Since the log can be full, the addition requires extra care
to synchronize with the backend (see function rb_enque in
line 3.33). To this end, the combiner first attempts to use the
cached copies of the head and tail indices to test whether
the ring buffer entry at index j = (tail+ 1) % ringBufSize
is not occupied by head (line 3.34). If so, it copies R to that
entry, persists it with pwb, and sets tail = j (lines 3.35–37).
Note that tail does not need to be persisted at this point as no
other thread, apart from the combiner, can use it to add records
concurrently. If the entry at j is occupied, the combiner enters
a busy-waiting loop (lines 3.39–41) where it loads p_rb_head
into head, and checks whether it has advanced past j. If so, it
breaks from the loop, persistently stores R at j, and assigns
tail to j as above. Otherwise, it pauses for a short while,
and then resumes the loop.

Once the combiner has finished processing the addresses
in H, it proceeds to process those in the overflow buffer
in the same fashion. (This is not shown in the pseudocode
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for conciseness.) Once all addresses have been processed, it
calls rb_enque to add and persist a COMMIT record in the log
(line 3.27). It then calls pfence, copies the value of tail to
p_rb_tail, and persists it with pwb (lines 3.28–30). This guar-
antees integrity of the ring buffer: i.e., (i) a COMMIT record
always appears in the log immediately after all previously
persisted REDO records, and (ii) the index stored in p_rb_tail
always points to the entry immediately following the one oc-
cupied by a COMMIT record. The combiner then calls psync
(line 3.31) to ensure all previously issued persistent stores
have been made durable thus enabling the read-write requests
in the current batch to return to their clients. Finally, it copies
head and tail back to rb_head and rb_tail (line 3.32) to
make them available for the next combiner.

Backend redo log handling The pseudocode of the redo
log handling at the backend is shown in Figure 4. It is executed
by a single dedicated thread in a separate OS process as
explained in §3.2.

As it is the case for the frontend, the backend caches the per-
sistent head and tail indices in thread-local variables b_head
and b_tail, respectively (line 4.1) before it starts processing
the log. It then proceeds to execute the following logic in an
infinite loop.

First, if the ring buffer is not empty (i.e., b_head ≠ b_tail)
(line 4.7), the backend reads the record R stored at head and
inspects its type. If R is a REDO record with an address A and
payload D, it copies D to the address A on NVM, and persists
the words spanned by D with pwb (lines 4.16–17). If R is
either mmap or munmap record (the latter is not shown in the
pseudocode for conciseness), it either allocates or deallocates
persistent memory as detailed in §4.4.

Finally, if R is a COMMIT record, the backend reads the
record R stored at head and inspects its type. If R executes
pfence, copies head to p_rb_head, and persists it with pwb
(lines 4.22–25). This ensures that p_rb_head is consistent
with the log entries that have been processed. The backend
thread reads the record R stored at head and inspects its type.
If R then calls psync to flush all previously issued persistent
stores to NVM. Note that although in principle, this psync
can be replaced with pfence, using psync allows the backend
to keep up with the frontend in terms of its persistence granu-
larity. This ensures that under optimal load, the ring buffer is
emptied at roughly the same rate as new records are produced
thus minimizing frontend blocking and the system recovery
time.

Once a record has been processed the backend reads the
record R stored at head and inspects its type. If R increments
head modulo ringBufSize, and proceeds to handle the next
record (lines 4.9).

If the ring buffer is empty, the backend reads the record
R stored at head and inspects its type. If R enters a busy-
waiting loop (lines 4.11) where it copies p_rb_tail into tail,
and checks whether b_head is still equal b_tail. If so, it

pauses for a short while, and resumes the loop. Otherwise, it
breaks from the loop and handles the next record on the log
as above.

Persistence cost. Let F and S denote the costs of pfence and
psync respectively, and B be the average number of requests
occupying a single flat combining batch. The total cost of
persistence at the frontend is then F +S per batch or (F +S)/B
per request on average. Likewise, the total cost of persistence
at the backend is F +S per batch or the average per-request
of (F +S)/B. The above indicates that the backend is able to
process requests at the same rate as the frontend, and therefore,
unlike [50], is not a bottleneck.

4.4 Split Allocation
Memory allocators are a challenge when porting applications
to persistent memory since any modifications to allocator
metadata must also be persisted. However, for many appli-
cations the memory allocator has been chosen carefully by
developers [38]. Forcing them to switch to a custom persis-
tent allocator [3] violates Mangosteen’s transparency goals.
Furthermore, persisting every modification to an application’s
address space is inefficient, since in many cases the corre-
sponding data is transient and does not need to be persisted
to ensure correct recovery (i.e. durable linearizability). For
example, in Redis the contents of incoming request buffers
do not need to be persisted.

To overcome these challenges, we propose a novel split al-
location scheme that allows applications to reuse their existing
allocator while minimizing unnecessary persistence of tran-
sient data. During application initialization, the Mangosteen
framework loads an additional instance of the application’s
memory allocator using dlmopen (e.g. jemalloc [25] in the case
of Redis). We refer to the application’s original allocator as
the persistent allocator and the additional allocator as the
transient allocator. After application initialization completes,
we use binary instrumentation to intercept all memory alloca-
tor functions (e.g., malloc, free). Memory allocator function
calls that occur within processRequest during execution of a
RW command are directed to the persistent allocator. Other
memory allocator operations, e.g. those that occur during calls
to init/destroyAppClient, deserializeRequest or processRequest for
RO commands, are considered transient and directed to the
transient allocator.

