
Open access to the Proceedings of the
2024 USENIX Annual Technical Conference

is sponsored by

CrossMapping: Harmonizing Memory Consistency
in Cross-ISA Binary Translation

Chen Gao and Xiangwei Meng, Lanzhou University; Wei Li, Tsinghua University;
Jinhui Lai, Lanzhou University; Yiran Zhang, Beijing University of Posts and

Telecommunications; Fengyuan Ren, Lanzhou University and
Tsinghua University

https://www.usenix.org/conference/atc24/presentation/gao-chen

This paper is included in the Proceedings of the
2024 USENIX Annual Technical Conference.

July 10–12, 2024 • Santa Clara, CA, USA
978-1-939133-41-0

CrossMapping: Harmonizing Memory Consistency
in Cross-ISA Binary Translation

Chen Gao
Lanzhou University

Xiangwei Meng
Lanzhou University

Wei Li
Tsinghua University

Jinhui Lai
Lanzhou University

Yiran Zhang
Beijing University of Posts and Telecommunications

Fengyuan Ren∗

Lanzhou University and Tsinghua University

Abstract
The increasing prevalence of new Instruction Set Architec-
tures (ISAs) necessitates the migration of closed-source bi-
nary programs across ISAs. Dynamic Binary Translation
(DBT) stands out as a crucial technology for the cross-ISA
emulation of binary programs. However, due to the mismatch
in memory consistency between guest ISA and host ISA, DBT
systems face substantial challenges in guaranteeing correct-
ness and translation performance for concurrent programs.
Despite several attempts to bridge the memory inconsistency
between guest and host ISA, prior work is either not universal
for cross-ISA DBT systems or inefficient and even error-prone
in translation.

This work presents CrossMapping, a general primitive map-
ping framework to enhance existing DBT systems for cross-
ISA translation. By harmonizing memory consistency across
diverse ISAs, CrossMapping enables smooth cross-ISA trans-
lation and accomplishes correct emulation. CrossMapping
introduces specification tables to describe memory models in
a unified and precise format, which facilitates the derivation of
concurrent primitive mapping schemes based on a convenient
comparison and analysis of memory models. The correctness
of cross-ISA emulation is guaranteed by harmoniously in-
tegrating the derived mapping schemes with existing DBT
systems. We evaluate CrossMapping for x86, ARMv8, and
RISC-V on top of QEMU using the PARSEC benchmark
suite. The results show that the average performance improve-
ment can reach 8.5% when emulating x86 on ARMv8 and
7.3% when emulating x86 on RISC-V.

1 Introduction

Amidst the swift evolution of computer architecture, a mul-
titude of processors embracing new ISAs such as ARM and
RISC-V have emerged. Due to their cost-effectiveness, low
power consumption, and license stability, many personal com-
puter and server manufacturers are shifting from the tradi-

∗Corresponding author

tional x86 architecture to these new architectures (e.g., Apple
computers [8], Huawei Kunpeng servers [22], and Fujitsu’s
supercomputer Fugaku [17] run on ARM). Owing to the in-
herent incompatibility of programs across distinct ISAs, the
adoption of Dynamic Binary Translation (DBT) technology,
which fulfills the emulation of guest programs on the host
through code translation, becomes imperative.

The correct and efficient emulation of concurrent pro-
grams poses a great challenge in DBT systems, which re-
quires proper handling of memory consistency mismatch
between guest ISA and host ISA. Modern ISAs, such as
ARM and RISC-V, typically adhere to a Weak Memory
Model (WMM) [4, 30, 50], whereas traditional ISAs, such
as x86 and SPARC, often use a Total Store Order (TSO)
model [23, 39, 40]. The strength of TSO model is stronger
than WMM which allows more memory access pairs to be out-
of-order. Emulating a TSO architecture on WMM architecture
without auxiliary measures could lead to erroneous results. To
properly handle memory consistency mismatch from strong
to weak memory consistency, DBT systems need to insert
memory fences in the host instruction sequence to keep guest
orderings, which incurs performance degradation [33]. Em-
ulating a WMM architecture on TSO architecture could not
have any correctness issues, however many memory barriers
for WMM become redundant for the TSO model.

Some efforts have been devoted to addressing memory in-
consistency between guest ISA and host ISA. QEMU [11]
enforces a stronger memory ordering than the guest’s on the
host through an overly conservative use of fences, leading
to significant performance degradation. However, despite its
conservative approach, QEMU fails to correctly handle Read-
Modify-Write (RMW) instructions, potentially resulting in
incorrect outcomes. Both Risotto [18] and Lasagne [46] pro-
posed x86-to-ARMv8 mapping schemes through model for-
mal analysis based on one-to-one memory, but do not support
other ISAs. ArMOR [35] developed a mapping scheme based
on Finite State Machines (FSM), which can handle multiple
memory models. Nevertheless, it is not designed for cross-
ISA DBT systems leveraging Intermediate Representation

USENIX Association 2024 USENIX Annual Technical Conference 1013

(IR) and lacks support for one-way barriers and RMW in
modern ISAs.

In this paper, we propose CrossMapping, a generic con-
current primitive mapping framework to harmonize mem-
ory consistency for cross-ISA DBT systems, which ensures
correctness and maintains generality among diverse ISAs.
CrossMapping introduces a memory model specification ta-
ble to represent the memory models of the guest, host, and
IR of DBT system in a unified and precise format. By com-
paring and analysing the memory models of guest, host, and
IR, concurrent primitive mapping schemes for both guest-to-
IR and IR-to-host can be obtained. In particular, the guest-
to-IR mapping is implemented through an FSM, allowing
for context-aware handling of concurrent primitives. Since
the use of fences is related to the sequence of concurrent
primitives, compared to direct mapping individual concur-
rent primitives, the FSM can provide more accurate mapping
and reduce additional overhead. CrossMapping integrates its
mapping schemes into DBT systems to guarantee the correct
memory consistency during emulation execution.

We implement CrossMapping based on QEMU and eval-
uate its performance on the PARSEC benchmark suite [12].
CrossMapping enables correct binary translation among x86,
ARMv8, and RISC-V ISAs and yields significant performance
improvements. Compared with QEMU 8.0, CrossMapping
improves the performance of runtime execution time by up to
15.8% (8.5% on average) for emulating x86 on ARMv8 and
up to 12.7% (7.3% on average) for emulating x86 on RISC-V.

Our key contributions are summarized as follows:

• Memory model specification table: We introduce a
specification table to describe memory models, greatly
facilitating comparison and analysis of these models.
Mapping schemes for any guest and host on any DBT
system can be easily derived via the specification table,
which is the foundation for ensuring the generality of
cross-ISA binary translation.

• Efficient mapping scheme: We achieve efficient map-
ping by dividing it into two phases and employing tar-
geted techniques. In the guest-to-IR mapping phase, an
FSM is developed to capture the context of concurrent
primitives to minimize the use of fences in IR. The IR-to-
host mapping phase simply maps the IR fences to host
fences without inserting new fences or eliminating old
fences.

• QEMU-based implementation: As a case study, we
implement CrossMapping on widely-used QEMU for
x86, ARMv8, and RISC-V ISAs. Evaluations validate
the efficient translation performance between x86 to
ARMv8, x86 to RISC-V, ARMv8 to x86, and RISC-V to
x86, which also demonstrate the generality of CrossMap-
ping. The code is available at https://github.com/
ChenGao1999/CrossMapping-for-QEMU.

2 Background

2.1 Dynamic Binary Translation

DBT technology can emulate guest binary programs on the
host by translating codes at runtime [14, 44]. DBT systems
generally perform translation at the granularity of at least one
basic block. The typical workflow includes two steps: First,
the guest machine code is translated into IR by the front end
of the translator, and the IR code is optimized. Then, the IR
is translated into host binary machine code by the back end
of the translator. Basic blocks are usually cached to avoid
redundant translation. QEMU [11] stands out as an exemplary
open-source project and is widely adopted in academia and
industry. In QEMU, the built-in Tiny Code Generator (TCG)
front end transforms guest code to TCG IR, and the TCG
backend generates host-executable machine code from TCG
IR.

2.2 Memory Model

The memory model describes the behavior of concurrent prim-
itives on shared memory. Due to different design choices,
ISAs and IRs have different memory models, resulting in
variations in concurrent primitives and their behaviors. The
concurrent primitives can be categorized into four types: (1)
Load and store access to shared memory, (2) Explicit memory
barriers, also known as fences, (3) Implicit memory barri-
ers associated with reads and writes, (4) Read-Modify-Write
(RMW) access to shared memory.

Load and store accesses. Due to different memory models,
the ordering of memory accesses varies. Store-load access
pairs at different addresses are barely allowed to be out-of-
order in TSO model, whereas all the four types of access pairs
(load-load, load-store, store-load, and store-store) at different
addresses are allowed to be out-of-order in WMM.

In WMM, maintaining logical correctness necessitates pro-
viding dependencies including address dependency, control
dependency, and data dependency. Memory accesses become
ordered when the value which has been read is utilized to
calculate access address, the control condition, or the value
written for subsequent memory accesses in program order.

In different ISAs, store accesses may become visible to
different cores in the system at different times. Multiple-copy
atomic stores must be visible to all cores in the system simulta-
neously. Strict multiple-copy atomicity comes with significant
overhead and is uncommon, as it even prohibits forwarding
from private local store buffers. Other-multiple-copy atomic
stores must be visible to all cores simultaneously except for
the issuing core. Non-multiple-copy atomic stores are visible
to remote cores possibly in any order.

