
This paper is included in the Proceedings of the
2024 USENIX Annual Technical Conference.

July 10–12, 2024 • Santa Clara, CA, USA
978-1-939133-41-0

Open access to the Proceedings of the
2024 USENIX Annual Technical Conference

is sponsored by

ETC: An Elastic Transmission Control
Using End-to-End Available Bandwidth Perception
Feixue Han, Tsinghua Shenzhen International Graduate School and Peng Cheng

Laboratory; Qing Li, Peng Cheng Laboratory; Peng Zhang, Tencent; Gareth Tyson,
Hong Kong University; Yong Jiang, Tsinghua Shenzhen International Graduate School

and Peng Cheng Laboratory; Mingwei Xu, Tsinghua University;
Yulong Lan and ZhiCheng Li, Tencent

https://www.usenix.org/conference/atc24/presentation/han

ETC: An Elastic Transmission Control Using End-to-End
Available Bandwidth Perception

Feixue Han
Tsinghua Shenzhen International Graduate School

Peng Cheng Laboratory

Qing Li
Peng Cheng
Laboratory

Peng Zhang
Tencent

Gareth Tyson
Hong Kong University

Yong Jiang
Tsinghua Shenzhen International Graduate School

Peng Cheng Laboratory

Mingwei Xu
Tsinghua University

Yulong Lan
Tencent

ZhiCheng Li
Tencent

Abstract
Researchers and practitioners have proposed various transport
protocols to keep up with advances in networks and the appli-
cations that use them. Current Wide Area Network protocols
strive to identify a congestion signal to make distributed but
fair judgments. However, existing congestion signals such as
RTT and packet loss can only be observed after congestion
occurs. We therefore propose Elastic Transmission Control
(ETC). ETC exploits the instantaneous receipt rate of N con-
secutive packets as the congestion signal. We refer to this as
the pulling rate, as we posit that the receipt rate can be used
to “pull” the sending rate towards a fair share of the capacity.
Naturally, this signal can be measured prior to congestion, as
senders can access it immediately after the acknowledgment
of the first N packets. Exploiting the pulling rate measure-
ments, ETC calculates the optimal rate update steps following
a simple elastic principle: the further away from the pulling
rate, the faster the sending rate increases. We conduct exten-
sive experiments using both simulated and real networks. Our
results show that ETC outperforms the state-of-the-art pro-
tocols in terms of both throughput (15% higher than Copa)
and latency (20% lower than BBR). Besides, ETC shows
superiority in convergence speed and fairness, with a 10× im-
provement in convergence time even compared to the protocol
with the best convergence performance.

1 Introduction

Recent years have seen a resurgence of work in Congestion
Control (CC) [1–5]. This has been driven by the increasing
diversification of applications (e.g., web and video streaming
[6–8]) and networked environments (e.g., 5G). These algo-
rithms rely on congestion signals — primarily loss, delay,
and Explicit Congestion Notifications (ECN) — to manage
their sending rate. All tend to have the common goal of at-
taining high throughput, low latency, and fairness. However,
in practice, this is difficult because these requirements often

Corresponding Author: Qing Li, liq@pcl.ac.cn

conflict. This mandates a strategic trade-off, driven by two
key observations.

The first observation is that congestion control algorithms,
which prioritize high throughput, often struggle to simultane-
ously attain low latency [1, 3, 4, 9, 10]. This is because such
algorithms usually rely on loss signals, thereby becoming less
sensitive to additional queuing delays. Even BBR, which tries
to limit the inflight bytes within a Bandwidth Delay Product
(BDP), still fails to avoid high latency, due to its excessive
estimation of Available Bandwidth (ABW) [11]. This partic-
ularly occurs when there are multiple flows or a long waiting
period for packet evacuation (minimum Round Trip Time
(RTT) probing). In contrast, algorithms that prioritize delay
[2, 5, 12, 13] show favorable latency performance but attain
lower throughput. This is because they fail to compete with
other more aggressive flows. For example, Vegas [12] and
Fast [13] fail to ensure bandwidth share when competing with
buffer-filling flows. Further, Copa [2] and Vivace [5] obtain
poor bandwidth utilization even when there are no other com-
peting flows.

The second observation is that current algorithms only
consider fairness after flows have fully occupied the band-
width, or even after packet loss has occurred [1–5, 9, 10, 14].
This means they often occupy an unfair position, leading to
bad inter-flow fairness. Specifically, these algorithms man-
age their sending rates via slow start in the start-up stage.
However, slow start’s exponential increases can result in a
large disparity among asynchronous flows, since the flows
that start first have a better chance to preempt the bandwidth.
On the basis of this large disparity, convergence can take tens
of seconds (or even fail). For example, CUBIC [9] has to wait
for a packet loss event to free up bandwidth, and PCC [4]
nearly always fails to achieve fairness with its Multiplicative
Increase Multiplicative Decrease (MIMD) mechanism [15].
Therefore, shorter flows may complete their transmissions
without obtaining a fair bandwidth share, since it takes such a
long time to achieve convergence.

We argue that the above two observations are driven by the
inherent limitations of only using reactive congestion signals

USENIX Association 2024 USENIX Annual Technical Conference 265

as the network feedback. This is because traditional conges-
tion signals only work when the collective flows’ rates exceed
the link capacity. When the network bottleneck capacity is
not occupied, it is difficult for senders to reach a rapid con-
sensus on their fair share of the ABW. With this in mind, we
introduce the concept of a pre-congestion consensus signal:
A shared signal that can be witnessed by all senders to reach
an agreement on the ABW for their respective flows before
congestion occurs. This signal should be (i) easy to obtain,
without adding significant overhead; (ii) common across all
senders, such that all parties sharing a bottleneck link obtain
the similar signal value; and (iii) proactive, with the ability
to be created prior to congestion being observed. We argue
that such a signal could then be used by all senders to rapidly
converge on the appropriate sending rate without having to
wait for a congestion event to occur.

In this paper, we leverage a lightweight ABW measure-
ment mechanism to obtain such a signal, which we refer to
as the pulling rate. Put simply, the pulling rate is the instanta-
neous receipt rate of N(N ≥ 2) consecutive packets (denoted
as a micro-burst). Note that the idea of measuring the ABW
by collecting the instantaneous receipt rate of N consecutive
packets has been widely used in previous studies [16–21]. By
sharing this common measurement methodology and contin-
uous refinement of the results, all senders sharing the same
bottleneck will obtain similar pulling rate signals. In contrast
to congestion control algorithms that rely on reactive con-
gestion signals (e.g., packet loss), the available bandwidth
measured via the pulling rate can then serve as a constant
guide for all competing flows to set their sending rates, even
before congestion has occurred.

We embed these concepts into a new congestion control al-
gorithm: Elastic Transmission Control (ETC), which exploits
a combination of the pulling rate and RTT measurements
to identify and adapt to congestion conditions. Upon a new
flow being initiated, ETC begins to continually measure the
pulling rate. In parallel, it also measures the RTT to infer if
there is potentially excess capacity on the path. In cases when
the RTT suggests there is spare bandwidth, the ETC sender
increases (pulls) its sending rate towards the pulling rate in
an attempt to utilize excess capacity.

The above design raises three practical challenges though.
The first challenge is how to rapidly calculate the optimal
pulling rate at the beginning of a transmission, without per-
turbing the network. Conventional ABW probing methods
[22, 23] necessitate the utilization of supplementary probing
packet pairs or packet trains. To mitigate disruptions to the net-
work, we directly pace data transmission within micro-bursts
and collect the instantaneous receipt rate of each micro-burst.
We then continuously correct the pulling rate with the max-
imum average receiving rate of the subsequent traffic, such
that all flows can reach a consensus on the pulling rate.

The second challenge is the insufficient accuracy of the
current system timers. This is not a problem in traditional

CC logic, which relies on coarser metrics like packet loss.
However, it is problematic for ETC because we pace data
transmission on granularity as little as 2 packets (i.e. per
micro-burst) to calculate the pulling rate. The benefit is that it
gives ETC fine-grained control over the sending rate. How-
ever, the necessary timing cannot be implemented on current
commodity systems, as their timers are too coarse-grained.
To address this, ETC proposes the use of acknowledgment
(ACK)-clocking, which exploits the arrival of ACKs to pace
data transmission, thereby compensating for insufficient timer
precision.

The third challenge is how we can use the pulling rate to
dynamically select the optimal step size. Even with the prior
knowledge of available bandwidth, the indeterminate number
of concurrent flows makes it challenging to determine how
the sending rate should be adjusted upon each iteration. Most
prior works rely on a fixed step size technique. However, this
design (i) fails to adapt to different networks, since the step
size is not related to the available bandwidth; and (ii) cannot
guarantee the flow rates move towards fair equilibrium (e.g.,
aggressive exponential step sizes can result in a growth in
inter-flow unfairness). To address this, ETC introduces the
use of a concave function that maps the distance between
the pulling rate and the current sending rate to guide rate
adjustments. This concave formula avoids exceeding the fair
bandwidth share and we prove that it reduces the difference
among the flows’ rates at each adjustment, thereby accelerat-
ing the convergence toward fairness.

We have a fully deployed user-space implementation of
ETC, which has served as the transmission protocol for our
commercial video application for over a year. During this
period, ETC has served millions of daily users. Using this
implementation, we conduct comprehensive experiments in
both emulated and real-world international/ intercontinental
Internet scenarios to demonstrate the performance of ETC
versus other state-of-the-art protocols. Our key results are as
follows:

• ETC achieves the highest throughput under almost all sce-
narios considered. We simultaneously attain the lowest la-
tency. ETC obtains up to 15% higher throughput than Copa
on short paths and 18% more than CUBIC on long paths.

• ETC attains the best latency. It achieves a 10% and 18%
lower 95th latency than BBR under one-flow and three-flow
scenarios. For the short paths, ETC obtains more than 10%
lower latency compared to almost all competing algorithms.

• ETC attains superiority in convergence speed and fairness.
ETC can achieve fair convergence within 2s after a new
flow starts. CUBIC, with the second-best convergence, takes
more than 20s to converge.

Although finer-grained timers are available in data center hardware, we
target commodity devices, e.g., laptops, smart phones.

266 2024 USENIX Annual Technical Conference USENIX Association

2 Background and Motivation

In this section, we highlight the factors that hinder current
transmission protocols from achieving better performance.
We discuss the deficiencies of state-of-the-art protocols and
propose key directions for improvement.

2.1 Limitations of Congestion Signals
In Wide Area Networks (WAN), loss and RTT are the two
mainstream signals used by most congestion control algo-
rithms. For example, as a loss-oriented protocol, PCC [4]
evaluates its current sending rate against its measured loss rate.
Similarly, CUBIC [9] reduces its rate in the case of packet
loss, considering the current window size the maximum. In
contrast, as RTT-oriented protocols, Vegas [12] and Copa [2]
attempt to limit the RTT within a preset range through rate
adjustment. In an attempt to balance these two signals, Vivace
[5] constructs a utility function with both the delay and loss
rate to evaluate the current sending rate.

