
This paper is included in the Proceedings of the
2024 USENIX Annual Technical Conference.

July 10–12, 2024 • Santa Clara, CA, USA
978-1-939133-41-0

Open access to the Proceedings of the
2024 USENIX Annual Technical Conference

is sponsored by

Every Mapping Counts in Large Amounts:
Folio Accounting

David Hildenbrand, Technical University of Munich and Red Hat GmbH;
Martin Schulz, Technical University of Munich;

Nadav Amit, Technion, Israel Institute of Technology
https://www.usenix.org/conference/atc24/presentation/hildenbrand

Every Mapping Counts in Large Amounts: Folio Accounting

David Hildenbrand
Technical University of Munich and Red Hat GmbH

Martin Schulz
Technical University of Munich

Nadav Amit
Technion, Israel Institute of Technology

Abstract
Operating systems can significantly enhance performance
by utilizing large contiguous memory regions, even when
the memory is not mapped using huge pages, by streamlining
memory management. To harness these advantages, Linux has
introduced "folios," representing multiple contiguous pages.
Unlike traditional huge pages, folios can be partially mapped,
which complicates folio accounting and hinders both perfor-
mance and memory savings.

Accurate and efficient folio accounting is crucial for opti-
mizing memory management operations, enforcing various
memory management policies, and performing Unique Set
Size accounting in the operating system. In particular, de-
termining whether a folio is exclusively mapped in a single
address space is essential for avoiding unnecessary Copy-On-
Write operations when memory is no longer shared.

We introduce a novel tracking scheme to determine, with
negligible overhead, whether a folio is exclusively mapped
in a single address space. Our solution achieves a memory
overhead that grows sublinearly with the number of pages per
folio. By implementing our method in Linux, we demonstrate
a notable improvement in fork and unmap operations by 1.9x
and 4.2x respectively, and in the performance of fork-intensive
workloads, such as Redis, achieving up to a 2.2x speedup.

1 Introduction

Until recently, the adoption of huge pages in virtual mem-
ory systems has primarily been driven by the goal of uti-
lizing architectural huge-page mappings for address transla-
tion, thereby reducing virtual address translation overheads
by lowering the number of Translation Lookaside Buffer
(TLB) misses and enhancing the efficiency of page table
walks [8, 16, 23, 24, 30, 38]. These architectural benefits, cru-
cial for system performance, have been the focus of extensive
research. However, this emphasis on TLB advantages has
often overshadowed another vital area: the broader poten-
tial benefit on Operating System (OS) memory management,

particularly as system memory scales [15] to accommodate
growing workloads, and these are expected to increase with
the rising trend of memory disaggregation [17, 36, 40].

In Linux, for instance, the overheads of memory man-
agement tasks, such as paging operations, become more no-
ticeable with increased memory sizes. The page reclaiming
process involves traversing a page-linked list, the length of
which is inversely proportional to the page size. To miti-
gate this and similar overheads, Linux introduced “folios”-
aggregations [11] of multiple aligned contiguous pages. Man-
aging memory in folio-sized units, potentially larger than the
architectural base page size, rather than individual pages, sub-
stantially reduces many memory management overheads.

However, although folio state is mostly tracked as a sin-
gle unit, the OS still tracks the number of mappings for each
page, as folios might be partially mapped into page tables.
Consequently, memory mappings and unmappings, as occur
during fork or munmap system calls (syscalls), might neces-
sitate updating the map count for each page within the folio,
typically through resource-intensive atomic operations. A uni-
fied map count for the entire folio, while appearing efficient,
is insufficient. It hinders the OS’s capability to ascertain if a
folio is exclusively mapped to a single address space, a deter-
mination critical for various policy decisions. For example,
it is essential to prevent unnecessary Copy-On-Write (COW)
operations [18]. Aggregating map counts at the folio level
inaccurately reflects the number of address spaces to which
each page is mapped.

Accounting folios instead of individual pages has been iden-
tified by Linux maintainers as one of the critical future work
items [25]. Past research neglected this challenge or deferred
its solution. Resolving this issue is complex, as traversing re-
verse mappings entails significant overheads, and maintaining
a per-folio counter of the number of mapping address spaces
requires frequent page table scanning. Alternative OS designs
like FreeBSD’s “VM Objects” [14] are known for their ineffi-
ciency, and the practicality of adapting them to folios remains
questionable.

To eliminate the need for per-page map counts and the asso-

USENIX Association 2024 USENIX Annual Technical Conference 1273

ciated overheads, we introduce a novel tracking scheme that
effectively and accurately determines if a folio is exclusively
mapped to a single address space. Utilizing the Pigeonhole
Principle when the number of mappings exceeds the pages in
a folio, we concentrate on cases where the map count is equal
to or less than the folio’s page count. For these instances, we
have developed an aggregated per-folio value tracking scheme
that allows efficient determination of whether all of the folio’s
pages are mapped to a single address space.

This solution significantly reduces folio map count update
overheads and cuts down on redundant COW operations for
folios that consist of multiple pages. As it eliminates the need
for per-page map counts, it reduces the number of atomic op-
erations needed to update the map count in the current Linux
implementation—for a folio of 29 pages (typically 2MB)—
from up to 1024 to just 1, and the memory required to hold
mapping tracking data from over 2KB to a mere 40 bytes.
Such efficiency sets the stage for future OS optimizations,
including the potential reclaiming of individual page meta-
data that currently holds the map count to reduce memory
overhead [26].

We implemented our solution in Linux and evaluated its
performance. Microbenchmark tests demonstrate a speedup
in fork and unmap operations for 1GB of memory by up
to 1.9x and 4.2x, respectively. It also enhances write-fault
performance by avoiding unnecessary COW operations. In
macrobenchmark tests, we noted a speedup in Redis IOPS of
up to 2.2x, a fork-intensive workload, following fork opera-
tions. The performance of a multi-process Python program
also improved by up to 60% due to our solution.