1014 2024 USENIX Annual Technical Conference USENIX Association

https://github.com/ChenGao1999/CrossMapping-for-QEMU
https://github.com/ChenGao1999/CrossMapping-for-QEMU

Explicit memory barriers. Explicit memory barriers, also
known as fences, enforce the ordering of memory access
before and after fence instructions. Most ISAs and IRs pro-
vide various memory fences for programmers. x86, ARMv8
and TCG IR offer full fences such as MFENCE, DMB full, and
Fsc, so as to order any pair of memory accesses. Some WMM
architectures also provide lightweight fences. For instance,
ARMv8 offers DMB ld for ordering read accesses and their
subsequent accesses, and DMB st for ordering a pair of store
accesses. QEMU’s TCG IR offers more flexible fences for
load-load (Frr), load-store (Frw), store-load(Fwr), and store-
store (Fww) access pairs to enforce the ordering. It is note-
worthy that two fences can be combined. For example, Frw
and Fww can be combined into a new barrier Fmw to order
load-store and store-store access pairs.

Implicit memory barriers. Some ISAs provide load and
store instructions with implicit barrier semantics. These in-
structions are typically one-way barriers and incur lower over-
head compared to fences. For example, ARMv8 offers load-
acquire, load-acquirePC, and store-release instructions. In this
context, store-release is ordered with its predecessors, load-
acquire and load-acquirePC are ordered with their successors,
and store-release is ordered with its successor load-acquire.

RMW accesses. Read-Modify-Write (RMW) are atomic
operations, like Compare-and-Swap, Test-and-Set, and Fetch-
and-Add. They read a memory location and write a new
value into it. ISAs provide various types of RMW primi-
tives. For instance, x86 offers single-instruction RMW primi-
tives, like LOCK CMPXCHG and LOCK ADD. ARMv8, in addition
to single-instruction RMW primitives, like CASAL, provides
RMW primitives through a pair of load-exclusive and store-
exclusive instructions. Load-exclusive instructions contain
acquiring semantics, and store-exclusive instructions contain
releasing semantics, thereby allowing RMW primitives to act
as barriers. Different RMW primitives present different mem-
ory behaviors. A successful single-instruction RMW primitive
can act as a full barrier, and a pair of successful load-exclusive
and store-exclusive can excite load-store access pairs to the
same address, while a failed RMW primitive only produces a
read access.

2.3 Memory Consistency Issues in DBT

Concurrency is often understood as the interleaved execution
of multiple threads. If shared memory accesses within each
thread follow program order, it is termed Sequential Con-
sistency (SC) [26]. However, due to its poor performance,
very few concurrent systems directly implement SC. Memory
models weaker than SC can lead to non-SC behaviors. To
ensure the correctness of program execution, it is necessary
to enforce the ordering by inserting memory barriers.

Existing work [9,10,25,42,43,47] has extensively explored
memory consistency issues when compiling from high-level
programming languages to various ISAs. Compilers ensure
that the generated assembly code adheres to the ordering
rules of the source code. However, for cross-ISA DBT sys-
tems, harmonizing memory consistency from guest to host
presents significant challenges, which requires comparing and
analysing the memory models of guest, host, and IR to de-
rive a concurrent primitive mapping scheme from guest to
host, and mapping concurrent primitives at runtime. Simple
binary translation between ISAs may lead to incorrect results
or performance penalty.

As shown in Figure 1, for the same segment of C11 code,
different compilers targeting architectures with varying mem-
ory consistency models generate different assembly codes.
For architectures with TSO model, like x86 and SPARC, load-
load and store-store access pairs are ordered, so no additional
fences need to be inserted. However, for architectures with
WMM, like ARMv8 and RISC-V, memory access pairs are
not ordered, so additional fences need to be inserted. Binary
programs compiled directly from C11 code for different archi-
tectures would exhibit correct results (a = 1, b = 0 cannot
be observed). However, if a DBT system is used to translate
a binary program from TSO architecture to WMM architec-
ture without inserting any memory fence, erroneous results
may occur in the WMM architecture (a = 1, b = 0 could
be observed), as shown in Figure 1(b). Conversely, although
directly translating binary programs from WMM architec-
ture to TSO architecture usually maintains correctness, it may
remain unnecessary fences, as shown in Figure 1(c).

3 Related Work and Motivation

3.1 Cross-ISA DBT System
Cross-ISA DBT systems can be categorized into two types:
system-level DBT systems emulating the entire machine and
user-level DBT systems emulating applications. QEMU [11]
supports both modes. In user mode, it can use multiple host
threads to emulate concurrent programs. However, in system
mode, it only supports executing the emulation of multipro-
cessors in a round-robin fashion in a single host thread if
the host memory model cannot accommodate the guest [45].
CORMEU [49] and PQEMU [16] implement multi-threaded
system-level emulation based on QEMU, but they do not ad-
dress the mismatch in memory consistency models. Some
DBT systems [13, 20, 21, 29] use LLVM IR [27] as the in-
termediate representation for performance optimization, but
most of them cannot correctly support concurrent program
emulation. Rosetta 2 [7] is a translator developed by Apple for
program translation from x86 to ARM, it coordinates mem-
ory consistency by implementing x86 and ARM models in
hardware [24]. It is regrettable that Rosetta is closed-source,
lacking publicly available technical details.

USENIX Association 2024 USENIX Annual Technical Conference 1015

Thread 0

*x = 1;
atomic_store_explicit(&y, 1, release);

Thread 1

if (atomic_load_explicit(&y, 1, acquire))
assert(*x != 0);

(a) Message Passing C11 Source Code

TSO Architecture
Compiler

WMM Architecture
Compiler

Initially X=0, Y=0
X = 1;
Y = 1;

a = Y;
b = X;

Outcome a = 1, b = 0
Executing on TSO: Forbidden
Simply translate to WMM:Observable

(b) Pseudo-Assembly compiled for TSO

Initially X=0, Y=0
X = 1;

fence st-st;
Y = 1;

a = Y;
fence ld-ld;

b = X;
Outcome a = 1, b = 0
Executing on WMM: Forbidden
Simply translate to TSO:Forbidden

(c) Pseudo-Assembly compiled for WMM

Figure 1: Message passing litmus test and pseudo-assembly for different architectures

Table 1: QEMU mapping schemes (x86 to ARMv8)

x86 TCG IR ARMv8
Load → Fmr; ld → DMB ld; LDR
Store → Fmw; st → DMB full; STR
RMW → call → BLR; RMW; RET

MFENCE → Fsc → DMB full

3.2 Harmonizing Memory Consistency
Some work [2, 3, 6, 19, 36, 51] have aimed at comparing mem-
ory models and identifying their differences. Other investi-
gations [1, 5, 28, 31, 32, 37, 38, 48] address these differences
through memory barrier placement strategies, but most are
designed for compilers and are unsuitable for DBT systems.

To harmonize memory consistency in binary translation,
some existing work suggest solutions through concurrent
primitive mapping.

Native mapping schemes. QEMU adopts native concur-
rent primitive mapping schemes [45]. During the translation
process from guest to TCG IR, a fence is inserted before each
memory access to order any predecessors. In the translation
process from TCG IR to host, TCG IR fence is translated into
a sufficiently strong host fence to ensure both host and guest
have the same memory ordering. Table 1 lists the mapping
scheme from x86 to ARMv8. Taking the translation of store
access as an example, the TCG frontend inserts an Fmw be-
fore store access, ordering store-store and load-store access
pairs. Subsequently, the TCG backend translates Fmw into DMB
full provided by ARMv8. However, DMB full orders any
memory access pairs, resulting in performance penalty.

Although QEMU adopts very conservative mapping

Initially X=0, Y=0

X = 1;
Y = 1;

a = Y;
if(a == 1)

FAA(X,1)

Outcome
a = 1, X = 1 Forbidden

(a) x86 Pseudo-Assembly

−→

Initially X=0, Y=0
DMB full;
X = 1;
DMB full;
Y = 1;

DMB full;
a = Y;
if(a == 1)

FAA(X,1)
Outcome
a = 1, X = 1 Observable

(b) Translated Code (ARMv8)

Figure 2: Fetch-And-Add litmus test

schemes, they cannot guarantee the correctness of RMW ac-
cesses on some WMMs. QEMU translates RMW instructions
without additional barriers by calling helper functions, which
may result in incorrect results. For instance, when translat-
ing x86 atomic instructions like LOCK XCHG and LOCK ADD to
ARMv8, they are implemented using acquire-load-exclusive
(LDAXR) and release-store-exclusive (STLXR) access pairs on
ARMv8. Considering the litmus test illustrated in Figure 2,
when translated from x86 to ARMv8 by QEMU, incorrect han-
dling of RMW primitives leads to erroneous results. In x86,
the Fetch-And-Add (FAA) operation is an atomic operation
acting as a full barrier. It is ordered with the preceding load ac-
cess. Therefore, when if (a==1) is true, the store instruction
X=1 in another core must have already been completed, and
the FAA operation subsequently updates X=2. Consequently,
the output a=1, X=1 cannot be observed. In ARMv8, FAA is
implemented using the LDAXR-STLXR access pair, where the
load can be reordered with the succeeding LDAXR. Therefore,
the load access to X in FAA might be completed before the
a=Y instruction, leading to the erroneous result of observing
a=1, X=1.

