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Abstract
FaaS (Function-as-a-Service) workloads feature unique pat-
terns. Serverless functions are ephemeral, highly concurrent,
and bursty, with an execution duration ranging from a few mil-
liseconds to a few seconds. The workload behaviors pose new
challenges to kernel scheduling. Linux CFS (Completely Fair
Scheduler) is workload-oblivious and optimizes long-term
fairness via proportional sharing. CFS neglects the short-term
demands of CPU time from short-lived serverless functions,
severely impacting the performance of short functions. Pre-
emptive shortest job first—shortest remaining process time
(SRPT)—prioritizes shorter functions in order to satisfy their
short-term demands of CPU time, and therefore, serves as a
best-case baseline for optimizing the turnaround time of short
functions. A significant downside of approximating SRPT,
however, is that longer functions might be starved.

In this paper, we propose a novel application-aware ker-
nel scheduler, ALPS (Adaptive Learning, Priority Scheduler),
based on two key insights. First, approximating SRPT can
largely benefit short functions but may inevitably penalize
long functions. Second, CFS provides necessary infrastructure
support to implement user-defined priority scheduling. To this
end, we design ALPS to have a novel, decoupled scheduler
frontend and backend architecture, which unifies approximate
SRPT and proportional-share scheduling. ALPS’ frontend sits
in the user space and approximates SRPT-inspired priority
scheduling by adaptively learning from an SRPT simulation
on recent past workload. ALPS’ backend uses eBPF functions
hooked to CFS to carry out the continuously learned policies
sent from the frontend to inform scheduling decisions in the
kernel. This design adds workload intelligence to workload-
oblivious OS scheduling while retaining desirable properties
of OS schedulers. We evaluate ALPS extensively using two
production FaaS workloads (Huawei and Azure) and results
show that ALPS achieves a reduction of 57.2% in average
function execution duration, compared to CFS.

1 Introduction
Serverless computing, also known as Function-as-a-Service
(FaaS), has revolutionized the development and scaling of
applications and services. FaaS abstracts away the underlying
infrastructure from developers, relieving them of the notori-
ously tedious tasks of server provisioning and management,
and enabling them to focus predominantly on code and appli-
cation logic. FaaS solutions are becoming increasingly popu-

lar and are commonly found in both commercial clouds (e.g.,
AWS Lambda [3], Azure Functions [4], Google Cloud Func-
tions [13]) and open source projects (e.g., OpenWhisk [25],
OpenFaaS [23], etc.).

The majority of FaaS use cases demonstrate highly con-
current and bursty workloads, typically invoked through
lightweight HTTP requests [1,51]. In this context, FaaS appli-
cations can generate a large volume of requests within a short
time period [40, 45–47, 83]. Moreover, the execution time of
a serverless function is typically short and highly variable—
ranging from a few milliseconds to a few minutes [61, 77].
An analysis of the Azure Functions trace datasets shows that
about 37.3%, 57.2%, and 99.9% of the function requests have
an average execution duration1 shorter than 300 ms, 1 second,
and 224 seconds, respectively [77].

Serverless functions are ultimately scheduled and executed
by a host OS. Serverless functions typically have a small
CPU-memory footprint [61, 77], making FaaS workloads in-
creasingly consolidated. It is not uncommon to pack tens
of thousands of, if not more, function instances onto a sin-
gle host [39, 44]. While statistical multiplexing [53, 72, 75]
makes it possible for a FaaS provider to achieve high work-
load throughput, the short-lived nature of serverless func-
tions makes them extremely sensitive to resource contentions
caused by FaaS clouds’ deep consolidation.

The heterogeneity of FaaS workloads poses new challenges
to existing kernel scheduling solutions. Linux’s default CPU
scheduler, the Completely Fair Scheduler [6] commonly used
by most cloud providers including AWS Lambda [3, 39],
is a general-purpose and proportional-share kernel sched-
uler, which performs poorly for short-task-dominant work-
loads [54]. Specifically, to achieve fairness (so-called “pro-
portional share” or “fair share”), CFS squeezes the time slice
for each competing function and proportionally shares the
physical CPU time among them. All functions, no matter
short or long, experience the same expected slowdown. This
achieves fairness [42], but at the same time, also leads to
frequent context switches for short functions, causing signif-
icantly prolonged “scheduling cycles”: a function that has
used up its time slice is descheduled and must wait for a
long time before it gets rescheduled. For short functions,

1A function’s execution duration measures the time when a function
starts execution till the time when the function finishes execution and re-
turns, the same definition as the turnaround time metric. We use both terms
interchangeably in the paper.
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this prolonged waiting time hurts their turnaround time: they
could have completed much earlier without being preempted
if given a slightly longer time slice instead. Ultimately, kernel
schedulers’ workload obliviousness severely impacts FaaS
providers’s quality-of-service (QoS) and FaaS applications’
performance and cost.

Designing and implementing a new, application-aware ker-
nel scheduler is notoriously hard [58,67,70]. On the one hand,
OS facilities are implemented using low-level programming
languages (typically C and assembly) and developers cannot
use advanced libraries and debugging tools for development
and testing. On the other hand, it is extremely hard to cover all
possible workload cases during development/testing phase.

A representative user-defined kernel scheduler for server-
less functions is SFS [54]. SFS dynamically steers existing
scheduling policies in Linux (FIFO and CFS) from the user
space based on workload history to enable more effective func-
tion scheduling. SFS prioritizes short functions that can finish
within a configurable time slice. However, since SFS works
entirely in the user space, it lacks transparency, flexibility, and
efficiency compared to a kernel scheduler solution. (1) SFS
requires non-trivial modifications of the applications (i.e., the
FaaS platforms) in order to use its user-space scheduling in-
terface. (2) SFS has to rely on user-space tools [28, 29, 36]
and/or “hacky” methods to control kernel activities like con-
text switch and task priority. This approach is indirect and
often coarse-grained. (3) SFS incurs non-trivial user-space
scheduling overhead; for example, SFS needs to constantly
poll the kernel task status in order to make appropriate deci-
sions from the user space.

In order to overcome the aforementioned limitations, a new,
application-aware kernel scheduler is required. First, a new
scheduler should not enforce FaaS workloads to use statically
baked policy that is workload-agnostic. Rather, it should be
application-aware and can dynamically adapt its policy based
on workload dynamics. Second, this new kernel scheduler
should be transparent to the user-space applications. That is, it
should require no or minimum modifications of existing FaaS
platforms and serverless functions. Third, this new scheduler
should retain desirable OS scheduler properties such as high
efficiency, low overhead, and flexible preemption.

To address all these requirements, we propose ALPS (Adap-
tive Learning, Priority Scheduler), a new application-aware
kernel scheduler for FaaS workloads. ALPS takes a fundamen-
tally different approach for user-defined kernel scheduling. At
its core, ALPS adaptively learns the statistical clairvoyance of
functions’ time slice distribution and priorities by applying
SRPT (Shortest Remaining Processing Time) to past function
traces and uses the continuously learned policies to inform
future scheduling decisions in the kernel.

We design ALPS to have a novel scheduler architecture
that decouples scheduler frontend and backend. ALPS’ fron-
tend sits in the user space and approximates SRPT-inspired
priority scheduling by adaptively learning two separate yet

correlated policies (a time slice policy and a task ordering
policy) for each individual function from an SRPT simula-
tion running on recent past workload. ALPS’ backend uses
eBPF functions [10] hooked to CFS to carry out learned poli-
cies sent from the frontend to inform scheduling decisions
within the kernel space. ALPS adds workload intelligence to
workload-oblivious OS scheduling: for short functions, ALPS
learns to extend the time slice so that short functions run to
completion with minimal context switches; for long functions,
ALPS reuses CFS to avoid starvation; moreover, ALPS retains
desirable properties of kernel schedulers (work conserving,
low overhead) by carrying out decision making in the kernel.

