
This paper is included in the Proceedings of the
2024 USENIX Annual Technical Conference.

July 10–12, 2024 • Santa Clara, CA, USA
978-1-939133-41-0

Open access to the Proceedings of the
2024 USENIX Annual Technical Conference

is sponsored by

Scalable and Effective Page-table
and TLB management on NUMA Systems

Bin Gao, Qingxuan Kang, and Hao-Wei Tee, National University of Singapore;
Kyle Timothy Ng Chu, Horizon Quantum Computing; Alireza Sanaee, Queen Mary

University of London; Djordje Jevdjic, National University of Singapore
https://www.usenix.org/conference/atc24/presentation/gao-bin-scalable

Scalable and Effective Page-Table and TLB Management on NUMA Systems

Bin Gao1, Qingxuan Kang1, Hao-Wei Tee1, Kyle Timothy Ng Chu2, Alireza Sanaee3, and Djordje Jevdjic1

1National University of Singapore 2Horizon Quantum Computing 3Queen Mary University of London

Abstract

Memory management operations that modify page-tables, typ-
ically performed during memory allocation/deallocation, are
infamous for their poor performance in highly threaded appli-
cations, largely due to process-wide TLB shootdowns that the
OS must issue due to the lack of hardware support for TLB co-
herence. We study these operations in NUMA settings, where
we observe up to 40x overhead for basic operations such as
munmap or mprotect. The overhead further increases if page-
table replication is used, where complete coherent copies
of the page-tables are maintained across all NUMA nodes.
While eager system-wide replication is extremely effective
at localizing page-table reads during address translation, we
find that it creates additional penalties upon any page-table
changes due to the need to maintain all replicas coherent.

In this paper, we propose a novel page-table management
mechanism, called Hydra, to enable transparent, on-demand,
and partial page-table replication across NUMA nodes in
order to perform address translation locally, while avoid-
ing the overheads and scalability issues of system-wide full
page-table replication. We then show that Hydra’s precise
knowledge of page-table sharers can be leveraged to signifi-
cantly reduce the number of TLB shootdowns issued upon any
memory-management operation. As a result, Hydra not only
avoids replication-related slowdowns, but also provides signif-
icant speedup over the baseline on memory allocation/deallo-
cation and access control operations. We implement Hydra in
Linux on x86_64, evaluate it on 4- and 8-socket systems, and
show that Hydra achieves the full benefits of eager page-table
replication on a wide range of applications, while also achiev-
ing a 12% and 36% runtime improvement on Webserver and
Memcached respectively due to a significant reduction in TLB
shootdowns.

1 Introduction

Translation Lookaside Buffers (TLBs) are tiny hardware struc-
tures that cache recently used virtual-to-physical address map-

pings from the page-tables. Since TLBs must be accessed
before every memory operation, their latency is critical to the
performance of the entire system, which is why they must be
small and tightly integrated into every CPU core. Given that
every core has its own TLB that independently caches page-
table entries (PTE), a mechanism that enforces coherence of
PTEs across all TLBs that cache them is required for correct-
ness. Unfortunately, most modern multi-core architectures do
not provide hardware support for TLB coherence, but instead
provide privileged instructions for invalidation of TLB entries,
which the operating system (OS) calls upon any change to
the page-tables. Such instructions can invalidate TLB entries
only on the core that executes them; to invalidate TLBs on
all other cores, OSes use an expensive, IPI-based mechanism
to send an interrupt to each core individually due to the lack
of support for flexible multi-cast delivery [38, 50], in a proce-
dure that’s called TLB Shootdown. Furthermore, when a PTE
changes, the OS lacks the information about which TLB in the
system currently caches the modified PTE, and thus must send
shootdowns indiscriminately to all cores that currently run a
thread of the same process, and it must do so synchronously
for correctness, causing delays of several microseconds or
even tens of microseconds on big machines [38].

The TLB coherence operations particularly affect multi-
socket and multi-node systems, which data centers have
shifted towards in order to continue to scale up the CPU
performance and memory capacity in the post-Moore’s law
era. These systems connect multiple CPUs to multiple mem-
ory modules in a NUMA fashion. Unfortunately, this has a
dramatic impact on TLB coherence. To illustrate, Figure 1
shows the performance of mprotect, a Linux syscall that
changes the permission bits in page-table, when called for a
4KB page on an 8-socket machine. This experiment is per-
formed using the testbed explained in Section 5.1. In this ex-
periment, a single thread runs mprotect in a loop, repeatedly
flipping a single bit in a single PTE. Additionally, we run a
varying number of spinning threads on every socket. The spin-
ning threads mimic the ideal behavior of scale-out workloads
where numerous threads perform independent computations

USENIX Association 2024 USENIX Annual Technical Conference 445

0 1 2 4 8 16

Linux

Mitosis

Hydra w/o TLB Opt

Hydra with TLB Opt

Runtime

Linux

Mitosis

Hydra w/o TLB Opt

Hydra with TLB Opt

TLB Shootdown

N
o
rm

al
iz

ed
 R

u
n
ti

m
e

(S
lo

w
d
o
w

n
)

0

10

20

30

40

T
rig

g
ered

 T
L

B
 S

h
o
o
td

o
w

n
s

0

5×107

10×107

Spinning Threads Per Socket

a) mprotect on baseline Linux(v4.17), Mitosis, and Hydra

0 1 2 4 8 16

Linux-6.5

Linux-6.5 w/o TLB Opt

Linux-6.5 with TLB Opt

Runtime15.5X

Linux-6.5

Linux-6.5 w/o TLB Opt

Linux-6.5 with TLB Opt

TLB Shootdown

N
o
rm

al
iz

ed
 R

u
n
ti

m
e

(S
lo

w
d
o
w

n
)

0

10

20

30

40

T
rig

g
ered

 T
L

B
 S

h
o
o
td

o
w

n
s

0

5×107

10×107

Spinning Threads Per Socket

b) mprotect on baseline Linux(v6.5.7) and Hydra

Figure 1: Impact of page-table replication, and the TLB shootdown optimization on mprotect. Hydra reduces the run time slow
down by up to 40x, and mitigates the TLB shootdown overhead by leveraging the information about page tables on each socket.
All values in both plots are normalized to the baseline Linux v4.17 without replication.
with limited data-sharing and synchronization among them.
As Figure 1 shows, the TLB shootdowns cause a 40x per-
formance degradation for mprotect on the baseline Linux
v4.17 when spinning threads are added to other sockets. This
problem persists in newer kernels, such as v6.5.7, with up
to 15.5x performance degradation as shown in Figure 1b.
Note that the new kernel shows nominally better scalability,
as it degrades performance by only 15.5x, vs. 40x with v4.17.
However, this is due to the fact that the baseline mprotect
performance (without spinning threads) is about 3x worse
compared to Linux v4.17.1 Also note that the impact of shoot-
downs sent to spinning threads on remote sockets is signif-
icantly higher compared to the shootdowns sent to threads
that are spinning on the same socket as where mprotect runs,
as Figure 2a shows. This suggests that the performance of
virtual memory (VM) operations is undesirably held back by
the number of threads, even in the idealized scale-out sce-
nario wherein these threads do not exhibit any data sharing
and perform no synchronization operations such as barriers
or locks. As data centers scale beyond multi-socket systems
to multi-node systems where a single process can span over
multiple compute nodes connected via remote memory proto-
cols like CXL [41, 45], ensuring TLB coherence across the
logical process becomes increasingly expensive. Moreover, as
VM abstraction continues to play an ever more important role
in simplifying programming models for emerging systems
such as heterogeneous and disaggregated memory architec-
tures [29, 30, 60, 62], keeping the overhead of VM operations
low is crucial to guarantee future performance.

Apart from being over-conservative on TLB coherence op-
erations upon page-table updates, page-table reads, which
happen during page walks as a result of TLB misses, are also
significantly affected by the NUMA architecture. Mitosis [1]
demonstrated that the performance penalty of the requested
page-table entry (PTE) being allocated on a remote NUMA
node is often higher than the penalty of the requested data

1Linux v4.17 performs better in absolute terms for all our workloads, and
unless otherwise mentioned, all results we show are based on v4.17.

N
o
rm

al
iz

ed
 R

u
n
ti

m
e

0

2

4

6

8

N
o
rm

alized
 R

u
n
tim

e

0

1

2

3

4

5

a) b)

1.00x

2.62x

8.13x

No spinning threads

7 spinning threads on local socket

7 spinning threads across remote sockets

7 remote spinning threads + Hydra TLB Opt

Linux

Mitosis

Hydra TLB Opt

1.00x

2.30x

0.36x0.99x

Figure 2: a) The slowdown of mprotect on Linux with lo-
cal threads spinning on the local vs. remote sockets, b) The
slowdown of Mitosis and Hydra over Linux when the range
of mprotect is 512KB; note that Mitosis sees a slowdown,
while Hydra experiences a speedup.

page being remote; this is particularly true for big data appli-
cations that experience high TLB miss rates [35, 62].

In this work, we introduce a novel page-table management
mechanism, called Hydra, that seeks to simultaneously im-
prove the performance of both page-table READ and UPDATE
operations in NUMA systems. Hydra enables transparent,
partial, and on-demand page-table replication across NUMA
nodes to ensure that address translations for local data is sat-
isfied within the same NUMA node. Hydra achieves this by
creating replicas of individual PTEs on the NUMA node that
requests them. In doing so, Hydra avoids costly and inef-
fective system-wide page-table replication along with any
coherence actions that would arise from such replication, as
it limits the scope of replication and the related coherence
actions only to nodes that actually share the same PTEs.