1016 2024 USENIX Annual Technical Conference USENIX Association

Table 2: Risotto and Lasagne mapping schemes (x86 to
ARMv8)

x86 IR ARMv8
Load → ld; Frm → LDR; DMB ld
Store → Fww; st → DMB st; STR
RMW → RMW → DMB full; RMW; DMB full

MFENCE → Fsc → DMB full

Special mapping schemes. Memory models are formally
defined in various ISAs (e.g., x86 [40], ARMv8 [4], or RISC-
V [50]). Due to the complexity of formally defining memory
models and the usual incompatibility in these definitions,
efficient and correct concurrent primitive mappings are con-
structed using formal analysis. This approach is specific to
mapping one memory model to another, and the analysis pro-
cess is quite intricate.

Risotto [18] and Lasagne [46] are two representative works
on x86 to ARMv8 concurrent primitive mapping. Risotto is a
dynamic binary translator based on QEMU, while Lasagne is a
static binary translator based on LLVM. Both of them provide
mapping schemes from x86 to ARMv8 through the IR, as
shown in Table 2. Compared to QEMU’s native concurrent
primitive mapping approach, these mapping schemes reduce
the use of excessive fences and fix the bugs in the mapping
of RMW primitives. Additionally, they develop an enhanced
scheme for fence merging in IR, namely merging two weaker
fences into a stronger one to reduce fences further (e.g., Frm
and Fww are merged into Fsc).

However, these schemes still introduce excessive fences.
For instance, for load-store access pairs, when translating
from x86 to TCG IR or LLVM IR, they insert Frm after a load
access and Fww before a store access, merging the two fences
into Fsc. When translating from TCG IR to ARMv8, Fsc
is translated into ARMv8 full fence DMB full. The strength
of DMB full is overkill, as the lightweight fence DMB ld is
sufficient for ordering load-store access pairs.

Generic mapping schemes. ArMOR [35] is a framework
designed for specifying and transforming memory models.
The specification tables, which enable comparison of mem-
ory models, are introduced to define the ordering of memory
accesses within a model, thus ArMOR can be adaptable to
various memory models. The framework can generate Finite
State Machines (FSMs) of memory model mapping based
on both source and target memory models. Each state of the
FSM indicates the memory ordering requirements after the
execution of a concurrency primitive, determining whether
concurrency primitives and their various successors need to
be ordered. When encountering concurrency primitives dur-
ing program execution, fences can be inserted based on the
current state (the memory ordering requirements of preceding
concurrency primitives) and the concurrent primitive itself.

Table 3: Summary of CrossMapping and Related Work

Tool
Cross-ISA

DBT Generality
Correct handling

of RMW
QEMU ✔ ✔ ✘
Risotto ✔ ✘ ✔
Lasagne ✘ ✘ ✔
ArMOR ✘ ✔ ✘

Pico ✔ ✘ ✘

Cross-
Mapping ✔ ✔ ✔

This approach accurately determines whether and what type
of fence should be inserted between each memory access pair,
effectively reducing the overhead caused by excessive fences.

However, the framework primarily targets heterogeneous
architectures, and its concurrent primitive mapping relies on
the Dynamic Binary Instrumentation (DBI) tool Pin [34]. Con-
sequently, it cannot work in cross-ISA DBT systems where
the translation process depends on the IR. Furthermore, Ar-
MOR is unable to handle dependencies, one-way barriers, and
RMW primitives, and considers RMW as a straightforward
extension that behaves like load and store accesses. How-
ever, the behavior of RMW primitives varies across ISAs,
and failure to address this issue may lead to errors similar
to those illustrated in Figure 2. Pico [15] utilizes ArMOR to
implement a DBT system from x86 to PowerPC, but does not
ensure the correct translation of RMW primitives.

3.3 Motivation
Table 3 summarizes prior work, which primarily exhibit the
following two shortcomings: (1) inserting excessive fences
during mapping, resulting in additional overhead, and (2) spe-
cial solution cannot provide a generic mapping scheme appli-
cable to cross-ISA DBT systems.

Excessive fence insertion. The mapping schemes devised
by QEMU, Risotto, and Lasagne need the insertion of fences
for each memory access, thus they lack the capability to cap-
ture contextual information about memory accesses, namely
they cannot recognize memory access pairs. This limits in-
serting the suitable strength of the memory fence. Instead,
overkill or superfluous fences are inserted for ordering, re-
sulting in excessive overhead. Both Risotto and Lasagne in-
troduce fence merging optimization in IR and can combine
two fences into one, thus reducing some superfluous fences.
However, the strength of the merged fence is still overkill in
some situations.

Inapplicable to generic cross-ISA DBT systems. While
ArMOR is a general concurrent primitive mapping frame-
work, it is designed for heterogeneous architectures and does

USENIX Association 2024 USENIX Annual Technical Conference 1017

Offline

FSM

Generator

Online

IR-to-Host

Mapping
Host

Basic Block

Guset-to-IR

Mapping

Guest

Basic Block

FSM of Guest-

to-IR Mapping

FSM of Guest-

to-IR Mapping

Memory Model

Normalizer

Memory Model

Normalizer
Fences

Comparator

IR-to-Host

Fence Mapping

IR-to-Host

Fence Mapping

IR

Figure 3: Overview of CrossMapping

not support DBT systems employing IR during translation.
ArMOR, Pico, and QEMU fail to map certain RMW prim-
itives provided by some WMM correctly, thus they can not
properly work on modern WMM architectures like ARMv8.
Risotto and Lasagne only support concurrent primitive map-
ping from x86 to ARMv8, and cannot be easily migrated to
the memory models of other architectures.

Motivated by these issues, we develop CrossMapping to
provide correct and efficient concurrent primitive mapping
and support generic cross-ISA DBT systems.

4 Design of CrossMapping

4.1 Overview

CrossMapping is a generic framework for cross-ISA con-
current primitive mapping, and is adaptable to a range of
guest and host ISAs, as well as DBTs. While ensuring correct-
ness, CrossMapping achieves efficient concurrent primitive
mapping. Figure 3 illustrates an overview of CrossMapping,
including offline and online stages.

The runtime translation of guest binary programs to the
host in DBT systems typically involves two steps: first, the
translator’s front end translates guest machine code into IR,
and then, the translator’s back end translates the IR into host
machine code and executes it. The translation is usually done
at the granularity of basic blocks to facilitate optimization and
caching of these blocks. Therefore, the mapping process also
occurs in two steps at the basic block level: guest-to-IR and IR-
to-host. In the offline phase, CrossMapping separately derives
these two mapping schemes, namely the FSM of mapping
from guest to IR and the fence mapping from IR to host.
In the online phase, conducting these two mappings within
the DBT system can achieve the preservation of the guest
memory orderings on the host during execution.

Offline stage. Due to the incompatibility of formalized
memory models, direct comparison and exportation of map-
ping schemes are infeasible. To address this issue, we intro-
duce a memory model normalizer to describe memory models
using specification tables, which facilitate their comparison
and analysis.

For the guest-to-IR mapping, we employ Finite State Ma-
chine (FSM) for efficient and precise memory fence insertion.
The FSM can capture contextual information of concurrent
primitives, and can conduce the identification of memory ac-
cess pairs. The identification enables the strategic positioning
of IR fences in the code and the selection of suitable types of
IR fences for optimized synchronization. The FSM generator,
by comparing the execution orderings of the guest with host
memory models and considering the ordering specified by IR
fences, outputs the FSM of guest-to-IR mapping.

For the IR-to-host mapping, the insertion or removal of
fences is unnecessary. The key point focuses on mapping
fences. Leveraging the fences comparator, the fence mapping
from IR to host is derived by comparing the specification
tables of IR fences and host fences.

Online stage. The online stage is integrated into the DBT
system, enabling concurrent primitive mapping during pro-
gram emulation. The FSM needs to be realized in the front
end of the translator to achieve the mapping of concurrent
primitives from guest to IR. The fence mapping needs to be
conducted in the back end of the compiler to accomplish the
mapping of concurrent primitives from IR to host.

4.2 Memory Model Normalizer
To handle the issue of the complexity and incompatibility
in formalized memory models, Memory Model Normalizer
is designed by leveraging a standard specification table to
describe memory models. Specification tables can precisely
describe the memory orderings on ISAs and the orderings

1018 2024 USENIX Annual Technical Conference USENIX Association

Table 4: Specification table of ARMv8 memory orderings

1st Ins. Ord.

2nd Ins.
SA
Ins.

DA
ld

DA
st

DA
ld-aq

DA
ld-PC

DA
ld-rl

ld ✓ ✓dep ✓dep − − ✓

st ✓ − − − − ✓

ld-aq ✓ ✓ ✓ ✓ ✓ ✓

ld-PC ✓ ✓ ✓ ✓ ✓ ✓

st-rl ✓ − − − − ✓

Table 5: Specification table of DMB ld

1st Ins. Ord.

2nd Ins.

load store

load ✓ ✓

store − −

enforced by fences, and facilitate comparison and conversion
between them.

Definition of specification table. Generally, the memory
ordering of an ISA is described with one specification table,
and the ordering enforced by each barrier is described with
a separate specification table. An exception is implicit bar-
riers, like load-acquire, store-release and load-acquirePC in
ARMv8, which are attached to load and store accesses. They
have dual semantics of both memory access and barrier, and
are usually one-way barriers, so as to be arduously described
by a single specification table. Therefore, we treat these im-
plicit barriers as special memory accesses, and describe them
in the memory ordering specification table.