The combiner is permitted to access and modify objects
allocated using the transient allocator (e.g., the incoming re-
quest buffer). However, any modifications to transient objects
that occur within processRequest for RW commands are inter-
cepted by Mangosteen’s binary instrumentation. This allows
them to be filtered based on the virtual memory address ranges
assigned to the transient allocator by the OS (e.g. in response
to calls to mmap/munmap, see Fig. 3, line 13). Empirically, due to
additional instrumentation overhead on the critical path we
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found it more expensive to filter transient writes from RW
commands at the front-end than to persist them in the redo log
and perform filtering at the backend. To enable the back-end
to filter transient writes, the Mangosteen front-end therefore
adds redo log entries for any internal calls to mmap/munmap made
by the transient allocator. Such calls occur infrequently in
practice. We emphasize that only transient writes that occur
within processRequest for RW commands are added to the redo
log, with all other transient writes incurring no persistence
overhead.

5 Correctness

Given the subtle interaction between request handler threads,
we have developed a TLA+ model [28] of the concurrency
control algorithm in Figure 2 to validate its safety and live-
ness properties. For safety, we have established the following
invariant:

Mutex = ∀i, j ∈ TID. i ≠ j∧pc[i] ∈ WR ⇒ pc[ j] ∉ WR∪RD

where WR = [2.26 . . .2.29] and RD = {2.6,2.7} correspond
to program counter values for read-write and read-only re-
quest handling, respectively, and pc[i] is a program counter
of thread i. We use 2.26 as notation for line 26 of Fig. 2.
The Mutex invariant ensures mutual exclusion between the
current combiner and the other threads: i.e., at all times, the
current combiner is the only thread that can execute the code
in lines 26–29 of Figure 2.

The following theorem (proved in Appendix B) establishes
Mangosteen’s main safety guarantee. It is very similar to the
property guaranteed by libraries such as FLIT [4, 45], but the
changes to the underlying implementation that Mangosteen
requires are much less invasive (see §2).

Theorem 1. Given an implementation I of an application, let
M[I] denote the Mangosteen-enhanced version of I. Suppose I
is an in-memory linearizable implementation of an object with
a sequential specification S. Then M[I] is durably linearizable
wrt S.

Additionally, in the absence of crashes, we have proved the
following property in TLA+.

Prog = □(∀i ∈ TID. status[i] = READY⇒◇(pc[i] = 2.31))
which asserts that no read-write operation is starved. The fol-
lowing theorem establishes Mangosteen’s liveness guarantee.

Theorem 2. If I is an application program that is deadlock-
free, then M[I] is deadlock-free in the absence of crashes.

Note that, for liveness, we restrict attention to crash-free his-
tories because progress properties in the presence of crashes
have not yet been well-defined, and there are many options
for how to characterise progress after recovery. We therefore
leave a full investigation of Mangosteen’s progress guarantees
as a topic for future work.

6 Evaluation

In this section, we evaluate Mangosteen’s performance and
show that it achieves high end-to-end throughput and low
latency for different update ratios and request sizes and scales
well across multiple cores.

6.1 Experiment Setup

Our evaluation testbed uses a dual socket Intel Ice Lake server
where each server CPU is an Intel Xeon Gold 6236 2.9 GHz
with 16 physical cores per CPU for a total of 32 physical
cores (64 hyperthreaded). The server is equipped with 128GB
GB of DRAM and 1TB (8×128GB DIMMs) of Intel Optane
memory. Our server runs Ubuntu 20.04 with Linux kernel ver-
sion 5.15.0. For Redis, the machine used to generate the client
workload has the same specification as the server. Both ma-
chines are equipped with 25 Gb/s Mellanox ConnectX-5 NICs
and are connected using a Dell EMC 32×100GbE switch.

6.2 Redis Performance

We first evaluate a Mangosteen-enabled version of Redis us-
ing the YCSB benchmark [11]. In line with prior work [50]
and the YCSB defaults we use a closed loop client without
Redis pipelining, represent each record with a Redis hash and
access fields using Redis’ HSET/HGET commands. We load
13 million records (the YCSB default), each record has 10
fields (i.e. 130 million items in total) and each field has a
100B value. The client issues reads and updates at a fixed
ratio and chooses which records to access according to a
Zipfian distribution. For our YCSB experiments we disable
turboboost and hyperthreading on the server. As a baseline
we compare against Persimmon [50]. We also include vanilla
in-memory Redis as an indicative, more challenging baseline
than Redis with append-only-file (AOF) persistence on NVM
which is approximately 3× slower. For Mangosteen and Per-
simmon we pin the backend to a specific core. We use Redis
version 4.0.9 (as in [50]) and the Redis server uses jemalloc
(as recommended for Linux).

End-to-end performance. We start with end-to-end perfor-
mance for typical read and write-intensive YCSB workloads
with update ratios of 10% and 90% and a Zipfian constant
of 0.99. We measure the latency and throughput of Redis,
Mangosteen Redis and Persimmon Redis. Fig. 5 shows the
results with data points for 2,4,8,16,. . .,88,96 clients.