We further observe that Hydra’s precise and coherently
maintained knowledge of which sockets contain copies of any
individual page-table can be leveraged to reduce the scope
of TLB shootdowns sent upon any change to that page-table
— an effective solution to the scalability bottleneck due to
sending IPIs indiscriminately to all cores running the same
process. Namely, Hydra’s lazy on-demand replication of page-

446 2024 USENIX Annual Technical Conference USENIX Association

System
Translation

Performance
Selective

Replication
Implicit
Policy

Lazy
Replication

Efficient
PTE Updates

Efficient
Migration

NUMA
Scalability

Linux ✗ ✗ N/A N/A ✗ ✗ ✗

Mitosis ✓ ✗ ✗ ✗ ✗ ✓ ✗

Hydra ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Comparison of state-of-the-art solutions in NUMA
support for page-table management.

tables ensures that the following invariant holds by design:
if there is no replica of a given page-table on a given socket,
there can be no thread running on that socket that currently
has the corresponding PTE in its TLB; if any core on the
socket has the PTE in its TLB, then the PTE must also exist
in a local replica by design. As a consequence of this invari-
ant, expensive TLB shootdowns do not need to be sent to
any thread running on a socket that does not have a copy of
the corresponding page-table. This allows Hydra to safely
filter out many TLB shootdowns, dramatically improving the
performance of memory management operations that change
page-tables, as well as improving the performance of threads
that avoid receiving unnecessary TLB shootdowns.

We implement Hydra in Linux (v4.17 and v6.57) and show
that Hydra achieves the full benefits of page-table replication
for page-table READs, as well as a 12% and 36% improve-
ment in runtime on Apache Webserver and Memcached due
to more efficient page-table UPDATES. Hydra minimizes
the memory footprint and page-table coherence overheads,
and avoids the scalability limitations of eager replication. As
shown in Figure 1, Hydra is able to entirely eliminate the
NUMA effect of operations such as mprotect, whose per-
formance is improved by nearly 40x. We are open-sourcing
Hydra to encourage more research in this area.

The rest of the paper is organized as follows. Section 2
presents the background on page-table management on
NUMA systems. Sections 3 and 4 describe the design princi-
ples and implementation details of Hydra. Section 5 presents
our evaluation methodology and results. Section 6 provides
discussion and directions for future work. Section 7 discusses
related work and Section 8 concludes the paper.

2 Background

2.1 Virtual Memory

Page-tables are a key component of most modern operating
systems and are used to map the virtual address space of a
process to the physical memory available on the hardware
platform. As page-tables are hierarchically organized in mul-
tiple levels, conducting a full page-table walk usually requires
multiple memory accesses [22] and on most systems it is done
by hardware for performance reasons.

Translation Lookaside Buffers (TLBs) are used to acceler-
ate the process of address translation by caching virtual-to-
physical mappings that are frequently used. Unfortunately,

HashjoinCannealBtree XSbench Graph500

Page Table Walking Non Page Table Walking

N
o

rm
al

iz
ed

 R
u

n
ti

m
e

0
1

2
3

L
P

L
D

L
P

R
D

L
P

R
D

I
R

P
L

D
R

P
IL

D
R

P
R

D
R

P
IR

D
I

L
P

L
D

L
P

R
D

L
P

R
D

I
R

P
L

D
R

P
IL

D
R

P
R

D
R

P
IR

D
I

L
P

L
D

L
P

R
D

L
P

R
D

I
R

P
L

D
R

P
IL

D
R

P
R

D
R

P
IR

D
I

L
P

L
D

L
P

R
D

L
P

R
D

I
R

P
L

D
R

P
IL

D
R

P
R

D
R

P
IR

D
I

L
P

L
D

L
P

R
D

L
P

R
D

I
R

P
L

D
R

P
IL

D
R

P
R

D
R

P
IR

D
I

Figure 3: Impact of data and page-table placement on per-
formance of various applications; L - local, R - remote, P -
page-tables, D - data, I - with the interference of other appli-
cations on inter-socket traffic. The impact of page-table walks
on the run time is significantly high often higher than data
access. Detailed settings are show in Table 2.

the growth of main memory capacity has far outpaced the
growth of TLB sizes in recent years. As a result, TLB cov-
erage has stagnated which results in a higher TLB miss rate
[6, 19, 23, 36, 54, 55]. When a TLB miss occurs, the Memory
Management Unit (MMU) has to perform a page-table walk
to retrieve the appropriate Page-Table Entry (PTE). This is
a time-consuming process that can take several hundreds of
cycles to complete [59]. As a result, it is not unusual to see
applications spending anywhere from 10-93% of CPU cycles
servicing TLB misses [6, 24, 36, 44], especially on NUMA
systems [1, 51]. In addition to TLBs, modern CPUs also use
Page Walk Caches (PWCs) to cache intermediate nodes of
the page-tables that are frequently accessed. This allows the
MMU to bypass some of the upper levels of the page-table.
However, the number of entries in such caches is normally
limited to several dozen entries due to hardware constraints,
which limits their effectiveness [50, 64].

2.2 NUMA Architectures
NUMA architectures have historically come in many forms,
but their defining feature is that accessing memory attached
to a local node will have higher bandwidth and lower latency
and energy compared to accessing memory on a remote node.
NUMA systems are particularly popular in data centers and
cloud systems in the form of multi-sockets, as they scale well
with larger memory capacity. The NUMA paradigm is today
further driven by the emerging architectures based on chiplets
and multi-chip modules [3, 15, 17, 18, 21, 32, 34, 65].

Because of the large latency, bandwidth, and energy gap
between accesses to local and remote NUMA nodes, the per-
formance of NUMA systems largely depends on the ability
of the system to maximize the chances that a piece of data
is located in the same NUMA node as the thread requests
it [11,20,24,33], with most modern operating systems provid-
ing some form of support for optimizing data page placement
on NUMA systems. For example, Linux employs AutoN-

USENIX Association 2024 USENIX Annual Technical Conference 447

UMA which migrates data pages to sockets that are closer to
the threads that access them. Linux also provides first-touch
and interleaved allocation policies which affect the initial
placement of data. Under the first-touch policy, memory is
allocated on the first node to access it while an interleaved
policy alternates memory allocation across a set of nodes that
can be defined by the user.

2.3 Eager Page-table Replication

Modern operating systems such as Linux offer little control
over the page-table placement and mostly allocate page-tables
and directories on the NUMA node that touched the cor-
responding data first [1], which is a policy known as first
touch [40]. When any other NUMA node accesses the same
or neighboring data, the resulting page-table traversal will lead
to expensive cross-socket memory accesses, regardless of the
location of the data. The hierarchical page-table organization
with 4-5 levels present in most commercial architectures fur-
ther exacerbates the problem; in the worst case, during a page
walk, the requested entries at every page-table level could be
allocated on a different NUMA node.

The impact of page-table placement on the performance
of NUMA systems was first studied in Mitosis [1]. Their
work showed that page-table placement can have a signifi-
cant impact on how well a NUMA system performs and can
even have a bigger impact than the placement of data pages
in some workloads. We have successfully reproduced their
results on a larger, 8-socket machine by running the same
experiments using the provided scripts. The results can be
seen in Figure 3, where we can see that page-tables being
remote (RP) degrades performance almost as much as data
being remote (RD), and the interference of other applications
on the inter-socket traffic further increases the overhead of
remote accesses dramatically.

To mitigate the overheads caused by poor placement of
page-tables, Mitosis proposes the use of eager page-table
replication where the page-table of a process is fully repli-
cated across all NUMA nodes. While this method may work
well for applications where almost all data is shared between
all threads, it could also result in unnecessary overheads due to
the need to maintain page-table coherence across all replicas
even if a portion of the address space is not shared between
threads. Furthermore, while the memory footprint of page-
tables is usually negligible relative to the size of the data
allocated (~0.2%), our experiments show that the memory
footprint due to the additional replicas is usually around 1.5%
of the data addressed which could translate to several giga-
bytes of additional memory overhead in some workloads and
grows linearly with the number of sockets.

On the other hand, Hydra is able to achieve high scalability
using selective and lazy replication, where it only replicates
page-tables on the NUMA nodes that the accessing threads
live on. Using this approach, Hydra does not require any

Config CPU Data Interference Kernel

LP-LD 0 0 N/A Linux
LP-RD 0 1 N/A Linux
LP-RDI 0 1 1 Linux
RP-LD 1 1 N/A Linux
RPI-LD 1 1 0 Linux
RP-RD 1 0 N/A Linux
RPI-RDI 1 0 0,1 Linux
RPI-LD-M 1 1 0 Mitosis
RPI-LD-H 0 ⇒ 1 1 0 Hydra
RPI-LD-HP 0 ⇒ 1 1 0 Hydra-Prefetching

Table 2: Configuration settings for benchmarks. L (local), R
(remote) denote two different NUMA nodes in the system
(e.g., L: socket 0, R: socket 1). D and P denote data and page-
tables, respectively. Note that page-table is fixed on socket 0 if
no replication involved. CPU/Data/Interference columns iden-
tify the socket where the application executes/where the data
is located/where the interfering application executes, respec-
tively. H: Hydra, M: Mitosis, HP: Hydra with Prefetching.

.

explicit policies from the provider/developers, whose mainte-
nance can be cumbersome in multi-tenant scenarios. Table 1
summarizes the key differences between Hydra compared
Mitosis and the baseline Linux.

3 Hydra: Design Principles

In this section, we discuss the high-level goals, principles, and
major design decisions behind Hydra.

3.1 Replication Policies
Eager replication of complete page-tables on all NUMA sock-
ets, as done in Mitosis, is highly effective at avoiding any
remote page-table accesses. This style of replication is also
the least complex to implement. However, maintaining com-
plete page-table trees in all sockets and keeping them coherent
results in memory and coherence overheads that grow with
the number of sockets.

To reduce these overheads in the future, Mitosis envisions
the use of explicit page-table allocation policies, by which the
user would be able to specify a subset of the NUMA nodes
on which the page-tables will be fully replicated; the other
NUMA nodes would not have any page-tables of that pro-
cess. We call this style of replication selective replication,
where the user (or the system) can select the NUMA nodes
they want to limit the replication to. We argue against such
policies, because they put the burden on the user and/or the
system to ensure that both the execution threads and the cor-
responding page-tables are co-located on the same NUMA
node throughout the execution of the process. In case of any
deviation, e.g., when some threads migrate, the system would
need to decide if, how, and when to establish a complete new

448 2024 USENIX Annual Technical Conference USENIX Association

a) System-wide Full replication with Mitosis

b) Lazy and partial replication with Hydra

node 0 node 1

node 2 node 3

node 0

node 2

node 1

node 3

Figure 4: An abstract illustration of replication of hierarchical
page-tables on Mitosis (a) and Hydra (b). Different memory
allocations (VMAs) are colored differently. Mitosis eagerly
replicates allocated page-tables on all NUMA nodes (sock-
ets), whereas Hydra performs lazy and partial replication
on-demand simultaneously instead.

copy of the page-tables on a new node, to support local ad-
dress translation on the new socket. The system would also
need to decide how and at which point to shut down a full
copy of page-tables on a socket that a number of threads (or
all threads) migrated from, in order to reduce memory and
coherence overheads. While these policies could be imple-
mentable and would reduce some of the Mitosis overhead,
they put a lot of burden on the user and/or the system to follow
them and promptly adjust to any deviations. Although these
policies could reduce the overheads compared to full-system
replication by reducing the number of replicas, each replica
still remains complete, resulting in memory and coherence
overheads that eager replication cannot reduce any further.