Unfortunately, exclusively using these reactive signals has
a key limitation: they work only once the collective flows’
rates exceed the link capacity. Specifically, RTT will be min-
imal until packets begin to accumulate in the router buffers.
Eventually, a loss event will indicate severe congestion. Prior
to this point, loss-oriented protocols will assume there is still
spare bandwidth, while RTT-oriented protocols will assume
there is congestion. That is, individual flows may perform too
conservatively or aggressively, resulting in either bandwidth
waste or congestion. Moreover, this postpones the time when
flows converge. We argue that an effective mechanism should
employ both reactive signals (such as RTT) and more proac-
tive signals that can be sensed prior to link capacity being
saturated. To achieve fast convergence and fairness, we seek a
signal that not only obtains consensus among flows, but also
is capable of guiding rate increases.

2.2 Limitations of Current Algorithms
Alongside the limitations of the congestion signals, current
congestion control algorithms suffer from several issues.

Lack of Fair Convergence. The correct number of inflight
bytes is the product of a fair bandwidth share and the base
RTT. However, current algorithms show poor performance in
fair convergence due for two reasons: (i) They only consider
convergence after the flows have fully occupied the available
bandwidth; and (ii) Their rate increase/decrease step size is
not related to the available bandwidth. We next illustrate these
two points in detail.

In the start-up stage, all current algorithms begin with a
slow start. Slow start increases the flow rate exponentially. It
thus enlarges the rate difference among flows that are started
asynchronously. Following this, flows attempt to reach fair
convergence, i.e. the rate adjustments gradually reduce the

rate difference among competing flows. During this period,
the convergence speed depends on the choice of step size.
The step sizes in current algorithms can be divided into two
categories: (i) dynamic step sizes based on the flow’s own rate
[1, 5, 9] (faster flows with smaller step size); or (ii) fixed step
sizes [2–4, 10, 12]. Although dynamic step sizes can promote
fairness among flows (compared with the fixed step size) since
slower flows have more chance to compete for bandwidth, all
of these step sizes are independent of the available bandwidth.
This severely delays the convergence, without fine-tuning
specific network environments. We analyze how the current
algorithms guarantee their convergence in Appendix C. To
summarize, to obtain fast and fair convergence, we need a
dynamic step size that adapts to the available bandwidth.

Lack of Optimal Rate Change. It is necessary for CC algo-
rithms to change the sending rate appropriately. Intuitively,
the rate change should become smaller as it approaches the
available bandwidth. However, due to the lack of an effec-
tive estimation of the available bandwidth, current algorithms
adopt an overly conservative step size at first while becom-
ing more aggressive in the subsequent adjustments [2, 4, 5].
This is particularly severe in the slow start phase, where the
flows expand the rate in an exponential manner [24]. This
drastic rate change can excessively overshoot the available
bandwidth. Several more recent protocols [2, 4, 5] adopt a
velocity parameter to speed up the convergence. That is, the
flows update their rate faster in the face of continuous rate
increases/decreases. We argue this violates the intuition that
the closer to the target rate, the smaller the update should
be. These frequent and intense rate oscillations magnify the
probability of bandwidth overuse or waste.

2.3 Our Design Principles

Based on the above observations, we advocate two novel de-
sign principles to improve congestion control performance in
terms of throughput, delay, and fair convergence simultane-
ously.

Pre-Congestion Consensus. First, we argue that it is nec-
essary to identify and propose a pre-congestion consensus
signal. Recall, this is a signal that can be used by all senders
(sharing a bottleneck) to reach a common estimate of the
available bottleneck bandwidth. Importantly, this consensus
must be reachable before packets begin to accumulate at the
in-network bottleneck (so as to guide rate increases). Note,
present congestion signals (e.g., delay and packet loss) fail
to meet these requirements. Equally, using ECN is not prac-
tical outside of a data center network, and leaves open the
challenge of selecting when a router should trigger an ECN.

Dynamic Step Sizes. Second, we argue that the congestion
control algorithms should employ dynamic step sizes to meet
the following requirements: (i) Safe: the rate increases be-
come less aggressive as they approach the available band-

USENIX Association 2024 USENIX Annual Technical Conference 267

width so that the sending rate does not excessively exceed the
available bandwidth. (ii) Fast: quickly seizing the spare band-
width while quickly converging to an equilibrium. (iii) Fair:
giving slower flows more chance to compete for the available
bandwidth and punishes faster flows more strictly.

3 Rate Control in ETC

We start by explaining how ETC senders set their sending
rate. Algorithm 1 presents an overview of the algorithm.

3.1 Overview of Rate Control

Figure 1 shows an overview of ETC. We provide a summary
below of how a sender decides when to accelerate or deceler-
ate its sending rate.

Rate Acceleration. When the RTT holds or decreases (the
left blue part), the sender infers that there may be spare band-
width available. Despite this, it does not know how much
bandwidth is available (since there is no explicit signal to
show the link utilization). Therefore, to guide the sender,
we propose that the sender calculates the pulling rate (Rp).
This is an estimate of the bandwidth, which is measured us-
ing a lightweight passive ABW measurement mechanism at
the sender. Put simply, it is the instantaneous receipt rate
of N(N ≥ 2) consecutive packets (denoted as micro-burst),
constantly corrected by the maximum average receiving rate.
Upon detecting the possibility of spare capacity, the sender
uses the pulling rate to calculate the precise rate change. A
key innovation is the introduction of elasticity: the further
away from the available bandwidth, the faster the sending rate
(s) increases, and the slower the sending rate decreases. We
provide further details in Section 3.3.

Rate Deceleration. When the RTT gradient exceeds a pre-
set threshold (the right purple part), ETC assumes that it is
approaching (or at) the maximum bandwidth allocation. At
this stage, the sender temporarily regards the current receiving
rate (r) as the optimal rate. Thus, the sender gradually reduces
the sending rate to the receiving rate in a step-wise manner.
This step-wise reduction aims to avoid any overreactions to
ephemeral variations in capacity. We provide further details
in Section 3.4.

3.2 Collection of the Signals

Setting the Pulling Rate. The pulling rate is calculated at
the sender side. It is an estimation of the available bandwidth
and serves as a signal guiding the sender in setting its rate
increase. ETC places more emphasis on the consistency of

This is the average receipt rate within a past time window. The time
window is typically six to ten RTTs [1] and ETC adopts a time window of
eight RTTs.

RTT

Pulling rates

Sending rate (s) Receving rate (r)

Step-wise

snew=s·loga(Rp / s+a-1)

R
at

es

Time

RTTRTT

b u r s t b u r s t b u r s t b u r s t

IACK ACKIACK IACK

Figure 1: The structure of information collection and rate
updates in ETC.

the pulling rate instead of the measurement accuracy. We next
explain how the pulling rate is set.

When a flow is first established or a competing flow fin-
ishes, the sender has no knowledge of available bandwidth.
Hence, we refer to this first stage as the bandwidth detec-
tion stage. In this stage, ETC directly paces data in micro-
bursts to obtain the pulling rate for guidance (in Section 4),
which mitigates the disruptions to the network (e.g., changing
the sending mode or sending additional probe packets). The
pulling rate is set by the ETC sender as the instantaneous
receipt rate of the acknowledged micro-bursts. Intuitively, the
arrival interval of the packets in each micro-burst is always
determined by the last bottleneck it passes (detailed analy-
sis in Appendix F). Therefore, with the collection of many
measurement samples, flows that pass through the same last
bottleneck should obtain approximately the same estimate of
the available bandwidth. Indeed, our analysis in Section 5.1
proves that the measurement results are larger than or equal
to the available bandwidth, hence, they can act as the pulling
rate to pull the sending rate.

Once the sender does not observe a significant increase
(less than 1.1× or even no increase) in the corresponding
receiving rate of the past 8 RTTs [1] after a sending rate
increase, we assume that the sender has reached the approx-
imate available bandwidth, where only small adjustments
are needed for better convergence and fairness. We refer to
this as the stable convergence stage. Thus, the ETC receiver
uses a more conservative method to calculate the pulling rate:
Rp = min(k× rmax, Rp), in which rmax is maintained as the
maximum receiving rate. We use the parameter k to leave
room for exploiting spare bandwidth when a flow ends. When
the receiving rate exhibits a sharp increase again (more than
1.1×), ETC exits the stable convergence stage to consume the
spare bandwidth. Note that rmax will only be updated when
the rate increases by more than 1.1×. When the receiving rate
is far from rmax, we consider that a new flow joins in and the
available bandwidth reduces, therefore rmax is sampled again.

Accurate RTT Sampling. RTT is widely adopted as a conges-
tion signal. However, even without considering the statistical
error and the shaping of the packets by the bottom layers, the
RTT struggles to reflect the actual state of the network due
to the bursty nature of TCP. The reason is that bursts may

268 2024 USENIX Annual Technical Conference USENIX Association

cause extremely short-lived RTT increases. Regarding this a
congestion signal usually damages throughput.

Taking this fact into consideration, we believe that the RTT
of the first packet in each micro-burst most accurately reflects
the exact network state.Thus, we only regard the RTT of the
first packet in each micro-burst as an effective sample. Our
statistical results in Appendix E show that the first packet
always shows a smaller delay than the other packets in the
same micro-burst. This suggests that the first packet better
reflects network congestion without being affected by micro-
bursts. Note, ETC also uses incremental and unique packet
numbers to avoid the effect of retransmission ambiguity on
RTT measurements.

3.3 Rate Acceleration
We next explain how ETC exploits the measured pulling rate
to accelerate the sending rate in detail. The rate update process
is shown in lines 12 to 19 in Algorithm 1. Put simply, when
the RTT decreases or eight RTTs (by default) have passed
from the last rate increase, ETC raises the sending rate. The
increase is calculated as a function of the pulling rate and
the sending rate (lines 13-15). The periodical rate increase
ensures ETC will not suffer from starvation when competing
with more aggressive buffer-filling flows.

To calculate the update, the sender first models the distance
between the pulling rate and the current sending rate as a ratio.
We use the ratio as it alleviates the impact of any measurement
error. Then we link the extent of the rate increase with the
distance. Much like an elastic band, the further away from the
pulling rate, the faster the sending rate increases. To achieve
this, ETC employs a concave formula of the distance, f (Rp,s),
which takes the pulling rate as the maximum. The sending
rate is promoted in a multiplicative manner: s = f (Rp,s)× s,
and the formula should meet the following requirements:

• When the sending rate equals the pulling rate, the sending
rate should remain static.

• The sending rate increases should diminish the closer the
flow gets to the pulling rate.

• After each adjustment, the difference (inequality) between
the sending rates (or the receiving rate) between the flows
should decrease.

The first condition guarantees that the sending rate will not
exceed the pulling rate. The second condition guarantees that
the sending rate increases in a safe way. That is, the sending
rate should not spike significantly beyond the available band-
width (as this would induce congestion). The third condition
ensures fairness among flows. To meet these requirements,
ETC employs a log function as follows:

f (Rp,s) = logα(Rp/s+α−1), α > 1
s.t. f (Rp,Rp) = 1

(1)

Algorithm 1: ETC Sender Algorithm
tlast : the time of the last packet sending.
tupdate : the time of the last rate update.
s : current sending rate. r : current receiving rate.