In summary, this paper makes the following contributions:
• We explore the design space of approximate SRPT in kernel

scheduling and identify a practical and effective method
to abstract approximate SRPT scheduling into two easily
solvable, lightweight sub-policies.

• We design ALPS, an intelligent, application-aware kernel
scheduler that learns from SRPT behaviors on past work-
load from the user space to inform function scheduling
decisions in the kernel.

• We evaluate ALPS extensively using production FaaS work-
load traces. Results show that ALPS outperforms Linux
CFS and a state-of-the-art serverless OS scheduler SFS by
57.2% and 20.6% in terms of average function execution
duration while mitigating the long tail latency issue suffered
by the offline SRPT.

2 Background
2.1 Overview of FaaS
A FaaS platform allows users to build and deploy function
applications as .zip archives [8] or custom container im-
ages [20]. To deploy or update a function, a user pushes the
function’s container image to a centralized container registry.
A deployed function can be invoked via an invocation re-
quest, e.g., through an HTTP URL or from an event source
such as a cloud object store. Each invoked function runs in a
sandbox environment (e.g., a container [9, 14] or a VM [39]).
Without loss of generality, we assume containers as the under-
lying sandbox technique for function execution and isolation.
Upon an invocation request, a serverless function is ultimately
scheduled and executed by a function worker in the under-
lying host OS. Kernel scheduling therefore determines the
“last-mile” efficiency of function invocation requests.

2.2 Completely Fair Scheduler
Completely Fair Scheduler, or CFS, is Linux’s default ker-
nel scheduler. CFS is a general-purpose, proportional-share
scheduler with the goal of fairly balancing the CPU resource
usage among all CPU tasks. CFS divides the physical time
into fine-grained time slices among all CPU tasks in pro-
portion to their weights (i.e., priorities). To achieve fairness
among all tasks, CFS uses the virtual runtime scheme: CFS
keeps track of a task’s CPU time—the time that this task has
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Figure 1: Performance CDF of the Huawei (a) and Azure (b) traces and corresponding time slice distribution, Huawei (c) and Azure (d).

be running on a CPU—weighted by its priority, as vruntime,
and orders tasks by vruntime in a per-CPU-based, red-black
(RB) tree priority queue structure called runqueue. At each
scheduling tick, CFS picks the next runnable task that has
the smallest vruntime from the runqueue. When a new task
is first admitted to the system, it will be initialized with the
smallest vruntime value, and therefore, it will be placed to
the left-most of the RB tree so that it can be immediately
scheduled to run to avoid starvation for new tasks. The length
of the time slice is determined by the number of CPU tasks
in the runqueue. As the FaaS workload is increasingly con-
solidated, it is common to have thousands of concurrently
running functions that multiplex the limited CPU resources
on the host machine. Thus, under CPU contention, all concur-
rent function requests colocated on the same host experience
the same expected slowdown, hence CFS achieves fairness.

2.3 eBPF Primer
eBPF (extended Berkeley Package Filter) is a new kernel
technique that makes it easy to extend the capabilities of the
Linux kernel [10]. eBPF enables developers to dynamically
load user-defined functions into the kernel without requiring
to change kernel source code or load kernel modules. User-
defined functions can be added to various kernel hook points
(e.g., the network interface). A user-defined function is exe-
cuted when the attached hook point is triggered. eBPF enables
user and kernel communication via eBPF maps, which pro-
vide a generic in-memory storage of different types of sharing
data between the user space and kernel space. Linux eBPF is
used for networking [15,16,26,69], load balancing [7,19,37],
platform observability [21, 34, 38], resource monitoring and
profiling [2, 5, 30], and network security [18, 31, 32]. eBPF
serves as an effective tool for bringing FaaS workload knowl-
edge to kernel scheduling. eBPF functions can be placed
at various places within CFS to manipulate the scheduling
decision making of CFS. eBPF maps offer an efficient com-
munication channel to share the application-level knowledge
with the kernel scheduler.

3 Motivation
We measured the performance of two FaaS workloads
sampled from Huawei Cloud Functions [61] and Azure
Functions [77] on an open-source FaaS platform Open-

Lambda [57]. OpenLambda was configured to run on 24
CPU cores in a Ubuntu 22.04 OS. We tested three Linux
kernel schedulers: SCHED_FIFO (first in, first out), SCHED_RR
(round-robin), and SCHED_NORMAL (Linux CFS), as well as a
state-of-the-art serverless function scheduler SFS [54] imple-
mented using our eBPF framework (§7). We also simulated an
offline oracle SRPT for comparison. We tuned the inter-arrival
times (IATs) of the functions so that the average CPU utiliza-
tion of both the Huawei and Azure workloads was around
90%. See details about the workload generation and function
grouping in §7.1.

3.1 Scheduler Performance
Figure 1a and 1b show the duration time distribution of the
Huawei and Azure workload traces, respectively. We make
several observations from these figures.

First, Linux’s two existing schedulers, namely, FIFO and
RR, suffer a significant performance gap compared to the
offline SRPT for most of the function requests in both the
Huawei and Azure workloads. CFS shortened the gap, but still
saw a big performance difference from SRPT. For example,
89.2% of function requests ran slower under CFS than SRPT,
due to lack of workload awareness.

Second, SFS sits in the middle between SRPT and CFS
in terms of function execution duration due to its workload
awareness. SFS adopts a two-level scheduler design with a
level-one FIFO queue and a level-two CFS queue. At the
FIFO queue level, SFS schedule functions in the order they
are admitted to the system and preempts and demotes them
to CFS if they do not finish in a configurable time slice. This
FIFO time slice is dynamically tuned by SFS based on histor-
ical workload information and is applied to all functions in
the current time window. However, SFS’ coarse-grained time
slice design is sub-optimal (compared to SRPT, which has the
knowledge of the future), and therefore, caused significant
delays for most of the function requests.

Third, although SRPT shows a clear advantage over other
online schedulers for relatively short functions, SRPT suf-
fered a significant long-tail delay at the 98.9th percentile and
above for the Huawei workload. This is because the Huawei
workload is heavily dominant by short functions (see §7),
with 69.7% and 1% of function requests falling into Group 1
(shortest functions) and Group 4 (longest functions), respec-
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tively. In contrast, the Azure workload is more evenly spread
across all four function groups, as shown in Table 1.

Observation
• Linux’s existing schedulers achieve considerably poorer
overall performance compared to the offline SRPT due to
workload obliviousness.
• SFS takes the FaaS workload pattern into account but
its coarse-grained decision making leads to sub-optimal
performance.
• While SRPT is provably optimal for average performance,
its strategy, which prioritizes shorter function jobs, penal-
izes the longer function jobs. This is particularly evident in
real-world FaaS workloads that are heavily skewed towards
short functions.

