
This paper is included in the Proceedings of the
2024 USENIX Annual Technical Conference.

July 10–12, 2024 • Santa Clara, CA, USA
978-1-939133-41-0

Open access to the Proceedings of the
2024 USENIX Annual Technical Conference

is sponsored by

Evaluating Chiplet-based Large-Scale
Interconnection Networks via Cycle-Accurate

Packet-Parallel Simulation
Yinxiao Feng and Yuchen Wei, Institute for Interdisciplinary Information Sciences,

Tsinghua University; Dong Xiang, School of Software, Tsinghua University;
Kaisheng Ma, Institute for Interdisciplinary Information Sciences, Tsinghua University

https://www.usenix.org/conference/atc24/presentation/feng-yinxiao

Evaluating Chiplet-based Large-Scale Interconnection Networks

via Cycle-Accurate Packet-Parallel Simulation

Yinxiao Feng1, Yuchen Wei1, Dong Xiang2, Kaisheng Ma1∗

1Institute for Interdisciplinary Information Sciences, 2School of Software, Tsinghua University

Abstract

The Chiplet architecture has achieved great success in re-

cent years. However, chiplet-based networks are significantly

different from traditional networks, thus presenting new chal-

lenges in evaluation. On the one hand, on-chiplet and off-

chiplet networks are tightly coupled; therefore, the entire het-

erogeneous network must be designed and evaluated jointly

rather than separately. On the other hand, existing network

simulators cannot efficiently evaluate large-scale chiplet-

based networks with cycle-accurate accuracy.

In this paper, we present the design and implementation

of the Chiplet Network Simulator (CNSim), a cycle-accurate

packet-parallel simulator supporting efficient simulation for

large-scale chiplet-based (shared-memory) networks. In CN-

Sim, a packet-centric simulation architecture and an atomic-

based hyper-threading mechanism are adopted, accelerating

simulation speed by 11× ∼ 14× compared with existing

cycle-accurate simulators. Besides, we implement the het-

erogeneous router/link microarchitecture and many other fea-

tures, including hierarchical topologies, adaptive routing, and

real workload traces integration. Based on CNSim, two typi-

cal chiplet-based networks, which cannot be efficiently simu-

lated by existing simulators, are systematically evaluated. The

advantages and limitations of chiplet-based networks are re-

vealed through systematical cycle-accurate simulations. The

simulator and evaluation framework are open-sourced to the

community§.

1 Introduction

Chiplet is an emerging architecture that has achieved great

success in modern computing systems. By integrating mul-

tiple silicon dies in a package, the entire computing density

and efficiency are greatly improved [34,56]. However, chiplet-

based systems are significantly different from traditional sys-

tems, and the chiplet interconnection architecture has not been

∗Corresponding author
§https://github.com/Yinxiao-Feng/chiplet-network-sim

thoroughly evaluated. Critical design issues to be evaluated

include but are not limited to: 1) hierarchical topologies of

the on-chiplet and off-chiplet networks, 2) routing algorithms

on the heterogeneous networks [30], 3) impacts of the het-

erogeneous chiplet-to-chiplet interfaces and heterogeneous

routers [29], and 4) overall performance of various topologies

under various workloads. There are two main challenges in

evaluating chiplet-based interconnection networks.

Challenge 1. Unified simulations on the entire network

are necessary for evaluating chiplet interconnection archi-

tecture. Traditional on-chip and off-chip networks are usu-

ally separately designed. On-chip networks are connected

to a switch, and the off-chip network is constructed among

multiple switches regardless of the on-chip network architec-

ture. However, the Chiplet architecture integrates multiple

silicon dies with ultra-high density and connectivity, breaking

the boundary between on-chip and off-chip networks. Mul-

tiple on-chip routers of chiplets are directly connected by

low-latency off-chip links, forming large-scale heterogeneous

networks and leading to potential problems: 1) Networks-of-

chiplet cannot be separately evaluated since they are tightly

coupled with on-chiplet networks [60]. 2) The scale of chiplet-

based networks can be much larger than a traditional on-chip

network [23]. 3) The on/off-chip links and routers are hetero-

geneous in mechanism, bandwidth, and latency, which are not

uniformly and accurately modeled in existing tools [29].

Challenge 2. Existing network simulators are inefficient

for evaluting large-scale chiplet-based shared-memory net-

works. On-chip and off-chip networks have been two distinct

areas, each with abundant existing evaluation tools. Due to

the latency of traditional off-chip links and switches, e.g. Eth-

ernet and InfiniBand, is usually in the order of microsecond

(us) [42, 53], a coarse-grained event-based simulator is suffi-

cient for evaluating traditional off-chip networks. However,

low-latency on-chip routers in multi-chiplet systems are di-

rectly connected by low-latency links of nanoseconds (ns), e.g.

UCIe [6]. Besides, circuit-level microarchitecture features, in-

cluding buffer, link, switch, and flow-control, significantly

impact the performance of chiplet-based systems. Therefore,

USENIX Association 2024 USENIX Annual Technical Conference 731

https://github.com/Yinxiao-Feng/chiplet-network-sim

it is necessary to use fine-grained cycle-accurate simulators

to evaluate chiplet-based networks. However, existing cycle-

accurate tools are inefficient for large-scale chiplet-based net-

works because they are designed for small-scale on-chip net-

works [9, 13, 21, 40], whose scale is no more than tens of

routers. Existing parallel network simulators are designed

for MPI-based distributed-memory systems [20, 52]; thus,

they are also unsuitable for chiplet-based shared-memory sys-

tems [15].

Existing cycle-accurate network simulators are slow for

two main reasons: 1) The simulator models the entire RTL

router, including many noncritical circuit behaviors, e.g. hand-

shake and the round-robin allocation. 2) Complex resource

dependency and competition (thread synchronization) make

network simulation challenging to parallelize. Therefore, for

the first reason, we are motivated to compromise some un-

necessary modeling to accelerate simulation speed while ver-

ifying necessary microarchitectures and maintaining cycle

accuracy. For the second reason, we adopted an atomic-based

hyper-threading mechanism to realize efficient packet-parallel

simulation with little inconsistency. As a result, we present

Chiplet Network Simulator (CNSim), a cycle-accurate packet-

parallel network simulator that helps us to evaluate the chiplet

interconnection architecture systematically and efficiently.

The contributions of this paper are summarized as follows:

• Unlike existing small-scale on-chip or large-scale dis-

tributed network simulators, CNSim is designed for large-

scale chiplet-based (shared-memory) networks.

• A packet-centric simulation architecture and an atomic-

based hyper-threading mechanism are adopted. Simula-

tion speed is 11×∼ 14× faster than existing tools while

verifying necessary microarchitectures and maintaining

cycle accuracy.

• Various features for evaluating chiplet-based networks

are supported, including heterogeneous router/link, hi-

erarchical topology, adaptive routing, and real work-

load traces integration. The simulator and the evaluation

framework are open-sourced to the community.

• Based on CNSim, two typical chiplet-based networks,

which cannot be efficiently simulated by existing simula-

tors, are systematically evaluated. Extensive evaluations

reveal the advantages and limitations of the chiplet inter-

connection architecture.

2 Background & Motivation

2.1 Chiplet Interconnection Architecture

The traditional chip is implemented on a single silicon die,

whose area is very limited due to manufacturing and yield is-

sues [3]. Besides, each chip has a limited number of I/O ports

Switch

NoC NoC …

…
Off-Chip Network

NoC

I/O

Router

…
NoC

I/O

Router

… …
NoC NoC NoC

NoC NoC NoC
…

…

…

(a) (b) (c)

Network of Chiplets
Off-Chip Network

Figure 1: Comparison of different interconnection architec-

tures. (a) On/off-chip networks are isolated by switches. (b)

On/off-chip networks are isolated by I/O routers. (c) On/off-

chip networks in chiplet-based systems are tightly coupled.

with limited bandwidth, which leads to low off-chip connectiv-

ity. In recent years, advanced packaging and high-speed wire-

line technologies have significantly progressed, thus allowing

chips to be integrated at ultra-high scale and density [27].

For example, by using Integrated-Fan-Out-System-on-Wafer

(InFO-SoW) [24], the Telsa DOJO integrates 25 645 mm2 D1

chips on a wafer [32], and the total off-chip bandwidth reaches

1576 Tb/s (576 lanes of 112G SerDes per chip) [54, 55]. The

Chiplet technologies significantly impact the interconnection

architecture of large-scale systems.

Relation between on-chip and off-chip networks: In

traditional interconnection systems, on-chip and off-chip net-

works are usually decoupled. As shown in Figure 1(a), on-

chip networks are connected to a switch, and the off-chip

network is constructed among multiple switches. Most switch-

based datacenter networks, including Fat-tree [12, 59], Sling-

shot [26, 43], and NVIDIA HGX [39], adopt this architecture;

therefore, the overall network performance can be measured

among the network interface controllers (NICs) regardless of

the network-on-chip (NoC). Besides, some high-performance

computing (HPC) interconnection networks adopt direct

switch-less topologies, e.g. Torus. As shown in Figure 1(b),

most of them, including TPUv4 [41] and TofuD [10], imple-

ment an I/O router to centralize all interconnection channels,

thus also isolating on-chip and off-chip networks. However,

emerging advanced packaging technologies allow ultra-high-

density integration and connectivity of multiple chips, thus

breaking the on/off-chip boundary. As shown in Figure 1(c),

multiple on-chiplet networks are tightly connected by numer-

ous physical channels. As a result, the on-chip and off-chip

networks of chiplet-based systems must be designed and eval-

uated jointly rather than separately.

Throughput: An obvious limitation of traditional intercon-

nection architectures is that the NICs or I/O routers are the

bottleneck of the network. The traffic that can be injected into

the off-chip network is much less than the total throughput

of the on-chip network. For example, two servers (proces-

sors) are connected to a 64-port 400G switch, with a total

switching bandwidth of 25.6Tb/s; however, the communica-

tion bandwidth between the two servers is only 400G. For

some workloads (e.g. AI), the local throughput is more impor-

tant than the global throughput [38]. By advanced packaging

732 2024 USENIX Annual Technical Conference USENIX Association

and high-speed wireline technologies, the chip itself can pro-

vide communication bandwidth no weaker than a regular

switch [32,38]; thus, the injection/ejection bandwidth of each

chiplet is no longer bounded by the centralized NIC or I/O

router, significantly improving the network scalability and

throughput.

Latency: The latency of chiplet components is much lower

than the traditional off-chip switches and links, e.g. Ether-

net [53] and InfiniBand [42], whose latency are more than

hundreds of nanoseconds (us-level). However, the latency of

typical on-chip routers and chiplet-to-chiplet interfaces, e.g.

UCIe [6], is only a few nanoseconds (cycle-level). As a result,

the microarchitecture of on-chip routers can significantly af-

fect the overall performance of chiplet-based systems. On the

other hand, the low-latency die-to-die links make replacing a

costly switch-to-switch hop with multiple low-cost chiplet-to-

chiplet hops possible, which makes the chiplet-based large-

scale network have a diameter of numerous hops. Compared

with traditional switch-based high-radix networks, chiplet-

based networks require cycle-accurate modeling to evaluate

the overall performance; however, such fine-grained simula-

tions of large-scale networks can be slow.

