
This paper is included in the Proceedings of the
2024 USENIX Annual Technical Conference.

July 10–12, 2024 • Santa Clara, CA, USA
978-1-939133-41-0

Open access to the Proceedings of the
2024 USENIX Annual Technical Conference

is sponsored by

gVulkan: Scalable GPU Pooling
for Pixel-Grained Rendering in Ray Tracing

Yicheng Gu, Yun Wang, Yunfan Sun, Yuxin Xiang, Yufan Jiang, Xuyan Hu,
Zhengwei Qi, and Haibing Guan, Shanghai Jiao Tong University

https://www.usenix.org/conference/atc24/presentation/gu-yicheng

gVulkan: Scalable GPU Pooling for Pixel-Grained Rendering in Ray Tracing

Yicheng Gu, Yun Wang, Yunfan Sun, Yuxin Xiang,
Yufan Jiang, Xuyan Hu, Zhengwei Qi, Haibing Guan

Shanghai Jiao Tong University

Abstract
Ray tracing rendering technology enhances scene real-

ism and o�ers immersive experiences. However, it demands
signi�cant computational resources to trace and compute
light-object interactions. As a result, traditional local GPU
renderingmight notmeet the demands for high image quality
and low latency. Moreover, many applications are tailored to
utilize the resources of a single GPU, limiting their capacity
to increase computational power through additional GPUs.
This paper presents gVulkan, the �rst transparent multi-

GPU acceleration rendering solution for Vulkan-based ray
tracing. To address the bottleneck caused by limited local
GPU resources, gVulkan can o�oad ray tracing rendering
to the cloud via API-forwarding. In the cloud, gVulkan em-
ploys Split Frame Rendering (SFR) to enable an arbitrary
number of GPUs to accelerate rendering in parallel, while
dynamically self-rebalancing the workload at a pixel-grained
level across GPUs. Experiments demonstrate that gVulkan
can accelerate Vulkan-based ray tracing programs in an
application-unaware manner. By dynamically rebalancing
each GPU’s workload, gVulkan achieves good linearity with
3.81× speedup across 4 GPUs on average.

1 Introduction

Real-time rendering is applied in many �elds, such as art
design, gaming, and visualization [23, 40, 42], and has con-
tinuously attracted people’s attention. This technique pivots
on two crucial metrics for enhancing user experience: high
quality and low latency. High-quality rendering deepens user
immersion in visuals, while low latency reduces user wait
times. Traditionally, real-time rendering has relied on raster-
ization, which compromises some image quality to maintain
low latency, a standard practice for several decades. How-
ever, with the integration of hardware ray tracing pipelines
in GPUs [11, 44], the ray tracing approach has also entered
the realm of real-time rendering.

Ray tracing is a common technique in mainstream graph-
ics rendering. In contrast to rasterization rendering [1], ray

FPS:15

Vulkan APP

GPU GPU GPU GPU

Vulkan APP

Vulkan API
gVulkan

Vulkan API

GPU GPU GPU GPU

FPS:60

(a) Vulkan APP w/o gVulkan (b) Vulkan APP w/ gVulkan

Figure 1: Traditional Vulkan APP w/ and w/o gVulkan. Tra-
ditional Vulkan APP can only use one GPU lead to low FPS,
while use gVulkan can utilize GPU resources in cloud to
accelerate rendering.

tracing is particularly e�ective at generating more realis-
tic lighting and shadow e�ects. Ray tracing uses the prin-
ciple of reversibility of light paths, emitting rays from the
camera towards the screen. After colliding with the scene,
these rays produce re�ections, refractions, and di�use re-
�ections, ultimately capturing their true colors. Therefore, it
can accurately reproduce various re�ection e�ects, which is
unachievable by rasterization.
However, ray tracing is a computationally intensive task

that requires signi�cant resources to accurately simulate
the interaction between light rays and objects in a virtual
environment [5, 21, 37]. As the demand for more complex
and larger-scale scenes continues to grow, the computational
requirements for ray tracing within these scenes have cor-
respondingly increased. GPUs primarily designed for ras-
terization lack the necessary computational power to meet
these demands. Therefore, traditional local GPU rendering is
insu�cient to satisfy the requirements for high computation
and low latency.
Several solutions have been proposed to accelerate ray

tracing, which mainly focuses on hardware-level support [4,

USENIX Association 2024 USENIX Annual Technical Conference 1151

26]. However, these optimizations either require signi�cant
modi�cations to modern GPU work�ow or require speci�c
hardware support that introduces a highmanufacturing over-
head. While such optimizations have shown promise in ac-
celerating the ray tracing process, they may not be practical
or cost-e�ective.
Furthermore, in computer graphics, leveraging multiple

GPUs for concurrent rendering is a classic approach for ac-
celeration [6]. Alternate frame rendering (AFR) and split-
frame rendering (SFR) are crucial techniques in this context.
However, AFR does not reduce the latency introduced by
each frame, making SFR a more strategic choice. SFR encom-
passes three primary strategies: sort-�rst, sort-middle, and
sort-last [24, 28, 41]. Existing research on sort-middle mainly
focuses on rasterization [35,38], while sort-last requires con-
siderable e�ort to merge the split results [10]. Image paral-
lelization methods like sort-�rst [20,25], while not achieving
even workload distribution in rasterization, tend to be more
favorable for the workload of ray tracing.

However, as shown in Fig. 1a,most ray tracing applications
are developed for a single GPU. In general, an application can
only use one GPU. Therefore, these solutions to accelerate
ray tracing require intrusive changes to the source applica-
tions. Consequently, the newly designed solutions cannot be
quickly integrated into the existing application ecosystem.
They can only be applied in the future when new applica-
tions incorporate these designs during development, but it
will take a long time before they truly become e�ective.

To accelerate rendering in an application-unaware man-
ner, choosing the right graphics API is also crucial. Vulkan,
as a high-performance, cross-platform, open-source graph-
ics API [34], plays an important role in high-quality real-
time rendering. As a low-overhead, low-latency, and low-
level graphics API, Vulkan requires developers to control
resources �nely. Compared to other open-source graphics
APIs like OpenGL, Vulkan can fully utilize hardware capa-
bilities for performance optimization [7, 19]. It also provides
support for hardware-accelerated ray tracing and o�ers bet-
ter support for multi-threading [27, 29].
This paper introduces gVulkan, an application-unaware

scalable multi-GPU acceleration rendering solution designed
for Vulkan-based ray tracing applications. gVulkan o�oads
ray tracing rendering to the cloud, e�ectively alleviating lo-
cal GPU pressure without necessitating a speci�c hardware
architecture, while maintaining transparency for use-cases
with respect to cloud-based acceleration. Within the cloud,
gVulkan customizes the API streaming as well as shader re-
quired by each GPU, employs split-frame rendering (SFR),
enabling multiple GPUs to process pixel-grained tasks con-
currently and balance workload dynamically. This approach
enhances GPU utilization and reduces computational latency.
Finally, the generated video stream is compressed using FFm-
peg and transmitted back to the user end for output.
To date, we have developed a prototype of gVulkan for

Figure 2: The latency of rasterization and ray tracing.

both Windows and Linux platforms. Performance results
demonstrate that gVulkan imposes only negligible memory
overhead, and achieves high scalability and dynamically ad-
justable design goals with reduced intra-frame latency. To
the best of our knowledge, gVulkan is the �rst transparent
multi-GPU acceleration rendering solution for Vulkan-based
ray tracing that supports high scalability and dynamic self-
rebalancing.
Overall, this work makes the following contributions:

1. We implemented a prototype of gVulkan, a transparent
multi-GPU acceleration solution, o�ering high scalability
and pixel-grained dynamic self-rebalancing for Vulkan-
based ray tracing.

2. gVulkan introduces a latency-determined adaptive load
balancing mechanism, dynamically adjusting the GPU
load at pixel-grained to achieve single-frame rendering
with minimum latency.