Hydra, in contrast, uses lazy and partial replication, by
which only the individual PTE entries that are demanded
are allocated and copied to a new node. This automatically
ensures 1) the minimum amount of memory spent on repli-
cation, 2) the minimum amount of activity needed to keep
the replicas coherent, 3) the minimum overhead of aggre-
gating dirty/accessed bits written by hardware in different
PTE replicas, which happens when these bits are read by
the OS. Importantly, our lazy approach that piggybacks on
the standard page-fault procedure automatically ensures that
PTEs are replicated wherever the thread is executed; when
the thread is migrated the new PTE copies will be automat-
ically established. In other words, Hydra enables selective
(only on relevant nodes) and partial (only the relevant PTEs)
replication in a lazy manner that automatically guarantees the
co-location of execution threads and page-tables, sidestepping
the problems of eager replication and explicit policies.

3.2 Page-Table Coherence Protocol

The challenge with lazy and partial page-table replication is
that at the time when the requested PTE is missing, the OS
needs to find out which node, if any, has a copy of the target
PTE. Therefore, a mechanism that finds at least one existing
sharer is needed, and if such a sharer does not exist, Hydra
needs to know that.

One solution would be to statically designate one node to
hold an entire copy of all page-tables, in which case partial
replicas can be built lazily on the other nodes by copying the
PTEs from the designated node on demand. However, the
main problem with such a solution is that every page-table
used has an extra sharer (the master node) that generally does
not need that page-table for the translation of its own data, but
nonetheless must be kept up to date. Other problems include
load imbalance and the fact that the traffic to the destina-
tion node can easily become congested, either because of too
much translation-related traffic or due to interference of other
applications, slowing down the whole system. Furthermore,
a single source node becomes a single point of failure and
presents a scalability bottleneck.

We instead propose an efficient and decentralized page-
table coherence protocol in which every memory allocation
(e.g., virtual memory area or VMA in Linux) is assigned an
owner; the owner of each allocation area is the NUMA socket
that requested its allocation. We maintain the following in-
variant: if a valid PTE for a given page exists, the owner node
must have it. This invariant is needed because a circular list
of sharers is efficiently maintained at the level of individual
page-tables [1], and we would not be able to reach that list of
sharers if we do not know at least one node that is currently in
the list. When the requested PTE does not exist on the local
node, the entry is copied from the owner node as part of the
page-fault handler, and the new entry is added to the list of
sharers of that page-table. If the owner does not have that
entry, then it means that the page has not yet been touched,
so the PTE is created by taking a page fault on that page, and
the entry is then inserted into both the owner’s and replica’s
copy of the page-table and the two copies of the page-tables
are linked in a circular list, if they were not linked before (for
example, due to other PTEs in the same page-table).

In the case of system-wide full page-table replication [1],
any changes to page-tables must be propagated to all repli-
cas on every socket in the system. Because each replica
is located on a different socket, updating all of them can
take a significant amount of time. Furthermore, these updates
must be performed while holding already contended memory-
management locks, significantly affecting other page-table
management operations happening concurrently, as we will
show in Section 5. In the case of Hydra, upon any change
to a page-table, only the replicas found in the list of sharers
for that particular page-table are updated, if any. The coher-
ence actions are therefore limited only to page-tables that are

USENIX Association 2024 USENIX Annual Technical Conference 449

actually shared, and the cost of the actions is limited by the
number of nodes that actually share the page-table.

3.3 Replication and Partitioning
As an illustrative example, assume that a process with four
threads runs on a 4-socket NUMA machine, one thread per
socket. Also, assume that each thread is allocating a chunk
of memory in its local memory and accesses only the data
it allocated. This is an ideal scenario from a NUMA system
point of view, as it enables perfect data parallelism. Figure 4a
illustrates a potential state of page-tables in such a scenario
in case of eager system-wide page-table replication, while
Figure 4b shows the state of page-tables in case of Hydra.
For simplicity of illustration, the page-table is depicted as a
radix-tree with three levels of the hierarchy and an out-degree
of four (in practice, there are 4-5 levels with an out-degree
of 512). As shown in Figure 4a, full and eager replication
will replicate all parts of the page-tables on all sockets. On
the other hand, Hydra’s protocol assigns ownership based on
the allocation to the node that allocated the VMA, and as a
result, each node is by default the owner of its own page-table
replica. Unless a thread from one node tries to access data
allocated by a thread on a different node, there will be no page-
table replication in the system except for the root node. This
effectively partitions the page-table into four independent
partitions, each co-located with its data and accessed and
managed locally without any cross-socket coherence activity
between them, and this is all achieved automatically without
intervention from the user or the system.

Apart from support for perfect data partitioning, Hydra
also enables data sharing much more efficiently compared to
Mitosis. Let’s assume that node 3 accesses a piece of data
located on node 0 for the first time. In Hydra, this will lead to
the allocation of a single page-table on node 3 and the missing
PTE will be copied, as shown in Figure 4b. Any updates to
this page-table would limit the coherence activity only to two
nodes involved, as opposed to system-wide.

3.4 Configuring Laziness
When the requested PTE entry does not exist on the local
node, Hydra copies only the requested PTE entry from the
owner. This is the laziest form of Hydra that we support, as
no PTE is replicated unless demanded by a NUMA node.
However, one could expect that such extreme laziness has a
price, as the very first access to a page from a new node is
guaranteed to result in a remote page-table access; this is in
contrast to Mitosis, which eagerly replicates every page-table
entry before it gets to be used for the first time and always
ensures local page-table access.

Interestingly, we have found that extreme laziness incurs
virtually no penalty in our workloads. The simple reason is
that Hydra’s laziness is penalized only upon the very first ac-

owner
page-table

replica
page-table

owner
page-table

replica
page-table

VMA BVMA A VMA C

(a) (b)

PTE
X

PTE
X+1

Figure 5: (a) Prefetching with a degree of 1 with PTE X +1
prefetched. (b) Maximum degree prefetching when the target
page-table covers multiple VMAs is limited by both the page-
table boundaries and boundaries of the encompassing VMA.

cess to a given page by a new socket; any subsequent accesses
to any part of that page by any core running on the same
socket will find that PTE in the local memory. As the average
number of times a page is accessed during its residence in
memory is significantly higher than one for all the workloads
we experimented with, we conclude that the performance
penalty for laziness is negligible for most applications.

However, there are applications with low temporal reuse
of pages that could benefit from a less lazy approach (we
construct such a worst-case microbenchmark in Section 5).
Furthermore, as we will show in Section 5, extreme sharing of
data where every page ends up being shared on every socket,
and every page-table is correspondingly allocated on every
socket could effectively turn Hydra into Mitosis, with full
replicas present on every socket. To improve Hydra’s perfor-
mance in such scenarios and reduce its laziness, we provide a
low-cost support for prefetching a configurable number neigh-
boring page-table entries together with the requested PTE, to
maximize the chance of a local page-table access upon the
very first access to that page by a new node. In our imple-
mentation, we provide an additional kernel parameter that
allows the user to indicate the desired degree d of prefetching.
Prefetching degree of d will fetch 2d neighboring entries in-
cluding the desired PTE (for d=0, in total 20=1 entry will be
fetched, i.e., the requested PTE only). The prefetching is lim-
ited to the full page-table, as logically consecutive page-tables
in the virtual address space are not necessarily physically ad-
jacent. We also limit prefetching to the VMA boundaries, as
other neighboring VMAs are not necessarily logically related,
which is illustrated in Figure 5b.

3.4.1 Prefetching Overheads

The overhead of physically copying additional consecutive
PTEs from the same page-table is negligible and we could
not observe it in our measurements. At the same time, PTE
prefetching also does not cause any PTE coherence overheads;
to understand why, let’s look at Figure 5a, which shows an
example of one page-table that covers a fraction of single
virtual memory area VMA A. Assume that the replica requests

450 2024 USENIX Annual Technical Conference USENIX Association

PTE X that exists in the owner node but not in the replica. Also
assume that the replica does not have this exact page-table
allocated yet. Upon a page-fault on PTE X on the replica
node, Hydra would by default fetch only PTE X from the
owner, but in this example we choose a degree of d=1, with a
total of 21=2 PTEs to be fetched, one of which, PTE X +1, is
prefetched. Assume that PTE X +1 ends up never being used
by the replica. The question is whether fetching PTE X +1
causes any additional coherence action that otherwise would
not have happened.

Recall that Hydra does not keep the list of sharers at the
level of individual PTE entries, which would be impractical
and unnecessary, but at the level of individual page-tables,
similar to Mitosis [1, 51]. As a result, when PTE X + 1 is
modified by the owner, the owner node cannot know if the
replica has PTE X +1 or not; it only knows that the replica
has some PTE entries from the page-table in question. There-
fore, the replica must be updated regardless of whether or not
PTE X +1 exists on the replica, and prefetching PTE X +1
does not cause any additional coherence actions. Given the
negligible overheads of prefetching and potentially sizeable
benefits in some applications, we suggest to Hydra users to
set the degree of prefetching to maximum by default.