3.2 Analysis
To better understand the performance gaps between online
schedulers and offline SRPT, we profiled the time slice infor-
mation and the number of context switches of all the baselines
that we tested, as shown in Figure 1c and 1d. Interestingly,
despite the huge performance differences between FIFO/RR
and SRPT, these three policies exhibit similar trends in time
slice distribution. The reason for SRPT’s performance superi-
ority is apparent: SRPT makes perfect prediction about the
remaining time of a function job and intelligently prioritizes
jobs with the shortest remaining time. Though FIFO and RR
may allow a short function to run to completion without a
context switch (see Figure 7), they enforce functions to ex-
ecute by the order they enter the system, thereby increasing
the likelihood of head-of-line blocking.

On the other hand, CFS and SFS show dramatically differ-
ent time slice patterns compared to the other set of schedulers.
Under CFS, a CPU task’s priority and its allotted time slice
are determined by different factors. CFS controls tasks’ priori-
ties using a configuration parameter called weight, which can
be set by a nice parameter passed from the user space [22].
In the kernel, a task’s weight determines the growth rate of
its vruntime. That is, a task with a higher weight will have
a vruntime with a slower increasing rate. Recall that CFS
ranks all CPU tasks within an RB-tree-based runqueue by
their vruntime (§2.2) and the rank of a task on the runqueue

roughly determines when it will be rescheduled to execute in
the near future. The higher the weight of a task, the sooner
it will get rescheduled, and the longer CPU time it will re-
ceive in the long run. The time slice that each task receives
is roughly the same and is determined by the total number of
tasks in the system.

Instead of explicitly determining when (priority) and how
long (time slice) a task should run during each scheduling
cycle, CFS implicitly controls, via task weight, the proportion
of CPU time that each task is expected to receive in a given
scheduling cycle. In the context of highly consolidated FaaS
workloads, the function execution order becomes virtually

102 103 104 105

Duration (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

CFS

SFS

SRPT

SRPT EB

Random

Random 40%

Figure 2: Execution duration CDF of the Huawei workload.

random and all running functions, whether short or long, get
equally penalized with the same expected slowdown ratio,
provided that all functions are assigned the same weight.

Observation and Implication

• CFS lacks the tool to explicitly control task order and
time slices for individual tasks, simply because CFS is not
designed for optimizing the turnaround time but rather for
achieving so-called proportional-share fairness.
• However, the proportional-share nature of CFS does
not negate the feasibility of turning CFS into a priority
scheduler that approximates the behavior of SRPT. In fact,
CFS offers the ideal facility to support priority schedul-
ing: the task execution order is determined by a parameter
(vruntime), which can be manipulated to prioritize shorter
functions.
• CFS’ time slice mechanism can be dynamically adjusted
based on function behavior so as to minimize the context
switches for shorter functions.

3.3 Approximating SRPT
One approach to approximating SRPT is to use heuristics.
For example, approximate and deployable SRPT (ADS) uses
multiple FIFO queues and dispatches requests to one of the
FIFO queues based on the (hinted) request size (e.g., mes-
sage size) [84]. While the message size can serve as a hint
accurate enough to predict the task processing time in the
context of network scheduling, it is challenging to predict
the execution duration of a serverless function. We tested
several “approximate” variants of SRPT that make prediction
mistakes about the execution duration of a function: (1) SRPT
EB: this SRPT variant makes error-bounded (EB) mistakes,
where the estimated execution duration of a function is the
actual execution duration (obtained via profiling under per-
fectly isolated environment) plus an error bounded ±50% of
its actual execution duration. (2) SRPT RANDOM 40%: this
SRPT variant makes random mistakes for 40% of the function
requests, whose predicted execution duration was generated
randomly. (3) RANDOM: an online scheduler that predicts
function execution time using a random number generator.

We used the same Huawei trace to drive the tests and the
result is shown in Figure 2. Surprisingly, both SRPT EB and
SRPT RANDOM 40% achieved reasonably good perforam-
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nce: they both managed to improve short functions’ medium
turnaround time by 51.2% compared to SFS, though both of
them mispredicted to some extent.

Observation and Implication

This result suggests that a predictive or learned priority
scheduler can achieve near-optimal performance for most
functions if one of the following relaxed conditions are
satisfied:
• All predictions are inaccurate but are error-bounded, and
they collectively and approximately follow the statistical
behavior of SRPT like SRPT EB did.
• A portion of predictions are accurate while the others are
completely random guesses like SRPT RANDOM 40% did.

4 Design Goals
§3 suggests that approximating SRPT may improve aver-
age turnaround time for FaaS workloads, especially for short
functions, which constitute a large portion of real-world work-
loads. Yet, SPRT causes significant long-tail delay for long
functions, especially for the Huawei workload that is highly
skewed. Therefore, our goal is to design an application-aware
kernel scheduler that optimizes the average turnaround time
by approximating SRPT while striking a balance to offer
a worst-case guarantee for long functions. To achieve this
goal, we ask two questions: (1) What is the mechanism of
the new scheduler, i.e., how the scheduling machinery works?
(2) What is the scheduling policy, i.e., when a function should
execute and how long it should run in each scheduling cycle?

Designing a new kernel scheduler is never easy, considering
the tools a developer can use for development and debugging
a kernel scheduler and the too many corner cases that the
new scheduler needs to cover. CFS, as a battle-tested kernel
scheduling solution, is well-proven for balancing the CPU
resource usage and avoiding starvation for long tasks. More
importantly, CFS as a facility can be augmented in order to
support user-defined priority scheduling policies.

4.1 Scheduler Mechanism
The key insight of this paper, as revealed from §3, is that
Linux CFS can be adapted to find a middle ground that com-
bines the best of both priority scheduling for short functions
and proportional-share scheduling for long functions. To this
end, this paper takes a different route and directly builds the
application-aware scheduling policy atop the CFS infrastruc-
ture. Recall in §3.2 our key implication is that CFS’ task
ordering and time slice policy can be manipulated to real-
ize new priority scheduling. This offers a tool to design new
scheduler abstraction that abstracts and modularizes the new
priority scheduling policy into two small sub-problems, each
of which can be separately solved:
• Task ordering policy determines how functions should be

ordered, and for a function, how it can be prioritized based
on its (predicted) future need: in our case, the likelihood

G1 G2 G3 G4

Group

0

500

1000

1500

2000

T
im

e
 s

li
c
e
 (

m
s
)

Figure 3: SRPT’s time slice distribution of different function groups.

of how soon or how far in the future it would finish. This
policy directly affects the time a function is waiting in the
runqueue, and consequently, impacts the turnaround time.

• Time slice policy determines how long a function is al-
lowed to execute in a scheduling cycle. This policy also has
a direct impact on the turnaround time of a function.
The key enabler of the new scheduler mechanism is eBPF.

The modularized sub-policies can then be hooked into CFS
as eBPF functions. We describe the detailed design in §5.3.

4.2 Scheduling Policy: Learning from SRPT
Instead of directly learning a model to predict function exe-
cution duration, we use a different approach to approximate
SRPT. We break the approximate SRPT policy into two sub-
problems (§5.2.1) and learn simple policies from the SRPT
behavior on historical workload to solve the sub-problems.
We next discuss the design choices we make.
• Learning a task ordering policy: We observe that produc-

tion FaaS workloads have a mix of short and long functions.
As such, functions can be categorized into different groups
based on their execution duration. This design choice sig-
nificantly simplifies the design of the learning rule as it is
much easier for a model to accurately predict the function
groups rather than how long a function will run or how
much remaining time a function is left.