3. gVulkan proposes a dependency-decoupled parallel ren-
dering approach that customizes the API streaming for
each GPU and accelerates the rendering process.

4. gVulkan proposes a resource-classi�ed transparent for-
warding scheme for the Vulkan API, which fully utilizes
the rendering power of the GPU pool in use-cases trans-
parent manner, achieving high ecological compatibility.

5. To address existing Vulkan APIs’ limitations that lack
support for partial rendering in ray tracing, gVulkan in-
troduces Shader Customizer, which enables transparent
and non-uniform GPU splitting in use-cases without mod-
ifying the driver.

6. Compared to locally executed Vulkan use-cases, gVulkan
achieved a speedup of 3.81× using 4 GPUs. It provides
QoS assurance for use-cases that were previously unable
to be assured without altering the source code.

2 Motivation
In this section, we brie�y introduce the current status of ray
tracing technology. We discuss the challenges of high-quality
real-time rendering in online interactive scenarios.

2.1 The Latency of Ray Tracing
The two most common rendering techniques in computer
graphics are rasterization and ray tracing. Rasterization con-
verts objects in a 3D scene into 2D pixels and renders them

1152 2024 USENIX Annual Technical Conference USENIX Association

(a) (b) (c)

Figure 3: The image quality between Vulkan and gVulkan in
same latency. (b) is able to emit more rays within a single
frame compared to (a), and the rays in (b) have more bounce
times than those in (c).

based on the color and depth information of the pixels. Ras-
terization is fast and suitable for real-time rendering, but
its image quality is relatively poor and does not accurately
simulate the propagation and re�ection of light.
In contrast, ray tracing is a rendering method based on

physical optics that generates images by simulating the prop-
agation and interaction of light in a scene. Ray tracing can
simulate the propagation and re�ection of light more realisti-
cally, resulting in high-quality images. However, because ray
tracing requires multiple iterations of computation for each
pixel, it exhibits relatively longer rendering times, which
limits its use in real-time applications and interactive scenes.

Ray tracing takes more computing power compared
to rasterization. Fig. 2 compares the latency of rasterization
and ray tracing when rendering the same scene. The ray trac-
ing use-case of Tr. represents the latency obtained by using
ray tracing on the whole triangle. The other use-cases are
from NVIDIA’s open-source ray tracing examples1, using ray
tracing only for selected parts of the scene. In the same scene,
pure ray tracing results in up to 6.7× higher latency com-
pared to rasterization. Partial ray tracing also incurs varying
degrees of increased latency compared to rasterization. The
impact of ray tracing latency can be even greater in complex
scenes.

2.2 Challenges for high-quality Real-Time
Rendering

Creating immersive online interactive scenarios has always
been a pursuit for people. Rasterization, as a traditional
real-time rendering solution, can meet the demands of real-
time conditions well, rapidly generating the required im-
ages. However, it cannot re�ect the actual e�ects of light and
shadow, as rasterization does not bounce light rays.

1https://github.com/nvpro-samples/vk_raytracing_tutorial_KHR

Figure 4: Impact of resolution and the number of ray samples
per pixel on FPS under a T4 GPU.

With the advancement of GPU computing power and the
emergence of hardware ray tracing pipelines, the latency
required for ray tracing is continuously decreasing. As a
solution that provides high-quality images, ray tracing is also
being used in real-time rendering. However, this high-quality
real-time rendering solution also faces many challenges.
Challenge 1: Delivering low-latency, high-quality

visual e�ects in real-time rendering. Achieving both low
latency and high image quality is the most direct demand in
scenarios such as gaming. To ensure high quality in real-time
rendering, we need to use ray tracing technology. However,
ray tracing not only increases latency several times compared
to rasterization but also a�ects latency at higher resolutions
and with more ray samples per pixel (SPP). As shown in
Fig. 4, with the continuous increase in resolution, the latency
required for rendering the same scene also increases. Also,
the number of SPP and ray bounces are important indicators
determining image quality. From Fig. 3a and 3b, it can be
seen that with a �xed number of bounces, a smaller SPP
introduces more noise into the image, thereby a�ecting the
image quality. Fig. 3b and 3c show that with a �xed SPP, too
few ray bounces may lead to incorrect rendering results, as
some bounce e�ects are not displayed. However, as shown
in Fig. 4, with the continuous increase of SPP, the rendering
latency also keeps increasing. Therefore, high quality and
low latency are opposing factors in real-time rendering, and
�nding a balance between them becomes a challenge.

Challenge 2: The limited local rendering power avail-
able for users. The contradiction between low latency
and high image quality is mainly due to computational
power. Su�cient computational power can obtain higher-
quality images in a given time. However, ordinary users
will only purchase a small number of GPUs. They may lack
high-performance hardware or reliable Internet connections,
which could hinder their ability to achieve high-quality real-
time rendering.
Additionally, secure containers [2, 15] are widely used in

serverless computing. However, current secure containers
cannot use GPUs, which has an impact on their scope of use.

Currently, cloud rendering is an excellent solution to this
problem. GPU resources can be utilized more e�ciently by
centralizing resources to serve more users. The rental model
can also lower the threshold for rendering, allowing access

USENIX Association 2024 USENIX Annual Technical Conference 1153

Mirage Zone

Context

Handle

GPU
Requirements

Resource-classified Transparent forwarding(3.5)

Timer

Copy Timer

Sendback

GPU
Requirements Command

Type
Command

Configs
Resource

Association

Queue Buffer Shader

Oasis Zone

gVulkan Interceptor

Transparent Resource Pool

Ray Tracing
Splitter

Stable Unit

GPU Resource Customizer

Dependency-decoupled
Parallel rendering (3.2)

Latency-determined Adaptive Load
Balancing(3.4)

Media Engine

Feedback

Arithmetic Unit

G
PU

 Pool

Thread Pool

Framebuffer Encode

Render Timer

Shader Customization (3.3)

Render

Render Manager

Figure 5: Architecture of gVulkan.

to more computational power with limited expenditure.
Challenge 3: Ecosystem compatibility of solutions.

Contemporary use-cases utilize rendering APIs such as
OpenGL, Vulkan, and DirectX. Among these, Vulkan is an
emerging open-source API capable of fully leveraging hard-
ware performance. However, Fig. 1a illustrates that only a
few applications are designedwith consideration formultiple
GPUs and can be manually con�gured for multi-GPU mode.
Most Vulkan applications are designed primarily for render-
ing on a single GPU. Therefore, even if users have multiple
GPUs available, whether locally or in the cloud, they can
only use one of the GPUs for rendering, making it di�cult
to fully utilize their available computation power.
To address this issue, this paper proposes the gVulkan

architecture, as illustrated in Fig. 1b. When local computing
power is insu�cient, gVulkan transparently intercepts the
Vulkan API in an application-unaware manner and trans-
mits it to the server side. It creates custom API streams
and shaders for each GPU, rendering in a dynamic and self-
balancing manner. This method allows applications initially
designed for a single GPU to utilize existing GPU resources
locally or in the cloud entirely. With unchanged image qual-
ity, gVulkan can utilize more GPUs to improve FPS. Similarly,
as shown in Fig. 3, if users emit more rays through multiple
GPUs with the same latency, gVulkan can reduce image noise
and achieve superior image quality.

3 System Design

3.1 Overview

We show the gVulkan architecture in Fig. 5. gVulkan en-
compasses two primary perspectives: gVulkan-local and
gVulkan-server, as well as four critical components: (1)
a Transparent Resource Pool (TRP) that intercepts and

sends API resources to the server while the ray tracing ap-
plication is running (§3.5 and §4.1); (2) a GPU Resource
Customizer that customizes the API streaming and shader
used by each GPU (§3.2 and §3.3); (3) aRenderingManager
that adaptively schedules the workloads rendered on each
GPU (§3.4); (4) aMedia Engine that merges and compresses
images to send back to the application (§4.2).