As examples, Table 4 and Table 5 show the memory order-
ing specification tables for ARMv8 and its load fence DMB
ld, respectively. The symbol ✓ indicates a pair of ordered
memory accesses, ✓dep indicates their ordering through de-
pendencies, and − denotes out-of-order memory access. Each
cell in the specification table specifies whether the memory ac-
cess instruction of the type in the row header must be ordered
with subsequent accesses of the type in the column header. In
most of memory models, memory access pairs for identical
and different addresses typically have different memory or-
derings. Accesses to the same address are generally ordered,
known as coherence. However, for different addresses, differ-
ent memory models typically have distinct memory orderings.
Therefore, we explicitly distinguish between access to same
address (SA) and access to different addresses (DA) in the spec-
ification table. For instance, in Table 4, load (ld) in the first
row and subsequent load at different addresses (DA ld) in

Table 6: Refined specification table for DMB ld

1st Ins. Ord.

2nd Ins.
SA
Ins.

DA
ld

DA
st

DA
ld-aq

DA
ld-PC

DA
ld-rl

ld ✓ ✓ ✓ ✓ ✓ ✓

st ✓ − − − − ✓

ld-aq ✓ ✓ ✓ ✓ ✓ ✓

ld-PC ✓ ✓ ✓ ✓ ✓ ✓

st-rl ✓ − − ✓ − ✓

the second column rely on address dependency and control
dependency, store (st) in the second row and subsequent load
at different addresses in the second column are out-of-order,
load-acquire (ld-aq) in the third row and subsequent load at
different addresses in the second column are ordered.

Refinement. As shown in Table 4 and Table 5, the memory
ordering specification tables for ARMv8 and DMB ld have
different rows and columns, which makes direct comparison
impossible. Similar issues also arise in specification tables of
different memory models. Therefore, it is necessary to refine
the rows and columns of the specification tables into matching
partitions.

The refinement is carried out in two steps. The first step
is to find the set of memory accesses that serve as row and
column headers, refining the specification tables to have the
same rows and columns. Partition refinement techniques [41]
can be used to merge the rows and columns from different
specification tables into a finer-grained partition. The second
step is to fill in the cells of refined specification table. This
can be inferred by the contents of the original cells and the
semantics of the refined set of memory accesses. Table 6
shows the refined specification table for DMB ld, which has
the same rows and columns as the ARMv8 memory ordering
specification table also illustrated in (Table 4). The refinement
allows comparison between Table 4 and Table 6.

Comparison. The comparison of specification tables is con-
ducted by analysing each pair of corresponding cells. If a spec-
ification table A can satisfy all memory orderings of another
specification table B, then A is considered to be greater than
or equal to B (A ≥ B). Similarly, other comparison operations
(<, ≤, =, ̸=, ≥, >) can be defined on the specification tables.
Union (∪) and subtraction (−) operations can also be defined
on the specification tables. Union produces a specification
table that has a strength greater than or equal to each input
table. Subtraction produces a specification table that specifies
the orderings enforced by the first table but not the second
one.

USENIX Association 2024 USENIX Annual Technical Conference 1019

4.3 FSM of Guest-to-IR Mapping

The FSM guides the mapping of the guest concurrent prim-
itive to IR. Since IR does not have its memory execution
ordering, and its execution ordering depends on the host, the
FSM of guest-to-IR mapping indicates how to insert fences
into IR to ensure that the program ultimately satisfies the
guest ordering when executed on the host. Each state in the
FSM represents the memory orderings described by a specifi-
cation table, and the orderings should be enforced at a certain
moment on the host. Each transition condition is a concurrent
primitive. The FSM outputs fences that should be inserted ac-
cording to current state (current required memory orderings)
when encountering concurrent primitives in the DBT system
translation process, and transition to new state (new required
memory orderings) after the concurrent primitives.

Typically, DBT systems translate at the granularity of basic
blocks, and the translated basic blocks are cached for quick
execution when the same block reappears. This means that
memory model mapping also needs to be done at the gran-
ularity of basic blocks, and it is hard to predict the memory
orderings satisfied by the first concurrent primitive within the
basic block. Therefore, when entering a basic block, the FSM
is initialized to the start state that the orderings are enforced
in the guest but not in the host (i.e., Subtracting specification
table of host memory ordering from specification table of
guest memory ordering).

4.4 FSM Generator

The FSM generator calculates the start state of FSM, accord-
ing to the specification tables of the guest and the host. Sub-
sequently, the FSM generator calculates other states of the
FSM, and determines what position and type of the IR fences
should be inserted, as detailed in Algorithm 1. Depending
on the type of concurrent primitives, four cases need to be
handled: (1) For fences, directly map them to IR fences (Line
3-6); For single-instruction RMWs which can act as full bar-
riers, it is necessary to check if the host has a corresponding
single-instruction RMW. If the host has a corresponding in-
struction, then conduct the direct translation (Line 8-9). If
not, the RMW is decomposed into load and store accesses,
and fences are inserted sequentially to simulate a full barrier
(Line 10-15); (3) In the cases where the previous operation is
a single-instruction RMW and no other concurrent primitives
are encountered at the end of the basic block, it is necessary
to insert a barrier to ensure the RMW composed of load and
store accesses can act as a full barrier (Line 16-18). (4) For
other memory accesses, fences are inserted to comply with
the required memory orderings (Line 19-22). Finally, the next
state can be updated according to three parts: the current
state, the inserted fences and the new orderings required by
concurrent primitives (Line 23).

Algorithm 1: FSM Generation Algorithm

1 Function GetNextState(state, op):
2 requiredMo = guestMo−hostMo;
3 if IsFence(op) then
4 ordToEnforce = op;
5 fence = InsertIRFence(ordToEnforce);
6 newOrd = /0;

7 else if IsSingleInstRMW(op) then
8 if GusetRMWActFullBarrier(op) then
9 newOrd = /0;

10 else
11 ld, st = Split(op);
12 ldOrdToEnforce = KeepCol(state, ld);
13 fence = InsertIRFence(ldordToEnforce);
14 tmpState = (state−fence) ∪

KeepRow(requiredMo, ld);
15 newOrd = KeepRow(requiredMo, st);

16 else if IsEndOfBasicBlock(op) and
isAfterRMW(state) then

17 fence = InsertIRFence(fullfence−state);
18 newOrd = /0;

19 else
20 ordToEnforce = KeepCol(state, op);
21 InsertIRFence(ordToEnforce);
22 newOrd = KeepRow(requiredMo, op);

23 nextState = (state−fence) ∪ newOrd;
24 return nextState;

25 Function InsertIRFence(ordToEnforce):
26 return the weakest IR fence that satisfies

fence ≥ ordToEnforce;

27 Function KeepRow(state, row):
28 for state[i][j] in state do
29 if i ̸= row then state[i][j] = −;

30 return state;

31 Function KeepCol(state, col):
32 for state[i][j] in state do
33 if i ̸= row then state[i][j] = −;

34 return state;

4.5 Fences Comparator

In the mapping process from IR to the host, direct mapping
IR fences without any additional fence insertions to corre-
sponding host fences is sufficient. The IR-to-host fence map-
ping scheme can be generated by the fence comparator by
analysing the specification tables of both IR and host fences.
For each IR fence, the comparator identifies the weakest host
fence to satisfy all the enforced orderings of IR fence.

1020 2024 USENIX Annual Technical Conference USENIX Association

Table 7: Specification table for x86 memory orderings

(a) Original table

1st

Ins. Ord.

2nd Ins.

ld st

ld ✓ ✓

st − ✓

(b) Refined table

1st

Ins. Ord.

2nd Ins.

ld st ld-aq st-rl

ld ✓ ✓ ✓ ✓

st − ✓ − ✓

ld-aq ✓ ✓ ✓ ✓

st-rl − ✓ − ✓

4.6 Online Mapping
By applying the mapping scheme derived in the offline stage
to the DBT system, we can achieve concurrent primitive map-
ping during binary translation, thereby ensuring the correct
translation.

In the guest-to-IR mapping phase, fences need to be in-
serted into IR. Between two memory accesses, there may
be some unrelated instructions, thus inserting a fence at any
position in this instruction sequence has the same semantics.
Liu et al. [33] pointed out that fences can slow down or even
block subsequent unrelated instructions until a response is
received from the bus. This means that inserting a fence closer
to the end of the instruction sequence between two memory
accesses has a weak influence on performance. Therefore,
we choose to insert immediate fences before the succeeding
access.

In the IR-to-host mapping phase, it is sufficient to simply
map the fences without any additional operations.

5 Case Study

In this section, based on QEMU’s user-mode, we utilize
CrossMapping to conduct some case studies, including strong-
on-weak architectures (x86 to ARMv8, x86 to RISC-V) and
weak-on-strong architectures (ARMv8 to x86, RISC-V to
x86) mappings.

Specifically, due to the substantial overhead in QEMU of
tracking memory access addresses and dependencies, we ig-
nore these two features in subsequent experiments. That is, all
memory accesses are considered to be at different addresses,
and there is no dependency between access pairs. There is
no influence on the correctness of experiment results since
ignoring both of them excites the mapping scheme to insert
abundant fences.

5.1 x86 to ARMv8 Mapping
Table 4 shows ARMv8’s memory ordering specification table.
The same-address memory access pairs and dependencies
should be ignored, since the tracing of them leads to intolera-

!"#$"

!!"#$""

%&'()'*&!+

,-*&$$./,-

%&'()'/*

&!+

!"*!"

!"*&01./!"

,-*,-

!"*

&$1./!"

/0-.%%1&/0

!"*&11./!"