For read-intensive workloads (Fig. 5a), Mangosteen’s peak
throughput is approximately 2.9× that of both Persimmon
and in-memory Redis due to its ability to execute read-only
requests concurrently. Mangosteen’s latency also remains low
until the number of clients equals the number of cores (32).
Mangosteen’s throughput continues to grow up to 48 clients
as the cores on average remain underutilized, although latency
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Figure 5: Latency vs throughput for read (10%) and write (90%)
intensive workloads

increases gradually due to oversubscription. Beyond this point
the server becomes saturated.

For write-intensive workloads (Fig. 5b), Mangosteen’s peak
throughput is still substantially higher than Persimmon and
Redis (1.6× and 1.3× respectively), although the gap closes
due to the reduction in reader-reader concurrency. However,
Mangosteen’s latency is slightly higher than Redis and Per-
simmon because of write batching.
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Figure 6: Peak throughput vs update ratio

Peak throughput vs update ratio. As Mangosteen only ac-
cesses NVM for read-write operations, its performance de-
pends on the workload’s read-only to read-write ratio. Figure
6 shows how peak throughput changes as we vary this ra-
tio. Mangosteen outperforms Persimmon for all update ratios
by between 2×–5×. Furthermore, Mangosteen’s throughput
degrades gracefully and does not become bottlenecked by
its backend, demonstrating the effectiveness of its persis-
tence optimizations (e.g. write deduplication). In contrast,
for write-intensive workloads Persimmon’s shadow execution
with undo logging becomes the bottleneck at an update ratio
of between 70–80%. In comparison to Redis, Mangosteen
also achieves higher peak throughput even for an update-only
workload because it is still able to parallelize some transient
data processing (e.g. request parsing in deserializeRequest).
Deduplication effectiveness Deduplication masks the cost of
persistent memory operations by coalescing write instructions
that have adjacent, overlapping or duplicated address ranges.
Since skewed workloads are more likely to have redundant
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Figure 7: Deduplication vs no deduplication for Zipfian and
Uniform workloads

updates, we evaluate the benefits of deduplication for both
Zipfian and uniform variants of our YCSB workload (Fig. 7).

For both sets of experiments, the throughput gains from
deduplication grow as the workload becomes more update in-
tensive. For an update ratio of 100%, deduplication increases
throughput by 26% for a skewed (Zipfian) workload, and 21%
for a uniform workload. This indicates that deduplication is
slightly more effective for skewed workloads, but is beneficial
regardless of the workload skew. We speculate this is because
a non-negligible fraction of the the memory regions accessed
by different requests are independent of the request keys.

6.3 LevelDB Performance

We next evaluate Mangosteen using the LevelDB benchmark
suite. Similar to [12], we use Mangosteen to implement a
persistent key-value store compatible with the LevelDB API.
Due to the nature of the LevelDB benchmark we configure
Mangosteen in local mode such that no separate client ma-
chine is required and each thread generates its own work-
load. As a baseline we use RomulusDB [12], a persistent key-
value store that implements the LevelDB interface and out-
performs vanilla LevelDB for all benchmarks in the LevelDB
benchmark suite. By default all LevelDB benchmarks use
16-byte keys and 100-byte values. Our LevelDB evaluation
uses the same Intel Ice Lake server as our Redis benchmarks.
Update-only workloads. We first explore update workloads.
The fillSeq benchmark measure the time for a thread to
insert one million distinct key-value pairs in the database
using sequential keys. fillRandom performs one million
insertions of random keys per thread. overwrite is simi-
lar to fillRandom but starts with a pre-populated database.
fill100k measures how long it takes to write 1000 large
key-value pairs of 100 kB.

Fig. 8 shows the results. For small update workloads
(fillSeq, fillRandom, overwrite) Mangosteen scales
better than Romulus independent of the access pattern,
achieving between 5.5×–6.5× lower latency per operation
for 32 cores. The fill100K benchmark illustrates the
importance of Mangosteen’s memcpy instrumentation for
large objects (Fig. 8d). With memcpy instrumentation en-
abled (Mangosteen), Mangosteen outperforms Romulus by
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Figure 8: LevelDB Update Workloads
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Figure 9: LevelDB Read Workloads

2.4× for 32 cores (note the log scale). Here for each value
written Mangosteen requires only a single clean-call and a
single sequential write of the associated memory range to
the redo log (§4.2). In contrast, with memcpy instrumentation
disabled (Mangosteen nomemcpy), Mangosteen’s binary in-
strumentation must intercept each individual write instruction
and performance plummets.
Read-only workloads. For read-only LevelDB workloads,
readSeq and readReverse do a single read-only iteration
over the database. readSeq1KB and readReverse1k are
identical but use larger key-value pairs of size 1KB. Man-
gosteen has slightly better performance than RomulusDB
for readSeq since Mangosteen reads from DRAM which is
faster than NVM (Fig. 9). For readReverse the difference is
less pronounced since more reads are cache resident, masking
the overhead of reading from NVM for RomulusDB. The neg-
ative impact of reading from NVM is further highlighted by
the readSeq1KB and readReverse1KB benchmarks, where
Mangosteen outperforms Romulus by 5× and 2.8× for 32
cores.