Our contributions are threefold:

• We analyze the challenge of efficiently determining
whether folios are exclusively mapped to a single ad-
dress space when using folios or similar constructs.

• We present a solution for precisely determining whether
folios are exclusively mapped with a memory overhead
that only grows sublinearly relative to the number of
pages per folio.

• We evaluate our solution on Linux showcasing effective
performance enhancement in fork-intensive workloads
of up to 2.2x.

2 Background

Folios represent a new concept in Linux, conceived as an ex-
tension of the “huge page” (or compound page) metadata to
represent a contiguous range of base pages. To fully under-
stand their importance and the challenge of tracking mapping
count only in the folio level, we first delve into huge pages
and their advantages.

Huge Pages. A huge page is a large contiguous memory re-
gion, whose size is a multiple of the base page size. CPU archi-
tectures have mechanisms to map these pages in virtual mem-
ory as a singular unit. This allows for the efficient caching of
address translations for larger memory regions in the Trans-
lation Lookaside Buffer (TLB), which holds the translations
from virtual to physical memory addresses, thereby reduc-
ing the TLB miss rate [38]. In radix-tree-based page table
architectures, such as x86-64, huge pages are mapped at a
higher level within the page table, reducing the time needed
to translate a virtual address to a physical one during a TLB
miss.

Traditionally, CPUs supported only a few huge page sizes,
and these huge pages were mapped as single units. Modifying
permissions or mappings within huge pages necessitated, be-
sides updating the page table entries, splitting the huge-page
data structure, as saved and tracked by the OS into smaller
ones. In addition, automatic promotion of memory to huge
pages has proven to be hard [23, 29, 42]. These limitations
restricted the flexibility and applicability of huge pages.

Nonetheless, huge pages present advantages beyond just
accelerated address translation. Allocation of physical mem-
ory of fewer larger blocks can be more efficient [22], as well
as other memory management operations in larger page gran-
ularity [12, 41]. Moreover, by using huge pages, which are
contiguous in physical memory, sequential access benefits
from improved cache efficiency, and the interleaving of Dy-
namic Random-Access Memory (DRAM) pages allows for
more effective prefetching, thus reducing the access times for
DRAM by minimizing row conflicts [21].

In addition, recent hardware developments have broad-
ened the capabilities for virtual memory mapping of memory
chunks in diverse sizes. Notably, ARM architectures have
implemented the “contiguous bit” feature in their page table
entries [7]. This bit indicates physical contiguity of a series
of pages, allowing the system to treat them as a larger mem-
ory block. Recent AMD CPUs can now transparently cache
aligned contiguous translations of 16KB blocks in a single
TLB entry [6], similar to previous work by Pham et al. [33].
This advancement significantly improves performance, miti-
gating many of the limitations previously associated with the
use of huge pages [37]. Other work proposed further Memory
Management Unit (MMU) extensions for the OS to com-
municate contiguous translations in the page tables to the
hardware [20, 31, 32].

Folios. To streamline the management of huge pages, capi-
talize on new hardware features, and reduce the performance
and memory overheads associated with memory management
operations, Linux introduced the concept of folios. A folio
represents a contiguous range of physical pages, the size of
which is a power of 2 [11]. This approach effectively decou-
ples the sizes of physical memory allocation units from their
corresponding virtual memory mappings. Consequently, fo-
lios can be partially mapped and their splitting upon partial

1274 2024 USENIX Annual Technical Conference USENIX Association

unmapping can be deferred, pending memory pressure in the
system. This decoupling is particularly advantageous, for ex-
ample, in Arm64 architectures, where it is possible to allocate
and map 64KB folios by default, even with a base page size
of 4KB, leading to notable speedups [12].

The introduction of folios offers the possibility of reducing
the volume of metadata that the OS must track for memory
management. By shifting to per-folio metadata instead of the
traditional per-page metadata approach, this change has the
potential to not only lower the memory overhead—presently
about 1.6% in systems with 4KB base page size [26]—but
also to decrease the number of memory accesses required for
reading and updating metadata. This reduction could lead to
lower latency in memory management operations, enhancing
system efficiency.

While managing information at the folio level is typically
straightforward for most of the page’s metadata, such as ref-
erence counters and flags, complexities arise in tracking the
map count. The map count reflects the number of times a
memory segment is mapped into address spaces. During a
process fork—a standard operation in Unix systems where
a child process is created as a copy of the parent and its ad-
dress space is replicated—memory is not copied but mapped
into the child’s address space [10, 27]. The map count of the
involved memory pages is therefore increased.

In the legacy approach of tracking the map count at the page
level, this count for anonymous pages—Unix memory not
backed by a file—serves a dual purpose. It indicates both the
total number of mappings set in page tables for a page and the
number of distinct address spaces in which the page is mapped.
These values align since anonymous pages are mapped only
once in each address space. However, aggregating this count
at the folio level does not indicate the number of address
spaces in which the folio is mapped, as the folio might be
partially mapped in multiple address spaces. This presents a
challenge: although the OS does not require the exact count
of address spaces where a folio is mapped, it is essential to
determine if the folio is exclusively mapped within a single
address space.

Folio Exclusivity. Determining whether a folio is exclu-
sively mapped currently affects various policies and oper-
ations of the OS. For example, Linux allows userspace to
modify the memory policy of a folio through the madvise,
set_mempolicy, and mbind syscalls only if the folio is
mapped exclusively in a single process address space to avoid
unintended interactions between processes.

Furthermore, when a process writes to memory following
a fork, it triggers a Copy-On-Write (COW) page fault. The
OS then needs to determine whether the folio containing the
faulting page is shared with other processes. If the folio is
not shared, the OS can allow the process to write directly to
the folio, i.e., reuse the folio, which is much more efficient
than copying. Losing this optimization can lead to significant
performance degradation [18].