• Learning a time slice policy: Under SRPT, a short func-
tion is likely to have the highest absolute priority among all
actively running functions at the time when it arrives, and
therefore, it is highly likely to run to completion without
being preempted (unless a shorter function arrives right
after that particular function starts execution). On the other
hand, a function with relatively long execution duration is
likely to be frequently preempted during its whole lifespan,
and the preemption frequency is determined by the num-
ber of shorter functions that arrive during the execution of
that long function. This can be observed in Figure 3 where
longer functions (Group 3 and 4) show much more vari-
able time slice distribution than that of shorter functions
(Group 1 and 2). An interesting SRPT behavior–the time
slice pattern–can be learned or approximated, because, sta-
tistically, the collective time slice pattern of short functions
is highly predictable (Figure 3). Given this observation and
hypothesis, to learn from the past behavior of SRPT, if with
the SRPT policy a function gets assigned a particular time

USENIX Association 2024 USENIX Annual Technical Conference    23



1. Sliding window

… FnFn … Fn

SRPT statistics

2. SRPT simulation

3.1 Basic policies

3. Policy training

Fn Fn Now

(past function trace)

User-space

ALPS scheduler backend

FaaS worker

eBPF maps

ALPS kernel hooks

Fn

4. Policy updating

Kernel-space
alps_execve()

E
x
e

c
u

te
 f

u
n

c
ti
o

n
 i
n

 k
e

rn
e

l

3.2 Policy fine-tuning

A
L
P

S
 s

c
h

e
d

u
le

r 
fr

o
n

te
n

d

6. Time slice & 
task order prediction

5. Profiled CPU time

P
ro

fi
le

d
 C

P
U

 t
im

e

Invoke

Figure 4: Overview of the ALPS scheduler architecture.

slice, then in the near future, the same function should be
assigned with the same or similar time slice.
Our new scheduler thus consists of two critical components.

The first, serving as a user-space frontend, reconstructs and
learns SRPT’s behavior from the past FaaS workloads. The
second, serving as a kernel-space backend, is a predictor that
steers CFS to inform scheduling decisions for future work-
loads by the same functions.

5 ALPS Design
5.1 Design Overview
This section provides a high-level overview of the ALPS
scheduler design. Figure 4 illustrates the overall ALPS archi-
tecture. ALPS consists of a scheduler frontend and a scheduler
backend. ALPS’ frontend sits in the user space, collects past
function traces, performs SRPT simulations on the collected
past workload, adaptively trains the scheduling policies using
a sliding window, periodically updates the policies deployed
in the kernel, and finally, obtains kernel statistics using eBPF
maps and feed them to the frontend for next-round simula-
tion. ALPS’ backend sits in the kernel space and performs
scheduling decision making based on the policies trained
from the user-space frontend. ALPS introduces a new Linux
system call alps_execve() to differentiate serverless func-
tion tasks against all other tasks running in the same host.
alps_execve() is the only system call for a FaaS platform to
use ALPS. We discuss how to port a FaaS platform (in our
case, OpenLambda [35, 57]) to use ALPS in §6.
Scheduling Workflow. Next, we describe the scheduling
workflow of ALPS as illustrated in Figure 4.
1. The frontend uses a sliding window to collect past func-

tion traces. The frontend collects detailed function request
information including the following: <function_UID, ar-
rival_time, termination_time, CPU_time>. The length of
the sliding window is dynamically determined by a config-
urable time period parameter W . ALPS depletes the sliding

window and starts refilling every W seconds. The function
trace dataset collected during the past W seconds is then
used for SRPT training and simulation.

2. The frontend performs SRPT simulation using the func-
tion trace collected from the sliding window in the last W
seconds. Application-experienced function execution dura-
tion (i.e., end-to-end turnaround time) fails to measure the
true CPU resource consumption in an ideal environment
without CPU contention. Therefore, ALPS uses eBPF to
profile the ideal CPU time for each function UID and feeds
the profiled statistics to the frontend for SRPT simulation
(see Step 5). The simulation generates SRPT behavior
statistics including the segmented waiting times (a func-
tion task might be preempted) and the time slice of each
function request.

3.1 ALPS trains basic policies in the frontend using the statis-
tics data generated by the SRPT simulation. This step is
described in detail in §5.2.1.

3.2 Real-world FaaS workloads have uncertainties including
mispredictions (variable function execution duration) and
workload shifts (dynamically changing load). To tackle
these issues, ALPS uses several strategies to fine-tune the
basic policies trained from the previous step We discuss
detailed fine-tuning strategies in §5.2.2.

4. ALPS deploys the learned policies in the kernel-space
backend via the eBPF maps.

5. ALPS uses eBPF to profile function executions and store
the function’s ideal CPU time2 into the eBPF maps. The
frontend periodically fetches functions’ ideal CPU time
for next-round SRPT simulation (Step 2).

6. In the kernel space, the ALPS backend queries the eBPF
maps to inform scheduling decisions from two CFS hook
points defined in two CFS functions: entity_before() and
__schedule(). We describe ALPS’ eBPF hooks in §5.3.
ALPS’s decoupled frontend/backend design provides an

important benefit. The frontend can directly utilize the ob-
servability and/or monitoring service of a FaaS platform [17,
24, 33, 57] to fetch fine-grained historical FaaS workload in-
formation. Thus, the frontend is essentially a look-aside OS
utility, which is a part of the “blackbox” kernel scheduler
but functions in the user space. Unlike other user-defined
kernel schedulers such as ghOSt [58] and Syrup [63], ALPS’
frontend does not need to be embedded into the application,
which requires application modification to explicitly intercept
requests. This design makes ALPS a transparent scheduler,
which can be flexibly applied to other FaaS platforms.

5.2 ALPS Frontend
5.2.1 Basic Learning Policies

This subsection presents how ALPS learns basic policies
based on the output of SRPT simulation.

2The ideal CPU time is defined as the function turnaround time minus
the waiting time, excluding the initial queuing delay and fragmented waiting
times caused by context switches.
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Learning a Task Ordering Policy. SRPT prioritizes tasks
with shorter remaining time. While it is seemingly straight-
forward to use predicted (remaining) execution time as the
task ordering priority, the predicted execution time is not able
to statistically capture the relative ranks of functions in the
entire workload if all function tasks, including both active and
inactive, are accounted. We observe that, under SRPT, those
tasks that experience shorter waiting time are the ones with
shorter execution time. Those tasks are typically positioned
more near the front rather than the end of the task queue.
Those tasks with shorter waiting time, if submitted at a differ-
ent time, are still highly likely to be ranked high among all
active tasks that arrive roughly at the same time. Therefore,
the metric of average waiting time can be used as an effective
approximation of a function’s relative rank with respect to all
other functions in the workload.

The training step is straightforward. ALPS calculates the
average waiting time w̄ti for each function i from the sim-
ulation results. ALPS then sorts all the functions that were
executed in the previous sliding window by wti and assigns
the rank values from a predefined rank range. For instance, a
range of (1 . . .100) means that the host is currently serving
function requests from a total of 100 unique function deploy-
ments, where each function deployment has a UID, regardless
of how many function requests have been received in the pre-
vious sliding window. The lower the rank value, the higher
priority it has. Since calculated function ranks are relative
values drawn from the same rank range, different functions
appeared at different sliding windows might be assigned to
same rank value. In this case, ALPS’ kernel backend breaks
the tie using the vruntime field of these two function tasks
(§5.3).
Learning a Time Slice Policy. After completing the SRPT
simulation, ALPS collects the time slice statistics and groups
them by function UIDs to produce a time slice vector t⃗si for
each function i. ALPS then computes an approximate, basic
time slice value for each function i:

tsi = train_ts(t⃗si) (1)

where train_ts() represents one of the four lightweight pre-
dictive models: average, linear regression, random forest, or
exponentially weighted moving average (EWMA).