1 function Send()
2 interval ← now− tlast
3 pending ← s · interval + remain
4 bytes_in_burst ← packet_size · N
5 if pending ≥ bytes_in_burst then
6 send N packets
7 remain ← pending − bytes_in_burst
8 tlast ← now

9 else if now− tlast ≥ 10ms then
10 send pending bytes
11 tlast ← now

12 function RateUpdate()
13 if ∆RT T < 0 || now − tupdate ≥ 8RT T s then
14 s ← s · Eq. 1
15 tupdate ← now

16 else if ∆RT T ≥ threshold then
17 s ← (s+ r)/2
18 draining the queue
19 tupdate ← now

20 procedure NewACK(ack)
21 update Rp
22 update r
23 if now − tupdate ≥ RT T then
24 RateUpdate()

25 Send()

26 procedure TimerExpire()
27 Send()

According to our experience, e is a suitable choice for α .
We set this as the default parameter in our later evaluation.
Note, the selection of α influences the competitiveness of
a flow: a smaller base brings a more aggressive flow (the
effect of the base on performance is shown in Appendix A.5).
The convergence and fairness of flows with this formula are
proved in Section 5.3.

3.4 Rate Deceleration with Queue Draining
We next explain how ETC decelerates the rate when the RTT
increase exceeds a threshold (lines 16-18). Here, we assume
the presence of buffer bloat, indicating the need to drain the
router queues. To achieve this, ETC performs two steps:

1. We reduce the sending rate to r+(s− r)/2. Theoretically,
when the sum of flows’ rates exceeds the link capacity,
if each flow sets its sending rate to its receiving rate, the
queue at the bottleneck will no longer accumulate. How-

USENIX Association 2024 USENIX Annual Technical Conference 269

ever, due to ACK compression and delays at end-hosts, the
measured receiving rate tends to be smaller than the actual
value. Hence, we reduce the sending rate to the receiving
rate in a step-wise manner. Specifically, the rate difference
between s and r is halved at each step to compensate for
the measurement imperfections.

2. We update the estimated BDP with the product of the new
sending rate and the minimum delay. ETC then checks
whether the inflight packets have exceeded one recalcu-
lated BDP; if so, it flushes the queue of all remaining
packets immediately. Specifically, we flush the accumu-
lated bytes with a sub-sending rate (η · s, 0 < η < 1). By
doing this, the routers on the path drain their buffers. We
estimate the time for draining the queue as follows:

td =
in f lights− s ·RT Tmin

(1−η) · s
(2)

We choose to use the sub-sending rate, rather than stop-
ping transmission, because the sender still needs ACKs
to trigger data transmission (details in Section 4). After
consuming the queue, we resume the sending rate and the
rate remains unchanged for at least an RTT (as we can
only observe the influence of the current rate after the rate
has been kept for an RTT).

Note, the step-wise rate decrease prevents ETC from over-
reacting. Besides, draining the accumulated packets in the
buffer with a low rate can compensate for the imperfections of
pacing and ensure continuous ACK response. Although ETC
responds to the gradient of the RTT rather than the absolute
value, its packet-draining stages ensure that ETC can always
converge to both proper rate and minimum latency, without
complex parameter adjustment.

4 Transmission in micro-bursts

The previous section has shown how ETC sets the sending
rate. We next explain how ETC paces the packets within each
micro-burst using the allocated sending rate. This is not trivial
because it puts strict requirements on the granularity of the
pacing design. Therefore, based on our observation that the
arrival intervals of the ACKs are shorter than a commodity
system’s timer granularity, we propose a novel ACK-clocking
pacing mechanism.

4.1 Necessity and Obstacles

Many researchers have observed that TCP’s window-based
congestion control mechanisms can lead to bursty traffic on
modern high-speed networks [25–27]. These bursts bring
about buffer bloat and even overflow at intermediate routers.
To overcome the problems faced by traffic bursts, pacing has

ACK
Seq

Time(s)-
12Mbps

ACK
Seq

Time(s)-
12Mbps

ACK
Seq

Time(s)-
100Mbps

ACK
Seq

Time(s)-
100Mbps

279 5.100818 283 5.105269 279 7.686917 283 7.687006
280 5.101901 284 5.106348 280 7.686937 284 7.687036
281 5.102996 285 5.107473 281 7.686959 285 7.687071
282 5.104066 286 5.108532 282 7.686980 286 7.687098

Table 1: Cut off of the arrival times of ACKs under 12Mbps
and 100Mbps links. The complete ACK arrival intervals dis-
tribution is shown in Appendix D.
long been shipped in Linux and data center networks [26, 28],
most of which are dependent on system timers.

ETC treats micro-bursts as the pacing unit. Here, a micro-
burst refers to a train of at least two packets. Due to this, the
granularity of the system timer should be less than the sending
time of two packets to ensure that we can arbitrarily set the
micro-burst size. In fast networks, this sending time is too
short, e.g., in theory, packets should be sent at 60µs intervals
in the case of 200 Mbps bandwidth and a 1,500 bytes packet
size. However, the sending time is more than an order of
magnitude more precise compared with the operating system
scheduler’s ms order (e.g., 10ms [29] and 1ms respectively
before and after Linux 5.3.0).

Practitioners have come up with a number of solutions to
compensate for the inaccuracy of the system timer. Except
for those equipped with additional hardware [30, 31], current
software-based high-precision pacing methods include timer
interrupt-based [28] and gap packet-based ones [32, 33]. Yet
these all incur high CPU overhead (see Section 7). Apart
from the implementation challenges, pacing that only relies
on the system timer triggers a system call for each packet
transmission, leading to heavy CPU overhead [26]. Further,
to send fixed-size micro-bursts, the timer needs to be dy-
namically adjusted according to the real-time sending rate
(bytes = rate∗ interval) or, alternatively, always be set to the
highest precision, which brings further overheads. Thus, ETC
proposes a novel approach, which avoids the above limita-
tions.

4.2 ETC Pacing with ACK-Clocking
ETC pacing relies on a simple observation: the arrival times
of the ACKs are more fine-grained than the system’s timer and
can be utilized for improving pacing precision. To highlight
this, we run flows between Beijing and Shenzhen via 12Mbps
and 100Mbps links (about 37ms delay), and record the arrival
times of the ACKs during the transmission. The packets are
paced with the 10ms system timer and the receiver sends back
an ACK for every packet. Table 1 lists the arrival times for a
random subset of ACK packets. Although the ACKs’ arrival
interval is not fixed, the table shows that the interval is more
fine-grained than the inherent ms-level timer in the operating
system. The average interval of the 12Mbps link is around
100us, and that of the 100Mbps link is around 10µs. Yet, the
maximum fidelity of the timer in Linux is just 1ms.

270 2024 USENIX Annual Technical Conference USENIX Association

This observation inspires us to exploit ACK-clocking to en-
hance the accuracy of pacing. Lines 1-11 in Algorithm 1 show
how ETC uses micro-bursts (rather than individual packets)
as the pacing unit. The sender checks whether a micro-burst
should be sent at every ACK arrival. It calculates the pending
bytes according to the time interval from the last sending time
and the current sending rate (line 3). If the pending bytes
outweigh the size of a micro-burst, a micro-burst is sent and
the remaining unsent bytes are recorded (line 6-7). Other-
wise, the pending bytes will wait for the next ACK arrival.
However, ACKs do not arrive in a uniform way because their
spaces are altered if they are blocked at the receiver buffer or
router queues. Hence, the idle bandwidth will be wasted if a
sender keeps waiting for the ACK’s arrival. To address this,
we keep a timer with 10ms precision that all current systems
can support. The timer expiration triggers the Send() function.
If the pending bytes have been waiting for 10ms, these bytes
are sent even if they cannot form a micro-burst (line 9-11).

ETC integrates the processing of data sending into the
processing of ACKs, keeping only the timers that current
system can support. This improves pacing accuracy while
avoiding much additional CPU overhead. In addition, since
the number of ACKs always corresponds to the number of
the data packets, we avoid dynamic adjustment of the timer
accuracy according to the network environment.

4.3 Reducing Feedback Frequency
Generally, ACKs take up about 4%-5% of the link capacity if
the receiver sends back an ACK for each packet. This band-
width consumption is enlarged in wireless networks because
of the medium access overhead [3, 34, 35]. Intuitively, we
can alleviate the interference of excessive ACKs by applying
byte-counting ACKs or periodic ACKs. However, ETC relies
on ACKs to trigger data transmission and congestion percep-
tion. This means such techniques would not work for ETC.
Thus, we propose an adaptive feedback mechanism.

UDP
Header

Packet ID
(4B)

IACK

ACK UDP
Header

Packet ID
(4B)

Data ID
(4B)

R
C
V

LO
SS

R
C
V

LO
SS

1B

...

Data ID
(4B)

Figure 2: The structure of ACK and IACK.

To reduce the bandwidth consumption brought by ACKs
while ensuring timely synchronization, ETC introduces two
feedback packets: a lightweight IACK and a standard ACK
with detailed information.

Figure 2 shows the structure of ACK and IACK packets.
IACKs carry a small amount of data: the packet ID and data
ID of the latest and consecutively received packet. Note, the
packet ID and data ID are used to let the sender clean the ac-
knowledged packets in time. IACKs play the role of triggering

the data sending and data cleaning for the sender. Considering
that the sender sends data only when pending packets exceed
the micro-burst size, the frequency of IACK feedback can be
reduced moderately according to the size of the micro-burst.
In cases where the feedback frequency of IACK is deemed
insufficient to enable the calculation of the pulling rate (e.g.,
only one IACK for a micro-burst), we opt to set the pulling
rate as 1.25× of the current max receiving rate. Note that this
operation has a certain impact on the fairness performance.
Our evaluation results (in Appendix A.6) show that respond-
ing to every eight packets with an IACK effectively improves
the throughput in a wireless network (we always reply to
the first packet in each micro-burst with an IACK for RTT
collection), without damaging the accuracy of pacing.

However, IACKs cannot convey packet loss information in
a timely fashion because they do not contain sufficient infor-
mation in the header. Hence, if the receiver observes packet
loss, it sends an ACK packet instead. The ACK carries the
latest consecutively received data-id and packet-id. Then the
number of consecutively received packets and lost packets are
filled in turn as the loss information. Note that this optimiza-
tion aims to minimize system overhead, and the default ACK
feedback mechanism within the kernel can also accommodate
ETC’s pacing mechanism.

5 Properties of ETC

Our design relies on three core properties. Thus, in this sec-
tion, we demonstrate these important properties that con-
tribute to the performance of ETC: (i) P1: The pulling rate
is always greater than or equal to the available bandwidth
(§5.1). This is vital to prove as it enables the pulling rate to
serve as the guide in ETC rate acceleration; (ii) P2: ETC
always seizes spare bandwidth in a safe and fast way (§5.2);
(iii) P3: Competing ETC flows always move towards the fair
equilibrium in every rate adjustment (§5.3).

5.1 Pulling Rate ∈ [ABW, Capacity]
The pulling rate is an important signal in ETC’s rate control.
To ensure that the pulling rate can guide senders, it is vital
that it is always (i) greater or equal than the available band-
width (to probe the capacity); and (ii) less than the upper link
capacity (to avoid introducing severe congestion).