Similarly, when calculating the Unique Set Size (USS)
of a process, the OS needs to determine whether a folio is
exclusively mapped into a single process address space. The
USS is the memory guaranteed to be private to a process,
and accounting mapped folios that are exclusively mapped
towards the USS maintains that guarantee.

File-backed folios. Although pages of a file-backed folio
can be mapped multiple times in a single address space, it is
uncommon, and optimizing for this use case is not deemed
important. Linux considers file-backed pages as exclusively
mapped when they are mapped only once, but considers them
as shared when they are mapped multiple times, even within
the same address space. Consequently, Linux applies the same
logic for detecting exclusively mapped file-backed folios that
it uses for detecting anonymous folio exclusivity.

Related Works. While various studies have delved into is-
sues somewhat related to these challenges, none have directly
described it or offered a solution. The use of fork, despite
criticisms that it is an “outdated hack” [9], remains prevalent
due to its simplicity and effectiveness in many application im-
plementations. Sharing page-tables, which has been proposed
as a substitute to huge pages for reducing fork overheads [41],
presents practical implementation difficulties and negates the
benefits of huge pages, such as reduced address translation
and OS memory management overheads. Other studies have
either overlooked these challenges [39] or postponed address-
ing them to future research endeavors [18].

Examining industrial solutions, we observe that OnePlus
employs a customized Linux kernel that tracks the map-
ping count at both the page level, when the folio is partially
mapped, and at the folio level when fully mapped [28]. Al-
though this approach reduces overheads for fully mapped
folios, it still encounters the same overheads when the folio
is partially mapped, and cannot reduce the memory overhead.
Moreover, this method does not allow determining if the fo-
lio is exclusively mapped in a single address space. As for
other OSes than Linux, FreeBSD adopts a distinct approach
to memory management, tracking the number of mappings
at the “VM object” level, which represents a memory layer
referenced by a page [14]. Although this design can address
the issue, managing VM objects in FreeBSD has been noted
for its inefficiency [13], casting doubt on the feasibility of
adapting them for use with folios.

3 Design

Our goal is to efficiently determine whether a folio is exclu-
sively mapped to a single address space. In other words, if any
page of the folio is mapped in one address space and another
page (or the same page) is mapped in a different address space,
the folio is not exclusive, and our scheme must correctly iden-
tify this. Conversely, if all mapped pages of the folio are in the
same address space, our scheme must report it as exclusively

USENIX Association 2024 USENIX Annual Technical Conference 1275

mapped. Our solution should perform these checks quickly
and with minimal memory overhead. Concretely, we aim for
the number of operations and the size of the tracking data to
grow sublinearly with the number of pages per folio.

We therefore rule out naive and inefficient solutions such as
traversing the folio’s reverse mappings, which would require
multiple memory accesses to disparate locations and acquir-
ing multiple locks, or tracking for each folio the number of
times its pages are mapped in each address space.

Eliminating individual page map_count values. Cur-
rently, each page within the folio maintains its own separate
map_count for individual mappings through page-table en-
tries. In addition, folios that consist of multiple pages have
an entire_map_count that reflects the number of times the
folio is mapped as a huge page, using a single large entry in
the page tables. We eliminate the per-page map_count values
and instead introduce a new folio-level map_count to track
the cumulative number of times all of the folio’s pages are
mapped across all address spaces, regardless of the specific
page table mapping type used.

Pigeonhole Principle-Based Decisions. Based on anony-
mous folio behavior, we can assume that while pages within
a single folio can be mapped in multiple address spaces, each
page is restricted to one mapping per address space. This lim-
its each folio to a maximum of nr_pages = 2order mappings
in each address space. Determining if a folio is exclusively
mapped is therefore straightforward when a folio’s map_count
is greater than its nr_pages value. In this case, we know it
cannot be exclusive since each page is only mapped once per
address space. This simplifies our task to considering cases
where folio.map_count ≤ folio.nr_pages.

Determining Exclusivity with Low Mapcount. For de-
termining whether folios with a low mapcount are exclu-
sively mapped in a particular address space, we extend the
map_count-based tracking scheme.

First, we assign a unique identifier to each address space,
called as.id. Additionally, each folio maintains a multi-
word cumulative value, termed folio.as_aggregator. Changes
to folio.as_aggregator happen atomically with changes to
folio.map_count as pages are mapped or unmapped. We de-
rive an adjustment value as_id_unit from folio.nr_pages and
the respective as.id. Whenever we map or unmap a page,
we add or subtract as_id_unit to folio.as_aggregator, respec-
tively. As the addition and subtraction are inverse opera-
tions, we disregard any overflows or underflows during these
operations as they do not affect correctness. We can then
simply compare folio.as_aggregator against the product of
as_id_unit and the folio‘s map_count, to determine if the fo-
lio is exclusively mapped in a particular address space:

folio.as_aggregator = folio.map_count ·as_id_unit (1)

If and only if the values match, the folio is exclusively mapped
to this address space; otherwise, it is not.

1 def as_id_unit(as, folio):
2 binary_unit = bin(as.id)[2:]
3 return int(binary_unit , base=folio.nr_pages + 1)
4

5 def add_folio_mapping(as, folio):
6 folio.map_count += 1
7 folio.as_aggregator += as_id_unit(as, folio)
8

9 def remove_folio_mapping(as, folio):
10 folio.map_count -= 1
11 folio.as_aggregator -= as_id_unit(as, folio)
12

13 def is_folio_mapped_exclusively(as, folio):
14 if folio.map_count > folio.nr_pages:
15 return false
16 return (as_id_unit(as, folio) *
17 folio.map_count == folio.as_aggregator)

Figure 1: Pseudo-code for folio accounting.

