
This paper is included in the Proceedings of the
2024 USENIX Annual Technical Conference.

July 10–12, 2024 • Santa Clara, CA, USA
978-1-939133-41-0

Open access to the Proceedings of the
2024 USENIX Annual Technical Conference

is sponsored by

ZMS: Zone Abstraction for Mobile Flash Storage
Joo-Young Hwang, Seokhwan Kim, Daejun Park, Yong-Gil Song, Junyoung Han,

Seunghyun Choi, and Sangyeun Cho, Samsung Electronics;
Youjip Won, Korea Advanced Institute of Science and Technology

https://www.usenix.org/conference/atc24/presentation/hwang

ZMS: Zone Abstraction for Mobile Flash Storage

Joo-Young Hwang1, Seokhwan Kim1, Daejun Park1, Yong-Gil Song1, Junyoung Han1, Seunghyun Choi1,
Sangyeun Cho1, and Youjip Won2

1Samsung Electronics
2Korea Advanced Institute of Science and Technology

Abstract
We propose an I/O stack for ZNS based flash storage in mobile

environment, ZMS. The zone interface is known to save the

flash storage from two fundamental issues which modern flash

storage suffers from: logical-to-physical mapping table size

and garbage collection overhead. Through extensive study, we

find that realizing the zone interface in mobile environment

is more than a challenge due to the unique characteristics

of mobile environment: the lack of on-device memory in

mobile flash storage and the frequent fsync() calls in mobile

applications. Aligned with this, we identify the root causes

that need to be addressed in realizing the zone interface in

mobile I/O stack: write buffer thrashing and tiny synchronous
file update. We develop a filesystem, block I/O layer, and

device firmware techniques to address the above mentioned

two issues. The three key techniques in ZMS are (i) IOTailor,

(ii) budget-based in-place update, and (iii) multi-granularity

logical-to-physical mapping. Evaluation on a real production

platform shows that ZMS improves write amplification by

2.9–6.4× and random write performance by 5.0–13.6×. With

the three techniques, ZMS shows significant performance

improvement in writing to the multiple zones concurrently,

executing SQLite transactions, and launching the applications.

1 Introduction

Zoned namespace (ZNS) SSD [1–3] is proposed to address

the two key technical issues which the modern flash storage

faces; garbage collection overhead [4–22] and the memory

overhead of logical to physical mapping table [23–32]. ZNS

SSD saves the flash storage from the two issues. Due to its

append-only write nature, ZNS SSD can use zone granularity

mapping. Assuming that the zone size is 1 GiB, the size of the

mapping table for zone granularity mapping is 1/106 times

smaller than that for the page mapping.

In this work, we propose a ZNS for mobile storage device.

The potential benefits of enabling zone interface in mobile

flash storage are clear. First, eliminating the garbage collec-

tion from the storage device, the write amplification will

improve, thereby extending the lifespan of the mobile device.

Second, the mobile device becomes better responsive to the

user input [33, 34]. Third, the read performance improves

since the mapping table of mobile flash storage can be fully

loaded into on-device memory. Legacy mobile flash storage

caches only a fraction of the mapping table since the mapping

table is much larger than on-device memory. Despite all these

potential benefits, there have been little efforts that explore the

zone abstraction for mobile flash storage. JEDEC, which is a

standardization body for memory and storage, recently started

to discuss the zone interface for the mobile UFS (Universal

Flash Storage) [35]. We carefully argue that the zone interface

for mobile device deserves more attention from researchers

as well as from practitioners than it does now.

ZNS has originally been proposed for the server SSD which

has sufficient amount of DRAM and power loss protection

(PLP) feature. Mobile storage does not have these luxuries.

Mobile storage does not have DRAM and is loaded with

small amount of SRAM, e.g. 2 MiB. Mobile storage does not

have PLP feature either. This critical difference of hardware

features between server SSD and mobile flash storage imposes

unique challenges in using the zone interface with mobile

flash storage. We identify two key technical challenges when

designing zone abstraction for mobile flash storage: write
buffer thrashing and tiny synchronous file update.

Write Buffer Thrashing. We find that the zone interface

suffers from excessive write buffer flushes when it is used for

the mobile flash storage. We call this phenomenon as Write
Buffer Thrashing. Write buffer thrashing is caused by two

reasons combined together: lack of write buffer and large pro-

gramming unit of the underlying flash storage. A flash storage

device has a write buffer where the user data is buffered until

the total amount of the user data reaches the size of a program-

ming unit. Due to the lack of on-device memory, mobile flash

storage cannot allocate the separate write buffers for individ-

ual open zones. Instead, the open zones need to share the write

buffers. Each time when the storage device switches the write

buffer from one zone to another, it flushes the write buffer.

USENIX Association 2024 USENIX Annual Technical Conference 173

The lack of on-device memory causes the write buffer to be

flushed not only frequently but also, more importantly, prema-
turely. Modern multi-level cell flash storage device uses large

programming unit which is a multiple of a flash page. If the

amount of the data blocks to be programmed is smaller than

the programming unit, the device firmware flushes the write

buffer’s content to a single-level-cell (SLC) buffer, which are

later migrated to the multi-level cell block. This unaligned

buffer flush doubles the amount of writes in the flash storage

device and significantly reduces the performance and lifespan

of the storage device.

Tiny Synchronous File Update. Mobile I/O workload is

known for its excessive fsync() calls [36]. All Android ap-

plications use SQLite to persistently manage data. SQLite

persists every individual update to its database file and to its

log file via fsync(). Subsequently, with few exceptions, the

mobile applications frequently synchronize the small update

to the storage device. To handle this tiny synchronous file

update efficiently, F2FS uses in-place update policy instead

of append-only logging that incurs writing of file metadata.

This in-place update policy of F2FS directly contradicts with

the append-only nature of the zone interface. If we are to

synchronize the tiny file update to the zoned storage device,

we do not have any choice but to do it inefficiently, i.e. in

append-only manner.

We develop the zoned mobile I/O stack (ZMS) that effec-

tively addresses the two challenges: write buffer thrashing

and tiny synchronous file update. ZMS spans all layers of the

I/O stack. For storage device, we develop zoned UFS, from

commodity UFS product, that implements a budget-based
in-place update to address the performance issues associated

with synchronizing the small file update. For filesystem, we

modify the stock F2FS to implement the budget-based in-

place update. For the host side block I/O layer, we develop

IOTailor to address the write buffer thrashing. IOTailor re-

shapes the incoming workload from the file system and makes

it aligned with a superpage size of the underlying storage de-

vice so that the FTL can fully utilize the device’s internal

parallelism while avoiding unaligned buffer flush.

To the best of our knowledge, this work is the first design

and implementation of the zone interface on mobile flash stor-

age. We use original F2FS running on a block interface device

as the baseline for comparison. Compared with the baseline,

ZMS shows the similar performance for basic I/O in clean

condition. ZMS manifests itself in aged condition. In deeply

aged condition, ZMS shows 5.0–13.6× better random write

throughput than the baseline, and reduces the overall end-

to-end write amplification by as much as 2.9–6.4× against

the baseline. We show that IOTailor reduces the amount

of SLC buffering and improves performance for concurrent

writes to multiple open zones. ZMS shows 37–44% higher

throughput in wide range random read workloads, which con-

tributes to the 6–12% reduction of application launch times. In

SQLite benchmark, ZMS shows 60–100% better throughput

for SQLite write-ahead-log mode journal. Our contributions

are three-fold:

• Identification of the challenges. We find that the zoned

mobile device suffers from excessive write buffer flush-

ing activity and performance degradation in serving syn-

chronous file updates.

• Development of ZMS. We develop ZMS, a novel I/O

stack for zoned mobile storage, consisting of zoned UFS

and the host side techniques to address the two chal-

lenges.

• Performance analysis. With comprehensive perfor-

mance evaluation and analysis, we show the benefits of

the zone interface in mobile flash storage and the effec-

tiveness of the proposed techniques.

The remainder of this paper is organized as follows. We

describe background and motivations of this work (§2), and

detail the two key challenges (§3). We overview ZMS (§4),

then describe zoned UFS (§5) and the host side techniques

(§6). We describe performance evaluation results (§7) and

related works (§8), then conclude (§9).

2 Background and Motivations

2.1 Mobile Flash Storage Internals
A mobile flash storage device consists of a main controller,

limited volatile memory and NAND memories (Figure 1). In

this work, we use the mobile flash storage and UFS storage

interchangeably since UFS is a de facto standard for modern

mobile flash storage interface. An embedded software, called

flash translation layer (FTL) runs on the controller, performing

translation of logical block address (LBA) to physical page

address (PPA). The volatile memory is used for keeping the

code and the data for the FTL and the logical-to-physical

(L2P) mapping table. The L2P mapping table is loaded to

memory in an on-demand manner if the volatile memory is

not large enough to load the entire L2P table.

There are mainly three operations in flash device; read,

program (write) and erase. A flash block (or erase block) is

an array of flash pages. Flash memory has erase-before-write

idiosyncrasy: a flash block should be erased before being writ-

ten. In modern flash memory, the size of a page is typically

16 KiB. For a single-level cell (SLC) flash block, SSD con-

troller allows the page to be programmed in a sub-page unit,

e.g. 4 KiB. In multi-level cell device, e.g. TLC or QLC, the

programming unit is a multiple of a flash page. For example,

in TLC flash with 16 KiB page size, SSD controller programs

three flash pages at a time. A flash chip may also have mul-

tiple planes. SSD controller can program the multiple pages

that are at the same offset from the beginning of each plane

together. Combining these, the TLC programming unit for a

chip with 16 KiB page with 2 planes is 96 KiB (= 16 KiB ×
3 × 2 planes). A flash block can be programmed in different

modes, e.g. SLC or TLC, which can be set when the flash

174 2024 USENIX Annual Technical Conference USENIX Association

CPUHost
I/F

NAND
Control

NAND
Control

blk 1blk 0
0
4
8

blk 1blk 0
2
6
10

blk 1blk 0
1
5
9

blk 1blk 0
3
7
11

Chip0 Chip2
Channel 0

Channel 1

SRAM

Chip1 Chip3

... ...

... ...

Figure 1. Internals of a UFS device having four TLC chips in

two channels

block is erased.