The phenomenon that SRPT tends to penalize long tasks is
also evident in the time slice distribution generated by SRPT
simulations. By analyzing the SRPT behavior, we make the
following observations. First, short functions typically exhibit
a more predictable and stable time slice distribution than
long functions, because short functions have drastically less
number of context switches than long functions under SRPT.
Second, long functions have a much wider range in their time
slice distribution compared to short ones. On one side, long
functions are more frequently preempted by shorter functions,
leading to many small, fragmented time slices. Conversely,
there are cases where some long functions may experience

extremely long time slices. This could happen in a situation
where several long functions with similar execution duration
are running concurrently and SRPT chooses to execute the
relatively shorter functions first, causing head-of-line blocking
for the other long functions in the queue. We next discuss how
ALPS addresses this unpredictability issue using a strategy
that we call fine-tuning.

5.2.2 Time Slice Fine-tuning

ALPS fine-tunes the trained, basic time slice values using
heuristics in two sub-steps. The first sub-step adjusts the
basic time slices to mitigate the impact of misprediction. The
second sub-step considers the load of the system and applies
a penalty factor to all actively running functions when the
system is overloaded.
Tackling Unpredictability. As mentioned, trained time slices
may mispredict. Mispredictions fall into two categories: un-
derestimation and overestimation, both may cause perfor-
mance degradation. If, for example, the predicted time slice is
just a few ms shorter than the actual remaining execution time,
i.e., the function is not able to complete before the trained
time slice elapses, then this function would be preempted and
needs to wait for a new scheduling cycle before it gets resched-
uled to complete the rest few ms of execution time. Otherwise,
an unnecessarily long predicted time slice will cause extended
queuing delay for all other functions that are queued in the
same runqueue. The mitigation heuristic is defined as:

tsu
i = max(α× tsi −β× stdev(tsi),0) (2)

where tsi is the trained time slice of function i (Equation (1)
and t⃗si is the vector that contains all fragmented time slice
values of function i collected from the previous simulation.
The first term of the left argument of max applies a coefficient
α as a reward factor to extend the basic time slice in order to
alleviate the negative effect of underestimation. The second
term of the left argument of max applies a coefficient β as a
penalty factor to penalize functions with a high variation of
historical time slices. This penalty term also helps mitigate
execution time variance caused by the function input size (we
will discuss this more in §9). We apply max to safely set the
time slice value ≥0 (a value of 0 means the function will
follow CFS’ default time slice policy).
Tackling System Overload. SRPT simulation makes simpli-
fied assumptions and therefore has limitations. For example,
the sliding-window-based SRPT simulation is not able to well
capture the dynamic workload shifts, e.g., a sudden load in-
crease caused by a burst of concurrent function requests [51].
The SRPT simulation does not assume the cost of a con-
text switch in Linux, therefore neglecting the impact of such
cost under overloaded circumstances. To tackle this issue,
ALPS introduces a global penalty factor p that is stacked on
the unpredictability fine-tuning adjustment (Equation (2)) by
tss

i = min(p× tsu
i , ts

u
i ). The function min is to make sure that

the fine-tuned policy is at least less than or equal to the basic
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1 /* Definition of the time slice eBPF function */
2 struct time_slice_map;
3 SEC("sched/bpf_time_slice")
4 int BPF_PROG(__schedule, struct task_struct *prev,
5 sched_entity *se_prev){
6 s64 upper_bound = bpf_map_lookup_elem(
7 &time_slice_map, prev->func_id);
8 s64 delta = s->sum_exec_runtime
9 - s->prev_sum_exec_runtime;

10 if (upper_bound && delta < upper_bound){
11 /* needs to extend current task’s execution */
12 return 1;
13 }
14 return 0
15 }

Listing 1: Definition of the time slice eBPF function. Note that
further detail of our implementation (declaration, configuration, etc.)
is omitted for readability.

6265 /* Linux kernel v5.18-rc5 {kernel/sched/core.c} */
6266 void __sched notrace __schedule (unsigned int sched_mode){
6267 /* prev: the current task */
6268 struct task_struct *prev, *next;
6269 struct sched_entity *se_prev = &prev-se;
6270 ret = bpf_time_slice(prev, se_prev); /* Calling eBPF

func */
6271 if (se_prev->on_rq && ret){
6272 next = prev; /* ALPS branch */
6273 } else { /* CFS branch */
6274 next = pick_next_task(rq, prev, &rf);
6275 }
6276 clear_tsk_need_resched(prev);
6277 clear_prempt_need_resched();
6278 }

Listing 2: Hook point of the time slice eBPF function in Linux.

policy value. The penalty factor p is defined as:

p =

{
1 if l < θ

100+θ−l
100×γ

if l ≥ θ
, (3)

where l denotes the real-time CPU utilization, θ denotes the
CPU utilization threshold to toggle penalty, and γ denotes
the “reaction” to the high load. A lower γ results in a higher
penalty factor p. The higher the value of p, the more closely
the behavior of ALPS resembles that of CFS. We evaluate
the effectiveness of the fine-tuning strategies in §7.4 and the
sensitivity of the parameters in §7.5.

5.3 ALPS Backend
eBPF Maps and System Call. ALPS’ frontend learns two pol-
icy values for each function UID: an int-typed rank value that
represents the relative order of a particular function (§5.2.1),
and an s64-typed time slice value that estimates a “soft” up-
per bound of the average time slice that this particular func-
tion should run during each scheduling cycle (§5.2.1 and
§5.2.2). ALPS uses two eBPF maps, namely task_order_map

and time_slice_map, to store and share the learned policy
values that are indexed by function UIDs between the fron-
tend and the backend. ALPS introduces a new Linux system
call API alps_execve(), which is modified based on Linux’s

1 /* Definition of the task ordering eBPF function */
2 SEC("sched/bpf_task_ordering")
3 int BPF_PROG(struct sched_entity *a, struct sched_entity

*b){
4 int rank_a = bpf_map_lookup_element(&task_order_map,
5 container_of(a, struct task_struct, se)->func_id);
6 int rank_b = bpf_map_lookup_element(&task_order_map,
7 container_of(b, struct task_struct, se)->func_id);
8 if (rank_a == rank_b){ /* CFS branch */
9 return (s64)(a->vruntime - b->vruntime) < 0;

10 } else { /* ALPS branch */
11 return (s64)(pri_a - pri_b) < 0;
12 }
13 }

Listing 3: Definition of the task ordering eBPF function.