1=

2=

0 1

1 0

3= 1 1

2

2

2

0 1

1 0

1 1

513

513 2 2 513

3 0 5132=

* 1

* 3

* 1
* 1

1 0 2 1 0 513

513

Address Space ID FolioMappings

+
as_aggregator=

map_count=3

map_count=3

as_aggregator=
(shared)

(exclusive)
Figure 2: Example showing how folio.as_aggregator differs
when three address spaces each map a page of a folio that
consists of 512 pages, compared to only a single address space
mapping 3 pages. For instance, whether ID 2 exclusively maps
the folio is checked by 10513 ·3 = 30513.

However, how we derive as_id_unit from folio.nr_pages
and the as.id of a particular address space is crucial
for correctness. To prevent errors, our derived adjust-
ments must ensure that the sum of multiple address-space
as_id_unit values never equals to the product of a sin-
gle as_id_unit and the folio’s map_count, provided that
folio.map_count ≤ folio.nr_pages.

Our solution is to derive as_id_unit from the bi-
nary representation of as.id, but interpreted in a base of
folio.nr_pages+1. For instance, if folio.nr_pages is 512
and the as.id is 5 (binary ’101’), the adjustment would be
101512+1 = 101513 = 263,170. The entire algorithm pseudo-
code is detailed in Figure 1.

Example. Consider three address spaces with respective
IDs of 1, 2 and 3. Figure 2 shows how folio.as_aggregator
differ for a folio that consists of 512 pages, when all three
address spaces each map a page of the folio, compared to
when only the address space with ID 2 maps three pages
of the folio. Our solution can successfully distinguish the
first, non-exclusive case from the second, exclusive case even
though the binary representations of the address space IDs
overlap.

1276 2024 USENIX Annual Technical Conference USENIX Association

Correctness. Considering addition and subtraction are in-
verse operations, when a folio is exclusively mapped to one
address space, its as_aggregator should exactly match the
product as_id_unit · folio.map_count. We must ensure that
as_aggregator equals this product only in that case. Note
that since folio.as_aggregator is the sum of folio.nr_pages
numbers or fewer, and in the base of folio.nr_pages+1,
these numbers are composed of digits 0 or 1, the addition
of each digit would not result in a carry. If a page of the
folio is mapped to a different address space, this address
space would have a different ID, and at least one digit in the
sum will be incremented or decremented, leading to a dif-
ferent as_aggregator value. This ensures that as_aggregator
uniquely represents exclusive mapping to a single address
space when folio.map_count ≤ folio.nr_pages.

Memory Consumption. The number of bits necessary to
store the as_aggregator is defined by:

n_bits = ⌈log2((folio.nr_pages+1)⌈log2(max_as)⌉−1)⌉ (2)

where max_as is the maximum number of address spaces. For
2MB folios (512 base pages) and 22-bit maximum address
space, 199 bits are needed, which in practice require 4 ·8 byte.

Accounting Optimizations. To accelerate the computa-
tion of the folio.as_aggregator value, we can precompute
and store the as_id_unit values for common folio sizes and
address spaces. Another approach is to use a larger base value
that is a power of 2, which simplifies the calculations at the
cost of a slight increase in the number of bits required to store
a folio’s as_aggregator.

4 Evaluation

We implemented our solution on Linux 6.7, incorporating the
upcoming multi-size THP (mTHP) patches, designed to allow
control over the enabled folio sizes [34]. Our implementation,
consisting of 1519 lines of code, builds upon the existing
functionalities of mTHP.

For evaluation, we use the mTHP-enabled Linux 6.7 as a
baseline (Baseline) and compare it with our modified kernel
(FolioMap). We measure the performance of all available
folio sizes. Benchmarking is conducted on a dual 10-core
Intel Silver 4210R CPU server with 32GB memory, running
Fedora 38. The compilers and software used are supplied by
Fedora 38. To ensure accuracy, we disable Hyper-Threading,
fix the CPU frequency, and repeat each test at least 10 times.
The standard deviation in all experiments is below 3%.

4.1 Microbenchmarks

OS Primitives. We wish to evaluate the effect of our so-
lution on memory management operations that modify folio
mappings, particularly when the folio is mapped using base

pages instead of huge pages. This scenario occurs when the fo-
lio size does not match the supported huge-page sizes or when
different pages within a folio require different protections. To
assess the performance impact, we run microbenchmarks that
allocate 1GB of memory using folios of varying sizes. For
the case where 2MB folios are used, the benchmarks execute
madvise syscalls to force the folios to be mapped using 4KB
base page table entries. We measure the execution time of
two common syscalls that require updates to folio account-
ing: fork, which duplicates both the process and its memory
mappings, and munmap, which unmaps the allocated memory.

The results, depicted in Figure 3, show that FolioMap signif-
icantly reduces the execution time of both fork and munmap
syscalls. FolioMap executes fork and munmap up to 1.9 and
4.2 times faster, respectively, due to fewer metadata updates
being required. By dividing the time difference between Base-
line and FolioMap by the number of pages in 2048KB folios,
we find that FolioMap shortens the execution time by 26ns
per page for fork and 68ns per page for munmap.

Although FolioMap significantly improves the performance
of both fork and munmap, the benefit is more pronounced for
munmap. This is mainly because munmap updates both the
per-page mapping counters and the counter of the number of
mapped pages in a folio, while fork only updates the per-page
mapping counters. By removing both counters, FolioMap
eliminates the overhead of updating them, resulting in a more
significant performance improvement for munmap compared
to fork

Write Fault Latency with COW. FolioMap enables mem-
ory reuse in scenarios where a write-protected folio is no
longer shared, in contrast to Baseline, which must resort to a
COW operation due to its inability to determine if a page is
no longer shared. We run a microbenchmark, which allocates
2MB of memory using folios of varying sizes. When 2MB
folios are used, the benchmark triggers a remapping so they
are mapped using 4KB base page table entries instead of a
single huge-page entry. The benchmark then forks, exits the
child process, and then triggers write faults across different
folio sizes. FolioMap handles these write faults in 826ns for
16KB folios and 830ns for 2MB folios. These times are up
to 2.1x faster than Baseline, which handles write faults in
1538ns for 16KB folios and 1762ns for 2MB folios.