Modern flash storage devices adopt multi-channel and

multi-way architecture to achieve higher performance. The

data is striped over multiple channels and multiple ways. In

Figure 1, we show the internal structure of a UFS device hav-

ing two channels and two chips per channel. Each chip has

two planes. Data is striped over the four chips and the stripe

unit is a pair of TLC pages that are on different planes in

a chip. The group of programming units at the same offsets

from each chip is called a superpage. The stripe units {0, 1, ...,

11} of Figure 1 forms a superpage and the size of a superpage

is 384 KiB (= 16 KiB × 2 planes × 3 pages × 4 chips). The

group of erase blocks at the same offsets from each chip is

called a flash block group or a superblock. In Figure 1, the

superblock 0 is the group of the first blocks (blk 0) of all

the chips. A write buffer is set to be as large as a superpage

to fully exploit the internal parallelism. When a device has

multiple open superblocks, the total amount of write buffers

that are needed corresponds to the size of a single write buffer

multiplied by the number of open superblocks.

Table 1. Server SSD vs. mobile flash device (UFS)

Server SSD UFS

DRAM support Yes No

Write buffers 16 2

L2P map caching Fully loaded Demand paging

PLP Yes No

Server SSD vs. Mobile Flash Storage. In comparison to

server-grade SSDs, mobile flash devices have two limitations.

First, due to cost and form factor constraints, it does not have

DRAM and has only very limited SRAM (a few MiB) on

its controller. The number of write buffers is much smaller

than server SSDs (Table 1). In addition, L2P map is loaded

on demand, so its random read performance depends on the

locality of requests. Second, power loss protection (PLP) for

buffered data is not provided. So, buffered data should be

flushed immediately when host requests fsync(). Reducing

the latency of fsync() is particularly important in mobile

flash storage because synchronous write latency significantly

affects the application responsiveness.

2.2 Block Abstraction for Flash Storage
Legacy block device abstraction views the storage device as

an array of blocks. In block device abstraction, the host can

read and write any block in the storage device via supplying

the block address to the storage device. Unlike block device

abstraction, the flash device cannot be overwritten. A flash

block needs to be erased before it is reprogrammed. Flash

storage adopts two schemes to hide the erase-before-write

characteristics and make itself as a conventional block storage:

L2P mapping and garbage collection. The two schemes leave

flash storage under two fundamental technical challenges [37]:

write amplification and L2P mapping table overhead.

Write Amplification. Write amplification in flash storage has

been subject to intense research for decades [4–6, 8–12, 38].

The root cause of write amplification is garbage collection.

There are two key ingredients to reduce the garbage collection

overhead and subsequently to reduce the write amplification.

First is to cluster the data blocks of similar lifespan together

at the same erase block. A few works proposed a mechanism,

where the host provides entropy of the data blocks [15, 20] or

stream id of the data blocks [7, 13, 14, 18, 19, 38]. SSD con-

troller can cluster the data blocks with the similar entropy or

with the same stream id together. These pieces of information

are provided by the host to the device as hints. The host does

not have any control on determining the physical location of

the data blocks. Second is to accurately determine whether

a given flash page contains the valid content or not. There is

a non-zero time interval between when the filesystem inval-

idates a data block, e.g. unlink() and when the filesystem

informs the device about the invalidated block. The garbage

collection module of the device may blindly migrate the flash

page whose contents are no longer valid at the filesystem. Un-

fortunately, the host is very discreet in informing the storage

device about the invalidated file blocks since it can negatively

interfere with the other foreground filesystem activity [11].

L2P Mapping Table Size. Mapping table size becomes

a more substantial issue as the capacity of the flash storage

increases. Flash storage employs the page mapping [39–45] to

reduce write amplification. In the page mapping scheme, each

L2P mapping entry encodes the physical address of a logical

page (typically 4 KiB). When using 4 bytes for a mapping

entry, the mapping table corresponds to approximately 0.1%

of the device capacity. For a 4 TiB SSD, there needs to be 4

GiB of DRAM to fully load the mapping table in memory.

When a device cannot have the entire L2P mapping table in

memory, a fraction of the L2P mapping table is loaded in an

on-demand manner [39]. Random read performance can be

degraded when the required mapping entries are not resident

in memory.

USENIX Association 2024 USENIX Annual Technical Conference 175

2.3 Zone Abstraction for Flash Storage
Zone abstraction views the storage device as a set of zones,

each of which is a fixed size array of blocks and each of which

can be written only in an append-only manner. Zoned storage

device has three essential operation; read, write (append) and

zone-reset. A zoned device maintains a write pointer for each

open zone, indicating the next location to write within a zone.

Zone abstraction addresses the aforementioned problems

of block abstraction [1, 2, 46, 47]. In ZNS SSD, the host can

control the physical data placement and therefore can po-

tentially eliminate the device-level garbage collection. ZNS

SSD can significantly reduce the mapping table size via zone-

granularity L2P mapping.

Zone abstraction was proposed for server-grade flash stor-

age where the flash storage has sufficient amount of DRAM

and a large degree of parallelism with multi-channel/multi-

way architecture [48–50]. Sustained throughput and the tail

latency are important in server-grade storage. We carefully

argue that zone abstraction can fit well for the mobile flash

storage where the user perceived latency, i.e. responsiveness,

matters the most. For responsiveness, random read perfor-

mance and write amplification are of prime concerns. In par-

ticular, write amplification is of important concern in mobile

storage because the read latency can get worse as the under-

lying flash storage ages [51–54]. The benefit of the zone ab-

straction becomes more substantial in aged condition because

the devices suffer from the garbage collection and severe file

system fragmentation [31, 55].

2.4 F2FS
F2FS is a log-structured file system built for flash memory

based storage [20]. It is now being employed by Android

platform as a default file system. Here, we describe F2FS

design features that are relevant for the zone interface.

Section in F2FS vs. Zone in ZNS. F2FS has geometry

structures that are friendly to zoned devices. F2FS defines

two essential units; segment and section. Segment (2 MiB)

represents a set of filesystem blocks that need to be clustered

and written together. Section consists of a fixed number of

segments and is a unit of filesystem level garbage collection.

All blocks in a section are reclaimed together when F2FS

performs garbage collection. By aligning the sections of the

F2FS with the zones in the zoned storage device, we can make

each F2FS section represent an individual zone.

Writing Modes. F2FS supports three writing modes: append

logging, threaded logging and in-place update (Figure 2). The

append logging writes the data blocks in an append-only

manner. Threaded logging writes the data blocks at the invalid

blocks of a segment [20]. Threaded logging cannot be used on

zoned devices because it generates random writes. F2FS uses

in-place update to quickly service fsync(). File metadata

in F2FS, called node blocks, are not modified when the data

block is updated in place. Hence the in-place update of F2FS

new data new data new data

Append Logging Threaded Logging In-place Update

new node new node no node writes

valid data valid node invalid block clean block

Figure 2. Three modes of writing in F2FS

does not write node blocks. This greatly improves the fsync

performance. However, in-place update cannot be used in

zoned devices because the in-place update may render random

write at the storage device.

Temperature-aware Data Placement. F2FS employs

temperature-aware data separation to reduce its garbage col-

lection overhead. It maintains six active logs each of which

is dedicated to accommodate the segments with the same

temperature and the same block type. F2FS defines three lev-

els of temperature (hot, warm and cold) and two block types

(data and node). In devices with legacy block abstraction, it

is possible that the data blocks in the different segments are

collocated in the same erase block. On the same token, the

data blocks at the same segment can be placed at the different

erase blocks in the storage. By allocating a separate zone for

each active log, F2FS can physically cluster the filesystem

blocks of the same active log at the storage device.

3 Design Challenge

3.1 Unaligned Buffer Flush
The storage device temporarily stores the incoming data from

the host to the write buffer until a sufficient amount of data,

programmable to a flash block, is collected. When the storage

controller adopts multi-channel/multi-way organization, the

storage controller waits till the amount of data blocks in the

write buffer reaches the superpage size to fully utilize paral-

lelism. In some situation, FTL needs to flush the write buffer

even though the amount of data in the write buffer falls short

of the size of the programming unit. We call this phenomenon

as Unaligned Buffer Flush. In mobile flash storage, there are

two causes of unaligned buffer flush: fsync() request from

the host or write buffer switching. In both cases, the stor-

age controller should flush the write buffer even though the

amount of data in the write buffer does not reach the program-

ming unit size. We call this situation as write buffer is flushed

prematurely. This situation is more likely to happen in mobile

environment than in server environment. Unlike in ZNS SSDs

for server environment, fsync() is called frequently due to

the absence of PLP and the write buffer switch occurs due to

insufficient on-device memory in mobile environment.

Figure 3 illustrates how the data in a write buffer are written

to the flash device. Each rectangle numbered from 0 to 9

denotes the stripe unit, a pair of flash pages (32 KiB). The

176 2024 USENIX Annual Technical Conference USENIX Association

Volatile
write
buffer

TLC
superblock

chip0 chip1 chip2 chip3

0 1 2 3
4 5 6 7
8 9

aligned
flush

unaligned
flush

SLC
superblock

0,4,8 1,5,9

2 6 3 7

Figure 3. A scenario of flushing write buffer of an open zone.

numbers denote the striping order. We use the term volatile
buffer to distinguish it from the SLC-based write buffer. The

size of a volatile write buffer corresponds to a superpage size.

The buffered data for chip 0 and 1 are aligned with the TLC

programming unit (96 KiB), so they can be programmed to

a TLC block. In contrast, the amount of data that need to be

flushed to chip 2 and 3 are less than the programming unit.

So, they are programmed to a SLC block.

It is a simple way of handling unaligned buffer flush to pad

dummy data to the write buffer to form a TLC programming

unit. However, it is not recommended since it wastes storage

space and makes the write pointer management very cum-

bersome. When the flash controller pads the dummy data to

the write buffer, there comes a gap between the amount of

data which the host writes to the storage and the amount of

data written at the flash memory. It requires a complicated

protocol between the host and the device to make the write

pointer match with the TLC block’s write offset.

To handle the unaligned flush, we propose to use SLC

blocks as a supplementary non-volatile write buffer. A SLC

block can be programmed in a multiple of 4 KiB. When a

device has to handle unaligned flush, the device logs the data

into a SLC block. The data buffered in the SLC block are

written to a TLC block as soon as the amount of data in the

SLC block combined with the data in the volatile write buffer

reaches the TLC programming unit size. For instance, when

the host would write stripe 10 in Figure 3, the stripe units

{2,6,10} would be flushed to the TLC block in the chip 2.