3.5 Reducing TLB shootdowns

When page-table entries are changed for any reason (e.g.,
due to the mprotect system call, munmap, a page is swapped
out, etc.), the corresponding entries in the TLBs of each core
that currently runs a thread of the same process have to be
invalidated to ensure that stale cached page-table entries are
not used in translation. This is done by sending an inter-
processor interrupt (IPI) to each core that is running a thread
from the same process, which causes significant overhead for
all involved cores, particularly so for the initiating core. This
process is known as a TLB shootdown. TLB shootdowns are
known to be very expensive in general [38, 50] and particu-
larly so for NUMA systems [4], where they pose a scalability
challenge.

The reason that TLB shootdowns must be sent to every
thread of the same process is that the OS cannot know which
TLBs contain any given entry. However, Hydra has precise
information about what which NUMA nodes contain a copy
of any given page-table. Also note that, by design, it is not
possible for any NUMA node to contain a given PTE entry
in any of its TLBs unless the NUMA node is in the list of
sharers for the page-table encompassing that PTE (if any TLB
contained the PTE in question, then that TLB entry must be
have been filled from a local copy, or the local copy would
be filled together with the TLB). Therefore, Hydra can use
the sharer information to safely reduce the scope of the TLB
shootdowns and not issue them to any cores on those NUMA
nodes that are not in the list of sharers for the particular page-
table, because these nodes are guaranteed by design not to

have the PTE in any of their TLBs.

4 Implementation Details

In this section, we discuss at a high level the modifications to
the Linux kernel made to implement Hydra on x86_64.

4.1 Lazy replication
We added the following fields into the appropriate kernel
structures:

• An owner node field in struct vm_area_struct, the
structure that represents each allocation (VMA).

• A next replica field in struct page, the structure repre-
senting each physical page, similarly to Mitosis [1]. This
field is used only in the structures representing physical
pages containing page-table pages to construct a circular
linked list of page-table replicas.

• A boolean flag controlling replication for a particular pro-
cess in struct mm_struct, the structure containing all
the information about a process’s address space. This flag
enables/disables replication for the process using a new
system call that we added for this purpose.

• An array of pointers to page global descriptors (PGDs) in
struct mm_struct, each pointing to the root of a page-
table replica.

Next, we modify a few parts of the memory management
component of Linux.

• When an allocation is created using mmap, a VMA is created
representing that allocation in the function mmap_region.
We extended this function to set the owner node of the VMA
to be the node that created the allocation.

• When a context switch occurs, the page-table base register
(the CR3 register on x86 and x86_64) is updated in the
function switch_mm_irqs_off. We modified this function
to set the base to the correct replica page-table (from the
array mentioned earlier), if replication is enabled for the
process.

• We modified the page fault mechanism in Linux to perform
lazy replication. In handle_pte_fault, a core function in
the page fault handling mechanism, if the faulting page is
located in a VMA that is not owned by the current node,
instead of performing a normal page fault, we attempt to
copy the page-table entry from the owner node’s page-table.
If the entry is not present, the current node will perform the
page fault on behalf of the owner node, and then copy the
entry again from the owner. If prefetching is enabled, we
may copy surrounding entries at this point as well, depend-
ing on the level of prefetching set, if this is the first time we
are accessing memory mapped by the current page-table
page. When this copying is done, we also check that both
corresponding page-table pages are linked to each other

USENIX Association 2024 USENIX Annual Technical Conference 451

via the next replica field; if they are not, they are linked by
merging the circular linked lists.

• Finally, we modified the functions that modify page-table
entries to copy all modifications to replica page-tables by
traversing the circular linked lists formed by the next replica
fields. We also modified the functions that read the page-
table entries for dirty and referenced bits written by hard-
ware to take the union of those bits from all replicas, just
like in Mitosis [1]. Note that this involves accessing mem-
ory in every socket that has the copy of the page-table that
contains the same PTE. Also note that these bits are typi-
cally read in page replacement routines, which in modern
operating systems are guarded by highly contended kernel
locks [13, 37]. Compared to Mitosis, Hydra here has the
advantage of not having to read PTE copies from all NUMA
nodes, only the ones that share the page-table in question
and therefore avoids additional lock contention in critical
page replacement routines. However, we do not evaluate the
differences between Hydra and Mitosis in out-of-memory
scenarios due to the enormous amounts of memory on our
evaluation platform.

Let us illustrate the replication mechanism with an example.
Suppose there are two NUMA nodes, N1 and N2. Both nodes
create a small allocation each, which we will call A1 and A2,
respectively. Node N1 is the owner of allocation A1, and N2 is
the owner of A2. At first, each node only accesses their own
allocation, so each node’s page-table only contains entries
for the respective allocation. Note that at this point, even
if the allocations fall within the same last-level page-table
page, if there has not been any other cross-node access at this
point, the corresponding page-table pages from both replicas
will not yet be linked. Suppose now node N1 accesses A2
(owned by node N2). There are no mappings for A2 in N1’s
page-table, so N1 will take a page fault, and copy the relevant
PTE from N2’s page-table. At this point, we check if the two
corresponding page-table pages are linked, and if they are not,
we link them together in a circular linked list using the next
replica field, thereby ensuring any changes to the page-table
entries are made to all replicas.

4.2 Reducing TLB shootdowns

By virtue of Hydra’s lazy page-table replication, only nodes
that have accessed a particular page will have entries for that
page in their page-tables. Therefore, we implemented our
TLB shootdown optimization by modifying the TLB shoot-
down function, flush_tlb_mm_range, to walk the replica
lists of the pages of the page-table that map the region being
shot down, and collect the nodes that have replicas. The TLB
shootdown IPI is then only sent to CPUs in those nodes that
are running a thread from the same process, as opposed to the
Linux default, which is to send the shootdown to all CPUs
running a thread from the same process.

Workload Description
XSBench [61] Monte Carlo neutron transport computational kernel ap-

plications. Dataset = 85GB, p=50M, g=200k. Only used
in multi sockets experiment.

Graph500 [48] Benchmark for generation, compression and search of
large graphs. Dataset = 160GB, s=30, e=20.

Redis [39] Single thread in-memory data structure store. Dataset =
256GB, key size = 25, element size = 64, element number
= 1B, 100% reads. Only use in workload migration.

Btree [1] Benchmarks for measuring the index lookup perfor-
mance in large applications. Dataset = 110GB, 1M keys,
10B lookups.

HashJoin [12] Benchmark for hash-table probing in database. Dataset
= 145GB, 10B elements.

Canneal [8] Simulates routing cost optimization in chip design.
Dataset = 110GB, 400M elements.

Table 3: Detailed description of the workloads.

Workloads Graph500 Btree HashJoin XSBench Canneal
Program Size (GB) 160 110 145 85 110

page-table footprint (GB)
Linux 0.31 0.22 0.28 0.17 0.22
Mitosis 2.51 1.72 2.27 1.33 1.72
Hydra 0.67 0.44 0.4 1.32 0.32

page-table overhead (%)
Linux 0.2 0.2 0.2 0.2 0.2
Mitosis 1.56 1.57 1.57 1.57 1.57
Hydra 0.42 0.4 0.28 1.55 0.29

Table 4: Page-table footprint (GB) in the baseline (no replica-
tion), Mitosis [1], and Hydra for various benchmarks.

We only perform this optimization when the VMA in ques-
tion falls within a single last-level page-table page, in order
to avoid having to traverse the list of replicas for multiple
page-table pages, which potentially means multiple remote
memory accesses per node and which may end up costing
more than simply sending the shootdowns.

5 Evaluation

5.1 Evaluation Platform
We conducted all measurements on an eight-socket NUMA
machine with 8TB DDR4 physical memory in total. Every
socket is equipped with 1TB DDR4 memory and one Intel
Xeon E7-8890 v3 processor with 18 cores operating at a
base frequency of 2.5 GHz and with two hyper-threads per
core. Each processor has a unified 45MB L3 cache, a unified
256 KB L2 cache, a unified L2 TLB with 1024 entries and a
private L1 TLB with 64 entries for each core. Hyper-threading
is enabled and turbo-boost is disabled in all our experiments.

5.2 Page-table Footprint
Table 4 shows the program size and total page-table foot-
print for various workloads running on an 8-socket machine
for three configurations: the baseline (no replication), Mito-
sis, and Hydra. As expected, Mitosis consistently results in
8x larger page-table footprint compared to the baseline (7x

452 2024 USENIX Annual Technical Conference USENIX Association

0

2

4

6

8

10

12

14

H-
0

H-
1

H-
2

H-
3

H-
4

H-
5

H-
6

H-
7

H-
8

H-
9

Mi
tos
is

Ru
nt

im
e

(s
ec

on
ds

)

Configuration

Figure 6: The time taken to traverse all pages in a large seg-
ment exactly once in a random order for various configura-
tions. H-i refers to Hydra with a degree of prefetching i.

overhead). In contrast, the page-table footprint overhead in
Hydra is only between 0.5x-1x and corresponds to the level of
actual data sharing across sockets. The only exception is XS-
bench, which has extreme data sharing and every page-table
is replicated on every socket, producing the same page-table
footprint in the case of Hydra and Mitosis. In this case, Hydra
effectively converges to Mitosis.

Note that Hydra’s PTE prefetching has no impact whatso-
ever on page-table memory footprint, because the prefetching
is limited to the page boundaries surrounding the requested
PTE. At the time of prefetching the replica page for the re-
quested PTE has already been allocated and the whole page
is accounted for in the footprint, regardless of prefetching.

5.3 PTE Prefetching

To demonstrate the potential of PTE prefetching, we construct
a microbenchmark that traverses, in a random order, a 1GB
array such that every page is accessed exactly once, which is
the worst case for Hydra. The array is set up and initialized on
one node, and then it is accessed on the other. The benchmark
is designed to achieve a near-zero hit ratio in caches and
TLBs, and therefore nearly every data access results in a
remote memory access for the purpose of translation.

Figure 6 shows the time it takes to traverse the array in
the random order in the case of Hydra with multiple levels of
PTE prefetching (from 0 - no prefetching, to 9 - maximum
prefetching of 29=512 PTEs). We also show the results for
Mitosis for comparison. We can see that prefetching within
a page-table is enough to eliminate any laziness penalty that
Hydra experiences by lazily copying PTEs one by one. Also
note that subsequent traversals of this array would lead to
identical behavior in the case of Hydra and Mitosis regardless
of the level of prefetching, because at that point all page-tables
are constructed and replicated where they are needed.