Given a ray tracing application, gVulkan’s Transparent Re-
source Pool runs with the application, intercepts the Vulkan
APIs, and sends the resources used by the APIs to the server
for processing. With these resources, the GPU Resource Cus-
tomizer customizes the required API and shader to achieve
the target rendering e�ect based on the region to be rendered
by the corresponding GPU. When multiple GPUs render to-
gether, the slower rendering speed of some GPUs can a�ect
the overall rendering latency. Therefore, the rendering man-
ager decides how to distribute the workload among each
GPU based on the latency of each GPU during rendering to
achieve the lowest latency rendering solution. Ultimately, the
Media Engine combines the images rendered by each GPU
and compresses them back to the ray tracing application for
rendering. We will describe each component of gVulkan as
follows.

3.2 Dependency-decoupled Parallel Render-
ing

Reproducing the API �ow on the server side can get the
application running. However, if the original program uses
only one GPU, the server side cannot utilize more GPUs to ac-
celerate rendering. Therefore, the GPU Resource customizer
creates multiple vkDevices on the server side. It implements
the API streaming from the local side on multiple logical
devices, thus enabling a basic multi-GPU parallel render-
ing scheme. However, there is still considerable space for

1154 2024 USENIX Annual Technical Conference USENIX Association

C1B1

...

...

...

Remove Present

Render

Copy

Preprocess

Present

Sendback

Decouple

GPU phase CPU phase

A1

A2

A3

A4

B2

B3

B4

C2

D1

threads pool

Frame Frame A B

Frame BFrame A

(a)

(b)

(c)

Figure 6: Present elimination and dependency-decoupled
parallel rendering accelerate FPS.

optimizing this approach.
Present elimination.As shown in Fig. 6a, multiple GPUs

rendering together introduces time overhead for copying,
sendback, and some pre-processing and also renders addi-
tional frames on the server side for presentation. However,
the server does not need to display this frame of the image; it
only needs to send back the rendered result. Therefore, this
part of the work causes waste on the server side. The APIs
related to the presentation are mainly associated with the
swapchain, and removing the present API alone could cause
errors in the program. gVulkan addresses this issue by using
a custom swapchain and imageIndex, eliminating the error
and preventing the server from having to present the image,
as shown in Fig. 6b.

Dependency-decoupled parallel rendering. However,
this approach does not fully utilize the GPU’s total comput-
ing power. When CPU computations are being performed,
the GPU remains idle. Therefore, gVulkan decouples the
phases required for a frame based on dependency relation-
ships and utilizes multi-threading to maximize GPU com-
putation, as shown in Fig. 6c. The pre-processing phase
needs to be executed before rendering. gVulkan continues
to maintain the swapchain method for rendering multiple
frames simultaneously, allowing all pre-processing phases
to be executed immediately. Nevertheless, running the pre-
processing phase too early can increase the latency of a
frame. Therefore, in search of a balance between latency and
e�ciency, gVulkan only processes the pre-processing phase
for two frames ahead. The pre-processing phase for frame
n+2 only begins after the rendering of frame n is complete.
The copying phase depends on the completion of render-
ing, and the send backing phase relies on the completion of
the copying phase. Pre-processing, copying, and send back-
ing phases are continuously executed by di�erent threads.
With a fully parallel implementation, when the rendering
time exceeds the pre-processing time, the FPS is only related
to the rendering time. In this way, the GPU is constantly
tasked with rendering, fully utilizing its computing power.
Meanwhile, the CPU handles pre-processing, copying, send
backing, and other CPU-intensive tasks during GPU render-

(a) Original Image (b) Split w/o Change Shader (c) Split w/ Change Shader

Figure 7: The reason for customizing the shader in Vulkan.
(The di�erent colored masks highlight the area rendered by
di�erent GPUs.)

ing. Since high-quality real-time rendering is often GPU-
intensive, this approach allows the FPS to be solely related
to rendering, achieving the fastest rendering speed.

3.3 Shader Customization for Compromis-
ing Interfaces Provided

The ray generation shader in Vulkan delineates the requisite
processes to engender rays for individual pixels, while the
driver encapsulates a nested loop iterating across all pixels.
The driver furnishes the shader with gl_LaunchSizeEXT and
gl_LaunchIDEXT, representing the overall image size and the
current pixel’s position being rendered.

Ideally, a modi�cation or an interface in the driver would
enable ray tracing use-cases to select a portion of the window
to render — similar to the render pass o�ered for rasteriza-
tion techniques. However, vkCmdTraceRaysKHR (Vulkan API
for ray tracing rendering) can only specify the total size of
the window so that the same shader can only generate two
congruent scaled images instead of a half-window image, as
shown in Fig. 7.

Although modifying the driver constitutes an elegant solu-
tion, obtaining permission from non-open-source drivers to
implement this architecture on all GPUsmay pose challenges.
Consequently, as a provisional solution, gVulkan provides
a shader customizer that dynamically modi�es shaders to
achieve rendering splits.

As shown in Fig. 8, the shader received by Vulkan is in the
compiled SPIR-V format. To transform them into the target
�le, the shader customizer comprises three components: a
compiling module, Cshader, and a decompiling module.

The decompiling module translates binary �les into more
human-readable and writable GLSL �les. Cshader is a shader
code generator that produces a corresponding shader based
on each GPU’s workload. The compiling module is responsi-
ble for recompiling the GLSL �les into SPIR-V �les, which
are subsequently submitted to Vulkan for processing.

3.4 Latency-determined Load Balancing
Although gVulkan proposes a dependency-decoupled par-
allel rendering solution, this method only addresses the ef-
�ciency issues within a single GPU. When multiple GPUs

USENIX Association 2024 USENIX Annual Technical Conference 1155

Shader Customizer

Decompiling
Module

CShader

Compiling
Module

SPIR-V

SPIR-V

GLSL

GLSL

Shader

Shader

Shader* Shader*

Figure 8: Work�ow for the shader customizer.

work simultaneously, there can still be situations where some
GPUs slow down, causing the other GPUs to be waiting. As
shown in Fig. 9, evenly distributing tasks initially allows
multiple GPUs to start rendering with minimal delay. How-
ever, suppose a GPU suddenly receives additional tasks from
another program, causing an increase in delay. In that case,
it forces the other GPUs to wait until the rendering task is
completed before starting the next frame. Even though the
swapchain can facilitate the early rendering of the next frame,
ultimately, it still results in waiting for the slowest GPU. The
"bucket e�ect" situation emphasizes the importance of dy-
namic rebalancing among the GPUs. Furthermore, during
the copying phase, the primary GPU, due to waiting, does
not minimize the rendering latency to the greatest extent, in-
dicating that there is further room for optimization in terms
of latency reduction.
We propose improvement suggestions to alleviate the

impact on latency during both the rendering and copying
phases. Firstly, we implement a heuristic algorithm to mini-
mize latency generated during the rendering phase. Secondly,
we consider the impact of the copying phase. We allocate
more rendering responsibility to the primary GPU, equaliz-
ing its duration with the copy phase duration of other GPUs.
Finally, we employ multi-threading techniques to parallelize
the present phase, enhancing overall system performance.

Table 1: De�nitions of Key Variables and Measures

Variable De�nition
gi The GPUi which server provide
Ti The current workload for GPUi
NTi The future workload for GPUi
RPi The rendering power of the GPUi
CPi The unit performance for GPUi(i �= 0) to

copy the rendered image to the primary
GPU

RLi The latency of rendering of the GPUi
CLi The latency of copying of the GPUi
αi The coe�cient of NTi

To optimize GPU resource utilization, we introduce a
heuristic algorithm to allocate rendering tasks among the
GPUs. The gVulkan-server can provide n GPUs, denoted as

GP
U

 P
oo

l

GPU2 Downgrade
Buckets Effect

Primary
GPU

Copy
Pending

Render

Copy

Extra Render

Frame #1 Frame #2

FPS Latency

GP
U

 P
oo

l
GP

U
 P

oo
l

O
rig

in
al

+H
eu

ris
�c

Re
ba

la
nc

e
+C

op
y

Ti
m

e
Re

ba
la

nc
e

Rebalance

Rebalance

Frame #3

Figure 9: Based on the utilization of the rendering and copy-
ing phases, heuristic algorithms are proposed to maximize
the use of GPU resources and minimize latency.