6.4 Recovery
In Mangosteen, the cost of applying entries in the redo log dur-
ing recovery is negligible since the redo log is typically short
and re-execution of commands is not required (unlike [50]).
Instead, the cost of recovery is dominated by the overhead of
copying the recovered persistent memory regions from NVM
to the front-end’s DRAM copy. For our YCSB experiments
with a 22GB state size, recovery using a single thread takes
approximately 10 seconds. A basic implementation of multi-
threaded recovery that transfers different persistent regions
in parallel reduces this to approximately 3 seconds. We leave

further optimization of this mechanism as a subject for future
work.

7 Related Work

Romulus offers a persistent transactional memory (PTM) pro-
gramming model that uses language interposition to instru-
ment stores [12], maintaining two copies of the application
state in persistent memory. Like Mangosteen, Romulus inte-
grates flat combining with reader-write locks to manage con-
currency, and shares the design goals of minimizing developer
effort and reducing the number of fences required to persist
updates. However, unlike Mangosteen (which uses redo log-
ging), Romulus uses copy-on-write, and records the address
and range of each write in an in-memory (non-persistent)
array to supports deduplication. Redo logging enables Man-
gosteen’s read commands to execute over DRAM, which of-
fers higher read bandwidth than NVM, while Mangosteen’s
hash-set based deduplication is faster than recording ranges in
an in-memory array for the workloads we evaluated. Finally,
Romulus requires more extensive allocator modifications com-
pared to Mangosteen.

Mnemosyne [44] is a PTM that combines redo logging with
an existing STM called TinySTM [15]. Like Mangosteen’s
use of DBI, Mnemosyne employs compiler instrumentation to
automatically identify write instructions within transactions
that need to be persisted. However, Mnemosyne performs out-
of-place logging of writes and so also needs to instrument read
instructions, increasing overhead. Moreover, Mnemosyne em-
ploys eager conflict detection which allows individual trans-
actions to abort (e.g. on failure to acquire a lock), whereas
Mangosteen currently does not permit individual commands
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to abort.
Atlas leverages FASEs to ensure crash consistency for lock-

based programs [8]. As with Mangosteen, Atlas employs a
write-ahead log and interposes on stores. However, unlike
Mangosteen, Atlas interposes synchronization operations and
employs undo logging. This means that log entries must be
made persistent before performing an in-place update, which
in turn implies a fence instruction per log entry.

JustDo logging leverages persistent CPU caches and FASEs
in lock based programs with non-abortable transactions [23].
FASEs execute directly on NVM, and each FASE maintains
a record of only the most recent write instruction. On recov-
ery, execution simply resumes after the last write instruction
within a FASE. In contrast, Mangosteen does not assume CPU
caches are persistent.

NV-heaps uses undo logging to support transactions over
persistent memory heaps [10]. It provides a more general
transaction model than Mangosteen since individual trans-
actions can abort. In addition, it provides additional safety
features including garbage collection for persistent memory
objects. In general, it targets a different programming model
than Mangosteen (persistent memory objects). Its approach
to undo logging potentially suffers from write amplification
since complete objects are logged even when only a subset of
fields are accessed in order to offset the cost of fences/epoch
barriers needed for undo logging.

NV-Traverse [16], Mirror [17], and FliT [45] are generic
techniques for transforming lock-free concurrent data struc-
tures to persistent data structures. NV-Traverse executes
writes directly on NVM, requiring fences after each write
operation, but minimizes the number of flushes and fences
for reads. Mirror improves performance over NV-Traverse
by keeping a separate copy of the data structure in DRAM
such that reads need never access NVM. Finally, FliT per-
forms optimized tracking of unpersisted writes using pwb’s.
However, all three libraries require significant changes to the
original program whereby every read/write/CAS operation of
the application program is replaced by a call to the respective
library. This is unlike Mangosteen, which only requires in-
stantiation of a simple API (see §3.1). Montage [46] proposes
another system for making legacy applications durable, but
drops durable linearizability in favor of a weaker condition:
buffered durable linearizability [24].

Pronto [33] is an NVM-aware library for transforming
sequential and lock-based concurrent data structures to per-
sistent data structures. With respect to transparency, Man-
gosteen is general enough to support complex applications
that employ a mixture of multiple persistent data structures
and shared global variables, whereas Pronto targets individ-
ual encapsulated/object-oriented data structures (e.g. class
instances). Unlike Mangosteen’s update redo logging, Pronto
uses command logging, allowing it to overlap command exe-
cution with persist operations using dedicated background log-
ging threads. Depending on the workload, command logging

can also consume less write bandwidth than update logging,
although Mangosteen mitigates this using deduplication. On
the other hand, command logging implies that Pronto cannot
correctly support non-deterministic operations (e.g. external
network calls that may timeout) as those may produce dif-
ferent results when re-executed upon recovery. Pronto also
requires periodic snapshotting to bound the size of the com-
mand log. It currently only supports full snapshots, which
does not scale to large data store sizes, but even incremental
snapshots will suffer from write amplification for workloads
with fine-grained writes assuming tracking is done at page
granularity. Finally, to guard against crashes occurring whilst
snapshotting is in progress, a new snapshot cannot overwrite
the previously created one. This effectively doubles the NVM
requirements of Pronto compared to Mangosteen.