However, in a variant of the microbenchmark where the
child process remains active and folios continue to be shared,
both Baseline and FolioMap are required to perform COW
to maintain correctness. Under these conditions, FolioMap
exhibits a slight slowdown of up to 20ns (1%), likely due to
more operations for managing the folio’s as_aggregator when
only replacing a single page of the shared folio that consists
of multiple pages in the page tables (data not shown).

Concurrent Accounting Operations. One concern is
whether the additional synchronization operations during ac-
counting might negatively impact the performance of our so-

USENIX Association 2024 USENIX Annual Technical Conference 1277

4 16 32 64 128 256 512 1024 2048
0
5

10
15
20

folio size [KB]

tim
e

[m
s]

a) forkBaseline FolioMap

1
1.2
1.4
1.6
1.8
2

sp
ee

du
p

4 16 32 64 128 256 512 1024 2048
0

20
40
60

folio size [KB]

tim
e

[m
s]

b) munmap

1
2
3
4
5

sp
ee

du
p

Figure 3: Average execution time of fork and munmap with 1GB memory backed by varying folio sizes, with the lines representing
FolioMap’s speedup over Baseline. 2MB folios are mapped using 4KB base page table entries instead of a single huge-page entry.

lution. To assess this impact, we conducted a stress test using
the vm-scalability benchmarks case-anon-cow-rand and
case-anon-cow-seq [5], specifically chosen for their ability
to simulate extreme contention scenarios. These benchmarks
run multiple processes, which share memory, and continu-
ously write to it, thus repeatedly triggering write faults that
necessitate COW operations. The test runs 20 processes si-
multaneously, each on a separate core, writing to a total of
1GB of read-only shared memory.

In the case-anon-cow-rand benchmark, FolioMap’s
performance slowdown compared to Baseline is mini-
mal, less than 0.3% across all tested folio size. The
case-anon-cow-seq benchmark represents an even more
rigorous test, with all processes synchronously triggering page
faults on the same pages in the same order—a scenario that
is rather unrealistic. Despite this, FolioMap exhibits a slow-
down of less than 2%, demonstrating its robustness even under
highly stressful and uncommon conditions.

4.2 Macrobenchmarks
In our macrobenchmark tests, we focus on workloads involv-
ing short-lived subprocesses, which are notably affected by
inefficiencies in per-page mapping accounting. It is important
to note that on certain CPUs, such as recent AMD models
capable of caching multiple page table entries in a single TLB
entry, the performance advantages of large folios over base
4KB pages are likely to be even more pronounced.

Redis with Snapshotting. We run Redis [2], an in-memory
database that uses the fork syscall to efficiently create back-
ground snapshots [3]. By invoking fork, Redis spawns a tem-
porary child process that shares the parent’s memory, which
the OS write-protects, allowing the child to save the snapshot
to persistent storage.

For our experiment, we populate Redis with 108 keys
in a “parallel (sequential)” pattern, consuming 10GB of
memory. After the snapshot is completed, we run the
memtier_benchmark [4] v2.0.0 for 60 seconds with three
concurrent connections and a pipeline depth of 2000, using
the same key pattern. We conduct this with 64KB folios using
both FolioMap and Baseline, and compare it to a 4KB base-
line, expecting similar or enhanced improvements with larger
folios.

0 10 20 30 40 50 60
200
400
600
800

time [s]

io
ps

[k
/s

]

Baseline 4KB Baseline 64KB FolioMap 64KB

0 10 20 30 40 50 60
0

100
200

time [s]
co

w
op

s
[k

/s
]

Figure 4: IOPS and number of COW operations during
memtier benchmark after taking a background snapshot.

We first measure the duration of the fork syscall, a pe-
riod when no requests are processed and should therefore be
shortened. FolioMap, using 64KB folios, completes fork in
111ms, outperforming Baseline, which takes 167ms for both
4KB and 64KB folios (σ < 0.5%, data not shown).

Subsequently, we monitor average IOPS and COW oper-
ations each second. Figure 4 presents these results. Initially,
FolioMap demonstrates a throughput (IOPS) that is 2.2 times
higher than Baseline with 64KB folios. This advantage de-
creases over time as more memory becomes writable. Notably,
the IOPS achieved by FolioMap are on par with Baseline us-
ing 4KB folios (σ < 1.3%). The results highlight that without
our solution, the use of large folios by the OS leads to nu-
merous redundant COW operations, resulting in significant
performance degradation.

While FolioMap delivers IOPS on par with Baseline using
4KB folios on our system, the advantage of 64KB folios lies
in speeding up memory management operations, such as the
measured fork, with potential for even greater benefits on
systems supporting multiple page table entries per TLB entry.

Python Sharing Memory with Subprocesses. Sharing
large in-memory data structures with subprocesses is a com-
mon practice in scenarios such as parallel computations [1]
or content-based filtering recommendations [35]. These sub-
processes typically access the shared data without modifying
it. Python, frequently used in such contexts, defaults to us-
ing the fork syscall for spawning subprocesses through its

1278 2024 USENIX Annual Technical Conference USENIX Association

4 16 32 64 128 256 512 1024 2048
0

0.5
1

1.5

folio size [KB]

tim
e

[s
]

Baseline FolioMap

1

1.2

1.4

1.6

sp
ee

du
p

4 16 32 64 128 256 512 1024 2048
0

100
200
300

folio size [KB]

co
w

op
s

[k
]

Figure 5: Execution time and number of COW operations
during a Python program execution, with the line represent-
ing FolioMap’s speedup over Baseline. Throughout the ex-
periment, 2 MB folios are consistently mapped by a single
huge-page entry.