3.2 Write Buffer Thrashing

Running F2FS on the mobile zoned device is subject to a

large number of unaligned flushes because the small number

(two or less, typically) of write buffers are shared among more

open zones (as many as six when running F2FS file system)

than the number of write buffers. We call this phenomenon

as Write Buffer Thrashing. When running F2FS on a zoned

device, F2FS maintains up to six active logs each of which

corresponds to a zone. In ZNS SSD (for server), each of the

open zones can be allocated a dedicated write buffer as shown

in Figure 4a. So, ZNS SSD is free from write buffer thrashing.

In contrast, since there exist only two write buffers available in

zoned UFS, the write buffers should be shared among the six

Hot
data

Warm
data

Cold
data

Hot
node

Warm
node

Cold
node

Buf0 Buf1 Buf2 Buf3 Buf4 Buf5

(a) ZNS SSD (for server)

Hot
data

Warm
data

Cold
data

Hot
node

Warm
node

Cold
node

Buf0 Buf1

(b) Zoned UFS

Figure 4. Write buffer allocation for open zones

zones as shown in Figure 4b. When reclaiming a write buffer

being used for a zone A for another zone B, the buffered data

should be flushed to the zone A in order to accommodate data

for the zone B. If the data in the write buffer is smaller than

the TLC programming unit, it may render unaligned flush. In

handling the unaligned flush, the buffered data are written

to SLC buffer. SLC buffering incurs double writes (once

written to a SLC block, then migrated to a TLC block). As a

result, write buffer thrashing hampers the performance and

the lifespan of the storage device. Therefore, it is important

to avoid or minimize the write buffer thrashing in designing a

mobile zoned device.

3.3 Tiny Synchronous File Update
A file can be updated in two ways; overwrite and append.

In in-place update filesystem such as EXT4, overwriting an

existing file does not require any updates in the file map. In

contrast, out-of-place update file systems like F2FS modifies

the file map no matter whether a file content is over-written or

is appended at the end of the existing file. In F2FS, therefore,

when the application synchronizes the filesystem state to the

disk, it not only flushes the updated file block but also the

updated node block (file map) to the storage. Subsequently,

when the application calls an fsync(), F2FS may write twice

as many blocks to the storage as EXT4 does.

In mobile environment, it is critical to handle the small

size fsync() efficiently. SQLite, a widely used embedded

database in Android, relies on its own journal file for data

recovery. Let us briefly explain how the SQLite’s insert()
transaction flushes the filesystem blocks to the storage. Fig-

ure 5a illustrates the IO trace in inserting a 100 byte record

to SQLite DBMS using rollback journaling. In a single

insert() transaction, SQLite calls fsync() four times. They

are for synchronizing the result of each of the following ac-

tivities: creating the journal file, updating the associated di-

rectory entry, undo logging at the journal file, and updating a

database file. When updating the database file, SQLite over-

writes the updated data blocks to the database file. After the

transaction completes, SQLite deletes, truncates or persists

the journal [36].

To efficiently handle small fsync(), F2FS selec-

tively applies in-place update (IPU) policy in serving

fsync() for requests smaller than a configurable parameter,

min_fsync_blocks (32 KiB by default). This optimization

effort is successful in handling the fsync() efficiently. De-

USENIX Association 2024 USENIX Annual Technical Conference 177

0

2

4

6

8

10

12

0 0.5 1 1.5 2 2.5 3

Lo
gi

ca
l b

lo
ck

 a
dd

re
ss

 (
10

00
0)

Time (msec)

node

meta

fsync(jnl) fsync(dir) fsync(jnl) fsync(db)
open(.db-journal)

write(jnl) write(db)

1st fsync() 2nd fsync() 3rd fsync() 4th fsync()

unlink(.db-journal)

.db
.db-journal

4 16+4

4

4

4

8 4

4 4+12

(a) Rollback journal w/ legacy UFS

0
20
40
60
80

100
120
140
160
180
200

0 1 2 3 4 5

Lo
gi

ca
l b

lo
ck

 a
dd

re
ss

 (
10

00
0)

Time (msec)

node

meta

fsync(jnl) fsync(dir) fsync(jnl)
fsync(db)open(.db-journal)

write(jnl) write(db)

1st fsync() 2nd fsync() 3rd fsync() 4th fsync()

unlink(.db-journal)

.db.db-journal

nodenode
4

4 20

4

4

4

8 4

4

4 16

(b) Rollback journal w/ ZMS

Figure 5. IO access pattern of an SQLite, insert() transaction, record size = 100 byte, DELETE journal mode

spite four fsync() calls, the node blocks are written only

twice: one for the journal file (1st fsync()) and the other

for the directory (2nd fsync()). Please refer to the rectangle

labeled as ‘node’.

Unfortunately, however, this IPU policy cannot be used on

zoned devices because zoned devices do not allow zones to

be overwritten. We disable the IPU in F2FS and perform the

same insert() transaction. Figure 5b illustrates the IO trace

captured in executing the insert() transaction with the IPU

policy turned off. Here, F2FS updates the database file and

the journal file in an append-only manner. With the IPU pol-

icy disabled, F2FS writes additional two node blocks, which

prolongs the fsync() latency. Please refer to the rectangle

with grey background, labeled as ‘node’. One node is for the

journal file (3rd fsync()) and the other is for the database

file (4th fsync()).

4 ZMS: an overview

In this work, we develop a zoned mobile I/O stack, ZMS. ZMS

consists of the filesystem layer and the block device layer at

the host, and the zoned UFS device. Before we delve into

details, we first examine its mechanism through an example.

In Figure 6, we assume applications are writing warm and

cold data concurrently. F2FS writes these data to warm data

zone, denoted as Zwd , and cold data zone, denoted as Zcd ,

respectively. There are two write buffers in the storage device.

They are labeled as Buf0 and Buf1, respectively. Without

IOTailor, writes to the Zwd , denoted as Wwd , and writes to

the Zcd , denoted as Wcd , are sent to device and buffered in

Buf0 and Buf1 of the device, respectively. When applications

write hot data, one write buffer needs to be reclaimed and

switched to accommodate the newly incoming hot data. Let

Zhd represent the hot data zone. In this example, we assume

that Buf0 is selected for Zhd . Before switching Buf0 to Zhd ,

the data in Buf0 needs to be flushed. If the amount of data

in Buf0 is smaller than the size of TLC programming unit,

it renders unaligned flush and the data is flushed to a SLC

buffer block.

IOTailor transforms the write requests to a zone to

superpage-aligned requests. IOTailor ensures that all buffered

data is programmable to a superpage, which eliminates un-

aligned flush and utilizes full internal parallelism. With IO-

Tailor, Wwd and Wcd are enqueued to the warm data queue

and the cold data queue of IOTailor, respectively. IOTailor

transforms Wwd and Wcd to Wt
wd and Wt

cd , respectively, that

are aligned with the size of the superpage. Then, Wt
wd and

Wt
cd are sent to the device in a round-robin fashion. Since the

write requests to the device are ensured to be aligned with

superpage, unaligned buffer flush does not occur.

When F2FS performs the garbage collection for a victim

zone, Zv, it copies the valid data blocks of Zv to Zcd . In con-

solidating the valid blocks in the victim zone, we propose to

offload the copy operation to the storage device. This is to

save the host’s CPU from processing copy operations and the

overhead of transferring data between the host and the device.

IOTailor

Zoned UFS

TLC blocks

Buf0

request queue

hot
data

queue

warm
data

queue

cold
data

queue

hot
node
queue

warm
node
queue

cold
node
queue

Buf1Bufc

SLC buffer blocks

data copy (offloaded by F2FS)

Wt
wd

Wwd
Wcd

Wt
cd

hot
data

warm
data

cold
data

hot
node

warm
node

cold
node Zv

buffered data size is
less than TLC program unit

Conventional LU Zoned LU

F2FS closed
zones

free
zones

check
point

meta
data

garbage collection
(data copy offloaded to device)

Zv

Zhd
hot
data

Zwd
warm
data

Zcd
cold
data

Zhn
hot

node

Zwn
warm
node

Zcn
cold
node

Main AreaMeta Area

Figure 6. Overview of ZMS I/O stack

5 The Zoned UFS Device

5.1 Organization
We develop a zoned UFS complying with a zoned block com-

mand (ZBC) specification [56] by revising the firmware of

a commercial legacy UFS product with block interface. The

host system can get information of zone size, superpage size

178 2024 USENIX Annual Technical Conference USENIX Association

and the number of write buffers by reading vital product data

(VPD) pages as defined in the UFS standard [35].

Logical Units. A logical unit (LU) refers to a contiguous log-

ical address range of a device. The zoned UFS provides two

types of LU: a conventional LU providing block interface, and

a zoned LU providing zone interface. The conventional LU

is for the F2FS metadata area that is to be updated randomly.

The main area of F2FS is placed in the zoned LU.

Flash Blocks and Volatile Memory. The device has four 256

Gbit NAND chips connected to the storage controller via two

channels (two chips per channel). There are 943 superblocks,

938 of which are allocated for zoned LU. The controller does

not have DRAM, only SRAM memory. The L2P map cache

size directly affects random read performance. The legacy

device, used as the baseline of our evaluation, has 1 MiB for

L2P map cache. For fair performance comparison, we use the

same size of memory for L2P map cache in both the baseline

and the zoned UFS. A write buffer for a zone is 384 KiB

which corresponds to the size of a superpage. The device

provides the memory for up to three write buffers. The size of

the TLC programming unit is 96 KiB. In its original setting of

the legacy device, the three buffers are used for the following

three superblocks, respectively: one for writes less than 32

KiB, one for writes equal to or larger than 32 KiB, and another

for garbage collection. For the zoned UFS, we allocate one

write buffer for the conventional LU and two write buffers for

the zoned LU.

Zone Size. Zone size is a critical design parameter that

impacts per-zone performance and file system garbage collec-

tion. The per-zone performance depends on how the device

stripes the zone data over the chips. There are two approaches

of the zone data placement: full striping and partial striping.

In the full striping approach, a zone’s data is striped over all

available chips and a zone corresponds to a superblock (§2.1).

The partial striping approach is to reduce the stripe width.