%&'()'*

&!+

,-*,-

2%3*

&$$./45672./

89472

2%3*

45672./89472

2%3*

&$$./45672./

89472
,-*

&1$./,-

2%3*&1$./45672./89472

!"*&11./!"!:;-"

:;-*

&10./:;-

%&"'$

&'()'

%&"'$

*"+$'

%&"'$

,+#-

%&"'$

./0

(a) FSM of mapping from x86 to TCG IR

TCG IR ARMv8
Frr/Frw → DMB ld

Fww → DMB st
Fwr/Fmw/Fwm/Fsc → DMB full

(b) TCG IR to ARMv8 fence mapping scheme

Figure 4: x86 to ARMv8 mapping scheme

ble overhead in QEMU. The x86’s memory ordering specifi-
cation table is given in Table 7(a), and it is refined to have the
same rows and columns as the ARMv8’s specification table,
as shown in Table 7(b). Both of them are other-multiple-copy
atomic.

For fences, ARMv8 offers the load fence DMB ld, the store
fence DMB st, and the full fence DMB full. x86 provides the
full fence MFENCE. QEMU’s TCG IR provides fences for any
type of memory access pair.

For RMW primitives, they are all single-instruction and
can act as a full barrier in x86. In ARMv8, only the compare-
and-swap CASAL is single-instruction, while the rest of the
RMW primitives are implemented through a LDAXR-STLXR
pair and cannot act as a full barrier.

Based on the algorithm listed in Section 4.3, we can derive
the complete mapping FSM, as shown in Figure 4(a). It has
five states: Start, After fence, After read, After write, and
After RMW. Each state can be described by a specification
table, which specifies the memory orderings that should be en-
forced after a certain operation. When a concurrent primitive
is encountered during the translation process, the FSM will
output a sequence of IR instructions, and transition to a new
state. For example, at the Start state, ld/Frr;ld means when
a load access (ld) is input, the FSM will sequentially output
Frr and a load access (Frr;ld) in the IR, and transition to
the After load state.

• Start state: This state is entered at the beginning of trans-
lating a basic block. Table 8 shows the specification table

USENIX Association 2024 USENIX Annual Technical Conference 1021

Table 8: Start state specification table

1st

Ins. Ord.

2nd Ins.

ld st ld-aq st-rl

ld ✓ ✓ ✓ −
st − ✓ − −

ld-aq − − − −
st-rl − ✓ − −

of this state, which is derived by subtracting ARMv8’s
memory ordering specification table from x86’s, and
presents all additional x86 memory orderings that should
be enforced on ARMv8. In this state, when a load access
is input, an Frr is inserted before the output access to
order the load-load pair. When a store access is input, an
Fmw is inserted to order load-store and store-store pairs.
For RMW access, we treated it as a pair of acquire-load-
exclusive (LDAXR) and release-store-exclusive (STLXR)
accesses, the appropriate fences are inserted before and
after the access pair in the output to emulate the behavior
of x86 single-instruction RMW access. In this state, an
Fmr is inserted before the LDAXR to enforce its ordering
with any types of preceding accesses.

• After load state: Entered after load access. In this state,
to enforce the ordering of load-load and load-store ac-
cess pairs, Frr and Frw should be inserted before load
and store accesses in the output, respectively. For RMW
access, Frr is inserted before the LDAXR to enforce its
ordering with preceding load accesses.

• After store state: Entered after store access. In this state,
to enforce the ordering of store-store access pair, Fww is
inserted before output store accesses. For RMW access,
Fwr is inserted before the LDAXR to enforce its ordering
with preceding store accesses.

• After fence state: Entered after MFENCE operation, and
no memory ordering needs to be enforced. Thus, for any
input operations, no additional fences are required in the
output.

• After RMW state: Entered after RMW access. In this
state, the ordering of STLXR and subsequent accesses
must be enforced. Fwr and Fww are inserted respectively
before output load and store accesses to enforce the or-
dering. When no new concurrent primitives are encoun-
tered by the end of the basic block, an Fwm is inserted
before the end to prevent disorder between STLXR and
subsequent basic block memory accesses.

By comparing the strength of fences in TCG IR and
ARMv8, the TCG IR to ARMv8 mapping scheme can be
derived, as shown in Figure 4(b).

!"#$"

!!"#$""

%&'()'*&!+

2%3*2%3

%&'()'*

&!+

!"*!"

!"*&01./!"

!"*&11./!"

%&'()'*

&!+

,-*,-
,-*&$$./,-

,-*&$$./,- ,-*,-

!"*&$1./!"

%&"'$

&'()'

%&"'$

*"+$'

%&"'$

,+#-

2%3*

2%3

2%3*2%3

2%3*

2%3

(a) FSM of mapping from x86 to TCG IR

TCG IR RISC-V
Frr → fence [r,r]
Frw → fence [r,w]
Fww → fence [w,w]
Fmw → fence [rw,w]
Fsc → fence [rw,rw]

(b) TCG IR to RISC-V fence mapping scheme

Figure 5: x86 to RISC-V mapping scheme

5.2 x86 to RISC-V Mapping

Similar to ARMv8, RISC-V adopts WMM model, allowing
memory accesses to different addresses to be out-of-order, and
is other-multiple-copy atomic. RISC-V offers standard atomic
instruction extensions to support RMW primitives [50]. It pro-
vides two forms of atomic instructions: load-reserved (LR) /
store-conditional (SC) pairs and atomic memory operations
(AMO). Both of them support various memory consistency or-
derings, including unordered, acquire (aq), release (rl), and
sequentially consistent (aqrl) semantics. For AMO instruc-
tions, they can be set as aqrl to act as a full barrier. For
LR/SC instruction pairs, the LR can be set as rl and the SC
as aq to act as a full barrier. RISC-V also provides the fence
instruction to order any combination of memory loads (r) and
stores (w) relative to any types of their combination.

Figure 5 shows the mapping scheme from x86 to RISC-V.
In the FSM of mapping from x86 to TCG IR, since RMW
primitives in RISC-V can act as a full barrier, they can be
directly translated from x86 to RISC-V. The FSM consists of
four states: Start, After read, After write, and After fence.
The transition conditions and outputs among these four states
are similar to those in the mapping scheme for ARMv8.

1022 2024 USENIX Annual Technical Conference USENIX Association

!"#$"

!!"#$""

<"=:$/>:;+:*?

,-*,-
!"*!"

5%@/>A,,*&!+/
!62%BC"

&'()'/DE$F1G$E1FH*&!+
E2I8)?JF

(a) FSM of mapping from ARMv8/RISC-V to TCG IR

TCG IR x86
Fsc → MFENCE

(b) TCG IR to x86 fence mapping scheme

Figure 6: ARMv8/RISC-V to x86 mapping scheme

5.3 ARMv8/RISC-V to x86 Mapping
The memory model of x86 is stronger than those of ARMv8
and RISC-V, meaning that x86 can naturally satisfy the
ordering of ARMv8 and RISC-V without any additional
fences. Therefore, when mapping ARMv8/RISC-V to x86,
it only needs to eliminate extra fences and translate the
necessary ones. Figure 6 shows the mapping scheme from
ARMv8/RISC-V to x86. For ARMv8, DMB full should be
translated to Fsc, and for RISC-V, the fence instruction should
be translated to Fsc when its predecessor set includes w and
the successor set includes r. As for other fences, they are
redundant for x86 and can be eliminated.

6 Evaluation

To validate the basic function of CrossMapping and evalu-
ate its translation performance, we implement the four map-
ping schemes in Section 5 based on QEMU v8.0.0, and con-
duct a performance evaluation. As mentioned in Section 3,
Lasagne [46] is a static binary translator and cannot work
in DBT systems. ArMOR [35] is not suitable for cross-ISA
DBT systems and fails to handle RMW primitives correctly.
Therefore, we compare CrossMapping with QEMU’s native
mapping scheme and Risotto [18] and analyze its performance
gains.

6.1 Experiment Setup
Testbed. We conduct experiments on x86, ARMv8, and
RISC-V platforms.

• x86: A server equipped with two Intel Xeon Silver
4210R processors (10 cores per chip, 2.4 GHz) and 64GB
memory, and runs Ubuntu 20.04 with Linux kernel 5.15.

• ARMv8: A server equipped with two Huawei Kunpeng
920-4826 processors (ARMv8.2, 48 cores per chip, 2.6

GHz) and 192GB memory, and runs Ubuntu 18.04 with
Linux kernel 5.0.

• RISC-V: RISC-V Linux development board LicheePi
4A with TH1520 SOC (RV64GCV, 4 cores, 1.85GHz)
and 16GB memory, and runs Debian 12 with Linux ker-
nel 5.10.

Benchmark. We use the PARSEC 3.0 benchmark suite [12].
The raytrace and x264 benchmarks are omitted because
they could not be natively built and run on ARMv8 and RISC-
V. For emulated execution on x86 and ARMv8, the native
input set is adopted. For RISC-V, due to performance limita-
tions, the simlarge input set is adopted. Since the facesim
benchmark only supports 2n threads, we use hardware threads
as many as possible, which implies 16 threads for x86, 64
threads for ARMv8, and 4 threads for RISC-V.

6.2 Strong-on-Weak Architecture Emulation

Figure 7 shows the run time for strong-on-weak architecture
emulation.

Cost of enforcing memory ordering. For strong-on-weak
architecture emulation, additional fences should be inserted
to enforce memory orderings on WMM, which introduces
extra overhead. We first assessed the overhead caused by
QEMU’s fence insertions. Testing the performance without
fences (note that this is incorrect), we found that the addi-
tional fences occupied a significant portion of the execution
time in benchmarks. For x86 to ARMv8 translation, the ex-
tra fences accounted for up to 84.4% (for dedup), averaging
52.1% of run time. For x86 to RISC-V, they reach up to 81.8%
(for dedup), averaging 59.4%. These results indicate the ne-
cessity of reducing fence insertion while ensuring program
correctness in strong-on-weak architecture emulation.