“multiprocessing” API.
We run a Python script that creates a 1GB numpy array,

subsequently spawning eight subprocesses to compute the
sum of its elements (detailed in Appendix A). As shown
in Figure 5, FolioMap demonstrates up to a 1.6x speedup,
progressively increasing with folio size, except for 2MB folios.
This improvement stems from minimizing unnecessary page
copies during write faults, combined with faster subprocess
creation and teardown with large folios. For 4KB and 2MB
folios, however, FolioMap’s performance aligns with Baseline,
as these folios are mapped with a single huge-page entry
and therefore existing mapping accounting mechanisms are
capable of accurately distinguishing them as exclusive during
write faults.

This benchmark highlights the benefit of using large folios
with our solution, as it lowers memory management overhead
without negatively inducing unnecessary COW operations.
Using medium-sized folios, such as 64KB, can be a com-
pelling alternative to using very large folios (e.g., 2MB), as
large folios are often unavailable due to memory fragmenta-
tion.

5 Conclusions

In this paper, we introduced an innovative tracking scheme
that efficiently determines if a folio is exclusively mapped to
a single address space. By combining a specialized tracking
approach with the Pigeonhole Principle, our solution ensures
scalable and precise tracking, achieving speedups of up to
2.2x.

Our work effectively addresses an outstanding challenge in
folio accounting, making medium-sized folios a viable option
for Linux. Medium-sized folios offer an appealing alternative
to huge pages, as they are less susceptible to fragmentation

and can benefit from emerging TLB enhancements. By en-
abling more efficient utilization of medium-sized folios, our
solution paves the way for enhanced system performance in
Linux memory management.

Acknowledgments

We thank our anonymous reviewers, Dr. David Alan Gilbert,
and the Linux community, particularly Hugh Dickins, Mike
Rapoport, Ryan Roberts, Yang Shi, Linus Torvalds, Peter Xu,
Zi Yan, and Fengwei Yin, for their valuable feedback and
contributions to Linux’s folio accounting. Special thanks to
Matthew Wilcox for driving the folio abstraction in the Linux
kernel and to Ryan Roberts for developing mTHP support.

Availability

After sharing an early implementation with the Linux com-
munity for feedback, we have incrementally upstreamed our
code. So far, 69 preparatory patches have been merged into
the Linux kernel, up to version 6.9. These patches optimize
accounting during fork and unmap operations when process-
ing multiple pages of the same folio and prepare for further
folio accounting changes. In Linux 6.10-rc1, we have added
a single folio map_count counter to folios that consist of
more than a single page and are preparing for the removal of
the individual per-page map_count values. We will continue
collaborating with the community to improve the implemen-
tation and fully integrate our solution into future Linux kernel
releases.

A Python Benchmark Program

Figure 6 shows the Python program we use for our evaluation
in § 4.2.

1 import multiprocessing as mp
2 import numpy
3

4 size = pow(512, 3)
5 arr = numpy.ones(size)
6

7 def fn(range):
8 return numpy.sum(arr[range[0]:range[1]])
9

10 def multi_process_sum(arr):
11 c = int(size / 8)
12 ranges = [(i,i + c) for i in range(0, size , c)]
13

14 pool = mp.Pool(processes = 8)
15 return int(sum(pool.map(fn, ranges)))
16

17 assert(multi_process_sum(arr) == size)
18 arr[0:size] = 0
19 assert(multi_process_sum(arr) == 0)

Figure 6: Python program that uses numpy and multiprocess-
ing to perform parallel computations on read-only shared
memory.

USENIX Association 2024 USENIX Annual Technical Conference 1279

B Artifact Appendix

Abstract
FolioMap is our implementation of the folio accounting design
presented in Section 3. The artifact comprises patches for two
custom Linux kernels—FolioMap and Baseline—based on
Linux 6.7, three microbenchmarks, two macrobenchmarks
and helper scripts to install and run the artifact.

Scope
The artifact contains all necessary software components to run
the experiments used throughout the evaluation in Section 4.

Contents
The included README.md file contains further information on
installation, configuration and evaluation.

Hosting
The artifact is available on Gitlab (https://gitlab.com/f
oliomap_paper/ae/, “v1” tag) and was archived [19] on
Zenodo.

Requirements
FolioMap has been tested only on the x86-64 architecture,
and the artifact is designed to run on x86-64 hardware with
20 cores, 32GB of RAM, and 30GB of free disk space. Our
test system had 2 CPU sockets, each with a 10-core CPU
and 16GB of RAM, although we do not expect this specific
configuration to significantly impact the results.

Running the artifact and reproducing the results requires a
Fedora 38 installation with root and internet access.

References

[1] Multiprocessing with NumPy arrays. https://www.ge
eksforgeeks.org/multiprocessing-with-numpy
-arrays/. Accessed: 2024-01-10.

[2] Redis. https://redis.io/. Accessed: 2024-01-10.

[3] Redis persistence. https://redis.io/docs/manage
ment/persistence/. Accessed: 2024-01-10.

[4] Source code of the memtier benchmark. https://gith
ub.com/RedisLabs/memtier_benchmark. Accessed:
2023-12-14.

[5] Source code of the vm-scalability benchmark. https:
//git.kernel.org/pub/scm/linux/kernel/git/
wfg/vm-scalability.git. Accessed: 2023-12-14.

[6] Advanced Micro Devices (AMD). Software Optimiza-
tion Guide for the AMD Zen4 Microarchitecture, revi-
sion 1.00 edition, 2023. Document No. 57647, Accessed
2024.

[7] ARM. Armv8-A address translation. https://docume
ntation-service.arm.com/static/5efa1d23db
dee951c1ccdec5, 2019. Accessed: 2024-01-07.