8 Conclusions

We presented Mangosteen, an easy-to-use programming
framework to enable linearizable in-memory applications to
gain durability using NVM. Mangosteen allows read-only
requests to execute in parallel while batching and deduplicat-
ing read-write requests to minimize the cost of persistence. It
enables applications to use their existing memory allocators
unmodified, and employs a novel split allocation scheme to
avoid unnecessary overhead for updates to transient mem-
ory that do not need to be persisted for correct recovery. The
performance evaluation demonstrates Mangosteen-enabled
applications are able to achieve significant throughput im-
provements on realistic workloads compared to the state-of-
the-art persistence frameworks.

9 Acknowledgements

We thank the anonymous reviewers for their insightful sug-
gestions. We are grateful to Ymir Vigfusson for his invaluable
feedback on the early versions of Mangosteen, and University
of Surrey Institute of Advanced Studies for supporting his
visit. This work was partially supported by the CHIST-ERA
grant CHIST-ERA-22-SPiDDS-05 (REDONDA project) and
the UK Engineering and Physical Sciences Research Council
(EPSRC) (grant numbers EP/Y036417/1 and EP/Y036425/1).
Dongol and Chockler are both supported by EPSRC grants
EP/X037142/1 and EP/X015149/1, and Dongol is addition-
ally supported by VeTSS and EPSRC grants EP/V038915/1
and EP/R025134/2.

References

[1] Naama Ben-David, Michal Friedman, and Yuanhao Wei.
Survey of persistent memory correctness conditions,
2022.

USENIX Association 2024 USENIX Annual Technical Conference    811



[2] Ryan Berryhill, Wojciech Golab, and Mahesh Tripuni-
tara. Robust Shared Objects for Non-Volatile Main
Memory. In Emmanuelle Anceaume, Christian
Cachin, and Maria Potop-Butucaru, editors, 19th Inter-
national Conference on Principles of Distributed Sys-
tems (OPODIS 2015), volume 46 of Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), pages 20:1–
20:17, Dagstuhl, Germany, 2016. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik.

[3] Kumud Bhandari, Dhruva R. Chakrabarti, and Hans-J.
Boehm. Makalu: Fast recoverable allocation of non-
volatile memory. SIGPLAN Not., 51(10):677–694, oct
2016.

[4] Stefan Bodenmüller, John Derrick, Brijesh Dongol, Ger-
hard Schellhorn, and Heike Wehrheim. A fully verified
persistency library. In Rayna Dimitrova, Ori Lahav, and
Sebastian Wolff, editors, Verification, Model Checking,
and Abstract Interpretation, pages 26–47, Cham, 2024.
Springer Nature Switzerland.

[5] Derek Bruening, Qin Zhao, and Saman Amarasinghe.
Transparent dynamic instrumentation. In Proceedings
of the 8th ACM SIGPLAN/SIGOPS Conference on Vir-
tual Execution Environments, VEE ’12, page 133–144,
New York, NY, USA, 2012. Association for Computing
Machinery.

[6] Irina Calciu, Dave Dice, Yossi Lev, Victor Luchangco,
Virendra J. Marathe, and Nir Shavit. Numa-aware
reader-writer locks. SIGPLAN Not., 48(8):157–166, feb
2013.

[7] Bryan Cantrill, Michael W. Shapiro, and Adam H. Lev-
enthal. Dynamic instrumentation of production systems.
In Proceedings of the General Track: 2004 USENIX
Annual Technical Conference, June 27 - July 2, 2004,
Boston Marriott Copley Place, Boston, MA, USA, pages
15–28. USENIX, 2004.

[8] Dhruva R. Chakrabarti, Hans-J. Boehm, and Kumud
Bhandari. Atlas: Leveraging locks for non-volatile mem-
ory consistency. SIGPLAN Not., 49(10):433–452, oct
2014.

[9] Joel Coburn, Adrian M. Caulfield, Ameen Akel,
Laura M. Grupp, Rajesh K. Gupta, Ranjit Jhala, and
Steven Swanson. Nv-heaps: Making persistent objects
fast and safe with next-generation, non-volatile mem-
ories. In Proceedings of the Sixteenth International
Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS XVI, page
105–118, New York, NY, USA, 2011. Association for
Computing Machinery.

[10] Joel Coburn, Adrian M. Caulfield, Ameen Akel,
Laura M. Grupp, Rajesh K. Gupta, Ranjit Jhala, and
Steven Swanson. Nv-heaps: Making persistent objects
fast and safe with next-generation, non-volatile mem-
ories. In Proceedings of the Sixteenth International
Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS XVI, page
105–118, New York, NY, USA, 2011. Association for
Computing Machinery.

[11] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking cloud
serving systems with ycsb. In Proceedings of the 1st
ACM Symposium on Cloud Computing, SoCC ’10, page
143–154, New York, NY, USA, 2010. Association for
Computing Machinery.

[12] Andreia Correia, Pascal Felber, and Pedro Ramalhete.
Romulus: Efficient algorithms for persistent transac-
tional memory. In Proceedings of the 30th on Sym-
posium on Parallelism in Algorithms and Architectures,
SPAA ’18, page 271–282, New York, NY, USA, 2018.
Association for Computing Machinery.