Comparison with QEMU. Taking the x86 to ARMv8 map-
ping as an example, QEMU’s mapping scheme (Table 1)
inserts DMB full for load-store and store-store pairs and DMB
ld for store-load pairs to keep order. In contrast, CrossMap-
ping’s scheme (Figure 4) only needs to insert DMB ld for load-
store pairs, DMB st for store-store, and no fences for store-
load, significantly reducing the strength and number of extra
fences. Additionally, CrossMapping corrects QEMU’s erro-
neous translation of RMW primitives. Compared to QEMU,
CrossMapping significantly improves execution performance
without any impact on program correctness. For the x86 to
ARMv8 translation, improvements reach up to 15.8% (for
vips), with a geometric mean of 8.5%. For the x86 to RISC-
V, improvement reaches up to 12.7% (for vips), with a geo-
metric mean of 7.3%.

USENIX Association 2024 USENIX Annual Technical Conference 1023

bl
ac
ks
ch
ol
es

bo
dy
tra
ck

fa
ce
sim fe

rre
t

flu
id
an
im
at
e

fre
qm
in
e

sw
ap
tio
ns vip

s

ca
nn
ea
l

de
du
p

st
re
am
clu
st
er

0%

20%

40%

60%

80%

100%

 no-fences CrossMapping Risotto QEMU 8.0

R
u
n
 t
im

e
(n

o
rm

al
iz

ed
 t
o
 Q

E
M

U
 8

.0
)

(a) Emulating x86 on ARMv8

bl
ac
ks
ch
ol
es

bo
dy
tra
ck

fa
ce
sim fe

rre
t

flu
id
an
im
at
e

fre
qm
in
e

sw
ap
tio
ns vip

s

ca
nn
ea
l

de
du
p

st
re
am
clu
st
er

0%

20%

40%

60%

80%

100%

 no-fences CrossMapping QEMU 8.0

R
u
n
 t
im

e
(n

o
rm

al
iz

ed
 t
o
 Q

E
M

U
 8

.0
)

(b) Emulating x86 on RISC-V

Figure 7: Run time of the PARSEC benchmark during strong-on-weak architecture emulation

bl
ac
ks
ch
ol
es

bo
dy
tra
ck

fa
ce
sim fe

rre
t

flu
id
an
im
at
e

fre
qm
in
e

sw
ap
tio
ns vip

s

ca
nn
ea
l

de
du
p

st
re
am
clu
st
er

0%

80%

85%

90%

95%

100%

 ARMv8 to x86 RISC-V to x86 QEMU 8.0

R
u
n
 t
im

e
(n

o
rm

al
iz

ed
 t
o
 Q

E
M

U
 8

.0
)

Figure 8: Run time of the PARSEC benchmark during weak-
on-strong architecture emulation

Comparison with Risotto. Risotto only supports mapping
from x86 to ARMv8 (Table 2). Compared with CrossMap-
ping, it also inserts excessive fences. For load-store pairs,
Risotto generates a DMB full after inserting and merging
fences, while CrossMapping only needs a DMB ld. For RMW
primitives combined on ARMv8, Risotto needs to insert a DMB
full before and after RMW primitives, whereas CrossMap-
ping can insert lighter fences depending on the context.

We also implement Risotto’s mapping scheme based on
QEMU v8.0.0. Taking comparison with it, CrossMapping
achieves up to 5.0% improvement (for vips), with a geomet-
ric mean of 1.8% as shown in Figure 7(a).

6.3 Weak-on-Strong Architecture Emulation
Figure 8 shows the run time for weak-on-strong architecture
emulation. In this case, only the redundant fences need to be
removed. Taking the ARMv8 to x86 mapping as an example,
Table 9 shows QEMU’s mapping scheme. Compared with
CrossMapping’s scheme (Figure 6), the fences for x86 are
identical. However, QEMU removes redundant fences in the

Table 9: QEMU mapping schemes (ARMv8 to x86)

ARMv8 TCG IR x86
LDR/STR → ld/st → Load/Store

RMW → call → BLR; RMW; RET
DMB ld → Fmr → −
DMB st → Fww → −

DMB full → Fsc → MFENCE

TCG IR to x86 mapping stage, while CrossMapping removes
them in the ARMv8 to TCG IR mapping stage. Removing
fences earlier reduces the overhead during translation, thus im-
proving the geometric mean of the x86 to ARMv8 translation
by 1.9%, and the x86 to RISC-V translation by 2.8%.

7 Conclusion

In this paper, we develop CrossMapping, a generic and effi-
cient concurrent primitive mapping framework for cross-ISA
DBT systems to reconcile memory consistency mismatch
in binary translation. We present four cases of emulation
between strong-on-weak and weak-on-strong architectures
using CrossMapping and evaluate the performance under a
typical multi-threaded benchmark suite. CrossMapping si-
multaneously achieves correctness, significant performance
improvement, and the generality of cross-ISA binary transla-
tion, indicating that it is a promising substrate to strengthen
existing DBT systems.

Acknowledgments

The authors gratefully acknowledge the anonymous reviewers
for their constructive comments. This work is supported in
part by National Natural Science Foundation of China (NSFC)
under Grant No. 62132007, No. 62221003 and No. 62302055
as well as gifts from Huawei.

1024 2024 USENIX Annual Technical Conference USENIX Association

References

[1] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Mag-
nus Lång, and Tuan Phong Ngo. Precise and sound
automatic fence insertion procedure under pso. In
Ahmed Bouajjani and Hugues Fauconnier, editors, Net-
worked Systems, pages 32–47, Cham, 2015. Springer In-
ternational Publishing. https://doi.org/10.1007/
978-3-319-26850-7_3.

[2] S.V. Adve and M.D. Hill. A unified formalization of
four shared-memory models. IEEE Transactions on
Parallel and Distributed Systems, 4(6):613–624, 1993.
https://doi.org/10.1109/71.242161.

[3] Jade Alglave. A formal hierarchy of weak mem-
ory models. Formal Methods in System Design,
41:178–210, 2012. https://doi.org/10.1007/
s10703-012-0161-5.

[4] Jade Alglave, Will Deacon, Richard Grisenthwaite, An-
toine Hacquard, and Luc Maranget. Armed cats: Formal
concurrency modelling at arm. ACM Trans. Program.
Lang. Syst., 43(2), jul 2021. https://doi.org/10.
1145/3458926.

[5] Jade Alglave, Daniel Kroening, Vincent Nimal, and
Daniel Poetzl. Don’t sit on the fence. In Armin
Biere and Roderick Bloem, editors, Computer Aided
Verification, pages 508–524, Cham, 2014. Springer In-
ternational Publishing. https://doi.org/10.1007/
978-3-319-08867-9_33.

[6] Jade Alglave, Luc Maranget, Susmit Sarkar, and Peter
Sewell. Fences in weak memory models. In Tayssir
Touili, Byron Cook, and Paul Jackson, editors, Computer
Aided Verification, pages 258–272, Berlin, Heidelberg,
2010. Springer Berlin Heidelberg. https://doi.org/
10.1007/978-3-642-14295-6_25.

[7] Apple. About the rosetta translation en-
vironment. https://developer.apple.
com/documentation/apple-silicon/
about-the-rosetta-translation-environment/.

[8] Apple. Apple unveils m3, m3 pro, and m3 max, the
most advanced chips for a personal computer. https:
//nr.apple.com/Di5I4t7da8, 2023.

[9] Mark Batty, Kayvan Memarian, Scott Owens, Susmit
Sarkar, and Peter Sewell. Clarifying and compiling c/c++
concurrency: From c++11 to power. In Proceedings of
the 39th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’12, page
509–520, New York, NY, USA, 2012. Association for
Computing Machinery. https://doi.org/10.1145/
2103656.2103717.

[10] Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell,
and Tjark Weber. Mathematizing c++ concurrency.
In Proceedings of the 38th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages, POPL ’11, page 55–66, New York, NY, USA,
2011. Association for Computing Machinery. https:
//doi.org/10.1145/1926385.1926394.

[11] Fabrice Bellard. QEMU, a fast and portable
dynamic translator. In 2005 USENIX An-
nual Technical Conference (USENIX ATC 05),
Anaheim, CA, April 2005. USENIX Associa-
tion. https://www.usenix.org/conference/
2005-usenix-annual-technical-conference/
qemu-fast-and-portable-dynamic-translator.

[12] Christian Bienia. Benchmarking modern multipro-
cessors. PhD thesis, Princeton University, 2011.
https://www.cs.princeton.edu/techreports/
2010/890.pdf.

[13] Vitaly Chipounov and George Candea. Dy-
namically translating x86 to llvm using
qemu. Technical report, 2010. https:
//infoscience.epfl.ch/record/149975/files/
x86-llvm-translator-chipounov_2.pdf.

[14] Cifuentes and Malhotra. Binary translation: static, dy-
namic, retargetable? In 1996 Proceedings of Interna-
tional Conference on Software Maintenance, pages 340–
349, 1996. https://doi.org/10.1109/ICSM.1996.
565037.

[15] Emilio G. Cota, Paolo Bonzini, Alex Bennée, and
Luca P. Carloni. Cross-isa machine emulation for
multicores. In 2017 IEEE/ACM International Sympo-
sium on Code Generation and Optimization (CGO),
pages 210–220, 2017. https://doi.org/10.1109/
CGO.2017.7863741.

[16] Jiun-Hung Ding, Po-Chun Chang, Wei-Chung Hsu, and
Yeh-Ching Chung. Pqemu: A parallel system emula-
tor based on qemu. In 2011 IEEE 17th International
Conference on Parallel and Distributed Systems, pages
276–283, 2011. https://doi.org/10.1109/ICPADS.
2011.102.