Shared-memory vs. distributed-memory: In a shared-

memory architecture, multiple processors or cores share a

common address space, while in distributed-memory archi-

tecture, each processor has its own private memory space.

Shared-memory architecture is programming-friendly, but the

hardware-based coherence protocol has high requirements for

network performance; thus, current large-scale systems are

usually distributed-memory-based. However, the high con-

nectivity and low latency of chiplet architecture make large-

scale chiplet-based systems adopting the shared-memory ar-

chitecture possible [34]. As a result, the MPI-based paral-

lelism mechanism, used in most distributed-memory systems,

is unsuitable for chiplet-based systems. The shared-memory

architecture presents simulation challenges for large-scale

chiplet-based networks due to the lack of a parallel simulation

framework.

2.2 Network Simulators

Various existing network simulators can be categorized into

cycle-based and discrete-event according to the simulation

mechanism. The cycle-based simulator updates the states of

all components in each cycle based on the states of the last

cycle. The popular BookSim [40] and other cycle-accurate

simulators [21, 46] adopt such a design because it is highly

compatible to the actual implementation of routers. Cycle-

based simulators are capable of modeling fine-grained mi-

croarchitectures but are not qualified for evaluating large-

scale distributed systems without a synchronous clock. The

discrete-event simulator is a more mainstream approach for

evaluation large-scale networks [4, 9, 20, 50, 52]. Any change

in discrete-event simulators is identified as an event, and

the simulator processes every event along the timeline. The

discrete-event simulator can also achieve cycle-accurate [13]

by generating events at cycle-granularity, but the simulation

can be slow due to the serial processing of the large event

queue.

Parallel Simulation: Since traditional on-chip networks

are scale-limited, existing cycle-accurate simulators pay little

attention to simulation performance. In fact, they are already

quite time-consuming for on-chip networks (e.g., it takes tens

of hours to simulate the entire PARSEC traces [36, 37]), let

alone for large-scale networks. For large-scale distributed

networks, almost all simulators are based on parallel discrete-

event simulation (PDES) [33]. The system is partitioned

into separate simulation objects, each with its own event

queue and Logical Process (LP). Necessary synchroniza-

tions are performed among different LPs to guarantee the

distributed events are processed appropriately. In most ex-

isting parallel discrete-event simulators, including SST [52],

ROSS/CODES [20, 49], NS-3 [50], and OMNeT++ [4], sys-

tems are partitioned into MPI ranks/nodes, and the synchro-

nization is achieved by MPI communication. However, the

distributed-memory-based clusters are unavailable to most

researchers [15], and the MPI-based mechanism is unsuitable

for chiplet-based shared-memory systems. Therefore, hyper-

threading is more suitable for parallel-simulating large-scale

chiplet-based networks. As with all multithreaded programs,

the hyper-threading bottleneck is the program’s paralleliz-

ability and the synchronization overhead between threads.

Packets and resources in a network are tightly dependent and

associated, thus challenging to parallelize.

Parallelism strategy: Numerous components in a network

can be parallelized in different ways. The network parallelism,

in which multiple threads concurrently process multiple sub-

networks/routers, is commonly used [46]. Although network

parallelism is straightforward, we observe two major limi-

tations. First, each router (thread) has resource dependency

and contention with all adjacent routers, which leads to fierce

thread competition. Second, multiple physical/virtual chan-

nels with multiple packets in a router are serially processed,

which limits the parallelism for high-radix and large-buffer

routers. Therefore, we are motivated to propose a new strategy,

called packet parallelism, promising to achieve more efficient

parallel simulation.

2.3 Motivations from Profiling BookSim

For real circuit-level routers, every pipeline stage is finished

in one cycle, no matter whether it is critical or trivial. But for

simulators, the runtime of different stages can vary greatly.

The simulation model of an unimportant circuit stage can cost

a lot of time. Besides, the computer’s memory capacity for

running the simulation is finite; therefore, simulators can’t

fully replicate the hardware mechanism, e.g. the routing table,

which leads to potential simulation overheads. As a result, the

USENIX Association 2024 USENIX Annual Technical Conference 733

Table 1: Profiling results, measured by cycles of function calls,

of the BookSim on the 2D-mesh and dragonfly topologies.

Cycle Estimation (%) 2D-Mesh Dragonfly

IQRouter::_internalStep() 92.18 71.92

Call: _VCAllocEvaluate() 48.08 17.65

Call: SparseAllocator::Clear() 28.86 17.93

Call: _SWAllocEvaluate() 5.71 13.43

Call: _SWAllocUpdate() 4.59 11.26

simulation runtime and circuit runtime are disproportionate.

To fully demonstrate why existing cycle-accurate simulators

are slow, we profile the BookSim as an example. The Valgrind

Callgrind framework [5], which can count the execution cy-

cles of function calls, is used for profiling.

As shown in Table 1, the router status update func-

tion IQRouter::_InternalStep(), which is called every

simulation-cycle by every router, takes up the majority of

the runtime. Further decomposition shows that most of the

runtime is spent processing resource allocation, including the

virtual channel and switch. In the process, a request mapping

table vector<vector<sRequest» for “requester-provider”

pairs is maintained to determine the allocation of resources in

a round-robin way. The frequent indexing, erasing, and insert-

ing of the table significantly affect the simulation performance.

Specifically, more than 70% of the time is spent evaluating

the allocation behavior, which is an already thoroughly dis-

cussed issue. As a matter of fact, different allocation policies,

including round-robin and first-come-first-serve (FCFS), have

advantages and disadvantages, but they do not seriously affect

the overall performance because either policy fully utilizes

the physical channel [7, 31].

Since allocation policy is not a significant issue to be evalu-

ated, saving related simulation times for evaluating large-scale

chiplet-based networks is necessary. Therefore, we are mo-

tivated to use an implementation-friendly allocation policy

and a more efficient simulation mechanism. In brief, the sim-

ulation speed can be significantly improved if the available

resources can be immediately allocated to the requester with-

out gathering and managing all the requests. If all the requests

are processed in the coming order, the first-come-first-serve

policy is naturally achieved. Maintaining numerous coming-

order queues is difficult, but we can easily maintain a packet

queue based on the injection order, i.e. the first-inject-first-

serve policy.

3 CNSim: A Cycle-Accurate Packet-Parallel

Simulator for Chiplet-based Networks

The Chiplet Network Simulator (CNSim) is a cycle-accurate

simulator designed for large-scale chiplet-based (shared-

memory) interconnection networks but also applies to tra-

ditional on/off-chip networks. This paper mainly focuses on

Pkt
0

Pkt
1

Pkt
2

Pkt
3

…

Pkt
n

…

Traffic
Manager

pkt_gen()

If(arrived)
delete

Router

Buffer

Buffer

…

routing(p)
allocate(p)

p.candidate_channels
p.allocated_resources

Network of Chiplets

Statistics

Packet {
// network status
flit_trace_;
allocated_buffer;
……
// statistics
trans_cycles;
……
}
update(Packet p){
routing(p);
vc_allocate(p);
switch_allocate(p);
transmit(p);
} Switch

Figure 2: Overview of the packet-centric CNSim. The key

status values are stored in Packet rather than in the network.

Algorithm 1 PROCESSING PACKET

Input: The packet p;

1: if p.candidate_channels is EMPTY then

2: ROUTING(p);

3: else if p.allocated_buffer is NULL then

4: VC_ALLOCATION(p);

5: else if p.switch_allocated is FALSE then

6: SWITCH_ALLOCATION(p);

7: end if

8: if p.switch_allocated is TRUE then

9: LINK_TRAVERSAL(p.HEAD);

10: end if

11: Transmit all body flits one step forward.

the novel features of CNSim; other features can be found in

the source code and appendix.

3.1 Packet-Centric Simulation

In cycle-based simulators, all state elements of the network,

including buffer/link usages, requests, and routing/allocation

results, are updated in each cycle. Such a mechanism is com-

patible with the circuit implementation and implies a natural

clock-level synchronization. In contrast, an event queue is

maintained in discrete-event simulators, and the simulator

processes discrete events along the timeline, which is more

general and flexible. As shown in Figure 2, we present a

new packet-centric architecture, combining the advantages of

cycle-based and discrete-event simulators. A packet queue is

maintained based on the injection time, and all packets are

updated every cycle sequentially. The status values stored in

each packet include the routing results, the allocated buffer,

the switch allocation status, the trace of each flit, and neces-

sary statistical information. As shown in Algorithm 1, each

packet is updated once per cycle according to the network

status. Each update is equivalent to processing a series of

events in the discrete-event simulator, including routing, VC

allocation, switch allocation, link traversal, and flit transmis-

sion.

As introduced in § 2.3, the allocation modeling is supposed

to be improved. The packet-centric architecture can directly

and efficiently achieve the first-inject-first-serve (FIFS) pol-

734 2024 USENIX Annual Technical Conference USENIX Association

icy. As shown in Figure 2, packets injected by the traffic

manager are appended to the end of the packet container. If a

packet reaches the destination, it is removed without affecting

the order of the remaining packets. Since the single-thread

simulator processes the packet queue sequentially in each

cycle, if the available resources are directly allocated to the

request, FIFS allocation policy is naturally achieved. With

such a mechanism, the costly management of the complicated

request-resource mapping is eliminated, and the simulation

speed can be significantly improved. Besides the FIFS policy,

FCFS can also be easily implemented by maintaining a packet

queue per router.

However, utterly real-time resource management can lead

to process-order-induced deviations. For example, suppose

an earlier packet directly releases the resources it occupies

(e.g. physical link). In that case, the later packet may success-

fully acquire the resource in the same cycle, which violates

the hardware mechanism. Therefore, we still record the crit-

ical resources (e.g. physical link) and update the status of

these resources after all packets have been processed. Such a

scheme can be regarded as cycle-level synchronization, which

is necessary to ensure the simulation accuracy. The packet-

centric architecture and the cycle-level synchronization are

compatible with the hyper-threading simulation.

3.2 Packet Parallelism Simulation

Concurrency can significantly accelerate the simulation; how-

ever, it is not easy for simulators to achieve efficient paral-

lel simulation. As discussed in § 2.2, the commonly-used

network-parallelism has limitations; thus, we present a new

packet-parallelism to process packets concurrently.

As shown in Figure 3, the packet queue is regarded as a

workload pool shared by all worker threads. Each worker

thread sequentially fetches one or a few packets from the

queue for processing. After a round of parallel processing,

status updates have been completed for most of the packets,

but some packets that modify critical resources, including

buffers and links, are tagged with special status. Then, the

main thread handles all necessary synchronization, including

updating the link status and removing finished packets. One

major advantage of packet parallelism is that a packet is less

likely to compete for resources with other packets. For exam-

ple, only the head packet of an input queue competes with

head packets of other input queues in the same router. There-

fore, the overheads and deviations caused by hyper-threading

can be negligible.