[13] CRIU. https://criu.org.

[14] DynamoRIO Clean Calls. dynamorio.org/API_BT.
html#sec_clean_call.

[15] Pascal Felber, Christof Fetzer, and Torvald Riegel. Dy-
namic performance tuning of word-based software trans-
actional memory. In Proceedings of the 13th ACM SIG-
PLAN Symposium on Principles and Practice of Paral-
lel Programming, PPoPP ’08, page 237–246, New York,
NY, USA, 2008. Association for Computing Machinery.

[16] Michal Friedman, Naama Ben-David, Yuanhao Wei,
Guy E. Blelloch, and Erez Petrank. Nvtraverse: In
nvram data structures, the destination is more impor-
tant than the journey. In Proceedings of the 41st ACM
SIGPLAN Conference on Programming Language De-
sign and Implementation, PLDI 2020, page 377–392,
New York, NY, USA, 2020. Association for Computing
Machinery.

[17] Michal Friedman, Erez Petrank, and Pedro Ramalhete.
Mirror: Making lock-free data structures persistent. In
Proceedings of the 42nd ACM SIGPLAN International
Conference on Programming Language Design and Im-
plementation, PLDI 2021, page 1218–1232, New York,
NY, USA, 2021. Association for Computing Machinery.

[18] Rachid Guerraoui and Ron R. Levy. Robust emulations
of shared memory in a crash-recovery model. In Pro-
ceedings of the 24th International Conference on Dis-
tributed Computing Systems (ICDCS’04), ICDCS ’04,
page 400–407, USA, 2004. IEEE Computer Society.

812    2024 USENIX Annual Technical Conference USENIX Association

https://criu.org
dynamorio.org/API_BT.html#sec_clean_call
dynamorio.org/API_BT.html#sec_clean_call


[19] Swapnil Haria, Mark D. Hill, and Michael M. Swift.
Mod: Minimally ordered durable datastructures for per-
sistent memory. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for
Programming Languages and Operating Systems, AS-
PLOS ’20, page 775–788, New York, NY, USA, 2020.
Association for Computing Machinery.

[20] Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir.
Flat combining and the synchronization-parallelism
tradeoff. In Proceedings of the twenty-second annual
ACM symposium on Parallelism in algorithms and ar-
chitectures, pages 355–364, 2010.

[21] Maurice Herlihy and Nir Shavit. On the nature of
progress. In Antonio Fernández Anta, Giuseppe Lipari,
and Matthieu Roy, editors, Principles of Distributed Sys-
tems - 15th International Conference, OPODIS 2011,
Toulouse, France, December 13-16, 2011. Proceedings,
volume 7109 of Lecture Notes in Computer Science,
pages 313–328. Springer, 2011.

[22] Maurice P. Herlihy and Jeannette M. Wing. Lineariz-
ability: A correctness condition for concurrent objects.
ACM Trans. Program. Lang. Syst., 12(3):463–492, jul
1990.

[23] Joseph Izraelevitz, Terence Kelly, and Aasheesh Kolli.
Failure-atomic persistent memory updates via justdo log-
ging. SIGARCH Comput. Archit. News, 44(2):427–442,
mar 2016.

[24] Joseph Izraelevitz, Hammurabi Mendes, and Michael L.
Scott. Linearizability of persistent memory objects un-
der a full-system-crash failure model. In Cyril Gavoille
and David Ilcinkas, editors, Distributed Computing,
pages 313–327, Berlin, Heidelberg, 2016. Springer
Berlin Heidelberg.

[25] jemalloc. http://jemalloc.net.

[26] Artem Khyzha and Ori Lahav. Taming x86-tso per-
sistency. Proc. ACM Program. Lang., 5(POPL):1–29,
2021.

[27] Leslie Lamport. How to make a correct multiprocess
program execute correctly on a multiprocessor. IEEE
Trans. Computers, 46(7):779–782, 1997.

[28] Leslie Lamport. Specifying Systems, The TLA+ Lan-
guage and Tools for Hardware and Software Engineers.
Addison-Wesley, 2002.

[29] Se Kwon Lee, Soujanya Ponnapalli, Sharad Singhal,
Marcos K. Aguilera, Kimberly Keeton, and Vijay Chi-
dambaram. DINOMO: an elastic, scalable, high-
performance key-value store for disaggregated persistent
memory. Proc. VLDB Endow., 15(13):4023–4037, 2022.

[30] Sihang Liu, Korakit Seemakhupt, Yizhou Wei, Thomas
Wenisch, Aasheesh Kolli, and Samira Khan. Cross-
failure bug detection in persistent memory programs.
In Proceedings of the Twenty-Fifth International Con-
ference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS ’20, page
1187–1202, New York, NY, USA, 2020. Association
for Computing Machinery.

[31] Sihang Liu, Yizhou Wei, Jishen Zhao, Aasheesh Kolli,
and Samira Khan. Pmtest: A fast and flexible testing
framework for persistent memory programs. In Pro-
ceedings of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’19, page 411–425,
New York, NY, USA, 2019. Association for Computing
Machinery.

[32] Virendra J. Marathe, Margo Seltzer, Steve Byan, and
Tim Harris. Persistent memcached: Bringing legacy
code to byte-addressable persistent memory. In Pro-
ceedings of the 9th USENIX Conference on Hot Topics
in Storage and File Systems, HotStorage’17, page 4,
USA, 2017. USENIX Association.