With the full striping approach, we can fully utilize internal

parallelism. However, with more erase blocks in a flash block

group, it takes longer for F2FS to perform garbage collec-

tion and subsequently the I/O requests need to be blocked for

longer period of time. The partial striping approach can bet-

ter separate the data of the different applications and reduce

garbage collection latency whereas per-zone performance is

reduced. In this work, we choose the full striping approach be-

cause responsiveness for foreground applications is of prime

concern in a single user mobile environment [57] and provid-

ing higher performance improves responsiveness.

5.2 Multi-granularity L2P Mapping

Zoned UFS uses three different L2P mapping granulari-

ties: page (4 KiB), chunk (4 MiB) and zone (a superblock).

We call our mapping as multi-granularity L2P mapping.

Due to the lack of memory in the mobile flash device, the

multi-granularity L2P mapping table is cached on demand.

4MB

w1

(384KB)
w2

(128KB)

21
TLC superblock SLC block

mapped by chunk mapping mapped by page mapping

Zone write pointer after w2

Figure 7. Multi-granularity L2P mapping

For zones that are fully written sequentially, we use zone-

granularity mapping (or zone mapping for brevity). One ad-

vantage of zone abstraction is that we can use zone mapping

that greatly reduces the mapping table size. Zone mapping

requires that entire zone data is physically contiguous. For

SLC blocks, zoned UFS employs page mapping. The data

blocks in ZMS is not always contiguously written to a TLC

block for two reasons (§3.1). First is when the device switches

a write buffer of a zone for another zone. Second is when the

host requests fsync().

To further reduce the memory requirement for caching the

page mapping table, we use chunk granularity mapping. In

on-demand page mapping, a 4 KiB L2P map page contains

the array of physical page numbers for 1024 contiguous logi-

cal pages, called chunk. If all of the physical page numbers

in a map page are contiguous, a single 4 byte entry (chunk

mapping entry) can represent 1024 contiguous pages. By do-

ing so, we can reduce memory used for L2P map caching by

1024 times.

Figure 7 illustrates the operation of the multi-granularity

mapping. We assume that ten superpages were written to a

zone and the two write requests (w1 and w2) arrived. The

w1 is written to the TLC block (1) because it is superpage

aligned. The w2 request (unaligned buffer flush) is written

to a SLC block (2). After serving w1, the 4 MiB region of

the zone (the green box) becomes physically contiguous, so

chunk mapping is used for the region. For the other pages of

the zone, page mapping is used.

6 Filesystem and Block Layer in ZMS

6.1 IOTailor

To address the write buffer thrashing problem, we propose

a novel I/O reshaping method, called IOTailor. IOTailor sits

between the filesystem and the legacy block device layer. IO-

Tailor ensures that I/O requests sent to the device are aligned

with a superpage size. IOTailor achieves maximum device

write performance and avoids unaligned flush when switching

the write buffers. IOTailor maintains a number of queues each

of which corresponds to a zone opened by the filesystem. We

call it a per-zone queue. In current implementation, IOTailor

USENIX Association 2024 USENIX Annual Technical Conference 179

w1 (128KiB) w2 (320KiB)

w2-2 (64KiB)w2-1 (256KiB)

1
2

//

//

w3 (320KiB)

4

//

//

5

superpage (384KiB)

3

w2-1
w1

w2-2
w3

(w1, w2-1) (w2-2, w3)
Zone

superpage (384KiB)

Figure 8. Request reshaping by IOTailor (request order: w1,

w2, w3)

defines six queues since it is designed to work with F2FS

which may open up to six zones.

IOTailor performs two tasks; request split and request
grouping. First is request split. When a request from file

system arrives, it examines whether the request crosses the

superpage boundary. If it does, IOTailor splits the request on

the superpage address into two requests: the one that ends at

the preceding superpage and the other that starts at the fol-

lowing superpage. When IOTailor splits the request, it creates

the child requests that are associated with the original request.

Once all child requests are complete, the original request is

marked as completed. IOTailor enqueues the split requests

into the associated per-zone queue. Second is request group-

ing. When the set of requests in a per-zone queue forms a

superpage, it is bundled into a single I/O group and is passed

to the I/O request scheduler. The I/O scheduler coalesces

them if possible. IOTailor processes the per-zone queues in a

round-robin manner for fairness.

The operation of IOTailor is illustrated in Figure 8. The

request w1 is enqueued to the queue for its zone (1). IOTailor

splits w2 into two requests (w2-1 and w2-2) because it crosses

the superpage boundary and enqueues them (2). Since w1

and w2-1 forms a superpage, they are sent to I/O scheduler.

I/O scheduler merges the two into a single write command

and dispatch the associated command to the storage device

(3). On enqueuing w3 (4), since w2-2 and w3 form another

I/O group, they are merged and sent to device (5).

In a per-zone queue, IOTailor waits for up to five seconds

to group the split requests with subsequent requests. Hence

the split requests may wait in the queue for up to five seconds

if there is no subsequent requests. However, this waiting time

does not directly manifest as latency. IOTailor immediately is-

sues the split requests without waiting for subsequent requests

if they are latency-critical, e.g. issued by the flusher thread or

written with direct I/O mode (written with O_DIRECT flag).

We develop IOTailor as a separate layer between the filesys-

tem and the block I/O layer instead of integrating its function

with a specific I/O scheduler. This design choice allows IOTai-

lor to be used by various legacy I/O schedulers available in the

block device layer. An I/O scheduler may blindly merge the re-

quests and may create the new request that is not aligned with

the superpage boundary. To prohibit the I/O scheduler from

creating the unaligned request, IOTailor places a no_merge
flag at the first and the last requests of an I/O group.

6.2 Budget-based In-Place Update

To efficiently service tiny synchronous file updates, we de-

velop a technique called budget-based in-place update. It al-

lows the underlying zoned UFS to service the in-place file up-

date of F2FS. To facilitate the in-place update, we streamline

the application, file system, and the storage device. We define

a new flag, in-place, for the file and a new tag, overwrite,

for I/O request, respectively. The application is changed to set

the in-place flag for a file through fcntl() to specify that

the file needs be updated in-place. When the application calls

fsync() on the file with the in-place flag, F2FS examines

the amount of update to be flushed. If the amount of updated

data blocks to be flushed is small, e.g. less than 32 KiB, F2FS

places the overwrite tag to the I/O request.

Zoned UFS device allocates a SLC region consisting of

SLC blocks to accommodate the incoming in-place update

request (the small write with overwrite tag). Data blocks

stored in this region is managed by page granularity mapping.

We introduce the notion of IPU budget, or budget for short.

A budget is the maximum amount of valid data blocks in the

SLC region. On receiving requests with the overwrite tag,

zoned UFS first checks if it can accommodate the in-place

update without exceeding the IPU budget. If it exceeds the

budget, the requests cannot be serviced and the device returns

an error. In case of the budget overflow error, F2FS retries

with append logging mode. F2FS stops requesting IPU and

falls back to the append logging mode if the total amount

of valid IPU data, outstanding IPU requests and the current

IPU request is greater than IPU budget. The device reports

the valid IPU data size and IPU budget to the host through

SMART 1 interface. We define a notion of dirty zone, one

or more of whose blocks are written in IPU mode. F2FS

keeps track of the list of dirty zones. If the valid IPU data size

reaches the IPU budget, F2FS performs garbage collection in

background for the dirty zones to decrease the valid IPU data

size.

The device keeps track of the amount of valid IPU data

by checking the location of the data to be updated in-place

utilizing the L2P mapping. The data blocks of the overwrite
requests can exist either in the SLC block or in the TLC block.

If the blocks to be updated in place are present in a TLC block,

the blocks are new IPU data (not updated in place after being

written to its zone), so the device increments the valid IPU

data size. If the blocks are present in a SLC block, the blocks

are already accounted for the valid IPU data, so the device

does not increment the valid IPU data size.

1Self-Monitoring Analysis and Reporting Technology

180 2024 USENIX Annual Technical Conference USENIX Association

W1

(384KB)

Zone A

W2 (overwrite)

(16KB)

TLC superblock

W1

SLC block pool

W2

Valid data size
in the pool

is limited for
GC efficiency.

Zone A

R1
(4KB)

R1

Multi-granularity
L2P Mapping

Budget-based
In-place update

12
3

...

Figure 9. Budget-based in-place update support

When there is a lack of free blocks in the SLC region, the

zoned UFS needs to perform garbage collection for the SLC

region. Garbage collection is executed in the background to

minimize the interference with the foreground I/O service.

Mobile device is known to have substantial amount of idle

time [58]. So, we carefully suspect that the garbage collection

does not interfere with foreground I/O. In certain workloads

that do not have enough idle time, garbage collection might

interfere with the foreground I/O. The cost of garbage collec-

tion decreases as the proportion of valid data in erase blocks

decreases [59, 60]. For the efficiency of garbage collection,

we limit the amount of valid IPU data as budget and reserves

sufficient amount of free SLC blocks.

Figure 9 illustrates the operation of in-place update. As-

sume that F2FS writes the superpage size data to the zone A

(W1). W1 is written to the TLC superblock corresponding to

the zone A (1). Then, F2FS writes 16 KiB data with over-

write tag (W2). The device writes W2 to an SLC block (2)

if there exists IPU budget left. The associated L2P mapping

is updated and the data is retrieved from the SLC block (3).

6.3 Copy Offloading

ZMS employs copy offloading scheme to reduce F2FS

garbage collection cost. F2FS garbage collection consists

of five phases: (1) load metadata, (2) load inode blocks, (3)

load node blocks, (4) load valid data pages of a victim seg-

ment, and (5) write the data to a target segment. After all the

phases are done, F2FS updates the metadata and creates a new

checkpoint. Among these phases, the phase 4 and 5 that copy

the valid data are the major bottleneck points. By offloading

the data copy to the storage device, we eliminate the host side

I/O command processing and data transfer between the host

and the device. We elaborate our implementation of internal

zone compaction and modifications of F2FS to offload data

copy in the following.