G = {g1,g2, ...,gn}, for a given use-case. We represent the
current workload of gi as Ti and the future workload assigned
to gi as NTi. Additionally, RPi and RLi indicate the rendering
power and rendering latency of gi, while CPi and CLi rep-
resent the unit power required to copy the rendered image
to the primary GPU and the copying latency for gi(i �= 0),
respectively.
Table 1 provides the de�nitions of the key variables in

the algorithm. Our objective is to maximize GPU resource
utilization, which entails minimizing latency for each frame.
This latency is determined by the maximum latency among
all GPUs. Thus, the problem with the goal of latency mini-
mization per frame can be formulated as follows:

minimize max{NTi

RPi
+

NTi

CPi
,

NT0

RP0
}(i �= 0)

subject to ∀i,NTi > 0
n

∑
i=0

Ti =
n

∑
i=0

NTi = Ttotal

Ti

RPi
= RLi,

Ti

CPi
=CLi(i �= 0)

(1)

Equation 1 represents the objective function, which calcu-
lates the maximum delay among all GPUs. The constraint
ensures that the sum of workload for all GPUs remains equal
at all times and that every GPU resource is utilized. And RPi
and CPi can be calculated by known values.
According to the properties of this convex function, the

minimum value is attained when and only when:

NTi

RPi
+

NTi

CPi
=

NT0

RP0
(i �= 0) (2)

Based on Equation 2, we derive the coe�cient of NTi as:

1156 2024 USENIX Annual Technical Conference USENIX Association

αi =
RLi +CLi

Ti
(i �= 0)

α0 =
RL0

T0

(3)

Since the variables constitutingαi are all known quantities,
αi is a constant factor. We observe that the workload gi needs
to allocate are proportional to each other:

NTi : NTj =
1
αi

:
1

α j
(i �= j) (4)

Consequently, we can determine the speci�c value of NTi
from this proportion:

NTi =
Ttotal

αi ∗∑n
j=0(

1
α j
)

(5)

The workload allocation approach detailed above exhibits
high scalability and can be readily extended to accommodate
any number of GPUs. By e�ciently computing the work-
loads of all GPUs with O (1) time complexity and dynamically
allocating the workload distribution based on workload dis-
parities, our system fully exploits the resources of the GPU
pool, thereby achieving optimal performance in rendering
images.
Latency-determined adaptive load balancing mech-

anism. With the above algorithm, gVulkan introduces a
latency-determined adaptive load balancing mechanism. Af-
ter obtaining the rendering and copying latency of GPUs
through the Timer, gVulkan calculates the optimal alloca-
tion scheme based on the algorithm mentioned above. It
then divides the workload among each GPU according to
pixel-grained. The number of rays in a ray tracing use case
determines the amount of workload, and the number of rays
is related to the number of pixels. Therefore, it is feasible to
split the rendering workload in terms of pixel-grained.
Nonetheless, GPU latency may experience brief �uctua-

tions due to unforeseen conditions. If such changes are de-
tected by the splitter and cause alterations in task allocation,
system jitter may occur.

Tomitigate this issue, the splitter incorporates a stable unit,
which enhances the system in two ways. First, it employs
a threshold: workload changes are implemented when the
di�erence between the currently assigned workload and the
workload to be assigned surpasses a predetermined thresh-
old. Second, it utilizes a multi-check approach: even if the
workload exceeds a certain threshold, the switch is not ex-
ecuted immediately. Instead, the workload is altered when
the behavior of surpassing the threshold occurs sequentially
several times. Through these methods, the splitter reduces
system jitter and bolsters the stability and reliability of the
system.

3.5 Resource-classi�ed Transparent For-
warding

To address local limitations and achieve ecological compati-
bility discussed in Section 2.2, gVulkan introduces Resource-
classi�ed transparent forwarding. This technology takes into
account the di�erences between various APIs [8], accelerat-
ing the server-side o�oading of API-related resources on the
local side. It allows some resources to use the server-side real
values directly while others are presented to the application
as virtual resources through the mirage zone. It also informs
the server of their corresponding resources in the oasis zone
to achieve transparent utilization of remote resources.

To speed up the transformation rate and avoid intolerable
latency, gVulkan categorizes Vulkan APIs into three types
based on their characteristics: Context APIs, handle APIs, and
requirement APIs. Context APIs set context information and
only need to return whether the setting was successful. Most
APIs fall into this category. Handle APIs require obtaining
a resource handle and returning this handle for subsequent
usage. Resources such as queues, bu�ers, images, fences, and
pipelines all have their own speci�c invocation handles. Re-
quirement APIs obtain speci�c requirements of the current
GPU for use in later computations. These computations oc-
cur between API calls, and it is challenging to predict how
the use-case will utilize the requirements provided by the
GPU.
For instance, when a Vulkan application calls vkCreate-

Bu�er (handle type), the API returns a bu�er handle and
a signal indicating success. When vkGetBu�erMemoryRe-
quirements (requirement type) is called, the API returns the
bu�er’s memory requirements for the current GPU, and the
application allocates memory based on this information. The
vkBindBu�erMemory (context type) binds the bu�er and
memory together and returns only a success or failure signal.

Although handle APIs must return handles to the use-case,
these handles are merely binary values, and these values do
not involve any computation. To minimize data transfer be-
tween the gVulkan-local and gVulkan-server, we introduce
the mirage zone to store virtual handles that are returned to
the use-case locally [8]. The use-case uses the virtual handle
as the resource handle for subsequent operations. When the
use-case utilizes this handle to manipulate resources, the vir-
tual handle is converted into the real handle, which is stored
in the oasis zone on the gVulkan-server. Similarly, resources
for context API are stored inmirage zone like virtual handles.
Only the requirement API needs to return GPU requirements
in real time.
The use-case is unaware of the processing that gVulkan

performs on its APIs and merely obtains the handle and re-
quirements provided by the GPU for subsequent calculations.
However, the virtualized resources perceived by the use-case
have been divided and processed in the physical environment
on the remote side, accelerating rendering, increasing FPS,

USENIX Association 2024 USENIX Annual Technical Conference 1157

(a) Outdoor-Simple (b) Outdoor-Lucy (c) Cornell-Simple (d) Cornell-Lucy

Figure 10: Scenes that experimental use.

and enhancing image �uidity. Therefore, gVulkan is seam-
lessly integrated, easily blending into the existing application
ecosystem.

4 Implementation

4.1 gVulkan Interceptor
gVulkan use Vulkan layer, a mechanism provided by the
Vulkan API, to set up the gVulkan interceptor. Compared
to the approach of intercepting dynamic libraries through
LD_PRELOAD, the gVulkan Interceptor is more closely
aligned with Vulkan applications and can intercept the
Vulkan API for statically compiled applications. Since the
Layer mechanism is provided by Vulkan itself, it does not
require additional processing for applications, operating sys-
tems, or drivers.

4.2 Media Engine
All GPU-generated images are merged in the framebu�er
and sent back to the client via the network for display. Using
FFmpeg, the framebu�er can be compressed to reduce the
amount of data transmitted and alleviate the pressure on
network bandwidth. However, encoding and decoding also
consume time and computational resources, so the speci�c
codec needs to be considered based on the scenario.
Additionally, many applications use high-level APIs like

Graphics Library Framework (GLFW) to create windows, but
Vulkan cannot intercept the window handles from GLFW
and directly modify them. This leads to the need to open
a new window for rendering, which does not achieve true
application-unawareness. gVulkan has discovered that such
high-level APIs like Graphics Library Framework GLFW
eventually call low-level APIs like X C Binding (XCB), and
Vulkan can obtain the window handles from XCB APIs.
Therefore, gVulkan writes the returned framebu�er into
the XCB window and refreshes it to display the rendered
images in the original window, achieving true application-
unawareness.