Atomic-based parallel programming. Synchronization

is the most important but performance-costly operation for

multithreading programs. Traditional parallel simulators [46]

manually handle thread contentions using locks in any critical

section. For example, if packet parallel is used, the link/switch

allocation must wait until all packet requests of all threads

have been collected to determine the final result. Such syn-

Pkt

0

Pkt

1

Pkt

2
…

Pkt

i

Pkt

i+1

Pkt

i+2
…

Threads 0 1 2 3 …

Worker

0

Worker

1

Worker

2
…

Main

Program

Packet

Queue

Task Dispatch

Router

…

Switch

VC

VC

Buffer

Pkt 0

Pkt i

Pkt m

Pkt n

Switch is

Allocated

to Pkt 0!

Figure 3: The packet-parallel scheme. Each worker fetches a

packet from the queue for processing sequentially. The earlier

processed packet directly gets the allocation regardless of

later requests, i.e. approximate first-inject-first-serve.

chronization seriously affects the performance of parallel

simulation. Therefore, we adopt an atomic-based mechanism

that sacrifices some allocation consistency to avoid frequent

synchronization and accelerate parallel simulation. Shared

resources, including buffers and links, are set to atomic vari-

ables, and the first packet of a thread that successfully modi-

fies the atomic variable wins the contention. We let the thread

contention decide the allocation of resources instead of the

manual handling logic. As shown in Figure 3, the switch allo-

cation status is an atomic variable and is directly allocated to

the first thread acquiring regardless of the requests of other

threads.

Multi-thread inconsistency. Compared with the single-

thread simulation, the multi-thread program no longer follow

the strict first-injected-first-served policy but an approximate

one with multi-thread randomness that later-injected pack-

ets may win the allocation in the competition with earlier-

injected packets. Besides, the uncertain acquiring/releasing

order for the buffer can also lead to one-flit wasted buffer

space. However, since all packets are dispatched to workers

(threads) in injection order, early packets are still more likely

to win the contention (detailed probability estimation is pre-

sented in Appendix D). Validation experiments in § 3.5.3 also

show negligible inconsistency after parallelism. Negligible is

defined as the average packet latency deviations caused by

multi-threading are smaller than the deviations of different

random seeds for the traffic pattern, which is measured at

0.5%. Another potential problem is that such a mechanism

may lead to starvation and affect performance. However, per-

manent starvation is impossible because the thread contention

is random.

The packet parallelism can be combined with the network

parallelism. For the first-come-first-serve allocation policy,

each router maintains a packet queue, and workers can pro-

cess packets in different queues concurrently. When too many

threads are in parallel, competition among workers for the

next workload (packet) in each queue becomes intense. To

prevent the head-packet competition from becoming the bot-

tleneck, each worker can fetch multiple packets from the

queue every time. However, such a “multiple-issue” scheme

may lead to worse allocation inconsistency (also discussed in

Appendix D); thus, we make validation experiments § 3.5.3

USENIX Association 2024 USENIX Annual Technical Conference 735

1 flit/cycle

1 cycle delay

Input Buffer

m flits/cycle

n cycle delay

(a)

Heterogeneous

Physical Link

Flit 0

Flit 1

Flit 2

Flit 3

…

Flit 0

…

Flit m

Input Buffer

Flit 0

…

Flit m

(b) (Virtual) Pipeline Registers

Move at most m flits once,

n stages in total

……

pkt.link_timer = n...0

Figure 4: Unified modeling of the heterogeneous routers and

links.

to verify the efficiency-accuracy balance.

3.3 Heterogeneous Router & Link

In traditional on-chip networks, all links are uniform (one

flit/cycle); therefore, all routers and links in existing cycle-

accurate network simulators are uniformly configured with

the same latency and bandwidth. However, the inter-chiplet

links are different from the on-chip links, and a chiplet can

have multiple types of off-chiplet interfaces [29]. Besides,

due to the heterogeneity of links, the routers on the chiplet

are also heterogeneous. Heterogeneity is a significant feature

that all existing cycle-accurate simulators lack modeling.

In CNSim, all different kinds of routers and links are built

by a uniform model, and objects are configured individually

in the simulation. As shown in Figure 4, the multi-width FIFO

and virtual pipeline stages are implemented to model hetero-

geneous routers and links uniformly. For a link of m flits/cycle

bandwidth and n cycle latency, at most m flits at the head of

the input buffer can be transmitted to the next router. It takes

n virtual pipeline stages in total to finish the transmission.

Non-integer delays are directly approximated as integers, and

non-integer bandwidths can be achieved by alternately pass-

ing integer numbers of flits, e.g. 1.5 flits/cycle bandwidth can

be achieved by passing 2 flit in the first cycle and 1 flits in the

next cycle. Besides, CNSim also compatible to the two newly

proposed heterogeneous interface implementations, hetero-

PHY and hetero-channel [29].

3.4 Other Notable Features & Compromises

Eliminate unimportant pipeline stages: As shown in Fig-

ure 5, a typical cycle-accurate network simulator usually mod-

els all circuit-level pipelines of routers, including input queu-

ing (IQ), routing computation (RC), virtual channel allocation

(VA), switch allocation (SA), switch traversal (ST), and link

traversal (LT). Among these stages, what really affects the

overall performance are those competing for resources and

causing pipeline stalls. For example, the switch allocation to

one input port stalls other input ports requesting the same out-

put port. To accelerate the simulation, we focus only on four

core stages: RC, VA, SA, and LT. Other router stages are elim-

inated because they don’t cause pipeline stalls. For example, a

packet allocated to the output port is immediately transmitted

through the link rather than going through switch traversal

IQ RC VA VA SA SA ST LT

IQ RC -- VA -- SA ST LT

VC allocation fail

IQ RC -- VA -- SA SA ST LT

IQ RC -- VA -- -- SA ST LT

Switch allocation fail

No STALL

Pipeline STALLsNo STALL

Pkt 0

Pkt 1

Pkt 2

Pkt 3

Cycle 0 1 2 3 4 5 6 7

Figure 5: Some pipeline stages of a router don’t cause stalls

and thus can be eliminated for accelerating simulation.

and output queuing. Smooth transmission is guaranteed by

the VC/switch/link allocation.

Cache the results of repetitive routing computations:

Routing computation is a time-consuming stage in simula-

tion, especially for adaptive routing and complex hierarchical

topologies. Using a complete routing table is impossible be-

cause the table size of an n nodes network can be O(n2),
which is too large for memory. As a compromise, we cache

some results of repetitive computations. Taking the Dragonfly

topology as an example, we cache the global channel be-

tween any two groups and the local channel between any two

routers in the same group. By caching these results, though the

memory usage is increased, the simulation speed can be sig-

nificantly improved. Validation experiments in § 3.5.2 show

that the memory usage overhead of partial caching is not

significant.

Integration with real workload traces: CNSim supports

various traffic patterns, including the permutation patterns

and AllReduce patterns. To better analyze the network perfor-

mance under real workloads, CNSim also supports two typical

traces. First is the shared-memory workload traces with cycle-

accurate timestamps. The Netrace are collected from a 64-

core M5 simulation system [18] executing multithreaded ap-

plications from the PARSEC v2.1 suite [17,36,37]. Each trace

item records the inject_cycle, bus_name, src_port_id,

dst_port_id, and msg_type (message size). By using cycle-

accurate traces, the evaluation results are more persuasive.

CNSim also supports the distributed-memory workload traces

without timestamps. The traces include a list of messages

(source-destination) by order of generation [11]. The per-

formance of distributed-memory traces can be evaluated by

adjusting the injection rate.

3.5 Validation

3.5.1 Implementation & Performance Simulation

CNSim is implemented in C++ and validated by comparison

with three typical cycle-accurate simulators: BookSim [40],

Garnet [9], and OMNET++ [4]. The release versions of

these simulators in the experiments are the BookSim 2.0,

HNOCS [13] based on OMNeT++ 5.7.1, and Garnet 3.0 [16]

736 2024 USENIX Annual Technical Conference USENIX Association

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

10

20

30

40

50

60

A
v
e

ra
g

e
 L

a
te

n
c
y
 (

c
y
c
le

s
)

Injection Rate (flits/cycle/node)

 4x4 BookSim

 4x4 Garnet

 4x4 OMNeT++

 4x4 CNSim

 8x8 BookSim

 8x8 Garnet

 8x8 OMNeT++

 8x8 CNSim

Figure 6: The latency-injection curves of different cycle-

accurate simulators for uniform traffic on 2D-mesh.

based on Gem5 23.0. The HNOCS is compiled by gcc/g++

9.4, and all other simulators are compiled by gcc/g++ 11.4.

Most compilation options are left at default, and the “O2/O3”

optimizations are turned on when possible in comparing run-

time. All the experiments are performed on an Intel Core

I9-13900K CPU with 32 GB two-channel memory.

The router microarchitecture we implement in the CNSim is

the typical input-queued virtual channel router, similar to most

other cycle-accurate simulators. However, implementation

details can vary: e.g., Garnet is two-stage pipelined; BookSim

is four-stage pipelined; OMNeT++ is event-driven and thus

does not have a cycle-based pipeline; CNSim can be one-stage

or multi-stage by different configurations. The performance

of the networks in different simulators is evaluated through

latency-injection curves. Dimensional order (i.e. XY) routing

on 2D-mesh topology is adopted, and the network scale is

4×4 and 8×8. Critical parameters, including the packet size,

buffer size, and VC number, are set to 5-flits, 4-packets, and

2-VC; other parameters remain default. The evaluated traffic

is uniformly random, and all experiments are simulated for

10K cycles.

All these cycle-accurate simulators can be used for eval-

uating microarchitecture and overall performance, but the

performance results of different simulators are different due

to the diverse modeling. As shown in Figure 6, the simulated

performance of CNSim is close to Garnet and better than

the BookSim because BookSim is four-stage pipelined, and it

strictly simulates the circuit implementation. CNSim and Gar-

net use a more efficient router design but do not reflect some

circuit-level behaviors. The OMNeT-based HNOCS is cycle-

accurate but not cycle-based; as a result, it behaves differently

from other simulators.

3.5.2 Simulation Speed & Memory Usage

One of the significant advantages of CNSim is the simulation

speed. We compare the simulation performance of CNSim

with other simulators. Each experiment uses uniform traffic,

continues for 100K cycles, and the runtime is measured. As

shown in Figure 7(a), the single thread CNSim is over 14×
faster than existing cycle-accurate simulators for the 4×4 2D-

mesh topology. For small-scale networks, hyper-threading is

0.0 0.1 0.2 0.3 0.4 0.5

0

600

1200

1800

2400

S
im

u
la

ti
o
n
 R

u
n
 T

im
e
 (

m
s
)

Injection Rate (flits/cycle/node)

 BookSim

 Garnet

 OMNET++

 CNSim

(a) 2D-Mesh (4x4)

0.0 0.1 0.2 0.3 0.4 0.5

0

3000

6000

9000

12000

S
im

u
la

ti
o
n
 R

u
n
 T

im
e
 (

s
)

Injection Rate (flits/cycle/node)

 BookSim

 CNSim

 CNSim 8-Threads

(b) Dragonfly (16K nodes)

Figure 7: Simulation run time comparison for different simu-

lators and topologies.