HashJoinCannealBtree Redis Graph500

Page Table Walking Non Page Table Walking

↑10% ↑0.7% ↑0.2% ↑6.7% ↑2.5%

N
o

rm
al

iz
ed

 R
u

n
ti

m
e

0
0

.5
1

.0
1

.5
2

.0

L
P

L
D

R
P

IL
D

R
P

IL
D

M
R

P
IL

D
H

R
P

IL
D

H
P

L
P

L
D

R
P

IL
D

R
P

IL
D

M
R

P
IL

D
H

R
P

IL
D

H
P

L
P

L
D

R
P

IL
D

R
P

IL
D

M
R

P
IL

D
H

R
P

IL
D

H
P

L
P

L
D

R
P

IL
D

R
P

IL
D

M
R

P
IL

D
H

R
P

IL
D

H
P

L
P

L
D

R
P

IL
D

R
P

IL
D

M
R

P
IL

D
H

R
P

IL
D

H
P

Figure 7: Normalized performance in the workload migration
scenario for Mitosis, Hydra, and Hydra with a prefetching
degree of 9. All of the configurations shown on X-axis are
listed in Table 2.

Normalized Data Loading Time

1
.0

4
x

1
.0

6
x

1
.0

6
x

1
.0

6
x

1
.1

4
x

1
.1

5
x

1
.2

2
x

1
.1

9
x

1
.1

1
x

1
.1

1
x

HashjoinCannealBtree XSbench Graph500

+3.7% +4.2% +4.7%

+21%

+7.5%

N
o

rm
al

iz
ed

 R
u

n
ti

m
e

0

0.5

1.0

100%

120%

L M H L M H L M H L M H L M H

Figure 8: The lower part shows performance of Mitosis and
Hydra for the workloads in a multi-socket setting, normalized
to the baseline Linux. L, M and H indicate Linux, Mitosis, and
Hydra, respectively. The upper part shows the data loading
time in the same setting, also normalized to the base Linux.

5.4 Workload Migration
Figure 7 shows the behavior of Linux, Mitosis and Hydra in a
scenario where a thread migrates to a different socket, where
the data resides. In the case of Linux, the page-tables will
remain on a remote socket, and the thread will be accessing
the remote socket only for translation. This causes a signifi-
cant slowdown in the presence of applications that interfere
with inter-socket traffic (RPILD). However, Mitosis doesn’t
suffer from this problem as it pre-replicates the page-tables
system-wide. Hydra suffers from a small performance penalty
due to lazy replication (RPILDH), but that penalty is largely
eliminated through prefetching.

5.5 General Applications
Figure 8 shows the performance of multiple real-world appli-
cations, listed in Table 3, running on our 8-socket machine.
The workloads consist of two phases: 1) data setup/load-
ing, which exercises page-table updates, and 2) the execution

USENIX Association 2024 USENIX Annual Technical Conference 453

1.00x

2.39x

1.01x 1.00x 1.04x 0.99x 1.00x

1.68x

0.99x

mprotect mmap

Linux

Mitosis

Hydra

munmapN
o

rm
al

iz
ed

 R
u

n
ti

m
e

0

1

2

Figure 9: mprotect, mmap, and munmap overhead on Linux,
Mitosis and Hydra when operating on a 128K memory range.

phase with the pre-loaded in-memory data, which stresses
page-table reads. During the loading time (the upper plot),
all page-tables are constructed, and in the case of Mitosis,
replicated system-wide. The execution phase (the lower plot)
exhibits a significant amount of data sharing and benefits from
page-table replication across sockets; once the data is loaded,
there are very few page-table modifications. Note that the
data setup phase is time-consuming and takes several hours,
whereas the subsequent execution is benchmarked for 5 min-
utes. We show three configurations: baseline (no replication),
Hydra (maximum PTE prefetching enabled), and Mitosis.

From the lower part of Figure 8 we can see that in all
benchmarks the performance of Hydra matches that of Mito-
sis despite its laziness. In some workloads, such as Btree and
Graph500, Hydra even achieves a tiny speedup compared to
Mitosis due to more efficient page-table coherence, to the ex-
tent to which these workloads exercise memory management.
The biggest advantage Mitosis has over Hydra is for Canneal,
where Mitosis achieves 1.22x speedup over Linux, whereas
Hydra achieves 1.19x. However, this advantage seems to be
coming at the expense of the data loading time, during which
Mitosis creates 5x more replicas than needed, according to Ta-
ble 4 which compares the page-table footprints of all applica-
tions. This unnecessary replication results in a 21% slowdown
compared to Linux. Hydra, on the other hand, always matches
the performance of Linux when it comes to data loading time,
because it does not perform any replication in that phase.

5.6 Memory Management

Figure 9 shows the overhead of the basic memory manage-
ment operations, mmap, munmap, and mprotect as a function
of the size of the input range when executed on an 8-socket
machine with three different designs: baseline (no replica-
tion), Mitosis (system-wide eager replication), and Hydra
(partial and lazy replication). Note that there are no interfer-
ing/spinning threads. We see that mmap is largely unaffected
by replication, as page-table updates are a small part of its
functionality. In contrast, for mprotect and munmap, Mitosis
pays a significant cost for page-table coherence, which Hydra
avoids.

5.6.1 TLB Shootdowns

We next measure the overhead of Mitosis, Hydra without the
TLB optimization, and Hydra with the TLB optimization, on
the performance of the mprotect. The size of the mprotect
range is a single 4KB page. The mprotect syscall simply
flips a single bit in one PTE, and does this in a loop. Ad-
ditionally, we run a varying number of spinning threads on
every socket. The spinning threads have nothing to do with
the mprotect thread; they simply increase a private counter
in an infinite loop, and we measure the impact of mprotect
on the performance of spinning threads and vice versa. The
results are shown in Figure 1.

When there are no spinning threads, Mitosis results in a
25% slowdown on 8-sockets, because it must update all repli-
cas upon every mprotect operation, whereas Hydra has no
overhead due to the absence of coherence activity. However,
as we add spinning threads and increase their number per
socket, all systems, including the baseline Linux, Mitosis, and
Hydra (without the TLB optimization) will result in signif-
icant overheads, up to 40x. This is despite the fact that the
spinning threads have nothing to do with data covered by
mprotect. Hydra without TLB optimization is only slightly
better than Mitosis, as it avoids updating any replicas, but
still suffers a significant slowdown. This is due to the TLB
shootdowns that must be sent to every running thread of the
process, despite the fact that these are spinning threads. In
contrast, Hydra enabled with the TLB shootdown optimiza-
tion avoids sending shootdowns to any other socket, leading
to substantial performance improvements.

Figure 10 shows similar results in the same setup, except
that instead of mprotect we use munmap, the underlying im-
plementation of memory freeing. The range of munmap is
set to a single 4KB page. With no spinning threads, Hydra
does not experience any slowdowns, but Mitosis experiences
a 23% slowdown. As we add spinning threads, the overhead
of Mitosis grows to almost 30x, whereas Hydra with the TLB
shootdown optimization results in only 2.6x overhead. The
effect of replication on mmap is less pronounced due to the ad-
ditional work that mmap does that overshadows the coherence
overhead.

5.6.2 Case Study: Memory Allocation

Figure 11 and Figure 12 show the overall impact of repli-
cation on memory allocation (malloc) on various numbers
of sockets, with one thread per socket. We use three promi-
nent malloc implementations: mmap, glibc, and tcmalloc.
We develop two malloc benchmarks. The first benchmark is
stateless: the benchmark will repeatedly allocate a segment
of random size following the Gamma distribution with a mean
allocation size of about 3.3MB, and then free the allocated
segment. The second benchmark follows the same allocation
size distribution, but it first allocates 256 segments, and then
in a loop frees one segment and allocates another, such that

454 2024 USENIX Annual Technical Conference USENIX Association

0 1 2 4 8 16

Linux

Mitosis

Hydra w/t TLB Opt

Hydra with TLB Opt

Runtime

Linux

Mitosis

Hydra w/t TLB

Hydra with TLB Opt

TLB Shootdown

N
o
rm

al
iz

ed
 R

u
n
ti

m
e

(S
lo

w
d
o
w

n
)

0

10

20

30

T
rig

g
ered

 T
L

B
 S

h
o
o
td

o
w

n
s

0

5×105

10×105

15×105

20×105

25×105

Spinning Threads Per Socket

Figure 10: Impact of page-table replication and the TLB shoot-
down optimization on munmap. Existing solution are unable
to quickly deallocate page-tables while Hydra does this ef-
ficiently. All values are normalized to the baseline without
replication.

1 2 4 8

Linux Mitosis Hydra

1.00X 1.07X
1.18X

1.54X
1.42X 1.49X

1.66X
1.82X

1.03X 1.02X 1.12X

1.43X

1.00X 1.08X
1.22X

1.53X
1.41X

1.65X
1.77X 1.81X

1.01X 1.09X 1.16X

1.44X

1.00X 1.07X
1.20X

1.52X
1.39X

1.62X 1.66X
1.78X

1.00X 1.06X
1.19X

1.40X

mmap

glibc

tcmalloc

0
1

2

N
o
rm

al
iz

ed
 R

u
n
ti

m
e

(S
lo

w
d
o
w

n
)

0
1

2
0

1
2

Figure 11: The impact of replication on stateless memory
allocation for various configurations. The x axis indicates the
socket number.

there are 256 concurrent allocations at any time for every
thread. We can see that Mitosis results in an overhead that
ranges from 1.4X to 1.9X in both malloc benchmarks. At the
same time, Hydra achieves a speedup compared to both Linux
and Mitosis, thanks to Hydra’s minimal page-table coherence.