4.3 Prototype Implementation
Due to the complex nature of nested structures and pointer-
intensive parameters in the Vulkan API, engineering imple-

mentation is prone to bugs. To address this issue, gVulkan
employs protobuf for serialization and deserialization of in-
formation to be transmitted.
Utilizing protobuf enhances understandability, reduces

the occurrence of errors, and minimizes network bandwidth
consumption. Currently, gVulkan supports 94 critical APIs
through more than 30k lines of C code. These 94 APIs encom-
pass all 28 ray tracing extension APIs, 18 resource allocation
APIs, 18 resource release APIs, 14 rendering drawing APIs,
6 GPU resource acquisition APIs, 6 synchronization APIs, 3
resource binding APIs, and 1 resource update API. gVulkan
is capable of supporting the classic Vulkan ray tracing bench-
mark, RayTracingInVulkan2, which allows customization of
the various scenes used to display.

Besides that, according to the nature of ray tracing, server-
side tasks in gVulkan are independent of one another,making
them easily parallelizable through multi-threading. Upon
receiving commands, the gVulkan-server promptly partitions
the workload into multiple segments and assigns them to
threads corresponding to the number of GPUs in use.

5 Evaluation

Currently, no publicly available support with a multi-GPU
architecture for Vulkan ray tracing exists. So in this section,
we analyze gVulkan to answer the following questions:

• How is the performance of gVulkan? What amount of
resources is required to achieve such a performance? Is
gVulkan scalable? (5.2)

• Can gVulkan balance the workload in a timely manner
when the GPU performance changes? How e�ective is
the dynamic self-rebalancing? (5.3)

• How much improvement in FPS can be achieved by
employing a transparent resource pool? (5.4)

• Does using gVulkan a�ect image quality? (5.5)

Based on the questions, the comparative study is mainly
focused on four aspects of gVulkan: 1) the performance and
scalability of gVulkan, 2) the e�ect of dynamic rebalancing
of gVulkan, and 3) the e�ect of TRP on FPS. 4) the image
quality of gVulkan.

2https://github.com/GPSnoopy/RayTracingInVulkan

1158 2024 USENIX Annual Technical Conference USENIX Association

Figure 11: The latency of di�erent phases for scenes.

5.1 Experimental Setup

To measure the e�ect of gVulkan, we design four sets of
experiments as evaluation.
Con�gurations: We con�gured the experiments with

Intel� Xeon� Platinum 8163 CPU @2.50GHz, 4 GPUs with
T4 and 372 GiB DRAM. We conduct all experiments in Al-
ibaba Cloud (ecs.gn6i-c24g1.24xlarge), which runs on the
Ubuntu 22.04. We locked the frequency of GPUs to guaran-
tee performance consistency.
Benchmarks: We used a popular Vulkan Ray-Tracing

Benchmark called RayTracingInVulkan as gVulkan’s bench-
mark. RayTracingInVulkan can be tested using a variety
of customized scenes. gVulkan used four of the scenes it
provides as the benchmark for this experiment. The scenes
are shown in Fig. 10. Fig. 10a depicts the basic scene from
"Ray Tracing in One Weekend," an outdoor setting. Fig. 10b
builds upon this by adding a statue called Lucy, increasing the
scene’s complexity. Fig. 10c illustrates a Cornell box scene,
an indoor setting. Fig. 10d builds on 10c by also incorpo-
rating a statue named Lucy, further increasing the scene’s
complexity.
Baseline: As gVulkan is the �rst architecture that em-

ploys multiple GPUs to partition the Vulkan ray tracing
use-cases and leverages a remote resource pool to accelerate
local rendering tasks, we evaluate the performance of the
use-cases executed on the local GPU as a baseline for com-
parison. Meanwhile, to present the breakdown optimizations
within the gVulkan, we propose two methods: gVulkan-BM
and gVulkan-MT. gVulkan-BM only implements the basic
rendering splitting function, and gVulkan-MT implements
multi-threading on the basis of gVulkan-BM.

Figure 12: Use-cases resource cost for gVulkan-BM (BM),
gVulkan-MT (MT) and gVulkan (gV).

5.2 Performance and Scalability of gVulkan

Evaluation 1 is a comprehensive comparison of gVulkan
operating on varying numbers of GPUs and under di�erent
scenes, aiming to assess resource cost, Quality of Service
(QoS), and scalability.

Fig. 11 illustrates the latency of two use-cases at two reso-
lutions utilizing 1, 2, and 4 GPUs, divided into six components:
layer pre-processing (L.P.), server pre-processing (S.P.), ren-
der waiting (R.W), image copying (I.C.), send backing (S.B.)
and presenting (Pr.). The dashed line of the baseline repre-
sents the latency experienced when operating a single local
GPU, simulating the performance before implementing the
gVulkan architecture.

The R.W., S.B., and Pr. phases have a signi�cant impact on
latency. In di�erent scenes, the proportions of these stages
vary slightly. The latency in the S.B. phase can be addressed
through multi-threading, the latency in the Pr. phase can be
completely eliminated through API streaming rewriting, and
the latency in the R.W. phase can be proportionally reduced
as the number of GPUs increases. The latency of other phases
remains relatively constant, �uctuating within a fewmillisec-
onds. While using a single GPU, the local application fails
to reach the 30 FPS threshold as shown in Fig. 11a, but with
2 GPUs, gVulkan successfully met the Basic QoS guarantee.
Moreover, with 4 GPUs, gVulkan successfully achieved the
QoS guarantee of 60 FPS. The average speedup for the four
scenes under the gVulkan with 4 GPUs can reach 3.81.

Fig. 12 shows the CPU, GPU, memory, and GPU memory
utilization rates (normalized to the percentage of 100% hard-
ware capability) for these four scenes at 720p resolution. We
conclude that gVulkan exhibits low resource costs in terms of
CPU,memory, andGPUmemorywhile e�ectively employing
available GPU resources for rendering acceleration.
In addition to this, the resolution of the image and the

USENIX Association 2024 USENIX Annual Technical Conference 1159

Figure 13: Compare the latency of each phase at di�erent resolutions.

Figure 14: Contrast FPS with SPP changes.
number of rays sampled per pixel point also have an impact
on the rendering latency.
Fig. 13 compares the FPS of the outdoor-simple scene

at di�erent resolutions. As the resolution increases, both
the latency required for rendering and the latency needed
for presentation are continuously increasing, resulting in a
decrease in FPS. gVulkan-BM, gVulkan-MT, and gVulkan all
reduce the latency in multi-GPU scenarios, but it is clear that
gVulkan achieves an almost linear reduction e�ect, especially
in higher-resolution scenes.

Fig. 14 compares the FPS degradation of the di�erent meth-
ods with an increasing number of light samples per pixel for
di�erent numbers of GPUs and the comparison with local
rendering. The gVulkan scheme outperforms the other two
methods as well as the local runtime results, regardless of
the number of GPUs. When the FPS exceeds 250, the total
FPS is determined by the pre-process because the computa-
tion time of phases such as L.P., S.P., and I.C. is higher than
the rendering time, resulting in the scheme not achieving a
linear increase at a higher FPS.

In terms of gVulkan’s scalability, the Pr. and S.B. phases can
be negligible through present elimination and dependency-
decoupled parallel rendering, and the R.W. phase workload
can be linearly diminished. The cumulative latencies of the
L.P., S.P., and I.C. phases persist below 5 ms as a �xed dura-
tion. Since our goal is to accelerate high-quality real-time

rendering to ensure QoS (∼60 FPS), the required rendering
latency is generally high. However, before the rendering time
falls below the computation time for pre-processing, compu-
tational phases such as L.P., S.P., and I.C. do not a�ect the
total FPS. Therefore, we believe that gVulkan can linearly
reduce latency.