[17] Fujitsu. Supercomputer fugaku specifications.
https://www.fujitsu.com/global/about/
innovation/fugaku/specifications/.

[18] Redha Gouicem, Dennis Sprokholt, Jasper Ruehl, Ro-
drigo C. O. Rocha, Tom Spink, Soham Chakraborty,
and Pramod Bhatotia. Risotto: A dynamic binary trans-
lator for weak memory model architectures. In Pro-
ceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages

USENIX Association 2024 USENIX Annual Technical Conference 1025

https://doi.org/10.1007/978-3-319-26850-7_3
https://doi.org/10.1007/978-3-319-26850-7_3
https://doi.org/10.1109/71.242161
https://doi.org/10.1007/s10703-012-0161-5
https://doi.org/10.1007/s10703-012-0161-5
https://doi.org/10.1145/3458926
https://doi.org/10.1145/3458926
https://doi.org/10.1007/978-3-319-08867-9_33
https://doi.org/10.1007/978-3-319-08867-9_33
https://doi.org/10.1007/978-3-642-14295-6_25
https://doi.org/10.1007/978-3-642-14295-6_25
https://developer.apple.com/documentation/apple-silicon/about-the-rosetta -translation-environment/
https://developer.apple.com/documentation/apple-silicon/about-the-rosetta -translation-environment/
https://developer.apple.com/documentation/apple-silicon/about-the-rosetta -translation-environment/
https://nr.apple.com/Di5I4t7da8
https://nr.apple.com/Di5I4t7da8
https://doi.org/10.1145/2103656.2103717
https://doi.org/10.1145/2103656.2103717
https://doi.org/10.1145/1926385.1926394
https://doi.org/10.1145/1926385.1926394
https://www.usenix.org/conference/2005-usenix-annual-technical-conference/qemu-fast-and-portable-dynamic-translator
https://www.usenix.org/conference/2005-usenix-annual-technical-conference/qemu-fast-and-portable-dynamic-translator
https://www.usenix.org/conference/2005-usenix-annual-technical-conference/qemu-fast-and-portable-dynamic-translator
https://www.cs.princeton.edu/techreports/2010/890.pdf
https://www.cs.princeton.edu/techreports/2010/890.pdf
https://infoscience.epfl.ch/record/149975/files/x86-llvm-translator-chipounov_2.pdf
https://infoscience.epfl.ch/record/149975/files/x86-llvm-translator-chipounov_2.pdf
https://infoscience.epfl.ch/record/149975/files/x86-llvm-translator-chipounov_2.pdf
https://doi.org/10.1109/ICSM.1996.565037
https://doi.org/10.1109/ICSM.1996.565037
https://doi.org/10.1109/CGO.2017.7863741
https://doi.org/10.1109/CGO.2017.7863741
https://doi.org/10.1109/ICPADS.2011.102
https://doi.org/10.1109/ICPADS.2011.102
https://www.fujitsu.com/global/about/innovation/fugaku/specifications/
https://www.fujitsu.com/global/about/innovation/fugaku/specifications/

and Operating Systems, Volume 1, ASPLOS 2023, page
107–122, New York, NY, USA, 2022. Association for
Computing Machinery. https://doi.org/10.1145/
3567955.3567962.

[19] Lisa Higham, Jalal Kawash, and Nathaly Verwaal. Defin-
ing and comparing memory consistency models. In
PDCS’97, 1997. http://hdl.handle.net/1880/
45991.

[20] Ding-Yong Hong, Chun-Chen Hsu, Pen-Chung Yew,
Jan-Jan Wu, Wei-Chung Hsu, Pangfeng Liu, Chien-Min
Wang, and Yeh-Ching Chung. Hqemu: A multi-threaded
and retargetable dynamic binary translator on multicores.
In Proceedings of the Tenth International Symposium
on Code Generation and Optimization, CGO ’12, page
104–113, New York, NY, USA, 2012. Association for
Computing Machinery. https://doi.org/10.1145/
2259016.2259030.

[21] Chun-Chen Hsu, Pangfeng Liu, Chien-Min Wang, Jan-
Jan Wu, Ding-Yong Hong, Pen-Chung Yew, and Wei-
Chung Hsu. Lnq: Building high performance dynamic
binary translators with existing compiler backends. In
2011 International Conference on Parallel Processing,
pages 226–234, 2011. https://doi.org/10.1109/
ICPP.2011.57.

[22] Huawei. Kunpeng 920. https://www.hisilicon.
com/en/products/Kunpeng/Huawei-Kunpeng/
Huawei-Kunpeng-920.

[23] SPARC International Inc and David L Weaver. The
SPARC architecture manual. Prentice-Hall Englewood
Cliffs, NJ, USA, 1994. https://0x04.net/~mwk/
doc/sparc/SPARCV9.pdf.

[24] Saagar Jha. Tsoenable - kernel extension that enables
tso for apple silicon processes. https://developer.
apple.com/documentation/apple-silicon/
about-the-rosetta-translation-environment/.

[25] Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor
Vafeiadis, and Derek Dreyer. A promising seman-
tics for relaxed-memory concurrency. In Proceed-
ings of the 44th ACM SIGPLAN Symposium on Prin-
ciples of Programming Languages, POPL ’17, page
175–189, New York, NY, USA, 2017. Association for
Computing Machinery. https://doi.org/10.1145/
3009837.3009850.

[26] Lamport. How to make a multiprocessor computer
that correctly executes multiprocess programs. IEEE
Transactions on Computers, C-28(9):690–691, 1979.
https://doi.org/10.1109/TC.1979.1675439.

[27] C. Lattner and V. Adve. Llvm: a compilation frame-
work for lifelong program analysis & transformation.
In International Symposium on Code Generation and
Optimization, 2004. CGO 2004., pages 75–86, 2004.
https://doi.org/10.1109/CGO.2004.1281665.

[28] Jaejin Lee and D.A. Padua. Hiding relaxed memory
consistency with compilers. In Proceedings 2000 In-
ternational Conference on Parallel Architectures and
Compilation Techniques (Cat. No.PR00622), pages 111–
122, 2000. https://doi.org/10.1109/PACT.2000.
888336.

[29] Wei Li, Xiaohui Luo, Yiran Zhang, Qingkai Meng,
and Fengyuan Ren. Crossdbt: An llvm-based user-
level dynamic binary translation emulator. In José
Cano and Phil Trinder, editors, Euro-Par 2022: Paral-
lel Processing, pages 3–18, Cham, 2022. Springer In-
ternational Publishing. https://doi.org/10.1007/
978-3-031-12597-3_1.

[30] Arm Limited. Arm architecture reference manual.
https://developer.arm.com/documentation/
ddi0487/ja/?lang=en.

[31] Alexander Linden and Pierre Wolper. A verification-
based approach to memory fence insertion in pso mem-
ory systems. In Nir Piterman and Scott A. Smolka,
editors, Tools and Algorithms for the Construction and
Analysis of Systems, pages 339–353, Berlin, Heidelberg,
2013. Springer Berlin Heidelberg. https://doi.org/
10.1007/978-3-642-36742-7_24.

[32] Feng Liu, Nayden Nedev, Nedyalko Prisadnikov, Mar-
tin Vechev, and Eran Yahav. Dynamic synthesis for
relaxed memory models. In Proceedings of the 33rd
ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’12, page 429–440,
New York, NY, USA, 2012. Association for Computing
Machinery. https://doi.org/10.1145/2254064.
2254115.

[33] Nian Liu, Binyu Zang, and Haibo Chen. No barrier
in the road: A comprehensive study and optimization
of arm barriers. In Proceedings of the 25th ACM SIG-
PLAN Symposium on Principles and Practice of Paral-
lel Programming, PPoPP ’20, page 348–361, New York,
NY, USA, 2020. Association for Computing Machinery.
https://doi.org/10.1145/3332466.3374535.

[34] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish
Patil, Artur Klauser, Geoff Lowney, Steven Wallace, Vi-
jay Janapa Reddi, and Kim Hazelwood. Pin: Building
customized program analysis tools with dynamic instru-
mentation. In Proceedings of the 2005 ACM SIGPLAN
Conference on Programming Language Design and
Implementation, PLDI ’05, page 190–200, New York,

1026 2024 USENIX Annual Technical Conference USENIX Association

https://doi.org/10.1145/3567955.3567962
https://doi.org/10.1145/3567955.3567962
http://hdl.handle.net/1880/45991
http://hdl.handle.net/1880/45991
https://doi.org/10.1145/2259016.2259030
https://doi.org/10.1145/2259016.2259030
https://doi.org/10.1109/ICPP.2011.57
https://doi.org/10.1109/ICPP.2011.57
https://www.hisilicon.com/en/products/Kunpeng/Huawei-Kunpeng/Huawei-Kunpeng-920
https://www.hisilicon.com/en/products/Kunpeng/Huawei-Kunpeng/Huawei-Kunpeng-920
https://www.hisilicon.com/en/products/Kunpeng/Huawei-Kunpeng/Huawei-Kunpeng-920
https://0x04.net/~mwk/doc/sparc/SPARCV9.pdf
https://0x04.net/~mwk/doc/sparc/SPARCV9.pdf
https://developer.apple.com/documentation/apple-silicon/about-the-rosetta-translation-environment/
https://developer.apple.com/documentation/apple-silicon/about-the-rosetta-translation-environment/
https://developer.apple.com/documentation/apple-silicon/about-the-rosetta-translation-environment/
https://doi.org/10.1145/3009837.3009850
https://doi.org/10.1145/3009837.3009850
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/PACT.2000.888336
https://doi.org/10.1109/PACT.2000.888336
https://doi.org/10.1007/978-3-031-12597-3_1
https://doi.org/10.1007/978-3-031-12597-3_1
https://developer.arm.com/documentation/ddi0487/ja/?lang=en
https://developer.arm.com/documentation/ddi0487/ja/?lang=en
https://doi.org/10.1007/978-3-642-36742-7_24
https://doi.org/10.1007/978-3-642-36742-7_24
https://doi.org/10.1145/2254064.2254115
https://doi.org/10.1145/2254064.2254115
https://doi.org/10.1145/3332466.3374535

NY, USA, 2005. Association for Computing Machinery.
https://doi.org/10.1145/1065010.1065034.