586.2

131.7

673.3

139.4

762

148.6

851.9

159.7

950.4

185.6

1089.9

297.5

0.1 0.2 0.3 0.4 0.5 0.6
0

200

400

600

800

1000

1200

M
e
m

o
ry

 C
o
n
s
u
m

p
ti
o
n
 (

M
B

) BookSim

 CNSim

Injection Rate (flits/cycle/node)

Figure 8: Comparison of heap memory consumption at differ-

ent injection rates.

not necessary. As shown in Figure 7(b), single thread CNSim

is ∼ 4× faster than BookSim for the large-scale Dragonfly

of 16K nodes. The 8-threads CNSim achieves 3× hyper-

threading speedup and is ∼ 11× faster than the BoosSim.

The runtime comparisons show that CNSim is much more

efficient than existing cycle-accurate simulators under various

conditions.

The computation complexity can be estimated by O(nIT L̃),
where n is the network scale (router number), I is the injection

rate (flits/cycle/router), T is the simulation time (cycles), and

L̃ is the average latency (cycles) of packets. As a result, the

speedup can be fewer when the network scale is ultra-large

and heavily congested since L̃ is large (more than hundreds

of cycles) in such simulations. However, CNSim can still be

much faster than other simulators by using enabling hyper-

threading. More evaluation of parallelism is presented in the

next subsection.

Another factor affecting a simulator’s scalability is the

memory overhead, especially for hyper-threading simulators

running on a single machine. We profile the heap memory us-

age of CNSim using Valgrind Massif [5]. Uniform traffic pat-

tern on 16K nodes Dragonfly is simulated. As shown in Fig-

ure 8, CNSim consumes 131.7 MB to 297.5 MB heap memory

at 0.1 to 0.6 flits/cycle/node injection rates. For comparison,

the BookSim consumes 586.2 MB to 1.1 GB heap memory at

0.1 to 0.6 injection rates. Since CNSim is packet-centric, the

Packet objects, tracing records, and routing results consume

much memory, and the consumption is proportional to the

packet number. Besides, the network status and the cached

partial routing tables also take up some fixed-size memory.

USENIX Association 2024 USENIX Annual Technical Conference 737

1 2 4 8 16 32
0

30

60

90

120

150

S
im

u
la

ti
o

n
 R

u
n

 T
im

e
 (

s
)

Thread Number

 1-issue

 10-issue

 100-issue

(a) Dragonfly (1K nodes)

1 2 4 8 16 32
0

900

1800

2700

3600

4500

S
im

u
la

ti
o

n
 R

u
n

 T
im

e
 (

s
)

Thread Number

 1-issue

 10-issue

 100-issue

(b) Dragonfly (16K nodes)

Figure 9: Speedup of parallel simulations with different num-

ber of threads.

When the network is heavily congested (0.6 flits/cycle/node in

Figure 8), the memory usage of CNSim will be higher because

the packet number is significant. Even so, the memory usage

of CNSim is still much lower than BookSim because CNSim

does not maintain request mapping tables. In conclusion, the

packet-centric architecture and routing caching technology

do not bring memory overhead, and CNSim is scalable for

large-scale networks.

3.5.3 Concurrency & Inconsistency

CNSim achieves parallel (hyper-threading) simulation on any

multicore CPU without additional programming overheads.

We evaluate the parallel speedup of CNSim on two dragonfly

topologies with 1K and 16K nodes. The injection rate is set

to 0.5 flits/cycle/node, and the simulation continues for 100K

cycles. Each thread is issued 1/10/100 packets from the packet

queue every time. As shown in Figure 9, the parallelism is

insignificant for small-scale networks. About 50% run time is

saved using 32 100-issue threads for the 1K nodes Dragonfly.

However, multi-threading achieves significant speedup for

larger-scale networks. The 4-thread and 32-thread 100-issue

CNSim are about 3× and 5× faster than the single-thread

simulator for the 16K nodes Dragonfly. Compared with the

single-issue, the multiple-issue scheme reduces the thread

contention among multiple workers, thus achieving better

speedup. For the dragonfly topology, issuing a few packets

each time is enough, and a larger issue number has limited im-

provement. If the processing runtime of one packet is smaller

(e.g., by using simpler topologies and routing), the issue num-

ber should be increased.

As discussed in § 3.2, hyper-threading and multi-issue with-

out strict synchronization can lead to inconsistency. Therefore,

we evaluate the parallel inconsistency of CNSim on the same

two Dragonfly networks. The average latency of single-thread

simulation and multi-thread simulation is measured and com-

pared. All experiments use the same random number seed (i.e.,

and all packets are injected in the same order and timing) to

eliminate random bias. As shown in Figure 10, the latency de-

viation of multithreading of most conditions is less than 0.2%.

When the traffic is heavy, the inconsistency is slightly higher,

but the deviation is still less than 0.5%. For the 1K nodes

Dragonfly, a larger issue number may lead to worse inconsis-

0.0 0.2 0.4 0.6
22

24

26

28

30

32

34

36

38

A
v
e

ra
g

e
 L

a
te

n
c
y
 (

c
y
c
le

)

Injection Rate (flits/cycle/node)

 Single Thread

 16-T, 1-issue

 16-T, 10-issue

 16-T, 100-issue

(a) Dragonfly (1K nodes)

0.0

0.2

0.4

0.6

0.8

1.0

Deviation (%)

 16,1

 16,10

 16,100

D
e

v
ia

ti
o

n
 (

%
)

0.0 0.2 0.4 0.6
24

26

28

30

32

34

36

38

40

A
v
e

ra
g

e
 L

a
te

n
c
y
 (

c
y
c
le

)

Injection Rate (flits/cycle/node)

 Single Thread

 16-T, 1-issue

 16-T, 10-issue

 16-T, 100-issue

0.00

0.02

0.04

0.06

0.08

0.10

D
e

v
ia

ti
o

n
 (

%
)

(b) Dragonfly (16K nodes)

Deviation (%)

 16,1

 16,10

 16,100

Figure 10: Average latency deviations of hyper-threading and

multiple-issue.

(a) (b) (c)

On-Chip Link Off-Chip Low-Latency Link Off-chip Long-Reach Link

Figure 11: Hetero-link-based chiplet architecture. (a) Tradi-

tional 2D-mesh on a single chip. (b) Chiplet-based 2D-mesh

topology. (c) Hetero-link-based 2D-torus topology.

tency, but for the 16K nodes Dragonfly, the inconsistency is

not significantly affected by the issue number. That is because

packets are broadly distributed in large-scale networks, and

the possibility of inverted allocation is low (Appendix D). In

most cases, 10-issue and 16-thread simulations can achieve

considerable speedup while maintaining high consistency.

4 Evaluation of Chiplet-based Networks

In our previous practices, we have encountered two signifi-

cant real problems. 1) Current simulators cannot simulate the

heterogeneity of the chiplet-based networks. 2) The simula-

tion speed is too slow to evaluate large-scale chiplet-based

networks, e.g. dragonfly. CNSim addresses the limitations

of existing tools, making efficient and accurate evaluations

possible. In this section, extensive evaluations of two typi-

cal chiplet-based networks are presented. 1) Heterogeneous-

link-based 2D-mesh/torus with billions of PARSEC traces.

2) Large-scale chiplet-based dragonfly network with tens of

thousands of nodes. Excluding the wasted and unshown ex-

periments, about 500 billion cycles and 20 billion packets are

simulated for the presented evaluations. The total simulation

runtime is more than 20 hours, which is expected to take more

than 200 hours if using other simulators.

4.1 Heterogeneous-Link-based Networks

4.1.1 Setup

As shown in Figure 11(b)(c), 2D-mesh and 2D-torus are two

typical topologies for chiplet-based networks. All links are

738 2024 USENIX Annual Technical Conference USENIX Association

Table 2: Default Parameters

Parameter Value

Packet Length 4 flits

Input Buffer Size 32 flits for on-chip buffers

Virtual Channel Number 2 channels/link

Simulation Time 10000 cycles

(1000 cycles warming up)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

10

15

20

25

30

35

40

45

50

A
v
e
ra

g
e
 L

a
te

n
c
y
 (

c
y
c
le

s
)

Injection Rate (flits/cycle/node)

 4x4 1-Chip Mesh

 4x4 2x2-Chips B=1 L=2

 4x4 2x2-Chips B=2 L=5

 4x4 2x2-Chips Torus

 8x8 1-Chip Mesh

 8x8 2x2-Chips B=2 L=4

 8x8 4x4-Chips B=2 L=5

 8x8 4x4-Chip Torus

Figure 12: Evaluation results of the uniform traffic patterns.

configured by two parameters: bandwidth (B) and latency

(L). The bandwidth of the on-chip link is 1 flit/cycle, and the

latency is 1 cycle. In the evaluation, two die-to-die configu-

rations are used for chiplet-based networks: the low-latency

parallel link (B=1, L=2) and the high-bandwidth serial link

(B=2, L=4). Two routing algorithms are used for 2D-mesh:

dimensional order (XY) routing and Duato-protocol-based

negative-first adaptive routing (NFR) [28]; and the CLUE [47]

routing algorithm is used for 2D-torus. Hetero-link is used in

the chiplet-based 2D-torus topology, i.e., the adjacent die-to-

die links are configured with (B=2, L=4), and the wraparound

die-to-die links are configured with (B=2, L=4).

Uniform pattern and PARSEC traces are evaluated, and

the default parameters used in the simulations are shown in

Table 2. For the uniform traffic pattern, the average latency

of packets is measured at different injection rates. For the

PARSEC traces, 16 Bytes link width is used(i.e., the largest

packet has 5 flits), and all messages are injected according to

the trace timestamps, even if queuing occurs.

4.1.2 Evaluation Results

Uniform traffic pattern. XY routing is used for evaluating

uniform traffic on 2D-mesh. As shown in Figure 12, small-

scale (4× 4 nodes) and large-scale (8× 8 nodes) networks

are evaluated. According to the results, the latency of the die-

to-die links directly determines the average packet latency

at low traffic but does not significantly affect the saturation

throughput. The bandwidth of the links in 2D-mesh affects the

throughput for the small-scale network, but the impact is neg-

ligible for the large-scale network. That is because, for small

networks, a certain percentage of random messages are adja-

cent at chip edges; thus, the bandwidth of the die-to-die links

is fully used. However, most random messages in large net-

works are long-distance messages that go across chiplets and

are congested at the on-chip links; thus, the higher-bandwidth

Black-

Scholes

Body-

track

Canneal Dedup Ferret Fluid-

Animate

Swaptions Vips X264

0

15

30

45

60

75

90

A
v
e
ra

g
e
 L

a
te

n
c
y
 (

#
 C

y
c
le

s
)

PARSEC Workload

 1-Chip Mesh XY 2x2-Chips (B=2, L=4) XY 4x4-Chips (B=2, L=4) XY

 2x2-Chips (B=2, L=4) NFR_Adaptive 4x4-Chip Torus Hetro-Link CLUE

Figure 13: Evaluation results of PARSEC traces on chiplet-

based networks.

serial link is not better than the low-latency parallel link in

the middle of the 2D-mesh network. The real advantage of

the serial link is that the long transmission distance makes

wraparound links possible. The hetero-link-based 2D-torus

achieves the best latency and throughput for both the small-

scale and large-scale networks because the diameter of the

2D-torus is smaller than 2D-mesh, and the bisection band-

width is also larger. All the results are consistent with the

theoretical analysis, and the simulation results give cycle-

accurate quantitative validations.