5.6.3 Case Study: Web Server

Webserver, such as Apache, is an important and widely
used application that is known to have problems with TLB
shootdowns. Webserver application (e.g., Apache Webserver)
spawns a large number of threads, each of them serving a
web request, which in our case is a web page the same as
in [4, 38]. For each request, the webserver serving thread
allocates memory for the web page using mmap and subse-
quently frees it using munmap, generating many unnecessary
TLB shootdowns along the way. Previous work has demon-
strated that techniques that reduce TLB shootdowns can sig-
nificantly improve the Apache’s throughput [38]. Because
of the complex NUMA impact of the NICs [10, 49], Apache
Webserver scales very poorly beyond a single socket, which

1 2 4 8

Linux Mitosis Hydra

1.00X
1.17X 1.26X

1.39X1.40X
1.65X 1.67X 1.71X

1.01X
1.16X 1.25X 1.33X

1.00X
1.11X

1.34X
1.57X

1.42X
1.61X 1.61X

1.89X

1.02X 1.11X
1.24X

1.47X

1.00X
1.13X

1.26X

1.60X
1.42X

1.61X 1.71X
1.88X

1.01X 1.09X
1.19X

1.46X

mmap

glibc

tcmalloc

0
1

N
o
rm

al
iz

ed
 R

u
n
ti

m
e

(S
lo

w
d
o
w

n
)

0
1

2
0

1
2

Figure 12: The impact of replication on state f ul memory
allocation for various configurations. The x axis indicates the
socket number.

is why constructed a synthetic benchmark that performs the
webserver functionality without using a NIC, similar to prior
work [10, 49].

Figure 13a shows the throughput of the webserver bench-
mark on unmodified Linux, Mitosis, Hydra without the TLB
optimization, and Hydra with the TLB optimization. We run
the benchmark with a varying number of threads (up to 32)
uniformly distributed across four sockets. Figure 13b shows
the number of TLB shootdowns (in millions per second) as
we vary the number of threads. Because this application does
not exhibit any data sharing, the impact of page-table repli-
cation on the performance of page-table reads is negligible.
Similarly, we see that Linux, Mitosis, and Hydra experience a
similar rate of TLB shootdowns, indicating a similar overhead
of page-table updates. As such, Mitosis and Hydra (without
the TLB optimization) achieve similar performance to Linux.
However, as we can see in Figure Figure 13b, Hydra with
the TLB optimization incurs about 45% reduction in TLB
shootdowns. This reduction in TLB shootdowns results in
about 18-20% increase in throughput, as shown in Figure 13a.

5.6.4 Case Study: In-memory key-value store.

In-memory key-value stores, such as Memcached [46], are
widely used in storing keys and values in memory to achieve
low latency and high throughput. To protect the data store
from data leakage, sensitive information corruption, or arbi-
trary accesses, mprotect is applied to the critical data section
to protect the stored data [28, 53, 66]. We create 8 client
threads that use libMemcached to send SET/GET requests.
The proportion of SET and GET are 0.1 and 0.9. The size
of the keys and values are 32B and 256B, respectively. The
Memcached instances allow up to 1024 concurrent connec-
tions. The memory used for Memcached storage is 10GB in
this experiment. To maximize the scalability, we employ a
varying number of Memcached processes, with two threads
per process. The threads are evenly distributed across four
sockets.

USENIX Association 2024 USENIX Annual Technical Conference 455

Linux

Mitosis

Hydra w/t TLB

Hydra with TLB Opt

T
h
ro

u
g
h
p
u
t

(R
eq

*
1
0

5
/s

)

4
5
6
7
8
9

10
11
12
13
14
15
16

Threads Number

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

a)

Linux

Mitosis

Hydra w/t TLB

Hydra with TLB Opt

T
L

B
 S

h
o
o
td

o
w

n
s

(1
0

6
/s

)

0

5

10

15

20

25

Threads Number

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

b)
Figure 13: a, b: Impact of page-table replication and the TLB shootdown optimization on webserver, normalized to the baseline
without replication. The threads are evenly distributed across four sockets.

Linux
Mitosis
Hydra w/t TLB
Hydra with TLB Opt

Th
ro

ug
hp

ut
 (M

B/
s)

0

20

40

60

80

100

120

140

160

Threads Number
1 2 4 6 8 10 12 14 16

Linux
Mitosis
Hydra w/t TLB
Hydra with TLB Opt

TL
B

Sh
oo

td
ow

ns
 (1

05 /s)

200

400

600

800

1000

1200

1400

Threads Number
1 2 4 6 8 10 12 14 16

Figure 14: Impact of page-table replication and TLB shoot-
down optimization on Memcached running on four sockets.

Figure 14 shows the normalized Memcached throughput
and TLB shootdown rate of Mitosis and Hydra over unmodi-
fied Linux. Hydra with TLB optimization always gains con-
sistent speed-ups with a geomean improvement of 36% across
all thread counts, while Mitosis suffers a slowdown, due to
the overhead of synchronously keeping all page replicas co-
herent upon every page-table modification. The performance
improvements of Hydra come from the reduction in TLB
shootdowns, shown in Figure 14. Hydra with TLB optimiza-
tion reduces the occurrence of shootdowns by 50% to 96%.

6 Discussion and Future Work

Support for Transparent Huge Pages. Transparent Huge
Pages (THPs) are known to improve system performance
by reducing the number of page-table levels that need to be
traversed when performing a translation and increasing the
amount of memory that can be mapped by a single TLB entry.
However, THPs will still suffer from limited TLB reach in
systems with large amounts of main memory. As a result,
THPs would still benefit from the faster address translations
that Hydra provides. Extending Hydra to support THPs is a
relatively straightforward task as we would simply need to
implement the same duplication and coherence mechanisms
that we had previously implemented on the THPs. However,
support for THPs was not considered a priority for this ver-
sion of Hydra as prior work has shown that THPs may not

be the best choice [2, 16, 47, 52, 58], especially for NUMA
systems [27, 63].
Support for Virtualization. Virtualized systems are another
potential area for future work to explore. These systems typi-
cally make use of hardware-based nested paging [25, 51] to
translate the guest virtual address to the guest physical address
and from the guest physical address down to the host physi-
cal address. Recent work has shown that virtualized systems
are particularly sensitive to poor page-table placement [51].
While Mitosis has been extended to support 2D page-tables
under vMitosis, vMitosis still works based on explicit policies
given by the developers or providers. Unfortunately, it is chal-
lenging to maintain particular policies per applications and
workloads. Furthermore, vMitosis also suffers from the same
performance and memory overheads that Mitosis has since
they both make use of eager replication. Thus, we believe
that we will continue to see positive results once Hydra is
extended to support the lazy replication of both the guest and
host page-tables.
Reducing intra-socket TLB shootdowns. While the remote
(inter-socket) shootdowns are significantly more costly, the
overhead of local (intra-socket) shootdowns remains non-
negligible (Figure 2). Hydra can be adapted to solve this
problem by logically partitioning the cores of a socket into
several domains based on their physical proximity (similarly
to how scale-out processors physically partition a chip [42,
43]), while being mindful of the underlying cache architecture,
and enabling lazy replication across logical domains.

7 Related Work

In this section we discuss the related work that has not been
covered in earlier sections. Surprisingly, the problem of re-
mote page-table accesses in NUMA systems is an issue that
has not received much attention. However, there is a body of
related work that indirectly addresses the problem by either
(1) minimizing the need for address translations or by (2)
speeding up the address translation process.

456 2024 USENIX Annual Technical Conference USENIX Association

7.0.1 Segmented Address Spaces

Corey [9] is an experimental operating system designed for
many-processor systems. In Corey, the address space of each
process is partitioned into two a shared region and a private
one. While this method ensures that page-tables for the private
partition are located locally, accesses to the shared partition
might still result in a remote page-table access since the shared
page-tables are not replicated. In addition, Corey requires the
application to explicitly partition the address space which
places an unnecessary burden on the programmer that makes
unlikely for this technique to see widespread adoption.

7.0.2 Minimizing the Need for Address Translations

The related work below aims to reduce the need for address
translations through various means, which can help reduce
the performance penalties of remote pages by reducing the
need to do page-table walks. However, these approaches are
generally either (1) too disruptive and compromise key func-
tionalities of existing VM implementations or (2) incremental
changes whose effectiveness is fundamentally limited by the
existing system design.

Memory Segmentation - Memory segmentation is a mem-
ory management technique that was used in early x86 ma-
chines and allowed the OS to allocate variable sized segments
to programs. While it has long since fallen out of popularity in
favour of paging, some recent works have decided to explore
the idea as a possible way to extend the reach of TLBs [6,36].
However, such methods prevent the use of mechanisms such
as Copy-on-Write, demand-paging and per-page protection.
Furthermore, these works may experience fragmentation as
they require the segments to be allocated in contiguous blocks.

Direct and Set-associative mappings - Set-associative
mappings restrict the range of physical addresses a partic-
ular virtual address can map to [56, 57]. In more extreme
cases, some of these methods directly map physical to vir-
tual addresses [31]. While these methods virtually eliminate
the overhead associated with address translation, they do not
support important mechanisms like Copy-on-Write and de-
mand paging in some cases [31]. In addition, such methods
may also compromise the security of a system as it might
impact the functionality of memory-protection mechanisms
like address space layout randomization.

Multi-page mapping - Multi-page mappings allow trans-
lations with contiguous physical addresses to be mapped to
a single entry in the TLB [54, 55]. While these methods do
increase the reach of TLBs, the improvement is still not suffi-
cient to support modern systems that have several hundreds
of gigabytes of memory [26].

7.0.3 Speeding Up Address Translation

The following body of related work seeks to improve the
speed of address translation in various ways and is largely

orthogonal to our work.
RadixVM [14] proposes a number of radical changes of

the memory management, including lazy replication of mem-
ory management structures across all cores, which allows it to
eliminate unnecessary TLB shootdowns, similarly to Hydra.
Unfortunately, RadixVM is not scalable due to the per-core
page-table replication, which results in huge memory over-
heads. For example, on our machine with 288 cores, around
60% of the entire memory would be occupied by page-tables.
RadixVM also requires a complete redesign of the kernel
architecture and cannot be easily integrated into commercial
OSes such as Linux. LATR [38] modifies a number of mem-
ory management system calls to introduces lazy and batched
issuance of TLB shootdowns and is orthogonal to our work.