To prove that the pulling rate fulfills these requirements
we next model the instantaneous receipt rate of a micro-burst
consisting of N packets and give mathematical proof. But
we first start with a simple example. Figure 3(a) shows an
example high-speed micro-burst competing with the stable
cross traffic for the bottleneck bandwidth CL. The green arrow
represents the cross traffic with a constant rate Rc, and the
orange arrow shows the short but quick packet micro-burst at
the rate Rb. Intuitively, if Rb ≥ (CL−Rc), the link becomes
the bottleneck, otherwise the end-host is the bottleneck. Even

USENIX Association 2024 USENIX Annual Technical Conference 271

(a) Cross traffic (b) Micro-burst model

Figure 3: Measure the available bandwidth.

if the packets are sent at line rate, according to the princi-
ple of fair competition, the measurement result could still be
disturbed by background traffic.

Figure 3(b) shows the model of utilizing micro-burst to
estimate the available bandwidth. From the arrival of the first
byte in, the cross traffic can jump the micro-burst until the
last packet arrives (∆t1). When calculating the receiving rate
at the end-hosts, we record the time interval from the arrival
of the first packet until the last byte arrives (∆t2), considering
that N−1 packets are received during this period.

To express the above in a mathematical form, it costs:

∆t1 =
(N−1)∗L

Rb
(3)

for the arrival of N−1 packets in a single packet train, then
the expectation of bytes inserted during this period is Rc ∗∆t1,
the ∆t2 can be written as:

∆t2 =
(N−1)∗L+Rc ∗∆t1

CL
(4)

Therefore, the measured pulling rate can be described as:

Rp =
(N−1) ·L

∆t2
=CL/{

Rc

Rb
+1} (5)

With this equation, we can prove:
(i) The pulling rate is always greater than or equal to the

available bandwidth:

Rp− (CL−Rc) =CL/{
Rc

Rb
+1}− (CL−Rc)

=
R2

c +Rc · (Rb−CL)

Rb +Rc
> 0

(6)

(ii) The pulling rate is less than or equal to the link capac-
ity:

CL−Rp =
Rc

Rc +Rb
·CL > 0 (7)

(iii) The pulling rate is positively correlated with CL (with
CL/2 as the lower bound.) Equation 5 can be further expressed
as:

Rp =CL/{
Rc

CL
· CL

Rb
+1} (8)

Rc
CL

and CL
Rb

are both in the range of (0,1), Rp approaches the
lower bound when there is almost no available bandwidth.

To summarize, the above shows that ETC’s measured
pulling rates will always be greater or equal to the available

bandwidth, yet below the link capacity. Note, despite these
properties, ETC ensures that sending rates do not excessively
exceed the available bandwidth by: (i) continuously observing
the receiving rate and delay; (ii) deploying a concave function
to guide rate increase.

5.2 Faster & Safer Start-up than Slow Start
In the start-up stage, ETC senders replace the traditional slow
start and, instead, increase the sending rate according to Equa-
tion 1. In this subsection, we prove that, compared with slow
start, an ETC sender can seize the available bandwidth in a
faster and safer way.

Faster. To show that ETC takes less time to achieve higher
bandwidth utilization, we employ a simple single-flow mathe-
matical model. Since slow start always (by definition) exceeds
the link capacity, and ETC regards the link capacity as the
upper bound, we analyze the time required to reach a specific
rate (k% ·CL, k is the link utilization). For the slow start, it
requires N = log2(k% ·CL) RTTs as 2N = k% ·CL. For ETC,
the time required to reach high bandwidth utilization is:

N

∏
n=1

f (CL, rn) = k% ·CL (9)

for which it is hard to derive a neat analytical solution. There-
fore, we conduct numerical analysis.

We denote the flow rate as k% ·CL and make a reasonable
assumption that k starts at 0.1. According to Equation 1, we
find that when k ≈ 20, the multiplier of ETC and slow start
is equal, that is: f (CL,20% ·CL) ≈ 2. With Equation 9, we
observe that ETC takes five RTTs for k to increase from 0.1
to 20. At this point, ETC achieves a rate approximately 17
times that of slow start. After this stage, the multiplier of
ETC becomes smaller than that of slow start. However, slow
start requires more than 9 RTTs to be on par with ETC’s
rate (∏9

n=1 f (CL, rn)≈ 29.7), where k is beyond 85%. From
0 to 9 RTTs, the amount of data transmitted by ETC is 4
times that of slow start (∑9

n=1 f (CL,rn)≈ 4×∑
9
n=1 2n). This

is because ETC increases the rate in a concave manner while,
in contrast, the slow start increases the rate in a convex way.
The experimental results regarding different initial values of
k are shown in Appendix A.7.

Safer. We next show how ETC is safer than traditional con-
gestion control algorithms, i.e. it rarely overestimates band-
width. Recall that traditional algorithms employ an expo-
nentially increasing cwnd, i.e., the sending rate in nth RTT
(sn) will be twice compared to (n− 1)th, and the window
growth follows s = 2n. In contrast, ETC increases s with a
log multiplier (see Eq.1). This indicates that the rate accords
with sn = sn−1 · f (CL,rn−1). Since r < CL, it is a concave
function within the range [0,CL], and the rate increment de-
creases monotonically. In short, the slow start mechanism
gains increasingly cwnd increments along with RTT. In con-
trast, ETC adopts gradually converging cwnd increments to

272 2024 USENIX Annual Technical Conference USENIX Association

avoid capacity overflow. This alleviation reduces the chance
of overestimating capacity and triggering congestion.

Under the above settings, ETC approaches the available
bandwidth in a safe manner: After nine RTTs, ETC has al-
ready lifted the utilization beyond 90%. In the next RTT, ETC
will slowly converge to the CL with only a 1.1x amplifica-
tion. However, the slow start will still double the sending rate
even if the link has been fully occupied, which thus seriously
oversteps the CL and incurs severe congestion.

5.3 Fair Convergence
A key goal of ETC is to enable fair convergence across com-
peting flows. We define the convergence and fairness on an
ideal steady path (i.e., no flow joins or leaves) as follows.

Definition 1. A flow converges if, there is a time T af-
ter which the sending rate is always bounded in the range
[Rmin(CL),Rmax(CL)] (the converged range is related to the
link capacity CL).

Definition 2. Consider two flows fi and f j starting from
arbitrary initial conditions. An algorithm is fair if each rate
adjustment reduces the difference between the receiving rate
ri and r j (denoted as Di, j) until Di, j ≤ D, a preset threshold.

Theorem 1. With Equation 1, ETC is a fair CC algorithm
and ETC flows always converge.

Proof. Based on the above definitions, we first analyze
whether we can adapt the sending rate of each flow to a fair
share at once. Assuming that there are only two flows f1 and
f2 in the link, where the sending rates are denoted as s1 and
s2, and the receiving rates are r1 and r2, respectively. Under
the principle of fair competition, we have:

s1

s2
=

r1

r2
(10)

If we multiply s1 and s2 by a coefficient k1 and k2 so that
s1 = s2, k1 and k2, we obtain the following relationship:

k1

k2
=

s2

s1
=

r2

r1
=

CL− r1

CL− r2
(11)

Consequently, if the flows have already reached the bot-
tleneck bandwidth and calculated their receiving rate, it is
feasible for two flows to share the bandwidth fairly after a sin-
gle tune-up. However, if we expand this scenario to K flows,
Equation 11 is further enriched to:

∀i, j ∈K, ri =
si

∑k∈K sk
·CL,

ki

k j
=

r j

ri
(12)

Since this condition requires the receiving rate of all the
other flows, the limited information mastered by each flow
hinders the realization of ‘one-step fairness’. Therefore, we
must realize fairness among flows through multiple adjust-
ment iterations. In each adjustment, we multiply the previous

sending rate si by a function of ri : f (ri), (f (ri)≥ 1). f (ri)
should meet the condition that the absolute difference between
the receiving rate of any two flows decreases after adjustment,
that is:
∀i, j ∈ K,ri > r j:

|
f (ri)si− f (r j)s j

∑k∈K f (rk)sk
| ≤ |

si− s j

∑k∈K sk
| (13)

Since f (rk)>= 1, we have ∑k∈K f (rk)sk ≥ ∑k∈K sk, then:

|
f (ri)si− f (r j)s j

∑k∈K f (rk)sk
| ≤ |

f (ri)si− f (r j)s j

∑k∈K sk
| (14)

To simplify Equation 13, we propose a more stringent condi-
tion based on it:

|
f (ri)si− f (r j)s j

∑k∈K sk
| ≤ |

si− s j

∑k∈K sk
|

i.e., | f (ri)si− f (r j)s j| ≤ |si− s j|
(15)

This equation holds only when si = s j (ri = r j).
Let sn

i and rn
i represent the sending and receiving rate at

the nth iteration, Equation 15 can be further written as:

| f (rn
i)s

n
i − f (rn

j)s
n
j | ≤ | f (rn−1

i)sn−1
i − f (rn−1

j)sn−1
j | (16)

Since the equation holds only when si = s j, we propose the
limits as follows:

lim
n→∞

sn
i − sn

j = 0

lim
n→∞

rn
i =

CL

K

(17)

Above all, fairness and convergence can be both achieved
through a rate increase function that matches the condition
in Equation 13. Bringing Equation 13 into Equation 15, the
conditions are listed as follows, i.e., if f (ri) satisfies the fol-
lowing conditions, the flows guided by f (ri) finally converge
and obtain a fair bandwidth share:

f (ri)ri− ri ≤ f (r j)r j− r j

f (ri)ri + ri ≥ f (r j)ri + r j
(18)

Equation 1 satisfies the above two conditions, confirming
that ETC shows strong convergence and fairness. Note that
Equation 15 is a sufficient and unnecessary condition for
fairness and convergence.

6 Evaluation

6.1 Evaluation Methodology

Implementation. We implement ETC in C++. It is developed
as a user-space transport with UDP as a substrate. ETC imple-
ments reliability and rate control modules in user space and
interacts with the kernel through the sendmmsg and recvmsg
functions (the specific function depends on different plat-
forms). The inherent pacing 10ms timer is realized through
the libevent library. We use this user-space implementation

USENIX Association 2024 USENIX Annual Technical Conference 273

(a) BJ to SZ (b) BJ to BOM (c) BJ to VA (d) BJ to SAO

Figure 4: The performance of CC algorithms on real links. The links are sorted according to the average latency from low to high.
ETC achieves almost the lowest latency and the highest throughput among all the methods.

to test ETC in both emulated and real network paths. ETC is
implemented in the form of SDK and has served as the trans-
mission protocol on Tencent XP2P (with millions of users)
for more than a year. It supports multiple platforms including
Windows, macOS, Android, iOS, and OpenWrt (for IoT).

Setup. We compare the performance of ETC with the Linux
implementations of several state-of-the-art schemes: CUBIC
[9], BBR [1], Vegas [12] (the related parameters are by de-
fault), and user-space implementations: PCC [4], PCC Vi-
vace [5], Copa [2], and TACK [3]. Among these algorithms,
CUBIC serves as a representative of loss-based approaches;
Vegas and Copa are delay-based algorithms; BBR, PCC, and
Vivace are representative of learning-based solutions; and
TACK makes optimizations on the transmission feedback. We
use Pantheon [36], an independent platform that serves as
a “training ground” for research on congestion control. We
deploy Pantheon in Cloud servers distributed in Beijing (BJ),
Shenzhen (SZ), Bombay (BOM), Sao Paulo (SAO), and Vir-
ginia (VA). We always run flows from Beijing to other cities
(the base RTT of the links is shown in Appendix B). The
bandwidth between every two nodes is limited to 200Mbps.
The situations that are difficult to reproduce in real Internet
paths (e.g., links with high random loss) are simulated with
the Pantheon locally. We further evaluate its performance on
a video playback use case.