PARSEC traces. As shown in Figure 13, large-scale net-

works (8×8 nodes) with different configurations are evalu-

ated. According to the results, the higher-bandwidth serial

link is not beneficial since the bottleneck is on the on-chip

links, which is consistent with the uniform traffic pattern. The

deterministic XY routing algorithm for some workloads (e.g.

Black–Scholes and Fluidanimate) is severely congested, and

the average latency is much higher than the static network

diameter. If the adaptive routing algorithm is used, the av-

erage latency of all workloads can be significantly reduced.

The hetero-link-based 2D-torus with CLUE routing algorithm

achieves the lowest average latency for all workloads and

almost completely eliminates network bottlenecks. The entire

PARSEC traces include over 100 billion cycles and 3 billion

messages. Each round of experiments (some not presented in

the paper) is run for ∼ 2 hours, which is quite efficient.

4.2 Chiplet-based Dragonfly

4.2.1 Topology Description

The traditional Dragonfly topology achieves high scalabil-

ity by using numerous high-radix switches. However, high-

bandwidth and high-radix switches are expensive and intro-

duce additional latency and power consumption. Besides, the

single physical channel connecting the terminal and the switch

severely limits the local throughput. Using advanced packag-

ing technologies (e.g. InFO-SoW [24]), multiple chips can be

integrated at a large scale and high density.

As shown in Figure 14, the Dragonfly topology can be

implemented in a switch-less way. Instead of using switches

connecting nodes (processors), the chiplet-based dragonfly

connects nodes (chiplets) by a 2D-mesh-on-package, forming

USENIX Association 2024 USENIX Annual Technical Conference 739

All-to-all amongst 163 groups

All-to-all

within

group

Switch

0

Node

0

Node

8
…

9

terminals

17

local

links

Switch

17

Node

153

Node

161
…

9

terminals

17

local

links

9

global

links

9

global

links

…

162 global links

…

…

Group 0

All-to-all

within

group

Switch

2916

Node

26244

Node

26252
…

9

terminals

17

local

links

Switch

2933

Node

26397

Node

26406
…

9

terminals

17

local

links

9

global

links

9

global

links

…

162 global links

Group 162

All-to-all amongst 163 groups

N N

N N N

N

N N N

N N

N N N

N

N N N

All-to-all amongst
18 chiplet-groups

…

162 global links

9 global links 9 global links

Group 0

N N

N N N

N

N N N

N N

N N N

N

N N N

All-to-all amongst
18 chiplet-groups

…

162 global links

9 global links 9 global links

Group 162

…

(a) (b)

Figure 14: Dragonfly interconnection networks. (a) Traditional switch-based dragonfly: nodes (processors) are connected to

the switches, switches in each group are fully connected, and all groups are also fully connected. (b) Chiplet-based switch-less

dragonfly: nodes (chiplets) are connected by a 2D-mesh, forming chiplet-groups; chiplet-groups are connected just as the switch

in traditional switch-based dragonfly.

chiplet-groups. Each chiplet-group is equivalent to the Drag-

onfly switch, and all chiplet-groups are connected just as the

switch in the traditional switch-based dragonfly. In this way,

the chiplet-based dragonfly is constructed without additional

switches.

4.2.2 Analysis

In traditional switch-based Dragonfly, both the local through-

put and global throughput are bounded by 1 flit/cycle/chip,

which is the bandwidth of each switch port. However, in the

chiplet-based dragonfly, chips are connected by multiple phys-

ical channels, breaking through the switch bottleneck. If there

are n physical channels on each chiplet edge in an m×m

chiplet-group, the throughput can be estimated by [25]

Tcg <
2BC

N
=

nm××2

m2
=

4n

m
[flits/cycle/chip], (1)

where BC is the total bisection bandwidth, and N is the total

chiplet number. For appropriate configurations (e.g., n = 3

and m = 3), the throughput within the chiplet-group can be

much better than the throughput through switches.

At the same time, for local performance within a dragonfly

group, the throughput

Tlocal <
(a/2)2 ×2×2

am2
=

2mn

m2
=

2n

m
[flits/cycle/chip], (2)

where a = 4mn/2 is the chiplet-group number in a dragonfly

group. Therefore, the local throughput of the chiplet-based

dragonfly is also much larger than the traditional switch-based

dragonfly.

A potential bottleneck of the chiplet-based dragonfly is

the total bisection bandwidth of the chiplet group. The total

full-duplex bisection bandwidth of a k-port switch is k flits/-

cycle; however, the 2D-mesh-based chiplet-group only has

k/2 bisection bandwidth. As a result, when the network is

simultaneously under heavy global traffic and local traffic, the

overall network performance can be poor. A simple way to

eliminate the bottleneck is to increase the bandwidth in the

2D-meshbased chiplet-group. For example, the UCIe die-to-

die interface can provide 1317 GB/s/mm die edge density

(947 GB/s/mm2 area density). That is to say, high bandwidth

in the chiplet-group is easy to achieve by using advanced

packaging and high-speed wireline technologies.

However, theoretical analysis is not convincing enough.

To further validate the chiplet-based dragonfly architecture,

large-scale systematical simulations must be performed.

4.2.3 Setup

The baseline in the evaluations is the standard switch-based

dragonfly. The terminal, local, and global ports of a switch

are configured at 4 : 7 : 5 for radix-16 and 8 : 15 : 9 for radix-

32. As a result, the total group number and chip number are

(41,1312) for radix-16 and (145,18560) for radix-32. In the

chiplet-based dragonfly, the local and global ports are config-

ured as the same number as the switch-based dragonfly. For

real systems, the latency of switch-to-switch hops is far larger

than the chiplet-to-chiplet hops; but in the simulations, exter-

nal link latency is configured to maintain similar diameters.

The default parameters used in the simulations are shown

in Table 2, and the configuration details can be referred to

in the source code. Only minimal routing is used since the

misrouting and other details of the chiplet-based Dragonfly

are beyond the scope of this paper.

Workloads. The evaluations use two kinds of network

workloads: (1) Unicast traffic patterns. The uniform and

other permutation patterns [25] are evaluated. (2) Collective

traffic patterns. We evaluate the bidirectional-ring-based

AllReduce traffic pattern, where each chip (process) i sends

the 1/2N segment to chip (i−1) mod N and chip (i+1) mod

N [38].

4.2.4 Evaluation Results

Local (intra-switch) performance: The throughput of the

switch-based dragonfly is bounded by the single physical

channel (1 flit/cycle/chip) connecting the terminal and the

740 2024 USENIX Annual Technical Conference USENIX Association

0.0 0.6 1.2 1.8 2.4 3.0 3.6
4

12

20

28

36

A
v
e
ra

g
e
 L

a
te

n
c
y
 (

c
y
c
le

s
)

Injection Rate (flits/cycle/chip)

 Chiplet-based

 SW-based

(a) 2x2-Chiplets 4x4-Nodes

0.0 0.4 0.8 1.2 1.6 2.0 2.4
15

25

35

45

55

A
v
e
ra

g
e
 L

a
te

n
c
y
 (

c
y
c
le

s
)

Injection Rate (flits/cycle/chip)

 Chiplet-based

 SW-based

(b) 4x4-Chiplets 12x12-Nodes

Figure 15: Local performance comparison: intra-chiplet-

group vs. intra-switch (a) 4 chiplets forming a 4x4-nodes

2D-mesh; (b) 16 chiplets forming a 12x12-nodes 2D-mesh

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
16

24

32

40

48

56

64

A
v
e

ra
g

e
 L

a
te

n
c
y
 (

c
y
c
le

s
)

Injection Rate (flits/cycle/chip)

 SW-based

 Chiplet-based

(a) Uniform

0.0 0.2 0.4 0.6 0.8 1.0
16

24

32

40

48

56

64

A
v
e

ra
g

e
 L

a
te

n
c
y
 (

c
y
c
le

s
)

Injection Rate (flits/cycle/chip)

 SW-based

 Chiplet-based

(b) Bit-reverse

0.0 0.1 0.2 0.3 0.4 0.5
16

24

32

40

48

56

64

A
v
e
ra

g
e
 L

a
te

n
c
y
 (

c
y
c
le

s
)

Injection Rate (flits/cycle/chip)

 SW-based

 Chiplet-based

(c) Bit-shuffle

0.0 0.2 0.4 0.6 0.8 1.0 1.2
16

24

32

40

48

56

64

A
v
e
ra

g
e
 L

a
te

n
c
y
 (

c
y
c
le

s
)

Injection Rate (flits/cycle/chip)

 SW-based

 Chiplet-based

(d) Bit-transpose

Figure 16: Intra-group performance comparison for different

traffic patterns.

switch. However, in the chiplet-based dragonfly, chips are con-

nected by multiple physical channels, breaking through the

switch bottleneck. As shown in Figure 15, the local through-

put of the chiplet-based dragonfly is much better than the

switch-based dragonfly. For the 2x2-chiplets 4x4-nodes 2D-

mesh, the intra-c-group throughput is more than 3 flits/cy-

cle/chip, much higher than the switch-based dragonfly. For

the 4x4-chiplets 12x12-nodes 2D-mesh, the throughput is also

more than 2× higher than the switch-based dragonfly. In the

evaluation, the latency of the dragonfly channels is set to 8

cycles. The static latency of the chiplet mesh increases with

the scale since the diameter becomes larger. However, for real

system, the cost of switch-to-switch hops is far more expen-

sive than the cost of chiplet-to-chiplet hops. In conclusion,

the chiplet-based dragonfly can achieve better intra-switch

performance by eliminating the switch bottleneck.

Intra-group performance: We also evaluate the intra-

group performance of the 41-groups Dragonfly. As shown in

Fig. 16, except for the bit-shuffle pattern, the saturation in-

jection rates of the chiplet-based networks are larger than the

switch-based dragonfly. The injection/ejection bandwidth is

no longer bounded by the single physical channel connecting

0.0 0.2 0.4 0.6 0.8 1.0
40

50

60

70

80

A
v
e
ra

g
e
 L

a
te

n
c
y
 (

c
y
c
le

s
)

Injection Rate (flits/cycle/chip)

 SW-based

 Chiplet-based

 Chiplet-based 2B

(a) SW-Radix-16 41-Groups

0.0 0.2 0.4 0.6 0.8 1.0
90

110

130

150

170

A
v
e
ra

g
e
 L

a
te

n
c
y
 (

c
y
c
le

s
)

Injection Rate (flits/cycle/chip)

 SW-based

 Chiplet-based

 Chiplet-based 2B

(b) SW-Radix-32 145-Groups

Figure 17: Global performance comparison for different net-

work scales.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
10

20

30

40

50

A
v
e

ra
g

e
 L

a
te

n
c
y
 (

c
y
c
le

s
)

Injection Rate (flits/cycle/chip)

 SW-based

 Chiplet-based

(a) SW-Radix-16 41-Groups

0.0 0.4 0.8 1.2 1.6 2.0
0

25

50

75

100

A
v
e

ra
g

e
 L

a
te

n
c
y
 (

c
y
c
le

s
)

Injection Rate (flits/cycle/chip)

 SW-based

 Chiplet-based

(b) SW-Radix-32 145-Groups

First timeout

Figure 18: AllReduce performance comparison for different

network scales.

the terminal and the switch, achieving higher performance.