Prefetched Address Translation [44] takes advantage of
the structure of page-tables to prefetch the lower levels of
the page-table during a TLB miss. This reduces page-table
walk latency without significant changes to existing systems.
Barrelfish [7] relies on message passing instead of IPIs to
shoot down TLBs in remote cores, eliminating inter-processor
interrupts and lowering the latency of TLB shootdowns. Amit
et al. [5] present a solution to accelerate the TLB shootdown
performance by avoiding synchronous TLB shootdown calls
mainly. Unfortunately, this approach is entirely oblivious to
page-table replication design, and it won’t be able to pre-
vent extra TLB shootdown calls introduced by replicas. Nev-
ertheless, Hydra can achieve even higher performance if it
integrates such TLB shootdown acceleration solutions.

8 Conclusions

We have presented Hydra, a novel on-demand partial page-
table replication mechanism for NUMA systems that simul-
taneously optimizes both read and update accesses to page-
tables. We have shown that page-table replication, if done
lazily, can be leveraged to improve rather than degrade the
performance of memory management operations. Using the
extra knowledge of the sharers of a page-table afforded by
our lazy replication, Hydra is also to reduce unnecessary TLB
shootdowns and improve the runtime of memory management
operations by up to 40x. At the same time, Hydra reaps all
the benefits of page-table replication, providing a 20% im-
provement over a wide range of applications, and provides
scalability to any number of NUMA nodes.

Acknowledgments

This research was supported by the Advanced Research and
Technology Innovation Centre (ARTIC) at the National Uni-
versity of Singapore under grant FCT-RP1 A-0008129-00-
00, and by the Ministry of Education in Singapore grants
A-0008143-00-00 and A-0008024-00-00.

USENIX Association 2024 USENIX Annual Technical Conference 457

References

[1] Reto Achermann, Ashish Panwar, Abhishek Bhattachar-
jee, Timothy Roscoe, and Jayneel Gandhi. Mitosis:
Transparently self-replicating page-tables for large-
memory machines. In International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems, ASPLOS, 2020.

[2] Ibrar Ahmed. Settling the myth of transparent hugepages
for databases. https://www.percona.com/blog/2
019/03/06/settling-the-myth-of-transparent
-hugepages-for-databases/.

[3] AMD. The next generation amd enterprise server prod-
uct architecture. https://www.hotchips.org/wp-c
ontent/uploads/hc_archives/hc29/HC29.22-T
uesday-Pub/HC29.22.90-Server-Pub/HC29.22.9
21-EPYC-Lepak-AMD-v2.pdf.

[4] Nadav Amit. Optimizing the tlb shootdown algorithm
with page access tracking. In USENIX Annual Technical
Conference, ATC, 2017.

[5] Nadav Amit, Amy Tai, and Michael Wei. Don’t shoot
down tlb shootdowns! In ACM European Conference
on Computer Systems, EuroSys, 2020.

[6] Arkaprava Basu, Jayneel Gandhi, Jichuan Chang,
Mark D Hill, and Michael M Swift. Efficient virtual
memory for big memory servers. ACM SIGARCH Com-
puter Architecture News, 2013.

[7] Andrew Baumann, Paul Barham, Pierre-Evariste Da-
gand, Tim Harris, Rebecca Isaacs, Simon Peter, Timo-
thy Roscoe, Adrian Schüpbach, and Akhilesh Singhania.
The multikernel: a new os architecture for scalable multi-
core systems. In ACM Symposium on Operating Systems
Principles, SOSP, 2009.

[8] Christian Bienia and Kai Li. Parsec 2.0: A new
benchmark suite for chip-multiprocessors. In Annual
Workshop on Modeling, Benchmarking and Simulation,
AWMB, 2009.

[9] Silas Boyd-Wickizer, Haibo Chen, Rong Chen, Yandong
Mao, M Frans Kaashoek, Robert Tappan Morris, Alek-
sey Pesterev, Lex Stein, Ming Wu, Yue-hua Dai, et al.
Corey: An operating system for many cores. In USENIX
Symposium on Operating Systems Design and Imple-
mentation, OSDI, 2008.

[10] Qizhe Cai, Shubham Chaudhary, Midhul Vuppalapati,
Jaehyun Hwang, and Rachit Agarwal. Understanding
host network stack overheads. In Proceedings of the
ACM Special Interest Group on Data Communication,
SIGCOMM, 2021.

[11] Irina Calciu, Siddhartha Sen, Mahesh Balakrishnan, and
Marcos K. Aguilera. Black-box concurrent data struc-
tures for numa architectures. In International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS, 2017.

[12] Shimin Chen, Anastassia Ailamaki, Phillip B Gibbons,
and Todd C Mowry. Improving hash join performance
through prefetching. ACM Transactions on Database
Systems, 2007.

[13] Austin T. Clements, M. Frans Kaashoek, and Nickolai
Zeldovich. Scalable address spaces using rcu balanced
trees. In International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems, ASPLOS, 2012.

[14] Austin T Clements, M Frans Kaashoek, and Nickolai
Zeldovich. Radixvm: Scalable address spaces for mul-
tithreaded applications. In ACM European Conference
on Computer Systems, EuroSys, 2013.

[15] Taiwan Semiconductor Manufacturing Company.
Cowos services. http://www.tsmc.com/english/d
edicatedFoundry/services/cowos.htm.

[16] Jonathan Corbet. Large pages, large blocks, and large
problems. https://lwn.net/Articles/250335/.

[17] Intel Corporation. New intel core processor combines
high-performance cpu with custom discrete graphics
from amd to enable sleeker, thinner devices. https:
//newsroom.intel.com/editorials/new-intelco
re-processor-combine-high-performance-cpu
-discrete-graphicssleek-thin-devices/.

[18] Marvell Corporation. Mochi architecture. http://www.
marvell.com/architecture/mochi/.

[19] Guilherme Cox and Abhishek Bhattacharjee. Efficient
address translation for architectures with multiple page
sizes. In nternational Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems, ASPLOS, 2017.

[20] Mohammad Dashti, Alexandra Fedorova, Justin Fun-
ston, Fabien Gaud, Renaud Lachaize, Baptiste Lepers,
Vivien Quema, and Mark Roth. Traffic management: a
holistic approach to memory placement on numa sys-
tems. ACM SIGARCH Computer Architecture News,
2013.

[21] Y Demir, Y Pan, S Song, N Hardavellas, J Kim, and
G Memi. Galaxy: A high-performance energy-efficient
multi-chip architecture using photonic interconnects. In
ACM International Conference on Supercomputing, ICS,
2014.

458 2024 USENIX Annual Technical Conference USENIX Association

https://www.percona.com/blog/2019/03/06/settling-the-myth-of-transparent-hugepages-for-databases/
https://www.percona.com/blog/2019/03/06/settling-the-myth-of-transparent-hugepages-for-databases/
https://www.percona.com/blog/2019/03/06/settling-the-myth-of-transparent-hugepages-for-databases/
https://www.hotchips.org/wp-content/uploads/hc_archives/hc29/HC29.22-Tuesday-Pub/HC29.22.90-Server-Pub/HC29.22.921-EPYC-Lepak-AMD-v2.pdf
https://www.hotchips.org/wp-content/uploads/hc_archives/hc29/HC29.22-Tuesday-Pub/HC29.22.90-Server-Pub/HC29.22.921-EPYC-Lepak-AMD-v2.pdf
https://www.hotchips.org/wp-content/uploads/hc_archives/hc29/HC29.22-Tuesday-Pub/HC29.22.90-Server-Pub/HC29.22.921-EPYC-Lepak-AMD-v2.pdf
https://www.hotchips.org/wp-content/uploads/hc_archives/hc29/HC29.22-Tuesday-Pub/HC29.22.90-Server-Pub/HC29.22.921-EPYC-Lepak-AMD-v2.pdf
http://www.tsmc.com/english/dedicatedFoundry/services/cowos.htm
http://www.tsmc.com/english/dedicatedFoundry/services/cowos.htm
https://lwn.net/Articles/250335/
https://newsroom.intel.com/editorials/new-intelcore-processor-combine-high-performance-cpu-discrete-graphicssleek-thin-devices/
https://newsroom.intel.com/editorials/new-intelcore-processor-combine-high-performance-cpu-discrete-graphicssleek-thin-devices/
https://newsroom.intel.com/editorials/new-intelcore-processor-combine-high-performance-cpu-discrete-graphicssleek-thin-devices/
https://newsroom.intel.com/editorials/new-intelcore-processor-combine-high-performance-cpu-discrete-graphicssleek-thin-devices/
http://www.marvell.com/architecture/mochi/
http://www.marvell.com/architecture/mochi/

[22] Peter J Denning. Virtual memory. ACM Computing
Surveys, 1970.

[23] Yu Du, Miao Zhou, Bruce R Childers, Daniel Mossé,
and Rami Melhem. Supporting superpages in non-
contiguous physical memory. In International Sym-
posium on High Performance Computer Architecture,
HPCA, 2015.

[24] J. Gandhi, A. Basu, M. D. Hill, and M. M. Swift. Effi-
cient memory virtualization: Reducing dimensionality
of nested page walks. In IEEE/ACM International Sym-
posium on Microarchitecture, MICRO, 2014.

[25] Jayneel Gandhi, Mark D. Hill, and Michael M. Swift.
Agile paging for efficient memory virtualization. IEEE
Micro, 2017.

[26] Jayneel Gandhi, Vasileios Karakostas, Furkan Ayar,
Adrián Cristal, Mark D Hill, Kathryn S McKinley, Mario
Nemirovsky, Michael M Swift, and Osman S Ünsal.
Range translations for fast virtual memory. IEEE Micro,
2016.

[27] Fabien Gaud, Baptiste Lepers, Jeremie Decouchant,
Justin Funston, Alexandra Fedorova, and Vivien Quema.
Large pages may be harmful on NUMA systems. In
Annual Technical Conference, ATC, 2014.

[28] Jinyu Gu, Hao Li, Wentai Li, Yubin Xia, and Haibo
Chen. {EPK}: Scalable and efficient memory protection
keys. In 2022 USENIX Annual Technical Conference
(USENIX ATC 22), pages 609–624, 2022.

[29] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf
Chowdhury, and Kang G. Shin. Efficient memory disag-
gregation with infiniswap. In Proceedings of the 14th
USENIX Conference on Networked Systems Design and
Implementation, NSDI’17, page 649–667, USA, 2017.
USENIX Association.