Parameters. In the server tests, considering that the through-
put of TCP variants is limited by the sliding window, we
dynamically set the TCP rmem/wmem to 2×BDP. The re-
ceive buffer of UDP is 2MB. The buffer size in the simulation
scenario is set to 1×BDP. These settings ensure that the per-
formance of the CC algorithms is not limited by the buffer
size. Referring to the studies of ABW measurement, we set
the size of micro-burst to 8. The base of the log function is e.
The initial sending rate is 10 packets per RTT (by default after
Linux 3.0.0) and η is set to 0.3. The traces used in emulations
are generated according to Mahimahi’s [37] rules.

We will include the GitHub URL of the traces upon publication.

6.2 Throughput & Delay

To evaluate the throughput and delay achieved by ETC, we
test the algorithms across the five deployed real-world nodes.
Although the performance of single flow has been widely
inspected, little attention has been paid to the multi-flow per-
formance. Therefore, we run each algorithm with both a single
flow and three flows 30 times to check their performance un-
der multi-flow scenarios. Note, we evaluate asynchronous
flow arrival in Section 6.3. The experiments run during differ-
ent time periods and the represented results are the average
across all the results. Flows in each experiment start simulta-
neously and keep running for 30s.

Figure 4 presents the average throughput and 95th one-way
delay (OWD) of the evaluated protocols on the real Inter-
net paths. As Figure 4(a) shows, CUBIC, BBR, PCC, Vegas,
TACK, and ETC all achieve good throughput performance in
the short path from Beijing to Shenzhen, among which ETC
has the shortest OWD with equivalent throughput. From all
the sub-figures in Figure 4, BBR shows a low OWD with a
single flow, yet BBR always attains the longest OWD in multi-
flow scenarios due to its excessive estimation of the available
bandwidth. Based on BBR, TACK adds the perception of
the buffer, which optimizes the delay performance of BBR.
Despite the poor competitiveness of Vegas, a single Vegas
flow shows good performance in both delay and throughput,
yet it also shows obvious OWD increment as the flow number
increases. Compared with these algorithms, Copa and Vivace
attain 20% throughput waste in exchange for low latency. As
the OWD of the paths grows (from subfigure 4(a) to 4(d)), all
the protocols show varying degrees of throughput decline. We
observe that ETC and TACK still maintain high link utiliza-
tion on long links though, with a 90% utilization on a 400ms
link. As an aggressive protocol, PCC’s throughput loss comes
from its long decision cycle (four RTTs). Vivace and Copa are
sensitive to OWD measurement errors and their throughput
reduces to about only half of the link capacity.

Our statistics also demonstrate that CUBIC, BBR, and
TACK show comparatively higher loss rates. Specifically,

274 2024 USENIX Annual Technical Conference USENIX Association

(a) CUBIC-total TPT: 98.63Mbps (b) TACK-total TPT: 98.00Mbps (c) BBR-total TPT: 97.05Mbps (d) PCC-total TPT: 89.44Mbps

(e) Vivace-total TPT: 76.16Mbps (f) Copa-total TPT: 85.28Mbps (g) Vegas-total TPT: 98.47Mbps (h) ETC-total TPT: 98.52Mbps

Figure 5: Variation of the throughput as five flows gradually join the network. ETC outperforms other protocols by a large margin
w.r.t. bandwidth allocation fairness and convergence speed.

ETC reduces packet loss rates by 55% and 42% compared
to CUBIC and BBR, respectively. This is due to ETC’s
constraint on the pulling rate (as outlined in Section 3.2)
and timely queue draining during rate deceleration (in Sec-
tion 3.4).

To summarize, even on short links, ETC shows 10% and
30% OWD improvement in one-flow or three-flow scenar-
ios compared with BBR, respectively. Compared with Copa
and Vivace, ETC shows more than 15% throughput advan-
tage with almost the same OWD. Besides, ETC consistently
maintains a low loss rate.

6.3 Fairness & Convergence

To verify the fairness of ETC, we test the bandwidth occupa-
tion of each algorithm when starting N flows simultaneously
and at fixed intervals (5 seconds). We run the fairness test in
the real-world link from Beijing to Shenzhen, with a delay of
37ms. Each flow runs for 60s.

Figure 5 shows how these algorithms perform when five
flows gradually join a 100Mbps link with a 5s interval. Each
line in the figure represents a flow. We evaluate the perfor-
mance of each algorithm in terms of convergence speed and
the fairness of the convergence. We classify a flow as con-
verged once its rate oscillates with variance less than 5Mbps
for at least 2 seconds. As Figure 5(h) shows, ETC converges
rapidly after the arrival of the new flows, within about two
seconds. After all of the flows arrive at 25 seconds, flows
oscillate around the convergence rate, and the difference in
the flow rates gradually decreases. In the whole convergence
process of ETC, there is almost no sharp oscillation. Protocols
such as CUBIC (Figure 5(a)), Vegas (Figure 5(g)) and BBR
(Figure 5(c)) also maintain stable and fair bandwidth share
after convergence. However, they take a much longer period
to converge: CUBIC and Vegas take about 15 seconds, and
BBR takes over 30 seconds. Vivace (Figure 5(e)) and Copa
(Figure 5(f)) converge to a relatively fair bandwidth share but
the rate fluctuation is obvious. TACK (Figure 5(b)) and PCC
(Figure 5(d)) perform worst in convergence: TACK never

converges and PCC is far from fairness.

6.4 Coexistence with Loss Oriented Scheme

It is important that any newly deployed algorithm is friendly
to existing schemes. Given that (loss-based) CUBIC is still
the current mainstream CC method, we test the performance
of different methods when they compete with CUBIC. We run
two flows simultaneously in an emulated link with 100Mbps
capacity and 25ms RTT, one with CUBIC and the other with
one of the comparison algorithms (CUBIC, BBR, TACK, Vi-
vace, PCC, Copa, ETC) for 60s. Considering that the perfor-
mance of CUBIC is closely related to the bottleneck buffer
size, we also run experiments under multiple buffer sizes:
0.5× to 3×BDP.

Figure 6: Throughput of the flows under comparison with
CUBIC. ETC shows a good throughput without damaging the
CUBIC. While PCC, TACK, and BBR greatly compress the
throughput of CUBIC.

Figure 6 shows the ratio of the average throughput to the
ideal throughput, in which the error bars indicate the ratio
under different buffer sizes. We can observe that BBR, PCC,
and TACK greatly compress the CUBIC flow, and PCC even
obtains a 10× higher throughput than CUBIC. Meanwhile,
Copa and Vivace show poor competitiveness under all the
buffer sizes. ETC obtains an equivalent performance when
competing with CUBIC without damaging its performance.

The competitiveness of ETC comes from the periodic rate
acceleration and the fact that it starts with a relatively high
initial rate. Further, the additional queue-draining mechanism
keeps it from being overly aggressive. When ETC coexists

USENIX Association 2024 USENIX Annual Technical Conference 275

with CUBIC, the delay is kept at a high level since CUBIC
continuously fills the queue. With the update of RTT, the min
RTT measured by ETC increases accordingly and the stalling
time shortens, ensuring that ETC does not fail to exploit too
much bandwidth.

6.5 Video Transmission
To test the performance of ETC in a real application, we
integrate ETC in a video player to test its performance against
the congestion control algorithms embedded in the Linux
system (Reno, CUBIC, Vegas, BBR). In this video player, all
of the lost packets are recovered. Figure 7 shows the rebuffer
rates of the video flows at different bandwidths and packet
loss rates. The bit rate of the video flow is fluctuating around
12Mbps. With current algorithms, it is not possible to achieve
100% link utilization. That is, a 12Mbps link cannot support
a video flow of this magnitude. Therefore, we assign the link
with various bandwidth levels that can only just support such
a video flow, plotted on the X-axis. We do this to observe the
influence of the bandwidth/loss rate changes (the bandwidth
and loss rates are set by traffic control (TC) in Linux).

Figure 7: The rebuffer rates of video playbacks under different
bandwidths and loss rates.

With a 16Mbps link, ETC maintains a zero rebuffer rate
even if the loss rates increase. BBR is insensitive to the loss
rates and keeps about a 4% rebuffer rate. The other three al-
gorithms show an increasing trend in the rebuffer rate as the
loss rate increases. The rebuffer rate of Vegas and Reno ap-
proaches 20% when there is a 0.8% loss. When the bandwidth
is reduced to 15Mbps, ETC starts to experience a rebuffer
rate of about 2% (almost unaffected by the loss rate). In con-
trast, the rebuffer rates of other algorithms all exceed 10% as
the loss rate increases. This confirms that ETC makes more
efficient use of the bandwidth and reduces the rebuffer rate of
video playback, especially in the case of limited bandwidth.

6.6 Real Deployment and Other Evaluations
By reporting the data collected from our XP2P SDK (com-
prising over ten million samples), we demonstrate that ETC
reduces the average buffering rate by approximately 11%
compared to QUIC. Furthermore, in weak network environ-
ments (e.g., when the base RTT of a link exceeds 150ms.),
the reduction can reach up to 17%.

We have also conducted experiments to verify the per-
formance of ETC under several other scenarios: (i) the per-
formance of competing flows on paths with different RTTs;

(ii) the performance of flows under different loss rates; (iii) the
ability for ETC to adapt to bandwidth fluctuations; (iv) the
fairness among multiple (up to 10) flows. Due to the limit of
space, we present these experiment results in Appendix A.

7 Related Work

Delay-sensitive CC Algorithms. Vegas [12], FastTCP [13],
and Westwood [38] are representative algorithms based on
RTT measurement. They reduce the transmission rate when
RTT growth is detected, which performs poorly when com-
peting with buffer-filling schemes. Copa [2] proposes a target
rate model and adjusts the cwnd in the direction of the ob-
tained target rate. Note, Copa proposes a competitive mode
to guarantee its competitiveness.

Online-learning CC Algorithms. BBR [1] tries to learn a
better sending rate with the periodical bandwidth probing
stage. PCC [39], Vivace [5], and Remy [40] all guide the on-
line actions of the flows via an objective function. With these
approaches, the senders continuously observe the connection
between their actions and empirically experienced perfor-
mance, aiming at consistently adopting actions that achieve
high performance. These methods bring a heavy burden on the
CPU and thus hinder large-scale deployment. Furthermore,
our experiment results in A.3 indicate that compared to these
algorithms, ETC exhibits superior adaptability to bandwidth
fluctuations, while also achieving faster response times.

High-resolution pacing. Practitioners have proposed vari-
ous solutions to realize high-precision pacing. For hardware-
based ones, [30] use the high-resolution timer in the smart
network interface controller (NIC), to maintain all TCP con-
nections and schedule packets for each flow. Instead of a
per-flow transmission timer, [31] proposes a per-packet trans-
mission timer, which frees the NIC from the upper transport
layers. The software-based methods can be divided into timer
interrupt-based [28] and gap packet-based ones [32, 33]. The
former requires the assistance of a microsecond resolution
timer per flow in Gigabit networks and the latter expects the
device to transmit both gap and data packets at a wire-rate,
bringing unavoidable errors and high overhead. In contrast,
ETC paces packets in micro-bursts without requiring any
hardware assistance or causing excessive CPU overhead.