Zone Copy and Compaction Command. Similar to internal

zone compaction (IZC) of ZNS+ [61], we implement zone

copy and compaction (ZCC) command in our zoned UFS

Host

Zoned UFS Victim zone

0 1 2

1. select victim
zone

Target zone

2. check dirty pages

4 5

3. flush cached
dirty pages

4. device internal
data copy

FS metadata
5. checkpoint

6. reset write pointer
of the victim zone

Page Cache
2 3

3

Figure 10. F2FS garbage collection with copy offloading. The

boxes with color codes denote pages of the victim zone (grey:

invalid, red: dirty cached, blue: clean and not cached).

device. Whereas IZC issues a copy offload request per 2 MiB

F2FS segment, ZCC issues a copy offload request per zone

unit. This reduces the command transfer overhead. IZC is

developed for the NVMe SSDs and ZCC is developed for the

UFS (SCSI). Since they are designed for the different plat-

forms, server vs. mobile device, it is difficult to make direct

apple-to-apple comparison between their command transfer

times. As an indirect comparison, we compare the number

of copy offload commands required to process a zone. The

zone size of the device used in our work is 138 MiB. For the

zone size, ZCC requires only one command to request copy

offloading, whereas IZC needs to send up to 69 commands.

F2FS Changes for Copy Offloading. We modify F2FS’s

foreground garbage collection to offload zone compaction.

F2FS foreground garbage collection first selects a victim sec-

tion, identifies and adds its valid blocks to a zone copy (ZC)

list. Including dirty pages of the victim section to the ZC

list will incur copy of blocks that will soon be invalidated

when the dirty pages are written back. So, we add only clean

pages to the ZC list. After the ZC list is prepared, F2FS writes

back the dirty pages, sends a ZCC command, and waits for

the command to be complete. The operation of the modified

F2FS garbage collection is illustrated in Figure 10.

6.4 Crash Recovery
Crash recovery of ZMS consists of three stages: device level

recovery, file system integrity checking, and file system recov-

ery. On a system crash, the device identifies which zones were

open at the time of the crash. Then it scans the superblocks

of the open zones sequentially from their first page until it en-

counters clean (not programmed) page and recovers the write

pointers. After the device level recovery, the write pointers

are recorded in the zone descriptors. Then, fsck, a file system

integrity checker, reads the zone descriptors from the device

to check if zone write pointers maintained by the file system

match those reported by the device, then marks a flag if file

system recovery is required at mount time. At mount time,

F2FS recovers the write pointers of open zones, scans each

active log, performs roll-forward recovery if necessary, then

creates a checkpoint. After the recovery, F2FS continues log-

ging beyond the recovered write pointer. The overall recovery

USENIX Association 2024 USENIX Annual Technical Conference 181

procedure of ZMS takes slightly longer than conventional

I/O stack because zoned UFS has to scan more superblocks

and F2FS has to recover the write pointers. However, sud-

den power failure happens rarely in modern mobile phones

because battery is non-removable.

7 Performance Evaluation

7.1 Experiment Setup
We implement ZMS on Qualcomm SM8350 board, running

Android 11 with Linux 5.4 kernel. We implement the zone

interface on a commercial TLC-based 128 GiB UFS product

by revising the original firmware of the device. The baseline

system runs stock F2FS on the UFS device with legacy block

interface.

Benchmarks. Table 2 summarizes the workload that are

used in our study. As microbenchmarks, we use flexible I/O

tester (FIO) [62]. We use 512 KiB and 4 KiB I/O requests

for sequential and random tests, respectively. To measure

SQLite performance, we use mobibench [63, 64]. We test

SQLite transaction processing throughput for both rollback

journal and write-ahead log mode. We select 37 applications

according to the categories shown in Table 2 and launch them

in sequence. We repeat the launch sequence 50 times to get

average launch time. The application launching test is done

for both clean and aged condition to see the performance

impact of file system fragmentation.

7.2 Performance in Clean Condition

In clean condition, legacy UFS and zoned UFS show similar

performance for the basic operations (sequential read/write

and 1 GiB range random read/write). Figure 11 illustrates

the results. In clean condition, garbage collection (GC) does

not run in the filesystem nor in the device. For the 1 GiB

range random read, the baseline and zoned UFS show similar

performance. This is because entire L2P mappings for the file

can be kept in on-chip memory. As the range of random read

is extended to 8 GiB, L2P mappings for the file does not fit

into the device memory in the baseline, and the fraction of

the mapping table is loaded on demand. In the experiment,

the baseline experiences L2P map miss for 27.1% of requests

whereas there is no map miss in zoned UFS. As a result,

ZMS shows 37-44% better random read performance than the

baseline.

In the random write with fsync() test, each 4 KiB random

write is followed by fsync(). ZMS shows 50% less through-

put in the single thread test compared to the baseline. The

reason is that the baseline uses in-place update (IPU) mode

whereas zoned UFS does not allow it. Subsequently, F2FS

should write the updated node blocks to record new data loca-

tions. In this experiment, the node block update accounts for

approximately half of the blocks written at the storage device

Table 2. Benchmarks, R: read, W: write, buf.: buffered, sync.:

synchronous, seq: sequential, rand: random

workload configurations

seq R/W Fio, 512 KiB IO size

buf rand R/W Fio, 4 KiB IO over 1 GiB file

sync rand W Fio, 4 KiB write followed by fsync()
range rand R Fio, 4 KiB read over 8 GiB file

IOTailor test three concurrent Fio writing jobs, each

writing to its own files

mobibench DELETE mode and WAL mode, 1M

insert(), 3.9 MiB WAL file, 385 MiB

database file

appl’n launch category (number of apps): basic (8), im-

age (3), video (5), education (4), game

(17)

in zoned UFS. On the other hand, in the baseline, node blocks

are not updated and therefore are not written to the storage

device. It should be noted that the IPU mode does not guaran-

tee data recovery from crash. We observe that budget-based

in-place update successfully eliminate the overhead of node

block updates. When using the budget-based in-place update

(ZMS w/ IPU), zoned UFS renders the same performance as

the baseline.

7.3 Performance in Aged Condition

To investigate the performance in aged condition when device

and/or file system perform garbage collection, we create a

large file and repeatedly overwrite 4 KiB blocks randomly

over the file. The file size is 64 GiB for 60% volume utilization

and 100 GiB for 90% volume utilization, respectively. Figure

12a shows the amount of block I/O performed at 90% volume

utilization. ZMS writes 2× more blocks to the device. The

size of total data written is 1500 GiB for ZMS whereas it is

750 GiB for the baseline. This is because F2FS in the baseline

performs threaded logging whereas F2FS in ZMS performs

append logging. The proportion of F2FS garbage collection

in ZMS is about half of the total I/O whereas it is negligible

(0.04%) in the baseline. F2FS in ZMS writes checkpoints and

more node blocks due to garbage collection, which accounts

for the more node writes than the baseline.

F2FS in the baseline writes more metadata than F2FS in

ZMS. This is because it writes more segment summary area

(SSA) blocks. SSA is stored in the F2FS metadata area and

records the owner inode of each data block of a segment.

When a data block is written, corresponding SSA record is

also updated accordingly. In serving the same amount of

user data writes, threaded logging writes to more segments

than append logging because threaded logging writes to dirty

segments that have less number of free blocks than clean seg-

ments. So, the baseline writes more SSA blocks than ZMS.

This accounts for the increased metadata writes in the base-

line.

182 2024 USENIX Annual Technical Conference USENIX Association

0

500

1,000

1,500

2,000

ST MT ST MT
Write Read

(MiB/s) Baseline ZMS

(a) Sequential I/O

0

20

40

60

ST MT ST MT
Write Read

(KIOPS) Baseline ZMS

(b) Random I/O

0

10

20

30

ST MT

(KIOPS) Baseline ZMS ZMS w/ IPU

(c) Random write w/ fsync()

0

10

20

30

40

ST MT

(KIOPS) Baseline ZMS

(d) Wide range random read

Figure 11. Microbenchmark performance in clean condition (ST: single thread, MT: multi-thread, 4 threads in MT)

0

500

1,000

1,500

2,000

Baseline ZMS

(GiB) Data Node Meta GC

(a) I/O volume

0

5

10

15

20

FS Dev E2E FS Dev E2E
60% filled 90% filled

(WAF)

Baseline
Eager discard
ZMS

(b) WAF vs. space utilization

0
20
40
60
80

100
120

60% filled 90% filled

(MiB/s)

Baseline
Eager discard
ZMS
ZMS w/ ZCC

(c) Throughput

0.0 0.2 0.4 0.6 0.8 1.0

ZMS

ZMS w/
ZCC

Latency (s)

Read meta Migration/ZC listing
Build & send ZC Flush & wait
Etc.

(d) GC latency breakdown

Figure 12. Performance in aged condition

Write amplification of a layer is the amount of data written

to its underlying layer divided by the amount of data written to

the layer. Figure 12b shows write amplification factor (WAF)

of each layer and end-to-end (E2E) WAF. At 60% volume

utilization, the baseline shows file system WAF of 1.39, device

WAF of 8.27, and E2E WAF of 11.5. In ZMS, file system WAF

is 18% higher than that of the baseline while device WAF is

close to 1.0 because device garbage collection is eliminated.

Despite the increased file system WAF, E2E WAF of ZMS

is 1.72 which is 6.7× lower than that of the baseline. At

90% utilization, the file system WAF of ZMS is increased

to 5.89 due to more garbage collection. However, ZMS still

shows 2.96× lower E2E WAF than the baseline. Owing to

the reduced E2E WAF, ZMS shows 13.6× and 5.1× higher

throughput than the baseline for 60% and 90% utilization,

respectively (Figure 12c).

The Effect of Eager Discard. The gap of information about

block validity contributes to device level write amplification

(§2.2). F2FS shuns discard commands while I/O is busy. To

reduce copying invalid data at device level, we modify F2FS

to send discard commands when writing a new checkpoint.

With the eager discard mechanism, the device WAF of the

baseline is reduced by 72% and the performance is improved

by 5× at 60% utilization. However, ZMS still performs 2.5×
better than the baseline with the eager discard mechanism.

Table 3. Tail latency (μsec) of random write in aged condition

percentile baseline ZMS w/o ZCC ZMS w/ ZCC

average 684 160 133

99th 15,795 34 16

99.9th 20,055 103 5,407

99.99th 31,851 9,765 10,421

The Effect of Copy Offloading. When using copy offload-

ing, the performance is enhanced further by 8% for 90% uti-

lization, which was due to faster F2FS garbage collection

completion by offloading data copy to device. Since writing

dirty pages are blocked until foreground garbage collection is

complete, reducing the garbage collection latency improves

write throughput. F2FS garbage collection latency is reduced

by 8.7% by using ZCC as shown in Figure 12d. ZCC im-

proves throughput by 8% as shown in Figure 12c. In addition,

tail latencies of random writes are reduced by 12–25% for

90% utilization by using ZCC as shown in Table 3.