[33] Amirsaman Memaripour, Joseph Izraelevitz, and Steven
Swanson. Pronto: Easy and fast persistence for volatile
data structures. In Proceedings of the Twenty-Fifth Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS
’20, page 789–806, New York, NY, USA, 2020. Associ-
ation for Computing Machinery.

[34] Steven Pelley, Peter M. Chen, and Thomas F. Wenisch.
Memory persistency. In ACM/IEEE 41st International
Symposium on Computer Architecture, ISCA 2014, Min-
neapolis, MN, USA, June 14-18, 2014, pages 265–276.
IEEE Computer Society, 2014.

[35] Persistent Memory Development Kit. pmem.io/pmdk.

[36] Azalea Raad and Viktor Vafeiadis. Persistence seman-
tics for weak memory: integrating epoch persistency
with the TSO memory model. Proc. ACM Program.
Lang., 2(OOPSLA):137:1–137:27, 2018.

[37] Azalea Raad, John Wickerson, Gil Neiger, and Viktor
Vafeiadis. Persistency semantics of the intel-x86 archi-
tecture. Proc. ACM Program. Lang., 4(POPL):11:1–
11:31, 2020.

[38] redis/readme.md at 4.0. https://github.com/
redis/redis/blob/4.0/README.md.

[39] Samsung Electronics. Samsung electronics unveils
far-reaching, next-generation memory solutions at flash
memory summit, 2022.

USENIX Association 2024 USENIX Annual Technical Conference    813

http://jemalloc.net
pmem.io/pmdk
https://github.com/redis/redis/blob/4.0/README.md
https://github.com/redis/redis/blob/4.0/README.md


[40] Steve Scargall. Programming Persistent Memory: A
Comprehensive Guide for Developers. APress, 2020.

[41] Kian-Lee Tan, Qingchao Cai, Beng Chin Ooi, Weng-
Fai Wong, Chang Yao, and Hao Zhang. In-memory
databases: Challenges and opportunities from software
and hardware perspectives. SIGMOD Rec., 44(2):35–40,
2015.

[42] Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ran-
ganathan, and Roy H. Campbell. Consistent and durable
data structures for non-volatile byte-addressable mem-
ory. In Proceedings of the 9th USENIX Conference on
File and Stroage Technologies, FAST’11, page 5, USA,
2011. USENIX Association.

[43] Haris Volos, Andres Jaan Tack, and Michael M. Swift.
Mnemosyne: Lightweight persistent memory. In Pro-
ceedings of the Sixteenth International Conference on
Architectural Support for Programming Languages and
Operating Systems, ASPLOS XVI, page 91–104, New
York, NY, USA, 2011. Association for Computing Ma-
chinery.

[44] Haris Volos, Andres Jaan Tack, and Michael M. Swift.
Mnemosyne: Lightweight persistent memory. In Pro-
ceedings of the Sixteenth International Conference on
Architectural Support for Programming Languages and
Operating Systems, ASPLOS XVI, page 91–104, New
York, NY, USA, 2011. Association for Computing Ma-
chinery.

[45] Yuanhao Wei, Naama Ben-David, Michal Friedman,
Guy E. Blelloch, and Erez Petrank. Flit: A library for
simple and efficient persistent algorithms. In Proceed-
ings of the 27th ACM SIGPLAN Symposium on Princi-
ples and Practice of Parallel Programming, PPoPP ’22,
page 309–321, New York, NY, USA, 2022. Association
for Computing Machinery.

[46] Haosen Wen, Wentao Cai, Mingzhe Du, Louis Jenkins,
Benjamin Valpey, and Michael L. Scott. A fast, general
system for buffered persistent data structures. In Xian-
He Sun, Sameer Shende, Laxmikant V. Kalé, and Yong
Chen, editors, ICPP 2021: 50th International Confer-
ence on Parallel Processing, Lemont, IL, USA, August 9
- 12, 2021, pages 73:1–73:11. ACM, 2021.

[47] Jian Xu, Juno Kim, Amirsaman Memaripour, and Steven
Swanson. Finding and fixing performance pathologies
in persistent memory software stacks. In Proceedings
of the Twenty-Fourth International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems, ASPLOS ’19, page 427–439, New
York, NY, USA, 2019. Association for Computing Ma-
chinery.

[48] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph
Izraelevitz, and Steve Swanson. An empirical guide
to the behavior and use of scalable persistent memory.
In 18th USENIX Conference on File and Storage Tech-
nologies (FAST 20), pages 169–182, Santa Clara, CA,
February 2020. USENIX Association.

[49] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph
Izraelevitz, and Steven Swanson. An empirical guide
to the behavior and use of scalable persistent memory.
In Sam H. Noh and Brent Welch, editors, 18th USENIX
Conference on File and Storage Technologies, FAST
2020, Santa Clara, CA, USA, February 24-27, 2020,
pages 169–182. USENIX Association, 2020.

[50] Wen Zhang, Scott Shenker, and Irene Zhang. Persistent
state machines for recoverable in-memory storage sys-
tems with nvram. In Proceedings of the 14th USENIX
Conference on Operating Systems Design and Imple-
mentation, OSDI’20, USA, 2020. USENIX Association.