Available bandwidth measuring. Bart [41], TOPP [42],
Pathload [23], and Pathchirp [22], offer basic solutions for
measuring available bandwidth using the packet rate method.
Bart [41] samples the available bandwidth of the network
path by sending sequences of probe packet pairs at random-
ized rates. TOPP [42] determines the available bandwidth by
sending packet pairs at an increasing rate and analyzing the
input and output rates of different packet pairs. Pathload [23]
utilizes pre-defined probing rates to transmit packet trains,
gradually increasing the rate until the one-way delay shows

276 2024 USENIX Annual Technical Conference USENIX Association

an increment. Pathchirp [22] employs ’chirps’ of probe pack-
ets (which are exponentially spaced) instead of packet trains.
This method can assess the available bandwidth with fewer
packets. Compared to these algorithms, ETC employs a sim-
ple measurement approach that does not interfere with regular
data transmission, enabling each flow to quickly obtain a
consistent estimate of the available bandwidth.

8 Conclusion

This paper introduces ETC, a congestion control mechanism
that provides high throughput, low latency, and good fairness.
ETC defines the concept of the pulling rate, which is a pre-
congestion consensus signal that works before packets begin
to accumulate in the bottleneck buffers. ETC uses the pulling
rate to guide the rate acceleration, figuring out dynamic step
sizes with a novel elastic principle. Our evaluation results
show that ETC achieves superior performance compared with
the state-of-the-art algorithms. ETC is also highly practical
since it requires no additional hardware or software assistance.
Thus, for over a year, it has successfully served as the transmis-
sion protocol for our commercial video application, handling
millions of users. We believe ETC provides a new perspec-
tive on transport protocols for future WANs. Our next line
of future work is to explore the efficacy of ETC in wireless
scenarios. This work does not raise any ethical issues.

Acknowledgment

This work is supported by the Major Key Project
of PCL under grant No. PCL2023A06-4, the National
Key Research and Development Program of China un-
der grant No. 2022YFB3105000, and the Shenzhen Key
Lab of Software Defined Networking under grant No.
ZDSYS20140509172959989.

References

[1] Neal Cardwell, Yuchung Cheng, C Stephen Gunn,
Soheil Hassas Yeganeh, and Van Jacobson. Bbr:
Congestion-based congestion control: Measuring bottle-
neck bandwidth and round-trip propagation time. Queue,
14(5):20–53, 2016.

[2] Venkat Arun and Hari Balakrishnan. Copa: Practical
delay-based congestion control for the internet. In 15th
{USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 18), pages 329–342, 2018.

[3] Tong Li, Kai Zheng, Ke Xu, Rahul Arvind Jadhav, Tao
Xiong, Keith Winstein, and Kun Tan. Tack: Improving
wireless transport performance by taming acknowledg-
ments. In Proceedings of the Annual conference of the
ACM Special Interest Group on Data Communication

on the applications, technologies, architectures, and pro-
tocols for computer communication, pages 15–30, 2020.

[4] Mo Dong, Qingxi Li, Doron Zarchy, P Brighten God-
frey, and Michael Schapira. {PCC}: Re-architecting
congestion control for consistent high performance. In
12th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 15), pages 395–408, 2015.

[5] Mo Dong, Tong Meng, Doron Zarchy, Engin Arslan,
Yossi Gilad, Brighten Godfrey, and Michael Schapira.
{PCC} vivace:{Online-Learning} congestion control.
In 15th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 18), pages 343–356,
2018.

[6] Zhilong Zheng, Yunfei Ma, Yanmei Liu, Furong Yang,
Zhenyu Li, Yuanbo Zhang, Jiuhai Zhang, Wei Shi, Wen-
tao Chen, Ding Li, et al. Xlink: Qoe-driven multi-path
quic transport in large-scale video services. In Proceed-
ings of the 2021 ACM SIGCOMM 2021 Conference,
pages 418–432, 2021.

[7] Gaetano Carlucci, Luca De Cicco, Stefan Holmer, and
Saverio Mascolo. Analysis and design of the google
congestion control for web real-time communication
(webrtc). In Proceedings of the 7th International Con-
ference on Multimedia Systems, pages 1–12, 2016.

[8] Gaetano Carlucci, Luca De Cicco, Stefan Holmer, and
Saverio Mascolo. Congestion control for web real-time
communication. IEEE/ACM Transactions on Network-
ing, pages 2629–2642, 2017.

[9] Sangtae Ha, Injong Rhee, and Lisong Xu. Cubic: a
new tcp-friendly high-speed tcp variant. ACM SIGOPS
operating systems review, 42(5):64–74, 2008.

[10] Sally Floyd, Tom Henderson, Andrei Gurtov, et al. The
newreno modification to tcp’s fast recovery algorithm.
1999.

[11] Mario Hock, Roland Bless, and Martina Zitterbart. Ex-
perimental evaluation of bbr congestion control. In 2017
IEEE 25th International Conference on Network Proto-
cols (ICNP), pages 1–10, 2017.

[12] Lawrence S Brakmo, Sean W O’Malley, and Larry L
Peterson. Tcp vegas: New techniques for congestion
detection and avoidance. In Proceedings of the confer-
ence on Communications architectures, protocols and
applications, pages 24–35, 1994.

[13] Cheng Jin, David X Wei, and Steven H Low. Fast tcp:
motivation, architecture, algorithms, performance. In
IEEE INFOCOM 2004, volume 4, pages 2490–2501.
IEEE, 2004.

USENIX Association 2024 USENIX Annual Technical Conference 277

[14] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan
Zhuang, Fei Feng, Lingbo Tang, Zheng Cao, Ming
Zhang, Frank Kelly, Mohammad Alizadeh, et al. Hpcc:
High precision congestion control. In Proceedings of the
ACM Special Interest Group on Data Communication,
pages 44–58. 2019.

[15] Sándor Molnár, Balázs Sonkoly, and Tuan Anh Trinh.
A comprehensive tcp fairness analysis in high speed
networks. Computer Communications, 32(13-14):1460–
1484, 2009.

[16] Guojun Jin and Brian Tierney. Netest: A tool to mea-
sure the maximum burst size, available bandwidth and
achievable throughput. In International Conference on
Information Technology: Research and Education, 2003.
Proceedings. ITRE2003., pages 578–582. IEEE, 2003.

[17] Attila Pásztor and Darryl Veitch. The packet size depen-
dence of packet pair like methods. In IEEE 2002 Tenth
IEEE International Workshop on Quality of Service (Cat.
No. 02EX564), pages 204–213. IEEE, 2002.

[18] Constantinos Dovrolis, Parameswaran Ramanathan, and
David Moore. What do packet dispersion techniques
measure? In Proceedings IEEE INFOCOM 2001. Con-
ference on Computer Communications. Twentieth An-
nual Joint Conference of the IEEE Computer and Com-
munications Society (Cat. No. 01CH37213), volume 2,
pages 905–914. IEEE, 2001.

[19] Robert L Carter and Mark E Crovella. Measuring bot-
tleneck link speed in packet-switched networks. Perfor-
mance evaluation, 27:297–318, 1996.

[20] Kevin Lai and Mary Baker. Measuring bandwidth. In
IEEE INFOCOM’99. Conference on Computer Commu-
nications. Proceedings. Eighteenth Annual Joint Con-
ference of the IEEE Computer and Communications
Societies. The Future is Now (Cat. No. 99CH36320),
volume 1, pages 235–245. IEEE, 1999.

[21] Thomas E Anderson, Andy Collins, Arvind Krishna-
murthy, and John Zahorjan. Pcp: Efficient endpoint
congestion control. In NSDI, 2006.

[22] Vinay Joseph Ribeiro, Rudolf H Riedi, Richard G Bara-
niuk, Jiri Navratil, and Les Cottrell. pathchirp: Efficient
available bandwidth estimation for network paths. In
Passive and active measurement workshop, 2003.

[23] Manish Jain. Pathload: A measurement tool for end-to-
end available bandwidth. In Proc. of Passive and Active
Measurements (PAM) Workshop, Mar. 2002, 2002.

[24] Sangtae Ha and Injong Rhee. Taming the elephants:
New tcp slow start. Computer Networks, 55(9):2092–
2110, 2011.

[25] Ethan Blanton and Mark Allman. On the impact of
bursting on tcp performance. In International Workshop
on Passive and Active Network Measurement, pages 1–
12, 2005.

[26] Amit Aggarwal, Stefan Savage, and Thomas Anderson.
Understanding the performance of tcp pacing. In Pro-
ceedings IEEE INFOCOM 2000. Conference on Com-
puter Communications. Nineteenth Annual Joint Con-
ference of the IEEE Computer and Communications So-
cieties (Cat. No. 00CH37064), pages 1157–1165, 2000.

[27] Lixia Zhang, Scott Shenker, and Daivd D Clark. Obser-
vations on the dynamics of a congestion control algo-
rithm: The effects of two-way traffic. In Proceedings
of the conference on Communications architecture &
protocols, pages 133–147, 1991.

[28] Salvatore Pontarelli, Giuseppe Bianchi, and Michael
Welzl. A programmable hardware calendar for high
resolution pacing. In 2018 IEEE 19th International
Conference on High Performance Switching and Rout-
ing (HPSR), pages 1–6. IEEE, 2018.

[29] Luca Abeni, Ashvin Goel, Charles Krasic, Jim Snow,
and Jonathan Walpole. A measurement-based analysis
of the real-time performance of linux. In Proceedings.
Eighth IEEE Real-Time and Embedded Technology and
Applications Symposium, pages 133–142, 2002.

[30] Makoto Nakamura, M Inaba, and K Hiraki. End-node
transmission rate control kind to intermediate routers-
towards 10gbps era. PFLDnet2004, February, 2004.

[31] Katsushi Kobayashi. Transmission timer approach for
rate based pacing tcp with hardware support. PFLDnet
2006, 2006.

[32] Hiroyuki Kamezawa, Makoto Nakamura, Junji Tamat-
sukuri, Nao Aoshima, Mary Inaba, and Kei Hiraki. Inter-
layer coordination for parallel tcp streams on long fat
pipe networks. In SC’04: Proceedings of the 2004
ACM/IEEE conference on Supercomputing, pages 24–
24. IEEE, 2004.

[33] Ryousei Takano, Tomohiro Kudoh, Yuetsu Kodama, Mo-
tohiko Matsuda, Hiroshi Tezuka, and Yutaka Ishikawa.
Design and evaluation of precise software pacing mech-
anisms for fast long-distance networks. PFLDnet 2005,
2005.

[34] Eugenio Magistretti, Krishna Chintalapudi, Bozidar
Radunovic, and Ramachandran Ramjee. Wifi-nano:
reclaiming wifi efficiency through 800 ns slots.
ACM/IEEE International Conference on Mobile Com-
puting and Networking, 2011.

278 2024 USENIX Annual Technical Conference USENIX Association

[35] Lynne Salameh, Astrit Zhushi, Mark Handley, Kyle
Jamieson, and Brad Karp. Hack: hierarchical acks for
efficient wireless medium utilization. USENIX Annual
Technical Conference, 2014.

[36] Francis Y Yan, Jestin Ma, Greg D Hill, Deepti Ragha-
van, Riad S Wahby, Philip Levis, and Keith Winstein.
Pantheon: the training ground for internet congestion-
control research. In 2018 USENIX Annual Technical
Conference (USENIX ATC 18), pages 731–743, 2018.