[30] Swapnil Haria, Mark D. Hill, and Michael M. Swift. De-
virtualizing memory in heterogeneous systems. In Pro-
ceedings of the Twenty-Third International Conference
on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’18, page 637–650,
New York, NY, USA, 2018. Association for Computing
Machinery.

[31] Swapnil Haria, Mark D Hill, and Michael M Swift. De-
virtualizing memory in heterogeneous systems. ACM
SIGPLAN Notices, 2018.

[32] S Iyer. Heterogeneous integration for performance and
scaling. IEEE Transactions on Components, 2016.

[33] Stefan Kaestle, Reto Achermann, Timothy Roscoe, and
Tim Harris. Shoal: Smart allocation and replication

of memory for parallel programs. In Usenix Annual
Technical Conference, ATC, 2015.

[34] A Kannan, N Jerger, and G Loh. Enabling interposer-
based disintegration of multi-core processors. In In-
ternational Symposium on Microarchitecture, MICRO,
2015.

[35] Vasileios Karakostas, Jayneel Gandhi, Furkan Ayar,
Adrián Cristal, Mark D. Hill, Kathryn S. McKinley,
Mario Nemirovsky, Michael M. Swift, and Osman Ün-
sal. Redundant memory mappings for fast access to
large memories. SIGARCH Comput. Archit. News,
43(3S):66–78, jun 2015.

[36] Vasileios Karakostas, Jayneel Gandhi, Furkan Ayar,
Adrián Cristal, Mark D Hill, Kathryn S McKinley, Mario
Nemirovsky, Michael M Swift, and Osman Ünsal. Re-
dundant memory mappings for fast access to large mem-
ories. ACM SIGARCH Computer Architecture News,
2015.

[37] Alex Kogan, Dave Dice, and Shady Issa. Scalable range
locks for scalable address spaces and beyond. In Euro-
pean Conference on Computer Systems, EuroSys, 2020.

[38] Mohan Kumar Kumar, Steffen Maass, Sanidhya
Kashyap, Ján Veselý, Zi Yan, Taesoo Kim, Abhishek
Bhattacharjee, and Tushar Krishna. Latr: Lazy trans-
lation coherence. In International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems, ASPLOS, 2018.

[39] Redis Labs. Redis. https://redis.io.

[40] Christoph Lameter. Numa (non-uniform memory ac-
cess): An overview: Numa becomes more common be-
cause memory controllers get close to execution units
on microprocessors. Queue, 2013.

[41] Huaicheng Li, Daniel S Berger, Lisa Hsu, Daniel Ernst,
Pantea Zardoshti, Stanko Novakovic, Monish Shah,
Samir Rajadnya, Scott Lee, Ishwar Agarwal, et al. Pond:
Cxl-based memory pooling systems for cloud platforms.
In ACM International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems, Volume 2, ASPLOS, 2023.

[42] Pejman Lotfi-Kamran, Boris Grot, Michael Ferdman,
Stavros Volos, Onur Kocberber, Javier Picorel, Almutaz
Adileh, Djordje Jevdjic, Sachin Idgunji, Emre Ozer, and
Babak Falsafi. Scale-out processors. In Proceedings of
the 39th Annual International Symposium on Computer
Architecture, 2012.

[43] Pejman Lotfi-Kamran, Boris Grot, Michael Ferdman,
Stavros Volos, Onur Kocberber, Javier Picorel, Almu-
taz Adileh, Djordje Jevdjic, Sachin Idgunji, Emre Ozer,

USENIX Association 2024 USENIX Annual Technical Conference 459

https://redis.io.

and Babak Falsafi. Retrospective: Scale-out processors.
In ISCA@50 25-Year Retrospective: 1996-2020. ACM
SIGARCH and IEEE TCCA, 2023.

[44] Artemiy Margaritov, Dmitrii Ustiugov, Edouard
Bugnion, and Boris Grot. Prefetched address trans-
lation. In IEEE/ACM International Symposium on
Microarchitecture, MICRO, 2019.

[45] Hasan Al Maruf, Hao Wang, Abhishek Dhanotia, Jo-
hannes Weiner, Niket Agarwal, Pallab Bhattacharya,
Chris Petersen, Mosharaf Chowdhury, Shobhit Kanaujia,
and Prakash Chauhan. Tpp: Transparent page placement
for cxl-enabled tiered-memory. In ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3, ASPLOS,
2023.

[46] Memcached. A distributed memory object caching store.
https://memcached.org.

[47] mongoDB. Disable transparent huge pages. https:
//docs.mongodb.org/manual/tutorial/transpa
rent-huge-pages/.

[48] Richard C Murphy, Kyle B Wheeler, Brian W Barrett,
and James A Ang. Introducing the graph 500. Cray
Users Group, 2010.

[49] Rolf Neugebauer, Gianni Antichi, José Fernando Zazo,
Yury Audzevich, Sergio López-Buedo, and Andrew W
Moore. Understanding pcie performance for end host
networking. In Proceedings of the ACM Special Interest
Group on Data Communication, SIGCOMM, 2018.

[50] Mark Oskin and Gabriel H. Loh. A software-managed
approach to die-stacked dram. In 2015 International
Conference on Parallel Architecture and Compilation,
PACT, 2015.

[51] Ashish Panwar, Reto Achermann, Arkaprava Basu, Ab-
hishek Bhattacharjee, K. Gopinath, and Jayneel Gandhi.
Fast local page-tables for virtualized numa servers with
vmitosis. In International Conference on Architectural
Support for Programming Languages and Operating
Systems, ASPLOS, 2021.

[52] Ashish Panwar, Aravinda Prasad, and K Gopinath. Mak-
ing huge pages actually useful. In International Con-
ference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS, 2018.

[53] Soyeon Park, Sangho Lee, Wen Xu, Hyungon Moon,
and Taesoo Kim. libmpk: Software abstraction for in-
tel memory protection keys (intel {MPK}). In 2019
USENIX Annual Technical Conference (USENIX ATC
19), pages 241–254, 2019.

[54] Binh Pham, Abhishek Bhattacharjee, Yasuko Eckert, and
Gabriel H Loh. Increasing tlb reach by exploiting clus-
tering in page translations. In International Symposium
on High Performance Computer Architecture, HPCA,
2014.

[55] Binh Pham, Viswanathan Vaidyanathan, Aamer Jaleel,
and Abhishek Bhattacharjee. Colt: Coalesced large-
reach tlbs. In IEEE/ACM International Symposium on
Microarchitecture, MICRO, 2012.

[56] Javier Picorel, Djordje Jevdjic, and Babak Falsafi. Near-
memory address translation. In International Confer-
ence on Parallel Architectures and Compilation Tech-
niques, PACT, 2017.

[57] Javier Picorel, Seyed Alireza Sanaee Kohroudi, Zi Yan,
Abhishek Bhattacharjee, Babak Falsafi, and Djordje
Jevdjic. Sparta: A divide and conquer approach to
address translation for accelerators. arXiv preprint
arXiv:2001.07045, 2020.

[58] redis. Latency induced by transparent huge pages. ht
tps://redis.io/topics/latency.

[59] Jee Ho Ryoo, Nagendra Gulur, Shuang Song, and Lizy K.
John. Rethinking tlb designs in virtualized environ-
ments: A very large part-of-memory tlb. SIGARCH
Computer Architecture News, 2017.

[60] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying
Zhang. LegoOS: A disseminated, distributed OS for
hardware resource disaggregation. In 13th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 18), pages 69–87, Carlsbad, CA, Oc-
tober 2018. USENIX Association.

[61] John R Tramm, Andrew R Siegel, Tanzima Islam, and
Martin Schulz. Xsbench-the development and verifica-
tion of a performance abstraction for monte carlo reactor
analysis. The Role of Reactor Physics toward a Sustain-
able Future, 2014.

[62] Pirmin Vogel, Andrea Marongiu, and Luca Benini.
Lightweight virtual memory support for many-core ac-
celerators in heterogeneous embedded socs. In 2015
International Conference on Hardware/Software Code-
sign and System Synthesis (CODES+ISSS), pages 45–54,
2015.

[63] Zi Yan, Daniel Lustig, David Nellans, and Abhishek
Bhattacharjee. Nimble page management for tiered
memory systems. In International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems, ASPLOS, 2019.

[64] Idan Yaniv and Dan Tsafrir. Hash, don’t cache the page
table. ACM SIGMETRICS Performance Evaluation
Review, 2016.

460 2024 USENIX Annual Technical Conference USENIX Association

https://memcached.org
https://docs.mongodb.org/manual/tutorial/transparent-huge-pages/
https://docs.mongodb.org/manual/tutorial/transparent-huge-pages/
https://docs.mongodb.org/manual/tutorial/transparent-huge-pages/
https://redis.io/topics/latency
https://redis.io/topics/latency

[65] J Yin, Z Lin, O Kayiran, M Poremba, M Altaf, N Jerger,
and G Loh. Modular routing design for chiplet-based
systems. In International Symposium on Computer
Architecture, ISCA, 2018.

[66] Danyang Zhuo, Kaiyuan Zhang, Zhuohan Li, Siyuan
Zhuang, Stephanie Wang, Ang Chen, and Ion Stoica.
Rearchitecting in-memory object stores for low latency.
Proceedings of the VLDB Endowment, 15(3):555–568,
2021.

USENIX Association 2024 USENIX Annual Technical Conference 461

	Introduction
	Background
	Virtual Memory
	NUMA Architectures
	Eager Page-table Replication

	Hydra: Design Principles
	Replication Policies
	Page-Table Coherence Protocol
	Replication and Partitioning
	Configuring Laziness
	Prefetching Overheads

	Reducing TLB shootdowns

	Implementation Details
	Lazy replication
	Reducing TLB shootdowns

	Evaluation
	Evaluation Platform
	Page-table Footprint
	PTE Prefetching
	Workload Migration
	General Applications
	Memory Management
	TLB Shootdowns
	Case Study: Memory Allocation
	Case Study: Web Server
	Case Study: In-memory key-value store.

	Discussion and Future Work
	Related Work
	Segmented Address Spaces
	Minimizing the Need for Address Translations
	Speeding Up Address Translation

	Conclusions