7.4 Writing to Multiple Open Zones
When the number of open zones being written concurrently

exceeds the number of write buffers of the zoned UFS device,

unaligned buffer flush takes place. The unaligned buffer flush

has negative impact on performance and lifetime of the device.

To examine the performance impact of the unaligned buffer

flush in mobile usage scenario and the benefit of IOTailor,

we devise a synthetic benchmark that simulates a practical

Android storage access pattern [65–67]. We run hot, warm,

and cold data streams, configured as follows.

• hot: creates 2000 6 MiB files at initialization, then over-

writes randomly selected files.

• warm: creates 2000 12 MiB files at initialization, then

overwrites randomly selected files.

• cold: at each iteration, creates 4500 4 MiB files and

deletes 900 randomly selected files.

The benchmark grows the amount of cold files at each iter-

ation, and stops if no more space is available. We vary the

number of write buffers (one or two) available in the device.

The test results are shown in Figure 13. In the baseline,

USENIX Association 2024 USENIX Annual Technical Conference 183

500 550 600 650 700
Time (s)

(MiB/s)

Baseline
ZMS w/o IOTailor/1 buf
ZMS w/o IOTailor/2 bufs
ZMS

200

100

0

(a) Bandwidth

(%)

ZMS w/o IOTailor/1 buf
ZMS w/o IOTailor/2 bufs
ZMS

80

60

40

20

0

(b) SLC buffering ratio

Figure 13. Performance benefit of IOTailor

the device renders maximum write performance during the

earlier phase of the experiment. However, its performance

drops sharply when device garbage collection kicks in at

around 620 seconds. Figure 13b indicates the ratio of data

written to SLC blocks, due to the unaligned buffer flush, to

the total data written by the host. The portion of data written

to SLC blocks is 60% for the single buffer configuration

(1 buf) and 30% for the two buffer configuration (2 bufs),

respectively. Consequentially, ZMS without IOTailor shows

worse performance than the baseline as shown in Figure 13a.

With IOTailor, the SLC buffering ratio is reduced significantly

to 5% and the performance is consistently better than the other

configurations. ZMS with IOTailor still has the small SLC

buffering ratio because the amount of node blocks written

by F2FS is smaller than the TLC programming unit in most

cases, so the node blocks are written to SLC blocks.

Table 4. Tail latency (μsec) of random writes (queue depth: 1)

percentile w/o IOTailor w/ IOTailor

average 62 62

99.99th 293 281

99.999th 5,014 4,948

99.9999th 7,635 8,586

Computational Overhead of IOTailor. To examine the la-

tency increase due to computational overhead of IOTailor, we

issue 4 KiB random writes with direct I/O mode to a 10 GiB

file. In the direct I/O mode, only a single request is outstand-

ing. As shown in Table 4, IOTailor does not show noticeable

latency increase except for the 6-nine latency. The two-nine

and the three-nine latencies are not shown here because those

latencies with IOTailor are the same as those without IOTailor.

Given the significant throughput improvement, this level of

latency increase is acceptable.

7.5 Application Level Performance

7.5.1 SQLite Database Throughput

SQLite heavily issues small fsync() calls. So, the latency

of fsync() seriously affects SQLite processing performance.

Since zone abstraction does not allow in-place update, it in-

curs more node writes due to using append logging, which

hampers the SQLite performance. As shown in Figure 14a,

ZMS shows 35% less SQLite transaction throughput when

using rollback journal with delete mode. The performance

gap between ZMS and the baseline becomes larger in truncate

mode and persist mode. The proposed budget-based in-place

update eliminates the node writes by allowing the in-place

update “conditionally”. In-place update is allowed only if the

amount of total in-place update data is within the IPU budget.

This is to restrict the cost of garbage collection in the SLC

region that is used for writing the in-place updated data. We

observe that ZMS is able to achieve equal performance to the

baseline by using the budget-based in-place update for the

rollback journal mode.

In write-ahead logging (WAL) mode, since node modifica-

tions of multiple transactions are merged to a large sequential

I/O, writing nodes for the database file is more efficient than

in rollback journal mode. Therefore, despite increased node

writes, ZMS shows 60–100% better performance in WAL

mode because ZMS performs large sequential writes for data

and nodes whereas the baseline issues random writes in up-

dating the database file.

7.5.2 Application Launch Time

From 50 rounds of launching the 37 applications in sequence,

we calculate the average launch time. The test is done in both

clean and aged conditions. As shown in Figure 14b, ZMS

and the baseline show the average launch times of 440ms

and 467ms in clean condition, respectively. The I/O pattern

consists of 67.8% random reads over 8 GiB range, and 61.1%

of total I/Os is smaller than 32 KiB. Thanks to the multi-

granularity L2P mapping, zoned UFS efficiently serves ran-

dom reads, which in turn enhance application launch time.

A larger performance gap is observed in aged condition,

when application files are fragmented over a 90 GiB address

range. To simulate file fragmentation, we install applications

while running a background FIO process requesting syn-

chronous random writes on a 75 GiB file. The baseline suffers

from wide range random reads due to more L2P map loadings,

which degrades random read throughput.

8 Related Works

Zoned Namespace Storage Device. There have been grow-

ing interests towards ZNS [1–3, 46, 47, 61], but most of these

works were targeted for server SSDs. Shin et al. developed

184 2024 USENIX Annual Technical Conference USENIX Association

0

1,000

2,000

3,000

4,000

5,000

insert update insert update insert update
RBJ (delete) RBJ (truncate) RBJ (persist)

(TPS) Baseline ZMS ZMS w/ IPU

insert update
WAL

(a) SQLite insert(), mobibench

0
100
200
300
400
500
600

Clean Aged

(ms) Baseline ZMS

(b) Application launch

time

Figure 14. Application level performance

an analysis tool to analyze the performance, parallelism, iso-

lation, and predictability of ZNS SSD [68]. Zonefs is a file

system that exposes each zone of a zoned block device as

a file to user space [69]. Btrfs and F2FS have native sup-

port for zoned block devices [70, 71]. Choi et al. proposed

an LSM based garbage collection technique to mitigate the

long latency that occurs when performing garbage collection

for large zones [72]. Chung outlined the expected benefits of

using ZNS in datacenter [73]. In [3], Matias et al. showed that

RocksDB can get performance benefit from ZNS devices by

aligning zones with SSTable files, thereby eliminating SSD

level garbage collection. ZNS+ [61] proposed an interface

to allow F2FS threaded logging for a zone. ZNS+ also pro-

posed internal zone compaction (IZC). Our zone copy and

compaction (ZCC) requires less number of commands than

IZC. When performing garbage collection for a zone, IZC

requires the host to issue a separate command per segment

(2 MiB). In ZMS, a single ZCC command is necessary to

offload copy for the entire data of a zone.

Alternative Device Abstraction. Like the zone interface,

to reduce write amplification and ensure predictability, open-

channel interface [16] moves many of FTL responsibilities

to the host, including explicit data placement. Picoli et al.

reported that the open-channel approach is not for all situa-

tions [74] because getting everything right (i.e., dealing with

NAND geometries, fine-tuning OS and applications) is quite

complex to do only at the host side. Compared with the open-

channel interface, the zone interface pursues a better role

partition between the host and the device, relieving the host

of managing flash memory errors and wear leveling. To re-

duce write amplification, flexible data placement has been

proposed [75]. Write amplification varies depending on the

use cases of the host systems, and calls for more research to

adapt the I/O subsystems and file systems to each workload.

L2P Mapping. L2P mapping schemes can be classified into

three groups subject to mapping granularity: block mapping,

page mapping and hybrid mapping. Block mapping [76] re-

duces L2P mapping size significantly by coarse-grained map-

ping. However, it suffers from high garbage collection over-

head when modifying data of a block. Page mapping [39–45]

has high efficiency of garbage collection, but its L2P mapping

size is too large to fit into the internal memory of mobile

storage device. In hybrid mapping [77–81], incoming writes

are first placed at the log blocks then later are merged with

the data blocks. Utilizing the log-based write operation, it

shows better garbage collection efficiency than block map-

ping. Hybrid mapping reduces the L2P mapping size utilizing

both page mapping and block mapping; log blocks are man-

aged by page mapping and data blocks are managed by block

mapping. ZMS differs from the conventional hybrid mapping

techniques in that it uses chunk mapping (4 MiB granular-

ity) for regions where pages are contiguously written and

does not require log block merge operation. Jeong et al. pro-

posed host performance booster (HPB) that uses part of the

host memory as a cache of L2P mapping table to improve

the random read performance of mobile storage [23]. Kim

et al. proposed to manage HPB memory considering appli-

cation status (foreground or background) and to resize the

HPB memory under memory pressure of the smartphone to

improve responsiveness [24].

Data Separation. Previous studies [82, 83] analyzed An-

droid file access patterns and revealed that there is a stark

difference in file lifetimes depending on file types. For exam-

ple, [83] reported that 47% of files are deleted within 30 days

after being created, files generated by applications are more

likely to be deleted than user-generated media files, and video

files have longer lifetimes than images. Attempts to enhance

file lifetime prediction [4, 8, 12] are complementary to our

work and can be employed on ZMS to better separate data to

different zones.

9 Conclusions

In designing a new I/O stack based on zone abstraction for

mobile flash storage, called ZMS, we identify two challenges:

write buffer thrashing and tiny synchronous file update. By

implementing IOTailor and the budget-based in-place update

mechanism to address the challenges, we show that ZMS

improves performance and write amplification compared to

conventional block-based I/O stack. As further work, we plan

to explore utilizing heterogeneous zones with different cell

types to place the data blocks according to the performance

and lifespan requirements. We are also likely to investigate

the feasibility of providing more temperature levels in F2FS

to further mitigate its garbage collection overhead.

Acknowledgments

We thank the anonymous reviewers for their insightful sug-

gestions. We express sincere gratitude to Yong Ho Song and

Hwaseok Oh for their unwavering support throughout this re-

search endeavor. We would like to extend our appreciation to

Kate Mun, Jinhwan Park, and other members of the research

team who contributed to this work. The work of Youjip Won

is in part funded by Samsung Electronics.

USENIX Association 2024 USENIX Annual Technical Conference 185

References

[1] Matias Bjørling. From open-channel ssds to zoned

namespaces. In Linux Storage and Filesystems Con-
ference (Vault 19), page 1, 2019.

[2] J. Gonzalez. Zoned namespaces: Standardization and

linux ecosystem. In SDC EMEA, 2020.