5.3 Dynamic Rebalance of gVulkan
Evaluation 2 is a comparison of gVulkan running multiple
GPUs to assess the impact of dynamic rebalancing and sys-
tem jitter. We compare the FPS of gVulkan with and without
dynamic rebalancing using 2 and 4 GPUs, and examine the
e�ects of integrating di�erent stable units.

Fig. 15 shows the FPS and latency for each GPU across �ve
phases: �uniform rendering power,�decrease in single GPU
rendering power, �decrease in all GPU rendering power,
�increase in single GPU rendering power, and �increase in
all GPU rendering power.
As shown in Fig. 15a and 15b, a sudden drop in the ren-

dering power of a single GPU can signi�cantly impact FPS.
However, dynamic rebalancing can swiftly reallocate the
workload to utilize the resources of each GPU fully. When
the rendering power of a single GPU suddenly increases,
dynamic rebalancing assigns an additional portion of the
work to that GPU, improving FPS compared to an unopti-
mized state. Dynamic rebalancing functions e�ectively for

1160 2024 USENIX Annual Technical Conference USENIX Association

Figure 15: Fps and latency from dynamically adjusting of gVulkan in 2 GPUs w/ dynamic rebalancing (2-D), 2 GPUs w/o
dynamic rebalancing (2-ND), 4 GPUs w/ dynamic rebalancing (4-D) and 4 GPUs w/o dynamic rebalancing (4-ND).

Figure 16: The �uctuation of di�erent dynamic solutions in
the latter four phases.

any number of GPUs. Additionally, latency jitter in Fig. 15a
and 15b mainly stems from the test environment running at
over 30 FPS.
Fig. 15c demonstrates the maximum latency of all GPUs

for 2 GPUs with dynamic rebalancing (2-D), 2 GPUs without
dynamic rebalancing (2-ND), 4 GPUs with dynamic rebal-
ancing (4-D), 4 GPUs without dynamic rebalancing (4-ND),
and the maximum value of GPU latency di�erences upon
stabilization. In phases �, �, and �, the rendering power of
all GPUs is consistent, making dynamic rebalancing ine�ec-
tive in reducing latency and instead causing minor latency
�uctuations. In phases � and �, GPUs exhibit non-uniform
rendering power, and dynamic rebalancing signi�cantly re-
duces maximum latency while substantially decreasing the
maximum di�erence between all latencies.

We evaluate the in�uence of stable units on dynamic rebal-
ancing in reducing �uctuations during the latter four phases.
Fig. 16 compares the �uctuations of gVulkan without dy-
namic rebalance (Baseline), dynamic rebalancing without
a stable unit (Rb.), dynamic rebalancing with a stable unit
featuring only a threshold function (Th.), and dynamic re-

balancing with a completely stable unit (Mc.) across these
phases. It is evident that stable units can e�ectively reduce
�uctuations and latency.

5.4 FPS Optimization of Transparent Re-
source Pool

Evaluation 3 is a comparison of gVulkan, aimed to evaluate
the FPS optimizations brought by TRP. We use Linux’s Tra�c
Control, tc, to arti�cially simulate the network latency.
Instead of sending messages to the server individually,

TRP facilitates message batching for concurrent dispatch.
Fig. 17 depicts the FPS di�erence between individually send-
ing command requests and dispatching command requests
in batches under diverse network latency conditions. With
increasing network latency, the FPS optimization advantages
o�ered by batching become increasingly evident.

Table 2: PSNR for each scene.

360P 480P 720P 1080P
Outdoor-Simple 54.60 54.63 54.68 54.68
Outdoor-Lucy 41.64 41.70 42.06 42.07
Cornell-Simple 30.25 30.25 31.52 38.78
Cornell-Lucy 37.11 37.14 38.41 38.26

5.5 Image Quality of gVulkan
While it is possible to speed up the acquisition of images
through gVulkan, is it possible to guarantee the quality of
the images at the same time?
In this experiment, we compare the di�erence between

images rendered locally and by gVulkan through a classic
image quality assessment index, Peak Signal-to-Noise Ratio
(PSNR). To be fair, the rendered images are after 10000 rays
are emitted, regardless of the rendering rate. Table 2 shows
the PSNR values of the gVulkan rendered images compared
to the locally rendered images in four di�erent scenes with
four di�erent resolutions. All PSNR values are greater than
30, which shows that gVulkan can improve the rendering
rate while maintaining image quality.

USENIX Association 2024 USENIX Annual Technical Conference 1161

Figure 17: FPS among di�erent methods in di�erent network
latency.

6 Related Work
6.1 Cloud O�loads
GPUs have become a popular choice for accelerating
compute-intensive tasks in public clouds due to their high
computing capacities and accuracy [33]. Various works have
o�oaded workloads to the cloud for scalability, resilience,
and cost-e�ciency, including thin-client architecture and
cloud-edge cooperation.
Thin-client architecture is widely used in many cloud-

gaming systems [3]. This architecture migrates all the ap-
plications to the cloud [16], and the client only serves as a
displayer, leaving the client-side performance wasted.
Compared with the thin-client architecture, cloud-edge

cooperation aims to utilize both server-side and client-side
resources fully. One of the representative technologies in
cloud-edge cooperation is API-forwarding. For example, gRe-
mote [32] supports OpenGL command forwarding and en-
ables the full utilization of client-side resources and achieving
server-side CPU-GPU workload balance. ShareRender [43]
intercepts graphics APIs, including Direct3D and OpenGL,
and o�oads graphics workloads directly to GPUs to opti-
mize GPU usage. DroidCloud and CARE address the system-
resource redundancy issues, leveraging resources in another
dimension [14,31]. Recently, more detailed cloud-edge work-
load partitioning based on API-forwarding has been ex-
plored in VR applications to achieve e�ective collaborative
rendering, including both foreground-background partition-
ing [13, 18, 22] and foveal partitioning [39].
Furthermore, Secure containers [2, 15] are the current di-

rection of development in cloud computing and are widely
used. They o�er higher isolation compared to containers and
are lighter in weight compared to virtual machines. How-
ever, current secure containers cannot utilize GPUs, which
imposes some limitations on their use cases. gVulkan can
enhance secure containers with API forwarding capabilities
so that GPU cloud o�oad solutions can be implemented in
these containers.

6.2 Ray Tracing Acceleration
In recent years, there have been several e�orts to improve
the performance of ray tracing. To solve the problem of irreg-

ular memory access for ray tracing, STRaTA [12] proposes
a hardware architecture that uses a streaming data model
and a recon�gured ray stream memory to reduce energy
consumption in massively parallel graphics processors. Dual
Streaming [30], separates memory access of ray tracing into
two streams (a scene stream and a ray stream) to minimize
memory access con�icts between the two streams. Mach-
RT [36] combines a new hardware architecture with a new
ray ordering scheme to reduce the memory access bottleneck
of ray tracing. Garanzha addresses the issue of incoherent
re�ection rays in GPU ray tracing. This work proposes an
approach that organizes re�ection rays into coherent packets
to improve memory coherence and GPU SIMT e�ciency [9].
Faced with the same problem, Liu approaches the problem
di�erently [17]. It introduces a new ray intersection predictor
in the GPU to eliminate redundant operations and directly
evaluate primitives that may intersect rays.

However, all the currentworkmainly focuses on hardware-
level support and requires speci�c hardware support or sig-
ni�cant modi�cations to modern GPU work�ow. To the best
of our knowledge, gVulkan is the �rst cloud-rendering solu-
tion for Vulkan-based ray tracing. The above optimization
works are not in con�ict with gVulkan. Combined with the
aforementioned hardware optimizations, gVulkan can deploy
advanced hardware on the cloud and fully utilize scalable
cloud hardware resources to achieve e�cient ray tracing
rendering.