Especially for the uniform and bit-transpose pattern, the satu-

ration injection rates are over 1. However, if the bottleneck is

not at the switch, the chiplet-based dragonfly performs simi-

larly to the switch-based dragonfly (e.g., bit-shuffle shown in

Fig. 16(c)).

Global performance: As shown in Figure 17, we evaluate

the global performance on two networks with different scales.

For the small-scale (41-groups) network, the chiplet-based

dragonfly performs similarly to the switch-based dragonfly

without changing the internal bandwidth. However, for the

large-scale (145-groups) network, as discussed in § 4.2.2, the

large 2D-mesh-based chiplet-group becomes the bottleneck;

as a result, the chiplet-based dragonfly performs poorly. How-

ever, the bottleneck is eliminated if the bandwidth inside the

chiplet-group is increased to 2 flits/cycle/chip. In real systems,

increasing the bandwidth of chiplet-to-chiplet links is much

easier than switch-to-switch links; therefore, it is a reasonable

practice. Ten thousand simulated cycles and 0.5 injection rate

for the large-scale dragonfly means 23 million 4-flit packets.

Each round of experiments (from low-traffic to saturation) is

run for about 15 minutes, which is quite efficient.

AllReduce performance: The ring-based AllRdeuce traf-

fic is not heavy since each chip (process) only sends traffic

to adjacent chips. As shown in Figure 18, the throughput of

the switch-based dragonfly is bounded by the switch (1 flit/-

cycle/chip). For the chiplet-based dragonfly, the throughput

can reach much higher since there is no switch bottleneck.

The injection rates for the first occurrence of timeout packets

are 1.3 and 1.5 flits/cycle/chip for small-scale and large-scale

networks, respectively.

USENIX Association 2024 USENIX Annual Technical Conference 741

Simulator Language Parallelism Scalability [# Nodes]* Special Features

BookSim [40] C/C++ No 10,000 [14] Cycle-accurate, validated against RTL, widely used.

Noxim [21] SystemC No 256 [22] Cycle-accurate, wireless NoC, implement-friendly.

DARSIM [46] C/C++ Yes 64 5× speedup by 8 threads.

Garnet [9, 16] C/C++ No 64 [16] Gem5-based, full-system simulation, heterogeneous clock-domain.

HNOCS [13] C/C++ Yes† 64 [13] Cycle-accurate, based on OMNET++, heterogeneous link.

This Work C/C++ Yes ≥ 279,040 Cycle-accurate, non-MPI-based parallel simulation.

OMNeT++ [4] C/C++ Yes† 17,000 [15] Extensive functionality, heterogeneous link.

NS-3 [50] C/C++ Yes† 5,000 [51] Extensive functionality, heterogeneous link

SST [52] C/C++ Yes† 110,592 [35] Modular, scalable, MPI-based packet-parallel simulation.

ROSS/CODES [19, 20, 49] C/C++ Yes† 50,000,000 [48] Scalable, MPI-based parallel simulation.

Table 3: Comparison of existing network simulators. *“Scalability” is the largest scale of network that the simulator supports, or

we found in the literature. †Parallel simulation is achieved by manual partitioning and MPI communication protocol.

5 Related Work

Table 3 lists some typical network simulators. In general,

they can be categorized as shared-memory design (BookSim,

Noxim, DARSIM, and Garnet) and distributed-memory design

(OMNeT++, NS-3, SST, and ROSS).

BookSim [40] is a cycle-accurate network-on-chip simula-

tor validated against RTL implementations of real routers. It

is accurate and highly modular, thus widely used in evaluating

networks of various architectures and scales. The largest net-

work scale that we found in the literature is 10,000 nodes [14].

However, BookSim neither supports distributed nor hyper-

threading simulations; thus, the simulation speed is slow for

large-scale networks.

Noxim [21] is a cycle-accurate simulator based on the Sys-

temC library. It is designed for wireless networks-on-chip

(WiNoC), but it can also be used for traditional on-chip net-

works. The largest network scale that we found in the litera-

ture is 256 nodes [22]. However, the speed of the simulation

is slower since Noxim is implemented based on SystemC and

does not support parallel simulation.

DARSIM [46] is a cycle-accurate simulator that achieves

multi-threading using divided tiles and periodic synchroniza-

tion. However, the topologies, network scales, and simulation

speedup of DARSIM are limited and deprecated.

Garnet [9, 16] is a cycle-accurate network simulator based

on the Gem5 simulator [2]. The network scale supported by

Garnet is hard to exceed 256 because the Gem5 memory

subsystem cannot instantiate more directories [44].

OMNeT++ [4] is an extensible, modular, and component-

based discrete-event simulator that naturally supports hetero-

geneous link configurations. The HNOCS [13] is a cycle-

accurate implementation based on OMNeT++. The largest

network scale we found in the literature is 17,000 nodes [15].

OMNeT++ supports parallel simulation; however, the net-

work must be partitioned manually, and the partitions run

concurrently in separate processes communicating over MPI,

which is not available for shared-memory designs.

NS-3 [50] is a discrete-event simulator that similar to OM-

NeT++. The largest network scale we found in the literature

is 5,000 nodes [51]. Parallel simulations are also achieved by

manual partitioning and MPI communication protocol.

SST [52] is a modular discrete-event simulator that sup-

ports parallel simulation. It enables the co-design of large-

scale architectures by simulating diverse hardware and soft-

ware aspects. The largest network scale we found in the lit-

erature is 110,592 nodes [35]. SST also supports MPI-based

parallel simulation.

ROSS [20] is a high-performance, low-memory overhead,

massively parallel discrete-event simulator. CODES [19, 49]

is an MPI-based simulation toolkit running on ROSS that pro-

vides a higher-level modeling API and high-fidelity models

for HPC network and storage systems. The largest network

scale we found in the literature is 50,000,000 nodes [48].

6 Summary

This paper presents CNSim, a cycle-accurate parallel net-

work simulator designed for large-scale chiplet-based (shared-

memory) networks. By using a packet-centric architecture and

a novel atomic-based packet-parallel scheme, CNSim achieves

high simulation speed and scalability, about 11×∼ 14× faster

than other cycle-accurate simulators. Based on CNSim exten-

sive evaluations on hetero-link-based networks and chiplet-

based dragonfly networks are presented. The CNSim and the

evaluation framework are open-sourced to the community.

7 Acknowledgments

This work is partially supported by the Wafer-Scale Silicon-

Optic Interconnected System (2022YFB2804100), the Na-

tional Natural Science Foundation of China (20211710187),

the research projects from ZTE on advanced techniques for

networks-on-chip, and the collective communication project

742 2024 USENIX Annual Technical Conference USENIX Association

from Lenovo and Ant group. In addition, we would like to

thank Sibin Mohan, the shepherd from The George Wash-

ington University, for his contribution to the revision of the

paper.

References

[1] Fix performance bottlenecks with intel® vtune™ pro-

filer. https://www.intel.com/content/www/us/

en/developer/tools/oneapi/vtune-profiler.

html.

[2] Gem5: The gem5 simulator system. https://www.

gem5.org/.

[3] Mask / reticle - wikichip. https://en.wikichip.

org/wiki/mask.

[4] Omnet++ discrete event simulator. https://omnetpp.

org/.

[5] Valgrind home. https://valgrind.org/.

[6] Universal chiplet interconnect express (ucie) specifica-

tion revision 1.1, July 2023.

[7] A. Agarwal and R. Shankar. Survey of network on chip

(noc) architectures & contributions. 2009.

[8] Anant Agarwal. Waiting algorithms for synchronization

in large-scale multiprocessors. ACM Transactions on

Computer Systems, 11(3), 1993.

[9] Niket Agarwal, Tushar Krishna, Li-Shiuan Peh, and Ni-

raj K. Jha. Garnet: A detailed on-chip network model

inside a full-system simulator. In 2009 IEEE Interna-

tional Symposium on Performance Analysis of Systems

and Software, pages 33–42, Boston, MA, USA, April

2009. IEEE.

[10] Yuichiro Ajima, Takahiro Kawashima, Takayuki

Okamoto, Naoyuki Shida, Kouichi Hirai, Toshiyuki

Shimizu, Shinya Hiramoto, Yoshiro Ikeda, Takahide

Yoshikawa, Kenji Uchida, and Tomohiro Inoue. The

tofu interconnect d. In 2018 IEEE International

Conference on Cluster Computing (CLUSTER), pages

646–654, Belfast, September 2018. IEEE.

[11] Chen Avin, Manya Ghobadi, Chen Griner, and Stefan

Schmid. On the complexity of traffic traces and impli-

cations. Proceedings of the ACM on Measurement and

Analysis of Computing Systems, 4(1):1–29, May 2020.

[12] Luiz André Barroso, Urs Hölzle, and Parthasarathy Ran-

ganathan. The Datacenter as a Computer: Designing

Warehouse-Scale Machines, Third Edition, volume 13.

October 2018.

[13] Yaniv Ben-Itzhak, Eitan Zahavi, Israel Cidon, and Avi-

noam Kolodny. Hnocs: Modular open-source simulator

for heterogeneous nocs. In 2012 International Confer-

ence on Embedded Computer Systems (SAMOS), pages

51–57, Samos, Greece, July 2012. IEEE.

[14] Maciej Besta and Torsten Hoefler. Slim fly: A cost ef-

fective low-diameter network topology. In SC14: Inter-

national Conference for High Performance Computing,

Networking, Storage and Analysis, pages 348–359, New

Orleans, LA, USA, November 2014. IEEE.

[15] Maciej Besta, Marcel Schneider, Salvatore Di Girolamo,

Ankit Singla, and Torsten Hoefler. Towards million-

server network simulations on just a laptop, May 2021.

[16] Srikant Bharadwaj, Jieming Yin, Bradford Beckmann,

and Tushar Krishna. Kite: A family of heterogeneous

interposer topologies enabled via accurate interconnect

modeling. In 2020 57th ACM/IEEE Design Automation

Conference (DAC), pages 1–6, San Francisco, CA, USA,

July 2020. IEEE.

[17] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh,

and Kai Li. The parsec benchmark suite: Characteri-

zation and architectural implications. In Proceedings

of the 17th International Conference on Parallel Ar-

chitectures and Compilation Techniques, pages 72–81,

Toronto Ontario Canada, October 2008. ACM.

[18] N.L. Binkert, R.G. Dreslinski, L.R. Hsu, K.T. Lim, A.G.

Saidi, and S.K. Reinhardt. The m5 simulator: Modeling

networked systems. IEEE Micro, 26(4):52–60, July

2006.

[19] Christopher Carothers and Argonne National Laboratory

(ANL). Enabling co-design of multi-layer exascale stor-

age architectures. Technical Report DOE-RPI–4875-1,

1311761, August 2015.

[20] Christopher D Carothers, David Bauer, and Shawn

Pearce. Ross: A high-performance, low-memory, mod-

ular time warp system. J. Parallel Distrib. Comput.,

2002.