[3] Matias Bjørling, Abutalib Aghayev, Hans Holmberg,

Aravind Ramesh, Damien Le Moal, Gregory R Ganger,

and George Amvrosiadis. {ZNS}: Avoiding the block

interface tax for flash-based {SSDs}. In 2021 USENIX
Annual Technical Conference (USENIX ATC 21), pages

689–703, 2021.

[4] Qiuping Wang, Jinhong Li, Patrick PC Lee, Tao Ouyang,

Chao Shi, and Lilong Huang. Separating data via block

invalidation time inference for write amplification re-

duction in {Log-Structured} storage. In 20th USENIX
Conference on File and Storage Technologies (FAST 22),
pages 429–444, 2022.

[5] Yao-Jen Hsu, Chin-Hsien Wu, Yu-Chieh Tsai, and Chia-

Cheng Liu. A granularity-based clustering method for

reducing write amplification in solid-state drives. ACM
Transactions on Embedded Computing Systems, 2023.

[6] Youyou Lu, Jiwu Shu, and Weimin Zheng. Extend-

ing the lifetime of flash-based storage through reducing

write amplification from file systems. In Proceedings of
11th USENIX Conference on File and Storage Technolo-
gies (FAST 13), pages 257–270, 2013.

[7] Janki Bhimani, Jingpei Yang, Zhengyu Yang, Ning-

fang Mi, NHV Krishna Giri, Rajinikanth Pandurangan,

Changho Choi, and Vijay Balakrishnan. Enhancing ssds

with multi-stream: What? why? how? In Proceedings of
2017 IEEE 36th International Performance Computing
and Communications Conference (IPCCC), pages 1–2.

IEEE, 2017.

[8] Chandranil Chakraborttii and Heiner Litz. Reducing

write amplification in flash by death-time prediction of

logical block addresses. In Proceedings of the 14th ACM
International Conference on Systems and Storage, pages

1–12, 2021.

[9] Trong-Dat Nguyen and Sang-Won Lee. I/o character-

istics of mongodb and trim-based optimization in flash

ssds. In Proceedings of the Sixth International Confer-
ence on Emerging Databases: Technologies, Applica-
tions, and Theory, pages 139–144, 2016.

[10] You Zhou, Ke Wang, Fei Wu, Changsheng Xie, and

Hao Lv. Seer-ssd: Bridging semantic gap between log-

structured file systems and ssds to reduce ssd write am-

plification. In Proceedings of 2021 IEEE 39th Interna-
tional Conference on Computer Design (ICCD), pages

49–56. IEEE, 2021.

[11] Choulseung Hyun, Jongmoo Choi, Donghee Lee, and

Sam H Noh. To trim or not to trim: Judicious trim-

ing for solid state drives. In Poster presentation in the
23rd ACM Symposium on Operating Systems Principles,

2011.

[12] Mansour Shafaei, Peter Desnoyers, and Jim Fitzpatrick.

Write amplification reduction in {Flash-Based}{SSDs}
through {Extent-Based} temperature identification. In

Proceedings of 8th USENIX Workshop on Hot Topics in
Storage and File Systems (HotStorage 16), 2016.

[13] Taejin Kim, Duwon Hong, Sangwook Shane Hahn, My-

oungjun Chun, Sungjin Lee, Jooyoung Hwang, Jongyoul

Lee, and Jihong Kim. Fully automatic stream manage-

ment for {Multi-Streamed}{SSDs} using program con-

texts. In Proceedings of 17th USENIX Conference on
File and Storage Technologies (FAST 19), pages 295–

308, 2019.

[14] Taejin Kim, Sangwook Shane Hahn, Sungjin Lee,

Jooyoung Hwang, Jongyoul Lee, and Jihong Kim.

{PCStream}: Automatic stream allocation using pro-

gram contexts. In Proceedings of 10th USENIX Work-
shop on Hot Topics in Storage and File Systems (Hot-
Storage 18), 2018.

[15] Changwoo Min, Kangnyeon Kim, Hyunjin Cho, Sang-

Won Lee, and Young Ik Eom. Sfs: random write con-

sidered harmful in solid state drives. In Proceedings of
USENIX Conferece on File and Storage Technologies
(FAST’12), volume 12, pages 1–16, 2012.

[16] Matias Bjørling, Javier Gonzalez, and Philippe Bonnet.

{LightNVM}: The linux {Open-Channel}{SSD} sub-

system. In Proceedings of 15th USENIX Conference
on File and Storage Technologies (FAST 17), pages 359–

374, 2017.

[17] Ohhoon Kwon, Kern Koh, Jaewoo Lee, and Hyokyung

Bahn. Fegc: An efficient garbage collection scheme for

flash memory based storage systems. Journal of Systems
and Software, 84(9):1507–1523, 2011.

[18] Jingpei Yang, Rajinikanth Pandurangan, Changho Choi,

and Vijay Balakrishnan. Autostream: automatic stream

management for multi-streamed ssds. In Proceedings
of the 10th ACM International Systems and Storage
Conference, pages 1–11, 2017.

[19] Eunhee Rho, Kanchan Joshi, Seung-Uk Shin, Nitesh Ja-

gadeesh Shetty, Jooyoung Hwang, Sangyeun Cho,

Daniel DG Lee, and Jaeheon Jeong. Fstream: managing

186 2024 USENIX Annual Technical Conference USENIX Association

flash streams in the file system. In Proceedings of 16th
USENIX Conference on File and Storage Technologies
(FAST 18), pages 257–264, 2018.

[20] Changman Lee, Dongho Sim, Jooyoung Hwang, and

Sangyeun Cho. F2fs: A new file system for flash storage.

In Proceedings of 13th USENIX Conference on File and
Storage Technologies (FAST 15), pages 273–286, 2015.

[21] Jingpei Yang, Ned Plasson, Greg Gillis, Nisha Talagala,

and Swaminathan Sundararaman. Don’t stack your log

on my log. In Proceedings of 2nd Workshop on In-
teractions of NVM/Flash with Operating Systems and
Workloads (INFLOW 14), 2014.

[22] Kisung Lee and Youjip Won. Smart layers and dumb

result: Io characterization of an android-based smart-

phone. In Proceedings of the tenth ACM international
conference on Embedded software, pages 23–32, 2012.

[23] Wookhan Jeong, Hyunsoo Cho, Yongmyung Lee, Jae-

gyu Lee, Songho Yoon, Jooyoung Hwang, and Donggi

Lee. Improving flash storage performance by caching

address mapping table in host memory. In Proceedings
of 9th USENIX Workshop on Hot Topics in Storage and
File Systems (HotStorage 17), 2017.

[24] Yoona Kim, Inhyuk Choi, Juhyung Park, Jaeheon Lee,

Sungjin Lee, and Jihong Kim. Integrated {Host-SSD}
mapping table management for improving user experi-

ence of smartphones. In 21st USENIX Conference on
File and Storage Technologies (FAST 23), pages 441–

456, 2023.

[25] Kyusik Kim, Eunji Lee, and Taeseok Kim. Hmb-ssd:

Framework for efficient exploiting of the host memory

buffer in the nvme ssd. IEEE Access, 7:150403–150411,

2019.

[26] Kyusik Kim and Taeseok Kim. Hmb in dram-less nvme

ssds: Their usage and effects on performance. PloS one,

15(3):e0229645, 2020.

[27] Yiying Zhang, Leo Prasath Arulraj, Andrea C Arpaci-

Dusseau, and Remzi H Arpaci-Dusseau. De-indirection

for flash-based ssds with nameless writes. In FAST,

page 1, 2012.

[28] Jinghan Sun, Shaobo Li, Yunxin Sun, Chao Sun, Dejan

Vucinic, and Jian Huang. Leaftl: A learning-based flash

translation layer for solid-state drives. In Proceedings of
the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating
Systems, Volume 2, pages 442–456, 2023.

[29] Shengzhe Wang, Zihang Lin, Suzhen Wu, Hong Jiang,

Jie Zhang, and Bo Mao. Learnedftl: A learning-based

page-level ftl for reducing double reads in flash-based

ssds. In 2024 IEEE International Symposium on High-
Performance Computer Architecture (HPCA), pages

616–629. IEEE, 2024.

[30] Cheng Ji, Li-Pin Chang, Sangwook Shane Hahn,

Sungjin Lee, Riwei Pan, Liang Shi, Jihong Kim, and

Chun Jason Xue. File fragmentation in mobile devices:

Measurement, evaluation, and treatment. IEEE Transac-
tions on Mobile Computing, 18(9):2062–2076, 2019.

[31] Sangwook Shane Hahn, Sungjin Lee, Cheng Ji, Li-Pin

Chang, Inhyuk Yee, Liang Shi, Chun Jason Xue, and

Jihong Kim. Improving file system performance of mo-

bile storage systems using a decoupled defragmenter. In

2017 USENIX Annual Technical Conference (USENIX
ATC 17), pages 759–771, 2017.

[32] Jonggyu Park and Young Ik Eom. Filesystem fragmen-

tation on modern storage systems. ACM Transactions
on Computer Systems, 41(1-4):1–27, 2023.

[33] Hyojun Kim, Nitin Agrawal, and Cristian Ungureanu.

Revisiting storage for smartphones. ACM Transactions
on Storage (TOS), 8(4):1–25, 2012.

[34] Cheng Ji, Li-Pin Chang, Riwei Pan, Chao Wu, Cong-

ming Gao, Liang Shi, Tei-Wei Kuo, and Chun Jason Xue.

Pattern-Guided file compression with User-Experience

enhancement for Log-Structured file system on mobile

devices. In Proceedings of 19th USENIX Conference
on File and Storage Technologies (FAST 21), pages 127–

140. USENIX Association, February 2021.

[35] JEDEC Standard. Zoned storage for universal flash

storage (ufs). JESD220-5, 2022.

[36] Sooman Jeong, Kisung Lee, Seongjin Lee, Seoungbum

Son, and Youjip Won. I/o stack optimization for smart-

phones. In Proceedings of USENIX Annual Technical
Conference (USENIX ATC 13), pages 309–320, 2013.

[37] Theano Stavrinos, Daniel S Berger, Ethan Katz-Bassett,

and Wyatt Lloyd. Don’t be a blockhead: zoned names-

paces make work on conventional ssds obsolete. In

Proceedings of the Workshop on Hot Topics in Operat-
ing Systems, pages 144–151, 2021.