[35] Daniel Lustig, Caroline Trippel, Michael Pellauer, and
Margaret Martonosi. Armor: Defending against mem-
ory consistency model mismatches in heterogeneous
architectures. In Proceedings of the 42nd Annual Inter-
national Symposium on Computer Architecture, ISCA
’15, page 388–400, New York, NY, USA, 2015. Asso-
ciation for Computing Machinery. https://doi.org/
10.1145/2749469.2750378.

[36] Sela Mador-Haim, Rajeev Alur, and Milo M. K. Mar-
tin. Generating litmus tests for contrasting memory
consistency models. In Tayssir Touili, Byron Cook,
and Paul Jackson, editors, Computer Aided Verifica-
tion, pages 273–287, Berlin, Heidelberg, 2010. Springer
Berlin Heidelberg. https://doi.org/10.1007/
978-3-642-14295-6_26.

[37] Robin Morisset and Francesco Zappa Nardelli. Par-
tially redundant fence elimination for x86, arm, and
power processors. In Proceedings of the 26th Interna-
tional Conference on Compiler Construction, CC 2017,
page 1–10, New York, NY, USA, 2017. Association for
Computing Machinery. https://doi.org/10.1145/
3033019.3033021.

[38] Jonas Oberhauser, Rafael Lourenco de Lima Chehab,
Diogo Behrens, Ming Fu, Antonio Paolillo, Lilith Ober-
hauser, Koustubha Bhat, Yuzhong Wen, Haibo Chen,
Jaeho Kim, and Viktor Vafeiadis. Vsync: Push-button
verification and optimization for synchronization prim-
itives on weak memory models. In Proceedings of
the 26th ACM International Conference on Architec-
tural Support for Programming Languages and Oper-
ating Systems, ASPLOS ’21, page 530–545, New York,
NY, USA, 2021. Association for Computing Machinery.
https://doi.org/10.1145/3445814.3446748.

[39] Scott Owens. Reasoning about the implementation
of concurrency abstractions on x86-tso. In Theo
D’Hondt, editor, ECOOP 2010 – Object-Oriented Pro-
gramming, pages 478–503, Berlin, Heidelberg, 2010.
Springer Berlin Heidelberg. https://doi.org/10.
1007/978-3-642-14107-2_23.

[40] Scott Owens, Susmit Sarkar, and Peter Sewell. A bet-
ter x86 memory model: x86-tso. In Stefan Berghofer,
Tobias Nipkow, Christian Urban, and Makarius Wen-
zel, editors, Theorem Proving in Higher Order Log-
ics, pages 391–407, Berlin, Heidelberg, 2009. Springer
Berlin Heidelberg. https://doi.org/10.1007/
978-3-642-03359-9_27.

[41] Robert Paige and Robert E. Tarjan. Three partition
refinement algorithms. SIAM Journal on Computing,

16(6):973–989, 1987. https://doi.org/10.1137/
0216062.

[42] Gustavo Petri, Jan Vitek, and Suresh Jagannathan. Cook-
ing the books: Formalizing jmm implementation recipes.
In John Tang Boyland, editor, 29th European Confer-
ence on Object-Oriented Programming (ECOOP 2015),
volume 37 of Leibniz International Proceedings in In-
formatics (LIPIcs), pages 445–469, Dagstuhl, Germany,
2015. Schloss Dagstuhl – Leibniz-Zentrum für Infor-
matik. https://doi.org/10.4230/LIPIcs.ECOOP.
2015.445.

[43] Anton Podkopaev, Ori Lahav, and Viktor Vafeiadis.
Bridging the gap between programming languages and
hardware weak memory models. 3(POPL), jan 2019.
https://doi.org/10.1145/3290382.

[44] Mark Probst. Dynamic binary translation. In
UKUUG Linux Developer’s Conference, volume 2002,
2002. https://www.complang.tuwien.ac.at/
schani/papers/bintrans.pdf.

[45] QEMU. Multi-threaded tcg. https://www.qemu.org/
docs/master/devel/multi-thread-tcg.html.

[46] Rodrigo C. O. Rocha, Dennis Sprokholt, Martin Fink,
Redha Gouicem, Tom Spink, Soham Chakraborty, and
Pramod Bhatotia. Lasagne: A static binary translator
for weak memory model architectures. In Proceedings
of the 43rd ACM SIGPLAN International Conference
on Programming Language Design and Implementation,
PLDI 2022, page 888–902, New York, NY, USA, 2022.
Association for Computing Machinery. https://doi.
org/10.1145/3519939.3523719.

[47] Jaroslav Ševčík and David Aspinall. On validity of
program transformations in the java memory model.
In Jan Vitek, editor, ECOOP 2008 – Object-Oriented
Programming, pages 27–51, Berlin, Heidelberg, 2008.
Springer Berlin Heidelberg. https://doi.org/10.
1007/978-3-540-70592-5_3.

[48] Dennis Shasha and Marc Snir. Efficient and cor-
rect execution of parallel programs that share mem-
ory. 10(2):282–312, apr 1988. https://doi.org/10.
1145/42190.42277.

[49] Zhaoguo Wang, Ran Liu, Yufei Chen, Xi Wu, Haibo
Chen, Weihua Zhang, and Binyu Zang. Coremu: A scal-
able and portable parallel full-system emulator. PPoPP
’11, page 213–222, New York, NY, USA, 2011. Asso-
ciation for Computing Machinery. https://doi.org/
10.1145/1941553.1941583.

[50] Andrew Waterman and Krste Asanovic. The risc-
v instruction set manual volume i: Unprivileged

USENIX Association 2024 USENIX Annual Technical Conference 1027

https://doi.org/10.1145/1065010.1065034
https://doi.org/10.1145/2749469.2750378
https://doi.org/10.1145/2749469.2750378
https://doi.org/10.1007/978-3-642-14295-6_26
https://doi.org/10.1007/978-3-642-14295-6_26
https://doi.org/10.1145/3033019.3033021
https://doi.org/10.1145/3033019.3033021
https://doi.org/10.1145/3445814.3446748
https://doi.org/10.1007/978-3-642-14107-2_23
https://doi.org/10.1007/978-3-642-14107-2_23
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1137/0216062
https://doi.org/10.1137/0216062
https://doi.org/10.4230/LIPIcs.ECOOP.2015.445
https://doi.org/10.4230/LIPIcs.ECOOP.2015.445
https://doi.org/10.1145/3290382
https://www.complang.tuwien.ac.at/schani/papers/bintrans.pdf
https://www.complang.tuwien.ac.at/schani/papers/bintrans.pdf
https://www.qemu.org/docs/master/devel/multi-thread-tcg.html
https://www.qemu.org/docs/master/devel/multi-thread-tcg.html
https://doi.org/10.1145/3519939.3523719
https://doi.org/10.1145/3519939.3523719
https://doi.org/10.1007/978-3-540-70592-5_3
https://doi.org/10.1007/978-3-540-70592-5_3
https://doi.org/10.1145/42190.42277
https://doi.org/10.1145/42190.42277
https://doi.org/10.1145/1941553.1941583
https://doi.org/10.1145/1941553.1941583

isa. Technical report, SiFive Inc., 2019. https:
//drive.google.com/file/d/1s0lZxUZaa7eV_O0_
WsZzaurFLLww7ou5/view?pli=1.

[51] John Wickerson, Mark Batty, Tyler Sorensen, and
George A. Constantinides. Automatically comparing
memory consistency models. In Proceedings of the 44th
ACM SIGPLAN Symposium on Principles of Program-
ming Languages, POPL ’17, page 190–204, New York,
NY, USA, 2017. Association for Computing Machinery.
https://doi.org/10.1145/3009837.3009838.

1028 2024 USENIX Annual Technical Conference USENIX Association

https://drive.google.com/file/d/1s0lZxUZaa7eV_O0_WsZzaurFLLww7ou5/view?pli=1
https://drive.google.com/file/d/1s0lZxUZaa7eV_O0_WsZzaurFLLww7ou5/view?pli=1
https://drive.google.com/file/d/1s0lZxUZaa7eV_O0_WsZzaurFLLww7ou5/view?pli=1
https://doi.org/10.1145/3009837.3009838

	Introduction
	Background
	Dynamic Binary Translation
	Memory Model
	Memory Consistency Issues in DBT

	Related Work and Motivation
	Cross-ISA DBT System
	Harmonizing Memory Consistency
	Motivation

	Design of CrossMapping
	Overview
	Memory Model Normalizer
	FSM of Guest-to-IR Mapping
	FSM Generator
	Fences Comparator
	Online Mapping

	Case Study
	x86 to ARMv8 Mapping
	x86 to RISC-V Mapping
	ARMv8/RISC-V to x86 Mapping

	Evaluation
	Experiment Setup
	Strong-on-Weak Architecture Emulation
	Weak-on-Strong Architecture Emulation

	Conclusion