[21] Vincenzo Catania, Andrea Mineo, Salvatore Mon-

teleone, Maurizio Palesi, and Davide Patti. Noxim: An

open, extensible and cycle-accurate network on chip

simulator. In 2015 IEEE 26th International Conference

on Application-Specific Systems, Architectures and Pro-

cessors (ASAP), pages 162–163, Toronto, ON, Canada,

July 2015. IEEE.

[22] Vincenzo Catania, Andrea Mineo, Salvatore Mon-

teleone, Maurizio Palesi, and Davide Patti. Cycle-

accurate network on chip simulation with noxim. ACM

Transactions on Modeling and Computer Simulation,

27(1):1–25, January 2016.

USENIX Association 2024 USENIX Annual Technical Conference 743

https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.gem5.org/
https://www.gem5.org/
https://en.wikichip.org/wiki/mask
https://en.wikichip.org/wiki/mask
https://omnetpp.org/
https://omnetpp.org/
https://valgrind.org/

[23] Bill Chang, Rajiv Kurian, Doug Williams, and Eric Quin-

nell. Dojo: Super-compute system scaling for ml train-

ing. In 2022 IEEE Hot Chips 34 Symposium (HCS),

pages 1–45, Cupertino, CA, USA, August 2022. IEEE.

[24] Shu-Rong Chun, Tin-Hao Kuo, Hao-Yi Tsai, Chung-Shi

Liu, Chuei-Tang Wang, Jeng-Shien Hsieh, Tsung-Shu

Lin, Terry Ku, and Douglas Yu. Info_sow (system-on-

wafer) for high performance computing. In 2020 IEEE

70th Electronic Components and Technology Confer-

ence (ECTC), pages 1–6, Orlando, FL, USA, June 2020.

IEEE.

[25] William J. Dally and Brian Towles. Principles and Prac-

tices of Interconnection Networks. Morgan Kaufmann

Publishers, Amsterdam ; San Francisco, 2004.

[26] Daniele De Sensi, Salvatore Di Girolamo, Kim H.

McMahon, Duncan Roweth, and Torsten Hoefler. An

in-depth analysis of the slingshot interconnect. In SC20:

International Conference for High Performance Com-

puting, Networking, Storage and Analysis, pages 1–14,

Atlanta, GA, USA, November 2020. IEEE.

[27] Douglas Yu. Tsmc packaging technologies for chiplets

and 3d. In Proceedings of the 2021 IEEE Hot Chips

(HCS), 2021.

[28] José Duato, Sudhakar Yalamanchili, and Lionel M. Ni.

Interconnection Networks: An Engineering Approach.

Morgan Kaufmann, San Francisco, CA, rev. printing

edition, 2003.

[29] Yinxiao Feng, Dong Xiang, and Kaisheng Ma. Het-

erogeneous die-to-die interfaces: Enabling more flex-

ible chiplet interconnection systems. In 56th Annual

IEEE/ACM International Symposium on Microarchitec-

ture, pages 930–943, Toronto ON Canada, October 2023.

ACM.

[30] Yinxiao Feng, Dong Xiang, and Kaisheng Ma. A scal-

able methodology for designing efficient interconnec-

tion network of chiplets. In 2023 IEEE International

Symposium on High-Performance Computer Architec-

ture (HPCA), pages 1059–1071, Montreal, QC, Canada,

February 2023. IEEE.

[31] Erik Fischer and Gerhard P. Fettweis. An accurate and

scalable analytic model for round-robin arbitration in

network-on-chip. In 2013 Seventh IEEE/ACM Interna-

tional Symposium on Networks-on-Chip (NoCS), pages

1–8, Tempe, AZ, USA, April 2013. IEEE.

[32] Tim C. Fischer, Anantha Kumar Nivarti, Raghuvir Ra-

machandran, Ram Bharti, Derek Carson, Anton Lawren-

dra, Vineet Mudgal, Vivek Santhosh, Sunil Shukla, and

Te-Chen Tsai. 9.1 d1: A 7nm ml training processor with

wave clock distribution. In 2023 IEEE International

Solid- State Circuits Conference (ISSCC), pages 8–10,

San Francisco, CA, USA, February 2023. IEEE.

[33] Richard M. Fujimoto. Parallel discrete event simulation.

Communications of the ACM, 33(10):30–53, October

1990.

[34] Wilfred Gomes, Altug Koker, Pat Stover, Doug In-

gerly, Scott Siers, Srikrishnan Venkataraman, Chris

Pelto, Tejas Shah, Amreesh Rao, Frank O’Mahony, Eric

Karl, Lance Cheney, Iqbal Rajwani, Hemant Jain, Ryan

Cortez, Arun Chandrasekhar, Basavaraj Kanthi, and

Raja Koduri. Ponte vecchio: A multi-tile 3d stacked

processor for exascale computing. In 2022 IEEE In-

ternational Solid- State Circuits Conference (ISSCC),

pages 42–44, San Francisco, CA, USA, February 2022.

IEEE.

[35] Taylor Groves, Ryan E. Grant, Scott Hemmer, Simon

Hammond, Michael Levenhagen, and Dorian C. Arnold.

(sai) stalled, active and idle: Characterizing power and

performance of large-scale dragonfly networks. In 2016

IEEE International Conference on Cluster Computing

(CLUSTER), pages 50–59, Taipei, Taiwan, September

2016. IEEE.

[36] Joel Hestness, Boris Grot, and Stephen W. Keckler. Ne-

trace: Dependency-driven trace-based network-on-chip

simulation. In Proceedings of the Third International

Workshop on Network on Chip Architectures, pages 31–

36, Atlanta Georgia USA, December 2010. ACM.

[37] Joel Hestness and Stephen W Keckler. Netrace:

Dependency-tracking traces for efficient network-on-

chip experimentation. Technical report.

[38] Torsten Hoefler, Tommaso Bonato, Daniele De Sensi,

Salvatore Di Girolamo, Shigang Li, Marco Heddes, Jon

Belk, Deepak Goel, Miguel Castro, and Steve Scott.

Hammingmesh: A network topology for large-scale

deep learning. In SC22: International Conference for

High Performance Computing, Networking, Storage and

Analysis, pages 1–18, Dallas, TX, USA, November 2022.

IEEE.

[39] Alexander Ishii and Ryan Wells. The nvlink-network

switch: Nvidia’s switch chip for high communication-

bandwidth superpods. In 2022 IEEE Hot Chips 34

Symposium (HCS), pages 1–23, Cupertino, CA, USA,

August 2022. IEEE.

[40] Nan Jiang, James Balfour, Daniel U. Becker, Brian

Towles, William J. Dally, George Michelogiannakis,

and John Kim. A detailed and flexible cycle-accurate

network-on-chip simulator. In 2013 IEEE Interna-

tional Symposium on Performance Analysis of Systems

744 2024 USENIX Annual Technical Conference USENIX Association

and Software (ISPASS), pages 86–96, Austin, TX, USA,

April 2013. IEEE.

[41] Norman P Jouppi, George Kurian, Sheng Li, Peter

Ma, Rahul Nagarajan, Lifeng Nai, Nishant Patil, Andy

Swing, Brian Towles, Cliff Young, Xiang Zhou, Zong-

wei Zhou, and David Patterson. Tpu v4: An optically

reconfigurable supercomputer for machine learning with

hardware support for embeddings. In 2023 ACM/IEEE

50th Annual International Symposium on Computer Ar-

chitecture (ISCA), 2023.

[42] M. R. Siavash Katebzadeh, Paolo Costa, and Boris Grot.

Evaluation of an infiniband switch: Choose latency or

bandwidth, but not both. In 2020 IEEE International

Symposium on Performance Analysis of Systems and

Software (ISPASS), pages 180–191, Boston, MA, USA,

August 2020. IEEE.

[43] John Kim, Wiliam J. Dally, Steve Scott, and Dennis Abts.

Technology-driven, highly-scalable dragonfly topology.

In 2008 International Symposium on Computer Archi-

tecture, pages 77–88, Beijing, China, June 2008. IEEE.

[44] Tushar Krishna. Garnet2.0: A detailed on-chip network

model inside a full-system simulator, 2017.

[45] R. Kumar, D.M. Tullsen, P. Ranganathan, N.P. Jouppi,

and K.I. Farkas. Single-isa heterogeneous multi-core ar-

chitectures for multithreaded workload performance. In

Proceedings. 31st Annual International Symposium on

Computer Architecture, 2004., pages 64–75, Munchen,

Germany, 2004. IEEE.

[46] Mieszko Lis, Keun Sup Shim, Myong Hyon Cho, Pengju

Ren, Omer Khan, and Srinivas Devadas. Darsim: A

parallel cycle-level noc simulator. 2010.

[47] Wei Luo and Dong Xiang. An efficient adaptive

deadlock-free routing algorithm for torus networks.

IEEE Transactions on Parallel and Distributed Systems,

23(5):800–808, January 2012.

[48] Misbah Mubarak, Christopher D. Carothers, Robert

Ross, and Philip Carns. Modeling a million-node drag-

onfly network using massively parallel discrete-event

simulation. In 2012 SC Companion: High Performance

Computing, Networking Storage and Analysis, pages

366–376, Salt Lake City, UT, November 2012. IEEE.

[49] Misbah Mubarak, Christopher D. Carothers, Robert B.

Ross, and Philip Carns. Enabling parallel simulation of

large-scale hpc network systems. IEEE Transactions on

Parallel and Distributed Systems, 28(1):87–100, January

2017.

[50] nsnam. Ns-3 network simulator. https://www.nsnam.

org/.

[51] Joshua Pelkey and George Riley. Distributed simulation

with mpi in ns-3. In Proceedings of the 4th International

ICST Conference on Simulation Tools and Techniques,

Barcelona, Spain, 2011. ACM.

[52] A. F. Rodrigues, K. S. Hemmert, B. W. Barrett,

C. Kersey, R. Oldfield, M. Weston, R. Risen, J. Cook,

P. Rosenfeld, E. Cooper-Balis, and B. Jacob. The struc-

tural simulation toolkit. ACM SIGMETRICS Perfor-

mance Evaluation Review, 38(4):37–42, March 2011.

[53] Omer S. Sella, Andrew W. Moore, and Noa Zilberman.

Fec killed the cut-through switch. In Proceedings of the

2018 Workshop on Networking for Emerging Applica-

tions and Technologies, pages 15–20, Budapest Hungary,

August 2018. ACM.

[54] Emil Talpes, Debjit Das Sarma, Doug Williams, Sahil

Arora, Thomas Kunjan, Benjamin Floering, Ankit Jalote,

Christopher Hsiong, Chandrasekhar Poorna, Vaidehi

Samant, John Sicilia, Anantha Kumar Nivarti, Raghuvir

Ramachandran, Tim Fischer, Ben Herzberg, Bill McGee,

Ganesh Venkataramanan, and Pete Banon. The microar-

chitecture of dojo, tesla’s exa-scale computer. IEEE

Micro, 43(3):31–39, May 2023.

[55] Emil Talpes, Douglas Williams, and Debjit Das Sarma.

Dojo: The microarchitecture of tesla’s exa-scale com-

puter. In 2022 IEEE Hot Chips 34 Symposium (HCS),

pages 1–28, Cupertino, CA, USA, August 2022. IEEE.

[56] Kai Troester and Ravi Bhargava. Amd next generation

“zen 4” core and 4th gen amd epyc™ 9004 server cpu.