568 /* Linux kernel v5.18-rc5 {kernel/sched/fair.c} */
569 bool entity_before(struct sched_entity *a, struct

sched_entity *b){
570 return bpf_task_ordering(a, b); /* Calling eBPF func */
571 }

Listing 4: Hook point of the task ordering eBPF function in Linux.

original execve [11] system call. alps_execve() passes a new
argument func_id and stores it in a new field func_id within
the kernel data structure task_struct. This enables ALPS’
backend eBPF function to identify learned function policies
by the function UID from within the kernel. ALPS’ frontend
updates the eBPF maps through an eBPF helper function
bpf_map_update_elem once every training loop (from Step 1
to Step 4 in Figure 4). ALPS’ backend queries the learned
policies stored in the eBPF maps for function scheduling in
the kernel space. This subsection describes ALPS’ backend
eBPF functions that implement the time slice policy and task
ordering policy.
Time Slice eBPF Function. The __schedule() function is the
core logic that implements CFS task scheduling and context
switch. Upon an interrupt (e.g., a timer interrupt) or an explicit
blocking event (e.g., mutex or semaphore), __schedule() is
called to pick the next task to run. ALPS hooks an eBPF func-
tion called bpf_time_slice() (Listing 1 and 2) in line 6270
within __schedule() to determine whether to extend the time
slice of the current task prev. Specifically, bpf_time_slice()
reads the time slice value into a variable called upper_bound

associated with the function UID (line 6 and line 7). Then
it checks if the CPU time that this function has consumed
within the current scheduling tick (delta) is still shorter than
the learned time slice (line 10). If so, bpf_time_slice() re-
turns 1 and extends the current time slice (line 6,272). Other-
wise, if the learned time slice already expires, or if the eBPF
map does not find a populated entry corresponding to this par-
ticular function UID (in which case bpf_map_lookup_elem()

return 0, and this function has not been trained by the fron-
tend), bpf_time_slice() returns 0. If this is the case, ALPS
falls back to the CFS branch, as shown in line 6,274.
Task Ordering eBPF Function. The kernel function
entity_before determines the rank of the CPU tasks in the
runqueue by vruntime (§2.2). ALPS overrides this logic by us-
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ing an eBPF function bpf_task_ordering() (Listing 3 and 4)
bpf_task_ordering() fetches the learned task ranks from the
mapping data structure task_order_map then uses the ranks
to determine the function task order in the runqueue (line
11). Note that if the rank information is missing from the
eBPF map (in which case bpf_map_lookup_elem() return 0,
the highest rank in ALPS’s ranking system), or if both func-
tions have the exact same rank value, ALPS falls to the CFS
branch (line 9).

6 Implementation
We have implemented ALPS on Linux (v5.18-rc5) and ported
ALPS to OpenLambda [35,57], an open-source FaaS platform
written in Go. OpenLambda supports two types of sandboxes,
the SOCK container [71] and the Docker container [9]. Our
implementation of ALPS supports Docker-based serverless
functions. We modified Docker (v20.10.25) to execute func-
tions under ALPS, enabling seamless integration with other
FaaS platforms that use Docker containers. Specifically, we
made 135 lines of code (LoC) modifications in OpenLambda
and 223 LoC changes in Docker. ALPS can be easily ported
to other FaaS platforms with minimal engineering effort.

We made two modifications to OpenLambda in order for it
to use ALPS for function scheduling. (1) We modified Open-
Lambda’s JSON configuration schema by adding a new field
for function UID so that the OpenLambda worker can pass
the function UID to the underlying function sandbox layer
(the Docker containers). (2) We modified Docker (spanning
Docker client, containerd, and runc) to use ALPS’ new system
call alps_execve() (§5.3) to execute and schedule serverless
functions using ALPS in the kernel. The ALPS frontend was
implemented using Python and is a generic module that can be
used as a drop-in module in order to support any open-source
FaaS platforms.

7 Evaluation
7.1 Experimental Methodology
Experimental Setup. We deploy ALPS and OpenLambda on
a bare-mental machine with 56 CPUs and 256 GB memory
running Linux Ubuntu 22.04.1 LTS. The bare-metal machine
provides us exclusive access to the hardware to avoid the
impact of random multi-tenant interference.
Function Applications. We implement a serverless func-
tion benchmark suite that includes the following six differ-
ent serverless function applications based on the serverless
benchmark [48,66,88]: Fibonacci Sequence (fib), Breath First
Search (bfs), Minimum Spanning Tree (mst), Page Rank (pr),
Feature Extraction (fe), and Float Operation (fo). We use
different parameters to control the execution duration of each
function application.
Workload Generation. We generate FaaS workloads from
publicly available FaaS workload traces collected from
Huawei Cloud Functions [61] and Azure Functions [77]. The
Huawei trace datasets contain invocation requests spanning

Table 1: Probability distribution of function execution duration
ranges among the four function groups for the two traces.

Group Duration Range Huawei Azure
1 0-50 ms 69.8% 42.9%
2 50-200 ms 23.2% 17.2%
3 200-400 ms 6% 16.7%
4 ≥ 400 ms 1% 23.2%

200 unique function applications collected in a period of 141
days, while the Azure trace datasets feature invocation re-
quests from 82,375 unique function applications spanning a
period of 14 days. To downscale, we sampled a total of 15,000
invocation requests from Day 1’s workloads in both datasets
and Table 1 shows the execution duration distribution across
four ranges (in ms): (0,50], (50,200], (200,400] and [400,∞) as
four function groups. These two production workloads show
distinct behaviors. The Huawei workload exhibits a highly
skewed distribution towards short functions, with over 93% of
sampled function requests running 200 ms or less. In contrast,
the sampled Azure workload has a more balanced distribution
compared to the Huawei one. The distribution skew results in
a higher workload throughput in terms of requests per second
(RPS) when compared to the Azure one: the average RPS of
our sample workload is 190 and 133 for Huawei and Azure,
respectively.

We created 50 function deployments based on the six func-
tion applications from our benchmark suite by varying the
function parameters. We then mapped the sampled invoca-
tion requests to these function deployments. The execution
duration of a serverless function may have variance due to
different resource configurations [50] and/or variable input
sizes [86]. Our analysis of the Huawei and Azure traces con-
firmed this: the majority of functions in both workloads have
a variance of up to 25% of the average execution duration. To
add variance to the function execution duration for a particu-
lar function deployment, we randomly pick a parameter from
its configured parameter range. For example, the execution
duration of a function deployment named mst1 on a fully con-
nected graph with 5-10 vertices (the number of vertices is the
parameter for mst) varies from 20-40 ms, therefore we map
<mst1, [5,10]> to Group 1 (Table 1) and randomly select a pa-
rameter from the [5,10] parameter range when the workload
generator issues an invocation request targeting mst1.

We configure the inter-arrival times (IATs) of requests to
follow the Poisson distribution. We then scaled up or down
the IAT configuration to vary the load level of the generated
workloads from 70% to 90% of average CPU utilization. In
our experiments, by default, α = 2, β = 1, γ = 1, θ = 50 and
sliding window is set to 5s.

Goals. Our evaluation aims to answer the following questions:

• How does ALPS perform compared with different sched-
ulers under various load levels (§7.2 and §7.6)?

• How does platform-level overhead affect the performance
improvement contributed by ALPS (§7.3)?
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Figure 5: Performance CDF of the Huawei (top) and Azure (bottom) sampled workloads under different load levels.
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Figure 6: Percentile breakdowns of function execution duration of the Huawei (top) and Azure (bottom) sampled workloads at 90% average
CPU utilization.
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Figure 7: Comparison of number of context switches.

• Is ALPS’ time slice fine-tuning strategy effective (§7.4)?
• How do ALPS’ different parameter configurations affect its

performance (§7.5)?
• What is ALPS’ frontend and backend cost (§7.7)?

7.2 End-to-End Performance
We first compare the end-to-end workload performance of
ALPS against baseline schedulers under different load levels.
Figure 5 reports the CDFs of the function execution duration
across four function groups. CFS 90 represents the system us-
ing CFS as the scheduling policy under 90% CPU utilization.
We can see that ALPS outperforms both CFS and SFS for all

four groups under all three load levels. The performance gap
between ALPS and SFS/CFS becomes wider from Group 1 to
Group 4 as well as from low load to high load. For example,
ALPS achieves a 99th percentile tail execution duration of
198 ms under the 70% CPU utilization for Group 1 given the
Huawei workload, which is 10.8% and 15.1% shorter than
that of SFS and CFS, respectively. SFS’ medium execution
duration, under the 90% CPU utilization is 1.1× and 1.5×
higher than that of ALPS under Group 1 and Group 4, respec-
tively, for the Azure workload (Figures 5 and 6). Again, for
the Azure workload, 70.1% of Group 4’s function requests
finish within 1 second, while only 50.9% and 5% of requests
finish within 1 second under SFS and CFS, respectively.