7 Conclusion
In this paper, we introduce gVulkan, the �rst multi-GPU
acceleration rendering solution with high scalability and
dynamic self-rebalancing for Vulkan-based ray tracing ren-
dering. We introduced resource-classi�cation transparent
forwarding to accelerate resource o�oading, utilized GPU
resources e�ciently through dependency-decoupled paral-
lel rendering, and adopted a latency-determined adaptive
load balancing mechanism to allocate workloads at pixel
granularity. Furthermore, we circumvented the limitations
of existing interface designs by customizing shaders. Our
experimental results show that gVulkan achieves high linear
speedup, scalability, and dynamic rebalancing of workload
across GPUs.
In our future work, we will make more e�cient use of

local resources while utilizing server-side resources, and also
address scenarios when failures occur.
Acknowledgement

We sincerely thank our anonymous reviewers for their help-
ful comments and suggestions. This work was supported in
part by National NSF of China (No. 62141218), the HighTech
Support Program from STCSM (No.22511106200), the coop-
eration project from Ant Group ("Wasm-enabled Managed
language in security restricted scenarios"), and Shanghai Key
Laboratory of Scalable Computing and Systems.

1162 2024 USENIX Annual Technical Conference USENIX Association

References

[1] Zainul Abi Din, Panagiotis Tigas, Samuel T King,
and Benjamin Livshits. {PERCIVAL}: Making {In-
Browser} perceptual ad blocking practical with deep
learning. In 2020 USENIX Annual Technical Conference
(USENIX ATC 20), pages 387–400, 2020.

[2] Alexandru Agache, Marc Brooker, Alexandra Iordache,
Anthony Liguori, Rolf Neugebauer, Phil Piwonka, and
Diana-Maria Popa. Firecracker: Lightweight virtualiza-
tion for serverless applications. In 17th USENIX sympo-
sium on networked systems design and implementation
(NSDI 20), pages 419–434, 2020.

[3] Ricardo A. Baratto, Leonard N. Kim, and Jason Nieh.
THINC: a virtual display architecture for thin-client
computing. In Andrew Herbert and Kenneth P. Birman,
editors, Proceedings of the 20th ACM Symposium on Op-
erating Systems Principles 2005, SOSP 2005, Brighton, UK,
October 23-26, 2005, pages 277–290. ACM, 2005.

[4] R. Barringer,M. Andersson, and T. Akenine-Möller. Ray
accelerator: E�cient and �exible ray tracing on a het-
erogeneous architecture. Computer Graphics Forum,
36(8):166–177, 2017.

[5] Benedikt Bitterli, Chris Wyman, Matt Pharr, Peter
Shirley, Aaron Lefohn, and Wojciech Jarosz. Spatiotem-
poral reservoir resampling for real-time ray tracing
with dynamic direct lighting. ACM Transactions on
Graphics (TOG), 39(4):148–1, 2020.

[6] Sangjin Choi, Taeksoo Kim, Jinwoo Jeong, Rachata
Ausavarungnirun, Myeongjae Jeon, Youngjin Kwon,
and Jeongseob Ahn. Memory harvesting in {Multi-
GPU} systemswith hierarchical uni�ed virtualmemory.
In 2022 USENIX Annual Technical Conference (USENIX
ATC 22), pages 625–638, 2022.

[7] Oscar Ferraz, Paulo Menezes, Vitor Silva, and Gabriel
Falcao. Benchmarking vulkan vs opengl rendering on
low-power edge gpus. In 2021 International Conference
on Graphics and Interaction (ICGI), pages 1–8. IEEE,
2021.

[8] Di Gao, Hao Lin, Zhenhua Li, Chengen Huang, Yun-
hao Liu, Feng Qian, Liangyi Gong, and Tianyin Xu.
Trinity:{High-Performance}mobile emulation through
graphics projection. In 16th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI 22),
pages 285–301, 2022.

[9] Kirill Garanzha and Charles Loop. Fast Ray Sorting and
Breadth-First Packet Traversal for GPU Ray Tracing.
Computer Graphics Forum, 2010.

[10] A. V. Pascal Grosset, Manasa Prasad, Cameron Chris-
tensen, Aaron Knoll, and Charles Hansen. Tod-tree:
Task-overlapped direct send tree image compositing for
hybrid mpi parallelism and gpus. IEEE Transactions on
Visualization and Computer Graphics, 23(6):1677–1690,
2017.

[11] Jacob Haydel, Cem Yuksel, and Larry Seiler. Locally-
adaptive level-of-detail for hardware-accelerated ray
tracing. ACM Transactions on Graphics (TOG), 42(6):1–
15, 2023.

[12] Daniel Kopta, Konstantin Shkurko, Josef Spjut, Erik
Brunvand, and Al Davis. An energy and bandwidth
e�cient ray tracing architecture. In Proceedings of the
5th High-Performance Graphics Conference, HPG ’13,
page 121–128, New York, NY, USA, 2013. Association
for Computing Machinery.

[13] Zeqi Lai, Y. Charlie Hu, Yong Cui, Linhui Sun, and Ning-
wei Dai. Furion: Engineering high-quality immersive
virtual reality on today’s mobile devices. In Proceed-
ings of the 23rd Annual International Conference on Mo-
bile Computing and Networking, MobiCom ’17, page
409–421,NewYork,NY,USA,2017. Association forCom-
puting Machinery.

[14] Linsheng Li, Bin Yang, Cathy Bao, Shuo Liu, Randy
Xu, Yong Yao, Mohammad R Haghighat, Jerry W Hu,
Shoumeng Yan, and Zhengwei Qi. Droidcloud: Scalable
high density androidtm cloud rendering. In Proceedings
of the 28th ACM International Conference on Multimedia,
pages 3348–3356, 2020.

[15] Zijun Li, Jiagan Cheng,Quan Chen, Eryu Guan, Zizheng
Bian, Yi Tao, Bin Zha, Qiang Wang, Weidong Han,
and Minyi Guo. {RunD}: A lightweight secure con-
tainer runtime for high-density deployment and high-
concurrency startup in serverless computing. In 2022
USENIX Annual Technical Conference (USENIX ATC 22),
pages 53–68, 2022.

[16] Li Lin, Xiaofei Liao, Guang Tan, Hai Jin, Xiaobin Yang,
Wei Zhang, and Bo Li. Liverender: A cloud gaming
system based on compressed graphics streaming. In
Proceedings of the 22nd ACM international conference on
Multimedia, pages 347–356, 2014.

[17] Lufei Liu, Wesley Chang, Francois Demoullin, Yuan Hsi
Chou, Mohammadreza Saed, David Pankratz, Tyler
Nowicki, and Tor M. Aamodt. Intersection prediction
for accelerated gpu ray tracing. In MICRO-54: 54th
Annual IEEE/ACM International Symposium on Microar-
chitecture, MICRO ’21, page 709–723, New York, NY,
USA, 2021. Association for Computing Machinery.

USENIX Association 2024 USENIX Annual Technical Conference 1163

[18] Xing Liu, Christina Vlachou, Feng Qian, Chendong
Wang, and Kyu-Han Kim. Fire�y: Untethered multi-
user VR for commodity mobile devices. In 2020 USENIX
Annual Technical Conference (USENIX ATC 20), pages
943–957. USENIX Association, July 2020.

[19] Michael Lujan, Michael McCrary, Blake W Ford, and
Ziliang Zong. Vulkan vs opengl es: Performance and
energy e�ciency comparison on the big. little architec-
ture. In 2021 IEEE International Conference on Network-
ing, Architecture and Storage (NAS), pages 1–8. IEEE,
2021.

[20] Bingzheng Ma, Ziqiang Zhang, Yusen Li, Wentong Cai,
Gang Wang, and Xiaoguang Liu. Spider: An e�ective,
e�cient and robust load scheduler for real-time split
frame rendering. In 2022 IEEE International Parallel
and Distributed Processing Symposium (IPDPS), pages
672–682. IEEE, 2022.