In 2023 IEEE Hot Chips 35 Symposium (HCS), pages

1–25, Palo Alto, CA, USA, August 2023. IEEE.

[57] Charlotte Truchet. Estimating parallel runtimes for ran-

domized algorithms in constraint solving. Journal of

Heuristics, 2016.

[58] Wemke van der Weij, Sandjai Bhulai, and Rob van

der Mei. Dynamic thread assignment in web server

performance optimization. Performance Evaluation,

66(6):301–310, June 2009.

[59] Wenfeng Xia, Peng Zhao, Yonggang Wen, and Haiyong

Xie. A survey on data center networking (dcn): Infras-

tructure and operations. IEEE Communications Surveys

& Tutorials, 19(1):640–656, 2017.

[60] Jieming Yin, Zhifeng Lin, Onur Kayiran, Matthew

Poremba, Muhammad Shoaib Bin Altaf, Natalie En-

right Jerger, and Gabriel H. Loh. Modular routing de-

sign for chiplet-based systems. In 2018 ACM/IEEE 45th

Annual International Symposium on Computer Archi-

tecture (ISCA), pages 726–738, Los Angeles, CA, June

2018. IEEE.

USENIX Association 2024 USENIX Annual Technical Conference 745

https://www.nsnam.org/
https://www.nsnam.org/

Appendices

A Profiling of CNSim

41
.1

 M
iB
















3.
3

M
iB

0 Time (Injection Rate)

0 B

10.0 MB

20.0 MB

40.0 MB

50.0 MB

M
e

m
o

ry
 H

e
a

p
 S

iz
e

Total Memory Consumption

vector<VCInfo> candidate_VC

vector<VCInfo> flits_trace

queue<Packet*> input_queue

vector<Packet*> all_pkts_queue

0.1 fllits/cycle/node

0.6 fllits/cycle/node

Figure 19: Detailed profiling of the heap memory consump-

tion.

Valgrind Massif can give more detailed memory consump-

tion profiling results. As shown in Figure 19, the heap memory

usage of CNSim is mainly from: 1) the candidate VCs pro-

vided to each packet by routing computation; 2) the traces

(location information) of each packet flit; 3) the input buffer

(queue) of each VC channel that maintains the packet arriving

order 4) the global packet queue that maintains the packet

injection order.

Simultaneous Utilized Logical CPUs

Figure 20: Effective CPU utilization histogram of the 16-

threads CNSim.

We also use Intel Vtune [1] to analyze the CPU utilization.

As shown in Figure 20, the effective CPU utilization measured

by Intel Vtune is 7.5 for the 16-threads CNSim, which implies

that there is still room for further improvement.

B PARSEC Benchmark Traces

As shown in Table 4, the entire PARSEC benchmark traces

provided by netrace [36, 37] include over 100 billion simu-

lated cycles and 3 billion messages, which is time-consuming

for simulation.

Table 4: Simulated cycle and packet counts of the PARSEC

benchmark traces.

Benchmark Cycles Packets Benchmark Cycles Packets

Blackscholes 5.83B 114M Fluidanimate 10.2B 188M

Bodytrack 4.58B 386M Swaptions 1.75B 310M

Canneal 23.1B 372M Vips 5.43B 335M

Dedup 5.45B 431M x264 43.0B 585M

Ferret 8.26B 287M Total 108B 3B

C Artifact

Abstract

Chiplet Network Simulation (CNSim) is an open-sourced

cross-platform cycle-accurate parallel network simulator de-

signed for large-scale chiplet-based networks. CNSim sup-

ports various network topologies, routing algorithms, inter-

face configurations, and traffic patterns. The artifact helps

the community reproduce the major results of this paper and

make better use of CNSim.

Contents & Scope

The artifact includes the source code of CNSim, configura-

tion files, and instructions, allowing the reproduction of major

evaluation results (running speed) and demonstrating the scal-

ability and functionality of CNSim.

Hosting

GitHub: chiplet-network-sim (branch atc24_artifact)

URL: https://github.com/Yinxiao-Feng/

chiplet-network-sim/tree/atc24_artifact

Requirements

CNSim is a C/C++ program developed by Visual Studio 2022

and is verified on both Windows and Linux platforms. We

recommend using an Ubuntu 22.04 machine (at least 8C/16T)

in the evaluation. Please refer to the README for software

requirements.

D Inconsistency Estimation

This section computes the bound of the parallel inconsistency

of the simulator by a probabilistic model. The model gives

the estimation of the probability of inverted allocations hap-

pening in the parallel simulation. An inverted allocation is

defined as that a later-injected packet wins the allocation in

the competition with an earlier-injected packet. Intuitively,

since all the packets are dispatched to workers in injection

order (iterate along the queue), the larger the distance (index

difference) between two packets in the queue, the lower the

probability of inverted allocation (inconsistency).

746 2024 USENIX Annual Technical Conference USENIX Association

https://github.com/Yinxiao-Feng/chiplet-network-sim/tree/atc24_artifact
https://github.com/Yinxiao-Feng/chiplet-network-sim/tree/atc24_artifact

D.1 Problem Specification

Suppose M workers (threads) are working in parallel to com-

pute the resource allocation of all the packets. As shown in

Figure 3, the packets are in injection order (denoted as p0,

p1, ... pn, ... pn+k, ...) and each worker will successively fetch

a packet from the queue and compute its allocation. After

one computation finishes, the worker will fetch another un-

processed packet from the queue, until the queue is empty.

We assume that the computation time of each packet follows

the Exponential Distribution Exp(λ) so that queue pop is a

Poisson Process with rate Mλ [8, 45, 57, 58]. If one resource

is requested by two packets pn and pn+k,k ∈ N+ in the same

cycle, we are going to estimate the probability of pn being al-

located after pn+k, which violates the first-injected-first-serve

policy. We also give the estimation and assessment of k, which

indicates the distance (index difference) between two com-

peting packets in the queue that is maintained with injection

order.

D.2 Probability Estimation

We assume that packet pn is fetched by worker wn from the

queue at time Sn and the allocation happens at time tn ∈
[Sn,Sn +Xn], where Xn ∼ Exp(λ) is the total calculation time

of pn. We also assume that worker i = 1, ...,M is computing

packet pai,n at time Sn, and the computation start time of

these packets is Sai,n . Since tn ≤ Sn +Xn and tn+k ≥ Sn+k, the

probability bound of packet pn being allocated after pn+k can

be estimated as

P(tn > tn+k)≤ P(Sn +Xn > Sn+k)

In other words, packet pn occupies the worker wn all the

way, and any packet pn+i,1 ≤ i ≤ k, can not be dispatched

to worker wn before pn completes computation. Therefore,

wn+i ̸= wn must hold for all 1 ≤ i ≤ k, and

P(tn > tn+k)≤ P(wn+i ̸= wn,∀1 ≤ i ≤ k)

Now consider the process after time Sn, packet pai,n is be-

ing processed by worker i at time Sn and Sai,n +Xai,n ≥ Sn.

Yi,n = Xai,n − (Sn − Sai,n) denotes the time that the worker i

still needs to compute packet pai,n after Sn. Since the Pois-

son Process is memoryless, Yi,n still follows the distribution

Exp(λ) and is independent for i = 1,2, . . . ,M. Thus, the prob-

ability of any worker completing its current packet computa-

tion first is 1
M

, which means wn+1 has a uniform distribution

on {1,2, . . . ,M}; therefore, the probability of wn+1 ̸= wn is

(1− 1
M
).

Similar for Yi,n+1 and we can conclude that wn+2 also has a

uniform distribution, and is independent to wn+1 (since mem-

oryless guarantees that events before Sn+1 is independent to

events after it). Then consider Yi,n+2 and wn+3 and so on. With

the same argument, we can conclude that all wn+i are inde-

pendent and follows a uniform distribution on {1,2, . . . ,M}.

P(tn > tn+k)≤ (1−
1

M
)k ≤ e−

k
M . (3)

If considering the multi-issue width of c, the probability

P(tn > tn+k)≤ e−⌊ k
c ⌋

1
M . (4)

D.3 Distance Estimation

From Equation 3, we can see that when k is a few times

larger than M (e.g., k = 200,c = 5,M = 8), the probability of

inverted allocation is small (P(tn > tn+k)|⌊ k
c ⌋>5M

< 1%). The

final inverted allocation probability can be estimated as

Pinverted allocation ≤ ∑
i

P(k = i)e−⌊ i
c ⌋

1
M . (5)

If the two packets are injected x > 0 cycles apart, initially,

the distance k(x) can be estimated as xnI, where n is the

network scale (router number), I is the injection rate (flits/-

cycle/router). As the simulation continues, many packets are

moved out of the queue and the distance becomes smaller. For

example, if the network scale is 1K, the injection rate is 0.1
packets/cycle/router, and the maximum latency is 100 cycles,

then 0 < k < 10000, which is expected to be quite large.

ቐ 𝑃 𝑘 < 69 < 0.01𝑃 𝑘 < 293 < 0.1𝑃 𝑘 < 1742 < 0.5
0 2000 4000 6000 8000 10000 12000

0

200

400

600

800

1,000

1,200

1,400

1,600

F
re

q
u

e
n

c
y

k

(a) SW-Radix-16 1312 Nodes

0 40000 80000 120000 160000 200000 240000
0

200

400

600

800

F
re

q
u
e
n
c
y

k

(b) SW-Radix-32 18560 Nodes

ቐ𝑃 𝑘 < 1541 < 0.01𝑃 𝑘 < 6375 < 0.1𝑃 𝑘 < 33842 < 0.5

Figure 21: The frequency distribution of the distance (k) be-

tween two competing packets in the queue.

We count the frequency distribution of the distance k be-

tween all the competing packets during the simulation. The

simulation time is set to 10000 cycles, and the injection rate

is set to 0.5 flits/cycle/router. As shown in Figure 21, for the

small-scale network, most of the competing packets are about

hundreds to thousands of packets apart; for the large-scale net-

work, the distance is about thousands to tens of thousands of

packets apart. By Equation5, for 4-thread 5-issue simulation

on the small-scale network and 16-thread 10-issue simulation

on the large-scale network, Pinverted allocation < 10−3.

USENIX Association 2024 USENIX Annual Technical Conference 747

	Introduction
	Background & Motivation
	Chiplet Interconnection Architecture
	Network Simulators
	Motivations from Profiling BookSim

	CNSim: A Cycle-Accurate Packet-Parallel Simulator for Chiplet-based Networks
	Packet-Centric Simulation
	Packet Parallelism Simulation
	Heterogeneous Router & Link
	Other Notable Features & Compromises
	Validation
	Implementation & Performance Simulation
	Simulation Speed & Memory Usage
	Concurrency & Inconsistency

	Evaluation of Chiplet-based Networks
	Heterogeneous-Link-based Networks
	Setup
	Evaluation Results

	Chiplet-based Dragonfly
	Topology Description
	Analysis
	Setup
	Evaluation Results

	Related Work
	Summary
	Acknowledgments
	Profiling of CNSim
	PARSEC Benchmark Traces
	Artifact
	Inconsistency Estimation
	Problem Specification
	Probability Estimation
	Distance Estimation