[8] Arkaprava Basu, Jayneel Gandhi, Jichuan Chang,
Mark D. Hill, and Michael M. Swift. Efficient virtual
memory for big memory servers. In ACM/IEEE Inter-
national Symposium on Computer Architecture (ISCA),
page 237–248, New York, NY, USA, 2013. Association
for Computing Machinery.

[9] Andrew Baumann, Jonathan Appavoo, Orran Krieger,
and Timothy Roscoe. A fork() in the road. In ACM
Workshop on Hot Topics in Operating Systems (HOTOS),
pages 14–22, 2019.

[10] Daniel G. Bobrow, Jerry D. Burchfiel, Daniel L. Murphy,
and Raymond S. Tomlinson. TENEX, a Paged Time
Sharing System for the PDP-10. Communications of the
ACM (CACM), 15(3):135–143, 1972.

[11] Jonathan Corbet. Clarifying memory management with
page folios. https://lwn.net/Articles/849538/,
2021. Accessed: 2023-12-03.

[12] Jonathan Corbet. Large folios for anonymous memory.
LWN.net, 2023. Accessed: 2024-01-09.

[13] Charles D Cranor and Gurudatta M Parulkar. The UVM
virtual memory system. In USENIX Annual Technical
Conference (ATC), 1999.

[14] Matthew Dillon. Design elements of the FreeBSD VM
system. https://docs.freebsd.org/en/articles
/vm-design/, 2023. Accessed: 2024-01-10.

[15] Michael Ferdman, Almutaz Adileh, Onur Kocberber,
Stavros Volos, Mohammad Alisafaee, Djordje Jevdjic,
Cansu Kaynak, Adrian Daniel Popescu, Anastasia Aila-
maki, and Babak Falsafi. Clearing the clouds: A study
of emerging scale-out workloads on modern hardware.
In Proceedings of the Seventeenth International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems, ACM Architectural Sup-
port for Programming Languages & Operating Systems
(ASPLOS), page 37–48, New York, NY, USA, 2012.
Association for Computing Machinery.

[16] Jayneel Gandhi, Arkaprava Basu, Mark D. Hill, and
Michael M. Swift. Efficient memory virtualization: Re-
ducing dimensionality of nested page walks. In Pro-
ceedings of the 47th Annual IEEE/ACM International
Symposium on Microarchitecture, page 178–189, USA,
2014. IEEE Computer Society.

1280 2024 USENIX Annual Technical Conference USENIX Association

https://gitlab.com/foliomap_paper/ae/
https://gitlab.com/foliomap_paper/ae/
https://www.geeksforgeeks.org/multiprocessing-with-numpy-arrays/
https://www.geeksforgeeks.org/multiprocessing-with-numpy-arrays/
https://www.geeksforgeeks.org/multiprocessing-with-numpy-arrays/
https://redis.io/
https://redis.io/docs/management/persistence/
https://redis.io/docs/management/persistence/
https://github.com/RedisLabs/memtier_benchmark
https://github.com/RedisLabs/memtier_benchmark
https://git.kernel.org/pub/scm/linux/kernel/git/wfg/vm-scalability.git
https://git.kernel.org/pub/scm/linux/kernel/git/wfg/vm-scalability.git
https://git.kernel.org/pub/scm/linux/kernel/git/wfg/vm-scalability.git
https://documentation-service.arm.com/static/5efa1d23dbdee951c1ccdec5
https://documentation-service.arm.com/static/5efa1d23dbdee951c1ccdec5
https://documentation-service.arm.com/static/5efa1d23dbdee951c1ccdec5
https://lwn.net/Articles/849538/
https://docs.freebsd.org/en/articles/vm-design/
https://docs.freebsd.org/en/articles/vm-design/

[17] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf
Chowdhury, and Kang G. Shin. Efficient memory disag-
gregation with Infiniswap. In USENIX Symposium on
Networked Systems Design and Implementation (NSDI),
pages 649–667, Boston, MA, March 2017. USENIX
Association.

[18] David Hildenbrand, Martin Schulz, and Nadav Amit.
Copy-on-pin: The missing piece for correct copy-on-
write. In ACM Architectural Support for Programming
Languages & Operating Systems (ASPLOS), 2023.

[19] David Hildenbrand, Martin Schulz, and Nadav Amit.
Software artifacts for the paper "Every Mapping Counts
in Large Amounts: Folio Accounting". https://doi.
org/10.5281/zenodo.11401995, May 2024.

[20] Jae Young Hur. Contiguity representation in page table
for memory management units. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, 27(1):147–
158, 2019.

[21] Dimitris Kaseridis, Jeffrey Stuecheli, and Lizy Kurian
John. Minimalist open-page: A DRAM page-mode
scheduling policy for the many-core era. In IEEE/ACM
International Symposium on Microarchitecture, page
24–35, New York, NY, USA, 2011. Association for Com-
puting Machinery.

[22] Donald E. Knuth. The Art of Computer Programming,
Volume 1: Fundamental Algorithms, volume 1. Addison-
Wesley, 1968.

[23] Youngjin Kwon, Hangchen Yu, Simon Peter, Christo-
pher J Rossbach, and Emmett Witchel. Coordinated
and efficient huge page management with Ingens. In
USENIX Symposium on Operating Systems Design &
Implementation (OSDI), pages 705–721, 2016.

[24] Taowei Luo, Xiaolin Wang, Jingyuan Hu, Yingwei Luo,
and Zhenlin Wang. Improving tlb performance by in-
creasing hugepage ratio. In IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CC-
Grid), 2015.

[25] Matthew Wilcox. Memory folios in the linux kernel.
https://www.infradead.org/~willy/linux/202
2-06_LCNA_Folios.pdf, 2022. Accessed: 2024-05-
28.

[26] Matthew Wilcox. Shrinking memmap: Saving memory
for fun and profit. https://www.infradead.org/
~willy/linux/2022_11_Shrinking_Memmap.pdf,
2022. Accessed: 2024-05-28.