[37] Ravi Netravali, Anirudh Sivaraman, Somak Das,
Ameesh Goyal, Keith Winstein, James Mickens, and
Hari Balakrishnan. Mahimahi: Accurate {Record-and-
Replay} for {HTTP}. In 2015 USENIX Annual Tech-
nical Conference (USENIX ATC 15), pages 417–429,
2015.

[38] Claudio Casetti, Mario Gerla, Saverio Mascolo, Medy Y
Sanadidi, and Ren Wang. Tcp westwood: end-to-end
congestion control for wired/wireless networks. Wire-
less Networks, 8(5):467–479, 2002.

[39] Mo Dong, Qingxi Li, Doron Zarchy, P Brighten God-
frey, and Michael Schapira. {PCC}: Re-architecting
congestion control for consistent high performance. In
12th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 15), pages 395–408, 2015.

[40] Anirudh Sivaraman, Keith Winstein, Pratiksha Thaker,
and Hari Balakrishnan. An experimental study of
the learnability of congestion control. ACM SIG-
COMM Computer Communication Review, pages 479–
490, 2014.

[41] Svante Ekelin, Martin Nilsson, Erik Hartikainen, An-
dreas Johnsson, J-E Mangs, Bob Melander, and Mats
Bjorkman. Real-time measurement of end-to-end avail-
able bandwidth using kalman filtering. In 2006 ieee/ifip
network operations and management symposium noms
2006, pages 73–84. IEEE, 2006.

[42] Bob Melander, Mats Bjorkman, and Per Gunningberg.
A new end-to-end probing and analysis method for esti-
mating bandwidth bottlenecks. In Globecom’00-IEEE.
Global Telecommunications Conference. Conference
Record (Cat. No. 00CH37137), volume 1, pages 415–
420. IEEE, 2000.

[43] Rüdiger Lehmann. 3 σ -rule for outlier detection from
the viewpoint of geodetic adjustment. Journal of Sur-
veying Engineering, pages 157–165, 2013.

USENIX Association 2024 USENIX Annual Technical Conference 279

A Supplementary to ETC Performance

A.1 Throughput under Different RTTs

To show the performance of the protocols on links with differ-
ent delays, we start two flows to SZ and BOM respectively,
and limit the throughput of the sender to 200Mbps. The base
transmission delays are shown in Figure 13. Figure 8 shows
the performance of several representative protocols after the
slow start at the beginning.

(a) BBR (b) ETC

(c) Copa (d) Vegas

Figure 8: Flows in paths with different RTTs. ETC flows
obtain almost the same bandwidth share.

For BBR, the flow on the short paths obtains more band-
width, because BBR enhances the pacing rate every 8 RTTs,
which means flows on shorter links are more likely to grab
bandwidth (detecting a higher receiving rate). Further, BBR
performs RTT probing every 10 seconds if the minimum RTT
is not updated. The senders in RTT probing only sends four
packets per RTT, which further damages the performance of
flows on long paths. Copa experiences a severe throughput
degradation, but the flow on the long link always obtains
a throughput advantage, because Copa is very sensitive to
latency. Once the queue accumulates even several packets,
the flow on the short link reacts more quickly and gives up
bandwidth. The Vegas flow on the short path increases to the
higher bandwidth (due to the slow start) and then converges
to the fair position. As Figure 8(d) shows, the additive ad-
justment brings Vegas an extremely slow convergence and
the two flows expense about 60s to fair convergence. ETC
responds to RTT gradient, which weakens the relationship
between adjustment frequency and RTT, thus ETC performs
outstanding fairness on links with different RTTs.

A.2 Resistance to Packet Loss

Algorithms that rely on packet loss as a congestion signal
suffers from random or non-congestion packet loss. This is
particularly problematic in unreliable wireless networks. To
verify that ETC has good resistance to non-congestion packet
losses, we test the performance of these algorithms under
0-5% random packet loss. Considering that some algorithms
incorporate both delay and packet loss, we set a 100Mbps link

with 37ms or 141ms RTT (note, these are the link characteris-
tics of BJ to SZ and BJ to BOM). Ideally, when there is a 5%
random packet loss, the throughput of each flow should drop
by 5% (rather than tos almost zero).

(a) RTT-37ms (b) RTT-141ms

Figure 9: The throughput of the protocols with loss rates from
0-5% in links with different RTTs. ETC, TACK, and BBR
show good resistance to packet loss.

Figure 9 shows the experimental results. CUBIC and Vegas
have almost no robustness when facing packet losses. When
the packet loss rate reaches 0.1%, the throughput drops to
almost 0. Compared with CUBIC and Vegas, Vivace and
PCC have stronger resistance to packet loss. However, when
the random loss rate exceeds 3%, their throughput sharply
decreases, because the loss rate measurements become more
pronounced. BBR, TACK, and ETC all show strong resistance
to packet loss. From 0 to 5%, the throughput of ETC dropped
by about 5%, and BBR and TACK dropped by about 10%.

A.3 Coping with Bandwidth Fluctuations

In strongly fluctuating links, the performance of the trans-
mission protocols can be evaluated from three perspectives:
(i) rapid detection and grasp of bandwidth growth for higher
link utilization; (ii) timely convergence to the available band-
width for lower latency when there is a capacity reduction;
and (iii) keeping stable sending rate in each stable period
(capacity unchanged).

Figure 10: Ingress and egress bandwidth variation in a fluctu-
ated link. The light orange area indicates the real link capacity.
The proposed ETC makes full use of the link capacity and
avoids congestion in the meantime. Other algorithms fail to
achieve high utilization, slow jitter, and the appropriate rate
at the same time.

280 2024 USENIX Annual Technical Conference USENIX Association

Figure 10 shows the transmission performance of a flow
under different protocols which constantly run for 30s. Note
that there is no background traffic or competing flows. The
link’s capacity varies at several time points, and the buffer size
is set to 5MB. The background color shows the link capacity,
where the bandwidth increases from 12Mbps to 48Mbps at
6s, decreases to 12Mbps at 14s, rises again to 24Mbps at 21s,
and finally decreases to 6Mbps at 28s. Ideally, the rate of data
arriving at the port and leaving the port should be consistent
with the link bandwidth. At this time, the bandwidth can be
fully utilized and there is no queue in the link.

Capacity growth: When the flows start, from the left en-
larged part in the egress figure, we see that ETC grows the
fastest. At about 6s, the link capacity grows, and CUBIC,
ETC, and BBR all quickly detect the free bandwidth and fill
it up. As the above ingress figure shows, at about 7s, CU-
BIC exceeds the link bandwidth and continues to grow until
the bottleneck buffer spills over, which is determined by the
characteristic of the loss-based algorithm. At the same time,
neither ETC nor BBR exceeds real link capacity. As for the
TACK, Ledbat, and Vivace, they grow slowly and reach full
bandwidth after 10s. Among them, TACK exceeds the link
capacity for a while at about 11s. PCC is extremely insensitive
to bandwidth growth and continues to oscillate near the rate
before.

Capacity reduction: When the bandwidth decreases sig-
nificantly at 14s, ETC, BBR, CUBIC, Ledbat, TACK, and
PCC all begin to taper with the link capacity. As the right de-
tailed part in the egress figure shows, ETC starts to reduce the
speed at about the right time when the capacity reduces and
completes the reduction process soon. The rate reduction of
Vivace starts before the link capacity varies, which indicates
the reason for the reduction in the queue accumulation caused
by the previous excessive transmission rate instead of link
fluctuation. As the ingress figure shows, PCC keeps a higher
rate and does not converge to the right rate during the 14-
20s. The egress figure shows that BBR begins to react at 14s
after the link variation (at 13.5s) and quickly completes the
deceleration process. However, BBR still operates downward
detection operation after reaching 12Mbps (at 15-17.5s).

Stable link: From 15s to 20s, as the ingress figure shows,
the link capacity keeps steady at 12Mbps. ETC, TACK, and
Ledbat fit the link capacity well, while CUBIC and BBR
have significant oscillation. Through data analysis, we find
CUBIC causing packet loss more frequently in a thinner link,
and the measurement accuracy of BBR decreases. The other
algorithms send data at a rate slightly lower than the capacity.

Above all, TACK, Ledbat, and PCC respond slowly to the
growth of bandwidth. The overall rate adjustment of Vivace
(during rate increase or decrease) is lagging. Although CUBIC
can occupy the full bandwidth, the ingress rate continues to
exceed the link capacity, resulting in data accumulation in

the bottleneck. BBR fluctuates seriously when there is a thin
link, resulting in bandwidth utilization damage. These two
figures both show that ETC makes timely, fast, and appropriate
responses to various situations.

A.4 Fairness among Multiple Flows
To verify whether ETC can still keep good fairness when the
number of flows increases, we start N flows simultaneously
in the real-world link from Beijing to Shenzhen. The base
delay is about 37ms. Each flow runs for 60s. We use the Jain
Fairness Index to quantify fairness and its expression is as
follows (The closer the value is to one, the better the fairness
is):

F =

(
i=1

∑
n

Ti

Oi

)2/(
n

i=1

∑
n

(
Ti

Oi

)2
)

(19)

where Ti represents the throughput of flow i and Oi represents
the total throughput of the n flows.

Flow Num. PCC BBR Cubic Fillp Copa ETC Vivace
3 0.86 0.89 0.89 0.62 0.87 0.93 0.83
4 0.89 0.86 0.89 0.68 0.88 0.96 0.83
5 0.75 0.84 0.84 0.76 0.84 0.94 0.84
6 0.76 0.87 0.88 0.84 0.84 0.90 0.76
7 0.75 0.82 0.86 0.88 0.87 0.89 0.55
8 0.61 0.86 0.86 0.85 0.83 0.91 0.55
9 0.75 0.90 0.89 0.84 0.84 0.91 0.79

10 0.80 0.88 0.82 0.86 0.84 0.88 0.70

Table 2: Jain Fairness Index of the tested protocols under
different flow numbers. The higher the value, the better the
performance.

When we start multiple flows at the same time, as Table 2
shows, the Jain Fairness Index of BBR, CUBIC, Ledbat, and
ETC are relatively high, which means they achieve good fair-
ness. With TACK, PCC, and Vivace, the bandwidth of each
flow oscillates drastically over time and the average band-
width varies a lot, leading to low Jain indices.

A.5 Influence of the Base Value
We test the influence of different bases on a link with a base
RTT of 30ms and max throughput of 100Mbps. We run the
experiments under both a single flow and three flows. The
base is chosen from the set of (2, e, 3, 4, 5, 6, 7, 8, 9, 10). Intu-
itively, a larger base means that ETC is getting less aggressive
and the probability of packet accumulation at the bottleneck
decreases. From Figure 11(a), we can observe that as the
base increases, the throughput of a single flow decreases sig-
nificantly (about 10%), while its delay does not change by
a noticeable margin. On the contrary, when there are three
flows running simultaneously, the total throughput of the three
flows does not decrease significantly (only by about 4Mbps).

USENIX Association 2024 USENIX Annual Technical Conference 281

However, the latency is greatly reduced, especially when the
base increases to e, and the average latency is reduced by half.