Overall, ALPS achieves an improvement of average exe-
cution duration that is 20.6% to 27.3% lower than SFS and
34.1% to 57.2% lower than CFS, respectively (Figure 6). This
is also evident from ALPS’ reduction on the number of con-
text switches when compared to SFS and CFS, as shown in
Figure 7. ALPS has significantly better performance than CFS
as ALPS uses workload-aware learning to inform scheduling
decisions. ALPS outperforms SFS because, rather than pre-
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Figure 8: Time reduction contributed by ALPS w.r.t. the function
execution duration achieved by CFS, Openlambda’s overall service
time (OL), and Huawei Functions’ overall service time (HF).

dicting a coarse-grained time slice and applies it blindly to
all functions within the current time window, ALPS learns
the behaviors of individual functions and makes fine-grained
scheduling decisions at per-function level.

The performance superiority of short functions under SRPT
does not come for free: there is a tradeoff in balancing the
scheduler efficiency for both short and long jobs [85]. SRPT
outperforms ALPS only for Group 1 and 2 for the shortest
function requests. This trend reverses in favor of ALPS for
the other two groups under the Huawei workload. For Group
3, with functions completing in the range of 200-400 ms,
73.3% of the ALPS requests had a shorter execution duration
compared to SPRT. SRPT saw a 1.5× higher 99th percentile
tail execution duration than that of ALPS (Figure 6d top).
The performance benefits of ALPS come from the design that
unifies SRPT learning and proportional sharing.

7.3 Time Reduction w.r.t. Overall Service Time
FaaS platforms incur platform-level overhead, including
platform-level scheduling and network delay [61]. The over-
all function service time includes both the platform-level
overhead and the function execution duration. The Huawei
Functions workload study reveals that platform-level cost ac-
counts for only 1-10% of the function execution duration,
with a medium platform-level overhead of 1 ms and more
than 95% of all requests having a platform delay less than
10 ms [61]. Our measurement of OpenLambda indicates that
OpenLambda has an average platform-level overhead of 11
ms, which is less efficient than Huawei. We used 11 ms as
the platform delay for OpenLambda. To simulate Huawei
Functions’ platform delay, we randomly drew a value from
the 1–10 ms range for each function request. We observe from
Figure 8 that ALPS’ contribution to time reduction holds even
when the platform-level cost is considered. Specifically, for
the Huawei workload, the medium time reduction decreases
slightly from 41.9% to 39.4% and 41.2% for the OpenLambda
and Huawei Functions platform, respectively. Consequently,
reducing the last-mile function execution duration can greatly
reduce the end-to-end service time.

7.4 Ablation Study
In this set of experiments, we perform an ablation study to
assess the contribution of the individual time slice fine-tuning

Figure 9: Ablation test of unpredictability and system overload
adjustment.

heuristics (§5.2.2). We tested the following configurations:
Config (1): ALPS with both fine-tuning heuristics enabled,
Config (2): ALPS without fine-tuning, Config (3): ALPS with
unpredictability fine-tuning enabled, and Config (4): ALPS
with system overload fine-tuning enabled. Figure 9 plots the
results. We find that, overall, ALPS with both heuristics en-
abled achieves the best performance, with an average exe-
cution duration reduction of 28.9% compared to Config (2),
demonstrating the effectiveness of our fine-tuning heuristics.
The improvement is significant, especially for the tail latency:
with both heuristics enabled, ALPS reduces the 99th percentile
latency by 51.6% and 43.3% compared to ALPS with Con-
fig (3) and Config (4), respectively. This is because our fine-
tuning strategies made more conservative time slice allocation
decisions in the face of unpredictable worst-case scenarios
such as long functions’ volatile time slice distribution and
sudden request bursts. The conservative scheduling decisions
effectively mitigated long function starvation in a way similar
to what a proportional-share scheduler would do.

7.5 Sensitivity Analysis
Next, we conduct a sensitivity analysis along the following
dimensions.
Impact of Learning Methods. We first test the impact of
different learning methods, average (or Avg, ALPS’ default
method), linear regression (LR), random forest (LF), and
EWMA, on overall function performance. As shown in Fig-
ure 10, varying the learning methods does not have a huge
impact on ALPS’ overall performance, as long as the learning
method can capture the magnitude of a function’s average
time slice under SRPT. Among the four methods, EWMA
observed a higher tail latency than the other three. This is be-
cause EWMA is biased towards more recent workload history,
thus causing high variance in time slice prediction, especially
under non-stationary workload behavior (e.g., IAT shifts).
Impact of Sliding Window Size. We then test the impact
of the sliding window size on ALPS’ performance. We vary
the sliding window size from 5 to 30 seconds and results in
Figure 11 indicate that a smaller sliding window might yield
better scheduling decisions. For example, a sliding window
of 30 seconds resulted in an average execution duration of
148 ms, which is 12.7% higher than a sliding window of 5
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Figure 15: Comparing with ghOSt-ALPS.

seconds. This suggests that basing scheduling decisions on
most recent temporal behavior, as opposed to learning from a
longer workload history, helps improve the performance of
FaaS workloads.
Impact of Fine-Tuning Parameters. We analyze the impact
of fine-tuning parameters on function performance. We use
a fixed θ as 50 in Equation (3) because we observed that all
schedulers perform similarly under a load lower than an av-
erage CPU utilization of 50%. We therefore only tested the
sensitivity of the workload performance on different values
of α, β for Equation (2) and γ for Equation (3). Figure 12 sug-
gests that none of the four α configurations exhibits a clear
advantage over other values. Among these α values, α = 1
shows a slightly worse performance because an underestima-
tion of time slice by a small α may introduce more (unneces-
sary) context switches for short functions. Similarly, varying
the configuration of β and γ does not significantly affect the
overall performance. With regard to β performance shown in
Figure 13, overall, a larger β tends to achieve a slightly better
performance, as a large value of β poses a greater penalty
that can better mitigate the head-of-line blocking caused by
unpredictable time slices of long functions. For gamma, as
shown in Figure 14, among all four configurations, setting γ

as 1 yields the best performance.

7.6 Comparing against ghOSt
ghOSt [58] is a Linux scheduling framework that delegates
kernel scheduling decisions to user-space applications. ghOSt
allows user-space application to make scheduling decisions
as transactions through a user-space agent and send them
to the kernel scheduler via message queues. To demonstrate
the effectiveness of the ALPS scheduling algorithm, we im-
plement ALPS in C++ on ghOSt, since ghOSt only supports
C++ applications. We also implement a Fibonacci Sequence
function application and used the sampled Azure workload

Table 2: ALPS’ frontend cost of SRPT simulation and policy learn-
ing (in second).