[27] Marshall Kirk McKusick, Keith Bostic, Michael J.
Karels, and John S. Quarterman. The Design and Im-
plementation of the 4.4BSD Operating System. Addison
Wesley Longman Publishing Co., Inc., USA, 1996.

[28] OnePlusOSS. Android kernel for OnePlus SM8550.
https://github.com/OnePlusOSS/android_kern
el_oneplus_sm8550.git, 2024. Accessed: 2024-01-
10.

[29] Ashish Panwar, Sorav Bansal, and K Gopinath. Hawk-
eye: Efficient fine-grained OS support for huge pages.
In ACM Architectural Support for Programming Lan-
guages & Operating Systems (ASPLOS), pages 347–360,
2019.

[30] Ashish Panwar, Aravinda Prasad, and K. Gopinath. Mak-
ing huge pages actually useful. In ACM Architectural
Support for Programming Languages & Operating Sys-
tems (ASPLOS), page 679–692, New York, NY, USA,
2018. Association for Computing Machinery.

[31] Chang Hyun Park, Sanghoon Cha, Bokyeong Kim,
Youngjin Kwon, David Black-Schaffer, and Jaehyuk
Huh. Perforated page: Supporting fragmented mem-
ory allocation for large pages. In ACM/IEEE Interna-
tional Symposium on Computer Architecture (ISCA),
page 913–925. IEEE Press, 2020.

[32] Chang Hyun Park, Taekyung Heo, Jungi Jeong, and Jae-
hyuk Huh. Hybrid tlb coalescing: Improving tlb transla-
tion coverage under diverse fragmented memory alloca-
tions. pages 444–456, 2017.

[33] Binh Pham, Viswanathan Vaidyanathan, Aamer Jaleel,
and Abhishek Bhattacharjee. CoLT: Coalesced large-
reach TLBs. In IEEE/ACM International Symposium
on Microarchitecture, pages 258–269. IEEE, 2012.

[34] Ryan Roberts. Multi-size THP for anonymous memory.
Linux Kernel Mailing List, https://lore.kernel.
org/linux-mm/20231214160251.3574571-1-ryan.
roberts@arm.com/T/, 2023.

[35] Luis Sena. Sharing big NumPy arrays across python
processes. https://luis-sena.medium.com/shari
ng-big-numpy-arrays-across-python-process
es-abf0dc2a0ab2, 2021. Accessed: 2024-01-10.

[36] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying
Zhang. LegoOS: A disseminated, distributed OS for
hardware resource disaggregation. In USENIX Sympo-
sium on Operating Systems Design & Implementation
(OSDI), pages 69–87, Carlsbad, CA, 2018. USENIX
Association.

[37] Eliot H. Solomon, Yufeng Zhou, and Alan L. Cox. An
empirical evaluation of PTE coalescing. In International
Symposium on Memory Systems (MEMSYS), 2023.

[38] Madhusudhan Talluri and Mark D. Hill. Surpassing
the tlb performance of superpages with less operating

USENIX Association 2024 USENIX Annual Technical Conference 1281

https://doi.org/10.5281/zenodo.11401995
https://doi.org/10.5281/zenodo.11401995
https://www.infradead.org/~willy/linux/2022-06_LCNA_Folios.pdf
https://www.infradead.org/~willy/linux/2022-06_LCNA_Folios.pdf
https://www.infradead.org/~willy/linux/2022_11_Shrinking_Memmap.pdf
https://www.infradead.org/~willy/linux/2022_11_Shrinking_Memmap.pdf
https://github.com/OnePlusOSS/android_kernel_oneplus_sm8550.git
https://github.com/OnePlusOSS/android_kernel_oneplus_sm8550.git
https://lore.kernel.org/linux-mm/20231214160251.3574571-1-ryan.roberts@arm.com/T/
https://lore.kernel.org/linux-mm/20231214160251.3574571-1-ryan.roberts@arm.com/T/
https://lore.kernel.org/linux-mm/20231214160251.3574571-1-ryan.roberts@arm.com/T/
https://luis-sena.medium.com/sharing-big-numpy-arrays-across-python-processes-abf0dc2a0ab2
https://luis-sena.medium.com/sharing-big-numpy-arrays-across-python-processes-abf0dc2a0ab2
https://luis-sena.medium.com/sharing-big-numpy-arrays-across-python-processes-abf0dc2a0ab2

system support. In ACM Architectural Support for Pro-
gramming Languages & Operating Systems (ASPLOS),
ASPLOS VI, page 171–182, 1994.

[39] Zi Yan, David Nellans, Daniel Lustig, and Abhishek
Bhattacharjee. Translation ranger: Operating system
support for contiguity-aware TLBs. In ACM/IEEE Inter-
national Symposium on Computer Architecture (ISCA),
pages 698–710, 2019.

[40] Wonsup Yoon, Jisu Ok, Jinyoung Oh, Sue Moon, and
Youngjin Kwon. Dilos: Do not trade compatibility for
performance in memory disaggregation. In Proceedings
of the Eighteenth European Conference on Computer
Systems, page 266–282, New York, NY, USA, 2023. As-
sociation for Computing Machinery.

[41] Kaiyang Zhao, Sishuai Gong, and Pedro Fonseca. On-
demand-fork: A microsecond fork for memory-intensive
and latency-sensitive applications. In ACM SIGOPS
European Conference on Computer Systems (EuroSys),
pages 540–555, 2021.

[42] Weixi Zhu, Alan L Cox, and Scott Rixner. A compre-
hensive analysis of superpage management mechanisms
and policies. In USENIX Annual Technical Conference
(ATC), pages 829–842, 2020.

1282 2024 USENIX Annual Technical Conference USENIX Association

	Introduction
	Background
	Design
	Evaluation
	Microbenchmarks
	Macrobenchmarks

	Conclusions
	Python Benchmark Program
	Artifact Appendix