[21] Daniel Meister, Shinji Ogaki, Carsten Benthin,Michael J
Doyle, Michael Guthe, and Jiří Bittner. A survey on
bounding volume hierarchies for ray tracing. In Com-
puter Graphics Forum, volume 40, pages 683–712. Wiley
Online Library, 2021.

[22] Jiayi Meng, Sibendu Paul, and Y. Charlie Hu. Coterie:
Exploiting frame similarity to enable high-quality mul-
tiplayer vr on commoditymobile devices. In Proceedings
of the Twenty-Fifth International Conference on Architec-
tural Support for Programming Languages and Operating
Systems, ASPLOS ’20, page 923–937,NewYork,NY,USA,
2020. Association for Computing Machinery.

[23] Zili Meng, Tingfeng Wang, Yixin Shen, Bo Wang, Ming-
wei Xu, Rui Han, Honghao Liu, Venkat Arun, Hongxin
Hu, and Xue Wei. Enabling high quality {Real-Time}
communications with adaptive {Frame-Rate}. In 20th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 23), pages 1429–1450, 2023.

[24] S. Molnar, M. Cox, D. Ellsworth, and H. Fuchs. A sort-
ing classi�cation of parallel rendering. IEEE Computer
Graphics and Applications, 14(4):23–32, 1994.

[25] Brendan Moloney, Marco Ament, Daniel Weiskopf, and
Torsten Moller. Sort-�rst parallel volume rendering.
IEEE Transactions on Visualization and Computer Graph-
ics, 17(8):1164–1177, 2011.

[26] Jae-Ho Nah, Hyuck-Joo Kwon, Dong-Seok Kim, Cheol-
Ho Jeong, Jinhong Park, Tack-Don Han, Dinesh
Manocha, and Woo-Chan Park. Raycore: A ray-tracing
hardware architecture for mobile devices. ACM Trans.
Graph., 33(5), sep 2014.

[27] David Pankratz, Tyler Nowicki, Ahmed Eltantawy, and
José Nelson Amaral. Vulkan vision: Ray tracing work-
load characterization using automatic graphics instru-
mentation. In 2021 IEEE/ACM International Symposium
on Code Generation and Optimization (CGO), pages 137–
149. IEEE, 2021.

[28] Xiaowei Ren and Mieszko Lis. Chopin: scalable graph-
ics rendering in multi-gpu systems via parallel image
composition. In 2021 IEEE International Symposium on
High-Performance Computer Architecture (HPCA), pages
709–722. IEEE, 2021.

[29] Mohammadreza Saed, Yuan Hsi Chou, Lufei Liu, Tyler
Nowicki, and Tor M Aamodt. Vulkan-sim: A gpu archi-
tecture simulator for ray tracing. In 2022 55th IEEE/ACM
International Symposium on Microarchitecture (MICRO),
pages 263–281. IEEE, 2022.

[30] Konstantin Shkurko, Tim Grant, Daniel Kopta, Ian Mal-
lett, Cem Yuksel, and Erik Brunvand. Dual streaming
for hardware-accelerated ray tracing. In Proceedings
of High Performance Graphics, HPG ’17, New York, NY,
USA, 2017. Association for Computing Machinery.

[31] Dongjie Tang, Cathy Bao, Yong Yao, Chao Xie, Qiming
Shi, Marc Mao, Randy Xu, Linsheng Li, Mohammad R
Haghighat, Zhengwei Qi, et al. Care: Cloudi�ed an-
droid oses on the cloud rendering. In Proceedings of
the 29th ACM International Conference on Multimedia,
pages 4582–4590, 2021.

[32] Dongjie Tang, Yun Wang, Linsheng Li, Jiacheng Ma,
Xue Liu, Zhengwei Qi, and Haibing Guan. gremote:
Api-forwarding powered cloud rendering. In Manish
Parashar, Vladimir Vlassov, David E. Irwin, and Kathryn
Mohror, editors, HPDC ’20: The 29th International Sym-
posium on High-Performance Parallel and Distributed
Computing, Stockholm, Sweden, June 23-26, 2020, pages
197–201. ACM, 2020.

[33] Kun Tian, Yaozu Dong, and David Cowperthwaite. A
full {GPU} virtualization solution with mediated {Pass-
Through}. In 2014 USENIX Annual Technical Conference
(USENIX ATC 14), pages 121–132, 2014.

[34] Lars Olav Tolo, Ivan Viola, Atle Geitung, Harald Soleim,
and Daniel Patel. Multi-gpu rendering with the open
vulkan api. In Norsk IKT-konferanse for forskning og
utdanning, 2018.

[35] Will Usher, Ingo Wald, Je�erson Amstutz, Johannes
Günther, Carson Brownlee, and Valerio Pascucci. Scal-
able ray tracing using the distributed framebu�er. Com-
puter Graphics Forum, 38(3):455–466, 2019.

1164 2024 USENIX Annual Technical Conference USENIX Association

[36] E. Vasiou, K. Shkurko, E. Brunvand, and C. Yuksel.
Mach-rt: A many chip architecture for ray tracing.
In Proceedings of the Conference on High-Performance
Graphics, HPG ’19, page 1–6, Goslar, DEU, 2022. Euro-
graphics Association.

[37] Luiz Velho, Vinicius da Silva, and Tiago Novello. Immer-
sive visualization of the classical non-euclidean spaces
using real-time ray tracing in vr. In Graphics Interface
2020, 2020.

[38] Jorge Luis Williams and Robert E Hiromoto. Sort-
middle multi-projector immediate-mode rendering in
chromium. In VIS 05. IEEE Visualization, 2005., pages
103–110. IEEE, 2005.

[39] Chenhao Xie, Xie Li, Yang Hu, Huwan Peng, Michael
Taylor, and Shuaiwen Leon Song. Q-vr: System-level
design for future mobile collaborative virtual reality. In
Proceedings of the 26th ACM International Conference on
Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’21, page 587–599, New
York, NY, USA, 2021. Association for Computing Ma-
chinery.

[40] Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng,
and Angjoo Kanazawa. Plenoctrees for real-time ren-
dering of neural radiance �elds. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 5752–5761, 2021.

[41] Haitang Zhang, Junchao Ma, Zixia Qiu, Junmei Yao,
Mustafa A Al Sibahee, Zaid Ameen Abduljabbar, and
Vincent Omollo Nyangaresi. Multi-gpu parallel pipeline
rendering with splitting frame. In Computer Graphics
International Conference, pages 223–235. Springer, 2023.

[42] Wei Zhang, Binghao Chen, Zhenhua Han, Quan Chen,
Peng Cheng, Fan Yang, Ran Shu, Yuqing Yang, and
Minyi Guo. {PilotFish}: Harvesting free cycles of cloud
gaming with deep learning training. In 2022 USENIX
Annual Technical Conference (USENIX ATC 22), pages
217–232, 2022.

[43] Wei Zhang, Xiaofei Liao, Peng Li, Hai Jin, and Li Lin.
Sharerender: Bypassing GPU virtualization to enable
�ne-grained resource sharing for cloud gaming. In
Qiong Liu, Rainer Lienhart, Haohong Wang, Sheng-
Wei "Kuan-Ta" Chen, Susanne Boll, Yi-Ping Phoebe
Chen, Gerald Friedland, Jia Li, and Shuicheng Yan, edi-
tors, Proceedings of the 2017 ACM on Multimedia Confer-
ence, MM 2017, Mountain View, CA, USA, October 23-27,
2017, pages 324–332. ACM, 2017.

[44] Yuhao Zhu. Rtnn: accelerating neighbor search using
hardware ray tracing. In Proceedings of the 27th ACM
SIGPLAN Symposium on Principles and Practice of Par-
allel Programming, pages 76–89, 2022.

USENIX Association 2024 USENIX Annual Technical Conference 1165