(a) The ETC throughput and latency of
one or three flows w.r.t. the base of the
log function.

(b) The bandwidth allocation for
CUBIC and ETC as the base
grows.

Figure 11: The influence of the base value (α in the Eq 1)
to throughput, delay and competitiveness. The tested link
capacity is 100Mbps. The base RTT is 30ms and the buffer
size is 1×BDP.

Figure 11(a) might lead one to hold the view that the larger
the base, the better the performance (delay reduction with-
out great throughput decline). In fact, the base also affects
the ETC’s competitiveness. As shown in Figure 11(b), when
compared with CUBIC, the bandwidth allocated to ETC grad-
ually decreases as the base increases. When the base value is
e, ETC and CUBIC are basically in fair competition. When
the basis value increases further, the competitiveness of ETC
decreases sharply. Taking the above observations into consid-
eration, we believe that a base between e and 4 is appropriate
in similar environments. The selection of the base can be
adjusted according to the specific environment.

A.6 Influence of the IACK Frequency
The number of ACK packets can bring severe medium ac-
quisition overhead in wireless networks (since the wireless
network usually employs IEEE 802.11 medium access control
(MAC) protocol). Therefore, we conduct experiments under a
wireless network to test the influence of feedback frequency
on delay and throughput (This hardly influences the through-
put in WAN networks). The link capacity is about 52.5Mbps
(measured with the UDP protocol through iperf) and the base
delay is about 18ms.

X packets per IACK 1 2 4 8 16
RTT (ms) 18 19 18.8 19 19.4

Bandwidth (Mbps) 40.55 45.23 47 50.51 51.12

Table 3: The influence of the IACK frequency on flow delay
and throughput.

We run a single flow and there is not any background traffic.
Table 3 shows the throughput and delay of the flow when
we reply to every 1/2/4/7/16 packet(s) with an IACK. We
can observe that there is no obvious change in RTT, which
means there are almost no accumulated packets in the router

buffer and the link capacity is not the key factor that hinders
high throughput. As the frequency of IACKs decreases, the
throughput gradually increases. When the feedback frequency
is reduced from every eight packets to every sixty packets,
there is no evident optimization in throughput. Considering
the need to guarantee that packets are sent in the form of
micro-bursts, we choose to reply with an IACK for every
eight packets.

A.7 Influence of the initial k Value

Figure 12: The rate variation of slow start and ETC with
different initial values of k. The initial value of the rate (y-
axis) is 1.

This section demonstrates the impact of the initial value
of k (kinit) on the rate variation of ETC (while slow start is
not affected by the kinit). A smaller kinit value corresponds
to lower initial bandwidth utilization. From Figure 12, it can
be observed that with smaller kinit , ETC exhibits a more pro-
nounced advantage over slow start because slow start does not
adapt its step changes to reflect the available bandwidth. Even
when the kinit value increases to 0.33, ETC still demonstrates
a rate growth advantage.

B Base Delay of the Tested Links

Figure 13: The distribution of the five testing nodes. The
average RTT of links is marked on the connection line.

Figure 13 shows the distribution of our test servers and
the average delay measured through Ping method. We collect
the latency measurements in the morning, noon, afternoon,

282 2024 USENIX Annual Technical Conference USENIX Association

and evening through the Ping method, then the average la-
tency is regarded as the reference for subsequent performance
observations and are marked on the links.

C Convergence of Current CC Algorithms

Based on the opinion that fairness is improved when a rate
change reduces the difference (absolute value) between com-
peting flows. We provide a brief analysis of current algo-
rithms’ techniques for achieving fair convergence.

Current traditional loss-oriented algorithms, e.g., NewReno
[10] and CUBIC [9], update their congestion windows in an
Addictive Increase Multiplicative Decrease (AIMD) man-
ner. NewReno’s addictive operation increases the cwnd with
a single packet per RTT and halves the cwnd upon packet
drop occurs. It depends on the multiplicative rate decrease
to drive the flows toward fairness since flows with higher
rates drop more. CUBIC figures out the addictive step size
according to a cubic function, further promoting convergence
speed. However, this only holds when all of the flows main-
tain the same maximum window (the cwnd when packet drop
occurs). Therefore, CUBIC usually experiences several buffer
overflows before CUBIC flows converge.

Next, delay-sensitive algorithms are represented by Vegas
[12] and Copa [2] (we consider Copa as a delay-sensitive pro-
tocol because it mainly uses the RTT signal). As a Addictive
Increase Addictive Decrease (AIAD) algorithm, Vegas can
still move towards fairness because Vegas flows with a higher
rate always reach the upper threshold (where a flow starts to
decrease its rate) easier. However, the conservative addictive
rate updates extend the convergence time. Copa assumes the
flows observe accurate and the same queuing latency so that
they converge to the same sending rate. However, the fluctu-
ating nature of the latency (due to the burst traffic, scheduling
strategy, etc.) determines Copa’s difficulty in obtaining stable
convergence results. Our experiments in the paper also show
that the convergence of Copa is not stable.

Next, we discuss the algorithms with the thought of learn-
ing: PCC [4], Vivace [5], and BBR. PCC fails to guarantee
fairness among flows due to its simple MIMD design. PCC
employs the same fixed multiplier (default 1±0.05) for all
the competing flows to find the correct sending rate, which
brings multiple convergence points. Vivace utilizes a gradient
ascent method to amend the bad convergence performance
of PCC. With this design, the competing flows always move
toward fairness. But the convergence speed is not that satis-
factory because the step size of Vivace is too conservative
and has can not adapt to the available bandwidth. In BBR,
if the bandwidth resource has been exhausted, the rate dif-
ference between two flows will be slightly reduced after an
asynchronous bandwidth probing process.

D Distribution of the ACK Arrival Intervals

Figure 14: The distribution of ACK arrival intervals at a
100Mbps link. x-axis: the ID of the packet (about 30,0000 sam-
pling points). y-axis: the time interval between each packet
and its last packet. Most of the intervals are shorter than 2ms,
which motivates us to utilize the ACK’s arrival to trigger the
data transmission.

Figure 14 shows the distribution of ACK arrival intervals at
a 100Mbps link, with a total of about 30,000 sampling points.
The x-axis is the ID of the packet, and the y-axis is the time
interval between each packet and its previous packet. From
this figure, we can observe that the statistical data is most
dense within 1ms, i.e., the arrival interval of most ACKs is
less than 1ms. The points that are more than 5ms are sparse,
and only a few of them exceed 10ms, which is the default
highest precision of the operating system timers.

E Accuracy of RTT measurements

Figure 15: The RTT measurements of all the packets (the
yellow points) and of the first packet in each micro-burst (the
line points, which are connected through straight lines).

As Figure 15 shows, almost all the orange points (except
those that coincide with the blue points) are above the blue
line. This verifies our point that except for the first packet in
each micro-burst, the subsequent ones are often affected by
the extremely short RTT increase caused by the bursty traffic,
resulting in a longer latency.

These higher latency measurements are usually regarded as
the signal of congestion. However, the full bandwidth utiliza-
tion only sustains for a short while and the average utilization
can be low.

USENIX Association 2024 USENIX Annual Technical Conference 283

F What does micro-burst measure

ETC employs utilizes the receipt rate of N successive pack-
ets (micro-burst) to serve as an estimation of the bottleneck
available bandwidth. Bottlenecks can exist not only at the
routers in the network but also at the end hosts. In this section,
we first try to use several simple network models to illustrate
that the micro-burst is always shaped by the last bottleneck
it passes through (no matter whether the bottleneck exists at
the end-host or in-network routers) and thus inflects the avail-
able bandwidth of the real bottleneck. Then, our experimental
results show that flows passing through the same bottleneck
can obtain similar pulling rate signals.

Figure 16: Network models where the bottleneck is at the
end-hosts.

Figure 16 shows the network models where the bottlenecks
are at the end-hosts. In Figure 16 (a), the bandwidth of the ac-
cess link at the end-host and routers are the same (200Mbps).
Therefore, the interval among packets keeps unchanged across
the whole path. In Figure 16 (b) and (c), the access bandwidth
of the link is higher than the access rate at the receiver, there-
fore, the receiver becomes the bottleneck. The measurement
result should be 100Mbps (no cross traffic). In Figure 16 (d),
the sender becomes the bottleneck. The micro-bursts can only
be sent with a maximum rate of 100Mbps, which determines
the instantaneous rate will not exceed 100Mbps.

Figure 17: Network models where the bottleneck is at the
in-network routers.

Figure 17 shows the network models where the bottleneck
is at the routers. As Figure 17 (a) shows, the collective rate of
the flows from two senders exceeds the rate of the egress port
of the router, i.e., the egress link of the router becomes the

bottleneck. In Figure 17 (b), there are multiple bottlenecks.
The intervals of the packets are shaped twice by the first and
second routers, and the measurement result is determined by
the second one. In Figure 17 (c), the micro-burst is shaped
three times and determined by the third one even if the egress
bandwidth of the third router is higher than the second one.
To sum up, the micro-burst always measures the available
bandwidth of the last bottleneck (as long as the micro-burst
has been suspended in the queue), no matter whether the
bottleneck is routers or end-hosts.

(a) Rp of three flows (b) Rp of five flows

Figure 18: The pulling rates measured by the senders that
pass through the same bottleneck.

To validate that senders can obtain similar pulling rates, we
conduct separate experiments with three and five flows origi-
nating from different sources but sharing the same destination.
These flows were routed through a bottleneck router with a
200Mbps limit, while the source and receiver had no restric-
tions. Figure 18 presents the measured pulling rates collected
at the sender. In Figure 18(a), the pulling rates measured from
the three flows exhibit oscillations around 80Mbps, slightly
exceeding the average available bandwidth of 66Mbps. Simi-
larly, in Figure 18(b), the measured pulling rates from each
flow fluctuate around 65Mbps, slightly surpassing the average
available bandwidth of 40Mbps. Despite minor variations, the
measured results from each flow remained consistent. How-
ever, a few outliers were detected, which were subsequently
eliminated using a simple 3σ rule [43] for outlier removal.

284 2024 USENIX Annual Technical Conference USENIX Association

	Introduction
	Background and Motivation
	Limitations of Congestion Signals
	Limitations of Current Algorithms
	Our Design Principles

	Rate Control in ETC
	Overview of Rate Control
	Collection of the Signals
	Rate Acceleration
	Rate Deceleration with Queue Draining

	Transmission in micro-bursts
	Necessity and Obstacles
	ETC Pacing with ACK-Clocking
	Reducing Feedback Frequency

	Properties of ETC
	Pulling Rate [ABW, Capacity]
	Faster & Safer Start-up than Slow Start
	Fair Convergence

	Evaluation
	Evaluation Methodology
	Throughput & Delay
	Fairness & Convergence
	Coexistence with Loss Oriented Scheme
	Video Transmission
	Real Deployment and Other Evaluations

	Related Work
	Conclusion
	Supplementary to ETC Performance
	Throughput under Different RTTs
	Resistance to Packet Loss
	Coping with Bandwidth Fluctuations
	Fairness among Multiple Flows
	Influence of the Base Value
	Influence of the IACK Frequency
	Influence of the initial k Value

	Base Delay of the Tested Links
	Convergence of Current CC Algorithms
	Distribution of the ACK Arrival Intervals
	Accuracy of RTT measurements
	What does micro-burst measure