Methods 100 200 500 1,000 2,000 5,000
Avg 0.005 0.006 0.007 0.008 0.01 0.013
LR 0.009 0.009 0.01 0.011 0.012 0.016
RF 0.079 0.08 0.083 0.087 0.094 0.127

EWMV 0.006 0.006 0.007 0.007 0.009 0.014
Simulation 0.007 0.015 0.039 0.079 0.161 0.406

trace to drive the experiment. We measure the workload per-
formance of vanilla ALPS against a ghOSt-based ALPS. For
performance comparison, we also test the same workload us-
ing vanilla CFS and a (simplified) ghOSt-based CFS [12]. We
tested the schedulers under a high load with an average CPU
utilization of 90%.

We make several observations from the results shown in
Figure 15. (1) ALPS ported to ghOST is effective in improv-
ing the function performance compared to both versions of
CFS. (2) The ghOSt framework itself introduces non-trivial
runtime overhead for serverless function scheduling. For the
top 50% shortest function requests, ghOSt-ALPS saw an aver-
age execution duration of 111.4 ms, which is 25.3% higher
than that of vanilla ALPS. The reason behind this is that
ghOSt’s user-space scheduling agent needs to constantly com-
municate with the kernel scheduler via transaction messages.
Since serverless functions are ephemeral and ALPS needs to
frequently adjust the function time slices for many concur-
rent short-lived functions at the same time, this generates a
large number of scheduling transactions that need to be com-
pleted within a short amount of time, a non-trivial overhead of
more than 20% for short functions. ALPS, on the other hand,
makes scheduling decisions directly in the kernel by querying
policies learned from the user space, therefore avoiding the
message communication and transaction cost.

7.7 ALPS Cost
Table 2 reports ALPS’ frontend cost. With an input size of
100 function request records (ALPS’ default configuration),
calculating the average time slice and SPRT simulation takes
an average of 5 ms and 7 ms, respectively. Even when scaling
the input size to 5,000, the simulation takes less than a second
to finish. The frontend costs are negligible with respect to the
default sliding window size of 5 seconds.

ALPS’ backend cost mainly comes from two eBPF hook
points: bpf_time_slice() and bpf_task_ordering(). Table 3
summarizes the cost associated with these eBPF hook points
and other operations. The average cost of bpf_time_slice()
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Table 3: ALPS’ backend cost. Item 5 and 6 are for reference.
1. ghOSt local scheduling (1 per sched) 1,613 ns
ALPS backend
2. bpf_task_ordering() (0.46 per sched) 66 ns
3. bpf_time_slice() (1 per sched) 125 ns
4. ALPS overall backend cost (per sched) 155 ns
5. Syscall cost 459 ns
6. CFS process context switch cost 3,512 ns

and bpf_task_ordering() is 66 ns and 125 ns, respectively.
The bpf_time_slice() hook is invoked once with each
scheduling decision made by the kernel’s __schedule func-
tion, whereas bpf_task_ordering() is sporadically called
during a context switch. Profiling reveals that a single con-
text switch triggers an average of 8.01 scheduling decisions,
with bpf_task_ordering() being invoked 3.69 times per con-
text switch. Therefore, the average invocation frequency of
bpf_task_ordering() is 0.46 times per scheduling decision.
This combined overhead of 155.36 ns is significantly lower
than ghOSt’s local scheduling overhead (1,613 ns per schedul-
ing decision: the message delivery to local agent cost of 725
ns plus the local scheduling transaction cost of 888 ns [58]).

8 Related Work

Serverless Function Scheduling. CFS-LLF [59] modifies
CFS to grant higher priority to long-tail, least loaded functions.
CFS-LLF assumes function sandbox processes (Kubernetes
pods) are long-running, therefore can exploit PELT [27] to
track function process load. ALPS assumes each function
creates an ephemeral process, thus demanding a completely
different solution. A body of research is focused on distributed
platform-level function scheduling [64, 65, 79–81, 87]. Her-
mod [65] proposes execution-time-agnostic early-binding and
processor-sharing load balancing strategies for platform func-
tion scheduling. These solutions would benefit from effective
OS scheduling by ALPS.
Approximating SRPT. Improving turnaround time by ap-
proximating SRPT is a known approach that has been in-
vestigated in many domains [52, 55, 56, 76, 78]. A series of
systems use request sizes as the hint to approximate SRPT.
Size-based scheduling gives preference to requests for small
files targeting web servers serving static HTTP requests [56].
Similarly, Harchol-Balter et al. applied SRPT to webserver
request scheduling based on sizes of Linux kernel socket
buffers [55]. Inspired by these works, ALPS presents a practi-
cal kernel scheduler that unifies approximate SRPT schedul-
ing and proportional-share scheduling to address new chal-
lenges in emerging, real-world FaaS workloads.
eBPF Augmentation. Plugsched [67] proposes an efficient
live update mechanism for Linux schedulers in datacenter
workloads. Plugsched targets a different dimension of sched-
uler adaptability (less-frequent, coarse-grained, datacenter-
wide code update), while ALPS focuses on much finer-
grained job-level scheduling policy adaptability for FaaS.

SPRIGHT [74] uses eBPF to enable efficient shared-memory
processing for serverless functions.

9 Discussion
Fairness. Proportional-share CPU schedulers like Linux’s
CFS and Lottery Scheduling [82] were designed to optimize
long-term fairness by evenly allocating CPU time across all
(presumably long-running) jobs. These schedulers roughly
follow Jain’s fairness index [60], which measures throughput
variability across users. However, they may not provide the
desired fairness to short-lived jobs, as transient jobs add ran-
domness to scheduling [41]. A more effective fairness metric
for short-job-dominant workloads with heterogeneous CPU
demand remains an open research problem. CFS tends to pe-
nalize all jobs equally, leading to disproportionately long wait-
ing times for short functions due to its focus on long-running
jobs. To address this, ALPS dynamically adjusts the waiting
time based on the execution duration. Additionally, ALPS
maintains fairness for long-running functions by reusing CFS,
addressing SRPT’s starvation issue (§5). Our profiling shows
that ALPS minimizes the average waiting-time to CPU-time
ratio for short functions, with a ratio of 0.96% and 12.94% for
functions in Group 1 and Group 3, respectively. In contrast,
CFS’ ratio is significantly higher at 4.04% and 63.13%.
Impact of Function Input Size. Serverless function execu-
tion durations are variable and are proportional to variable
input sizes [43, 68, 77]. Researchers propose highly efficient
mechanisms for preemption, context switch, and core schedul-
ing policies to optimize microsecond-level datacenter network
requests with variable service time [49, 62, 73]. These works
may not be directly applicable to FaaS as FaaS workloads ex-
hibit much higher execution time variance than microsecond-
level datacenter requests. ALPS takes into account the impact
of input size variability in two ways. (1) ALPS considers the
standard deviation of the historical execution duration and ap-
plies a penalty factor to functions with high execution duration
variance (§5.2.2). (2) The experimental workload generator
introduces variance into the function execution duration to
reflect real-world workload behaviors (Table 1).

10 Conclusion
ALPS is a new kernel scheduler design that is radically differ-
ent from existing kernel scheduling solutions. ALPS continu-
ously learns FaaS workload intelligence from an offline oracle
scheduler SRPT in the user space and deploys the learned poli-
cies into the kernel using eBPF to inform function scheduling
decisions. We have built a prototype of ALPS, comprising a
user-space frontend that learns from SRPT and a kernel-space
backend that hooks eBPF functions to Linux CFS. Extensive
evaluation shows that ALPS improves the performance for
both short functions and long functions compared to CFS
and state-of-the-art application-aware schedulers (SFS and
ghOSt). ALPS is open-sourced and is available at:

https://github.com/ds2-lab/ALPS.
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