A Additional Background on Persistent Mem-
ory

Example 1. To demonstrate the behavior of pwb, psync and
pfence instructions, consider the programs below. Assume
that x and y are both initially 0, and that a crash occurs at
some point during the program’s execution.

1 Prog1
2 x ← 1;
3 pwb(x);
4 y ← 1;

1 Prog2
2 x ← 1;
3 psync();
4 y ← 1;

1 Prog3
2 x ← 1;
3 pwb(x);
4 psync();
5 y ← 1;

1 Prog4
2 x ← 1;
3 pwb(x);
4 pfence();
5 y ← 1;

In both Prog1 and Prog2, after the crash, it is possible to have
x = 0 and y = 1 in NVM since the writes to x and y may not be
persisted in the order that they are executed. In particular, in
Prog1, the write to x is tagged by a pwb but not synced before
the write to y, and in Prog2, the write to x is not tagged before
the psync() is executed. This behaviour is impossible in both
Prog3 and Prog4, i.e., regardless of when the crash occurs, if
y = 1 in NVM, then x = 1. The difference between Prog3 and
Prog4 is that in Prog3, x ← 1 is guaranteed to be persisted
when the program reaches line 5, whereas in Prog4, this is
not necessarily true.

B Mangosteen Safety and Liveness Argument

Theorem 1. Given an implementation I of an application, let
M[I] denote the Mangosteen-enhanced version of I. Suppose I
is an in-memory linearizable implementation of an object with
a sequential specification S. Then M[I] is durably linearizable
wrt S.
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Proof (sketch). First, we note that every history of M[I] is of
the form σ1 ⋅C1 ⋅σ2 ⋅C2 . . . where each σi is a crash-free era
and Ci is a crash.

We now consider each era. The main synchronization be-
tween concurrent client requests is handled by the ClientCmd
program in Fig. 2. Given the Mutex property for ClientCmd
described above, a read-only operation that executes concur-
rently with a combiner operation is either linearized before
or after the (batch of) read-write operations executed by the
combiner. Similarly, in any trace involving the concurrent
execution of two different combiner threads i and j, the batch
(of read-write operations) executed by i either occurs before
or after the batch executed by j. Finally, read-write opera-
tions that are part of the same batch are executed sequentially
by the combiner thread. Thus every era σi is consistent with
a history of the form: RO1 ⋅B1 ⋅RO2 ⋅B2 . . . , where ROi is a
(possibly empty) sequence of read-only operations and Bi is
a sequence of read-write operations.

Therefore, the only remaining properties to check are re-
garding failure atomicity, i.e., (i) when a combiner thread
completes, all read-write operations executed by the com-
biner are persisted, and (ii) if a combiner is interrupted by a
crash before it completes, either all writes performed by the
combiner are rolled back (and the corresponding read-write
operations are cancelled) or the writes are persisted on behalf
of the combiner by the recovery operation that is executed
immediately after the crash (so that the corresponding read-
-write operations are committed). It is straightforward to see
that both of these hold via the mechanisms already described
in §4.3.

Theorem 2. If I is an application program that is deadlock-
free, then M[I] is deadlock-free in the absence of crashes.

Proof (sketch). Every execution of M[I] is of the form RO1 ⋅
RW1 ⋅RO2 . . . or RW1 ⋅RO1 ⋅RW2 . . . where each ROi contains
no concurrent read-write operations and RWi contains some
concurrent read-write operation. We show that each ROi and
RWi segment is deadlock-free.

ROi. Each ROi segment is trivially deadlock-free since I is
deadlock-free.

RWi. By Prog from §5, each waiting writer is guaranteed to
complete its operation. Informally, this holds because the
combiner sweeps through the status array and executes the
operation corresponding to each waiting writer sequentially.
Since I is deadlock-free, the sequential execution of each
operation of I must terminate. Hence, in M[I], each writing
operation executed by the combiner terminates.

C Artifact Appendix

Abstract
The Mangosteen artifact is a collection of applications inte-
grated with the Mangosteen framework.

Scope
The artifact enables the reader to run several example applica-
tions that have been integrated with Mangosteen and review
the Mangosteen source code. If the reader has access to an ex-
perimental setup with persistent memory like that described in
§6.1 it should also be possible to reproduce the performance
evaluation of Redis integrated with Mangosteen in §6.2. In
cases where the reader has access to real or emulated per-
sistent memory, it should also be possible to test application
recovery using the instructions provided in the README.txt
file that accompanies the artifact.

Contents
The artifact contains Mangosteen source code as well as ex-
ternal dependencies that are required to correctly build and
run Mangosteen. The artifact contains a detailed README.txt
file that describes how to build Mangosteen on Ubuntu using
the supplied build scripts.

The artifact contains the following application examples:
• Simple key/value store: Similar to the example in §3.1. It

uses Mangosteen’s local API.
• Client/server: A simple client/server application that ac-

cepts requests of the form add(byte_array) and adds the
argument to an in-memory array (persisted via Mangos-
teen).

• Redis: The Redis database integrated with Mangosteen for
persistence. This is our main case study in the paper.

Hosting
The artifact can be obtained from Zenodo using the unique
DOI 10.5281/zenodo.11390432
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