[38] Jeong-Uk Kang, Jeeseok Hyun, Hyunjoo Maeng, and

Sangyeun Cho. The multi-streamed solid-state drive. In

Proceedings of 6th USENIX Workshop on Hot Topics in
Storage and File Systems (HotStorage 14), 2014.

[39] Aayush Gupta, Youngjae Kim, and Bhuvan Urgaonkar.

Dftl: a flash translation layer employing demand-based

selective caching of page-level address mappings. Acm
Sigplan Notices, 44(3):229–240, 2009.

USENIX Association 2024 USENIX Annual Technical Conference 187

[40] Michael Wu and Willy Zwaenepoel. envy: a non-

volatile, main memory storage system. ACM SIGOPS
Operating Systems Review, 28(5):86–97, 1994.

[41] Han-Joon Kim and Sang-goo Lee. A new flash memory

management for flash storage system. In Proceedings.
Twenty-Third Annual International Computer Software
and Applications Conference (Cat. No. 99CB37032),
pages 284–289. IEEE, 1999.

[42] M-L Chiang and R-C Chang. Cleaning policies in mo-

bile computers using flash memory. Journal of Systems
and Software, 48(3):213–231, 1999.

[43] Fan Ni, Chunyi Liu, Yang Wang, Chengzhong Xu, Xiao

Zhang, and Song Jiang. A hash-based space-efficient

page-level ftl for large-capacity ssds. In 2017 Inter-
national Conference on Networking, Architecture, and
Storage (NAS), pages 1–6. IEEE, 2017.

[44] Youngjae Kim, Aayush Gupta, and Bhuvan Urgaonkar.

A temporal locality-aware page-mapped flash translation

layer. Journal of Computer Science and Technology,

28(6):1025–1044, 2013.

[45] Zhiguang Chen, Nong Xiao, Fang Liu, and Yimo Du.

Hot data-aware ftl based on page-level address mapping.

In 2010 IEEE 12th International Conference on High
Performance Computing and Communications (HPCC),
pages 713–718. IEEE, 2010.

[46] David L. Black. The nvme standard: The next five years.

NVMe Developer Days, 2018.

[47] Matias Bjørling. Zoned namespaces in practice. In

Flash memory summit, 2019.

[48] Xiangqun Zhang, Shuyi Pei, Jongmoo Choi, and Bryan S

Kim. Excessive ssd-internal parallelism considered

harmful. In Proceedings of the 15th ACM Workshop on
Hot Topics in Storage and File Systems, pages 65–72,

2023.

[49] Yang Hu, Hong Jiang, Dan Feng, Lei Tian, Hao Luo, and

Chao Ren. Exploring and exploiting the multilevel par-

allelism inside ssds for improved performance and en-

durance. IEEE Transactions on Computers, 62(6):1141–

1155, 2012.

[50] Jeong-Uk Kang, Jin-Soo Kim, Chanik Park, Hyoungjun

Park, and Joonwon Lee. A multi-channel architecture

for high-performance nand flash-based storage system.

Journal of systems Architecture, 53(9):644–658, 2007.

[51] Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai.

Error patterns in mlc nand flash memory: Measurement,

characterization, and analysis. In Proceedings of 2012
Design, Automation & Test in Europe Conference &
Exhibition (DATE), pages 521–526, 2012.

[52] Laura M Grupp, Adrian M Caulfield, Joel Coburn,

Steven Swanson, Eitan Yaakobi, Paul H Siegel, and

Jack K Wolf. Characterizing flash memory: Anoma-

lies, observations, and applications. In Proceedings of
the 42nd Annual IEEE/ACM International Symposium
on Microarchitecture, pages 24–33, 2009.

[53] Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo,

and Onur Mutlu. Error characterization, mitigation, and

recovery in flash-memory-based solid-state drives. Pro-
ceedings of the IEEE, 105(9):1666–1704, 2017.

[54] Yu Cai, Yixin Luo, Saugata Ghose, and Onur Mutlu.

Read disturb errors in mlc nand flash memory: Charac-

terization, mitigation, and recovery. In Proceedings of
2015 45th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks, pages 438–449,

2015.

[55] Cheng Ji, Li-Pin Chang, Liang Shi, Chao Wu, Qiao Li,

and Chun Jason Xue. An empirical study of file-system

fragmentation in mobile storage systems. In Proceed-
ings of 8th {USENIX} Workshop on Hot Topics in Stor-
age and File Systems (HotStorage 16), 2016.

[56] INCITS T10 Technical Committee. Information tech-

nology - Zoned Block Commands (ZBC). https:
//www.t10.org/, 2014.

[57] Jinglei Ren, Chieh-Jan Mike Liang, Yongwei Wu, and

Thomas Moscibroda. Memory-Centric data storage for

mobile systems. In 2015 USENIX Annual Technical
Conference (USENIX ATC 15), pages 599–611, Santa

Clara, CA, July 2015. USENIX Association.

[58] Daniel Hintze, Philipp Hintze, Rainhard D Findling, and

René Mayrhofer. A large-scale, long-term analysis of

mobile device usage characteristics. Proceedings of the
ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies, 1(2):1–21, 2017.

[59] Rajiv Agarwal and Marcus Marrow. A closed-form

expression for write amplification in nand flash. In 2010
IEEE Globecom Workshops, pages 1846–1850, 2010.

[60] Xiao-Yu Hu, Evangelos Eleftheriou, Robert Haas, Ilias

Iliadis, and Roman Pletka. Write amplification analy-

sis in flash-based solid state drives. In Proceedings of
SYSTOR 2009, pages 1–9, 2009.

[61] Kyuhwa Han, Hyunho Gwak, Dongkun Shin, and Jooy-

oung Hwang. Zns+: Advanced zoned namespace in-

terface for supporting in-storage zone compaction. In

Proceedings of 15th USENIX Symposium on Operating
Systems Design and Implementation (OSDI’21), pages

147–162, 2021.

188 2024 USENIX Annual Technical Conference USENIX Association

[62] fio - Flexible I/O tester. https://fio.readthedocs.
io/en/latest/fio_doc.html.

[63] Sooman Jeong, Kisung Lee, Jungwoo Hwang, Seongjin

Lee, and Youjip Won. Androstep: Android storage per-

formance analysis tool. Software Engineering 2013-
Workshopband, 2013.

[64] mobibench. https://github.com/ESOS-Lab/
Mobibench.

[65] Gihwan Oh, Sangchul Kim, Sang-Won Lee, and Bongki

Moon. Sqlite optimization with phase change mem-

ory for mobile applications. Proceedings of the VLDB
Endowment, 8(12):1454–1465, 2015.

[66] Ashish Bijlani, Umakishore Ramachandran, and Roy

Campbell. Where did my 256 gb go? a measurement

analysis of storage consumption on smart mobile de-

vices. Proc. ACM Meas. Anal. Comput. Syst., 5(2), jun

2021.

[67] Cheng Ji, Riwei Pan, Li-Pin Chang, Liang Shi, Zongwei

Zhu, Yu Liang, Tei-Wei Kuo, and Chun Jason Xue. In-

spection and characterization of app file usage in mobile

devices. ACM Trans. Storage, 16(4), sep 2020.

[68] Hojin Shin, Myounghoon Oh, Gunhee Choi, and Jong-

moo Choi. Exploring performance characteristics of zns

ssds: Observation and implication. In 2020 9th Non-
Volatile Memory Systems and Applications Symposium
(NVMSA), pages 1–5. IEEE, 2020.

[69] Damien Le Moal and Ting Yao. zonefs: Mapping posix

file system interface to raw zoned block device accesses.

2020.

[70] Naohiro Aota. btrfs: zoned block device sup-

port. https://lore.kernel.org/linux-btrfs/
cover.1612433345.git.naohiro.aota@wdc.com/.

[71] Damien Le Moal. f2fs: Zoned block device support.

https://lore.kernel.org/linux-f2fs-devel/
1477644307-30115-1-git-send-email-damien.
lemoal@wdc.com/.

[72] Gunhee Choi, Kwanghee Lee, Myunghoon Oh, Jong-

moo Choi, Jhuyeong Jhin, and Yongseok Oh. A new

lsm-style garbage collection scheme for zns ssds. In

Proceedings of 12th USENIX Workshop on Hot Topics
in Storage and File Systems (HotStorage 20), 2020.

[73] W Chung. Benefits of zns in datacenter storage systems.

In Flash memory summit, 2019.

[74] Ivan Luiz Picoli, Niclas Hedam, Philippe Bonnet, and

Pinar Tözün. Open-channel ssd (what is it good for). In

CIDR, 2020.

[75] NVM Express Workgroup. TP4146 Flexible Data

Placement 2022.11.30 Ratified. https://nvmexpress.
org/specifications/, 2022.

[76] Amir Ban. Flash file system. United States Patent, no.
5,404,485, 1995.

[77] Jeong-Uk Kang, Heeseung Jo, Jin-Soo Kim, and Joon-

won Lee. A superblock-based flash translation layer for

nand flash memory. In Proceedings of the 6th ACM &
IEEE International conference on Embedded software,

pages 161–170, 2006.

[78] Sang-Won Lee, Dong-Joo Park, Tae-Sun Chung, Dong-

Ho Lee, Sangwon Park, and Ha-Joo Song. A log buffer-

based flash translation layer using fully-associative sec-

tor translation. ACM Transactions on Embedded Com-
puting Systems (TECS), 6(3):18–es, 2007.

[79] Sungjin Lee, Dongkun Shin, Young-Jin Kim, and Jihong

Kim. Last: locality-aware sector translation for nand

flash memory-based storage systems. ACM SIGOPS
Operating Systems Review, 42(6):36–42, 2008.

[80] Chanik Park, Wonmoon Cheon, Jeonguk Kang, Kangho

Roh, Wonhee Cho, and Jin-Soo Kim. A reconfigurable

ftl (flash translation layer) architecture for nand flash-

based applications. ACM Transactions on Embedded
Computing Systems (TECS), 7(4):1–23, 2008.

[81] Jesung Kim, Jong Min Kim, Sam H Noh, Sang Lyul Min,

and Yookun Cho. A space-efficient flash translation

layer for compactflash systems. IEEE Transactions on
Consumer Electronics, 48(2):366–375, 2002.

[82] Yunji Kang and Dongkun Shin. mstream: stream man-

agement for mobile file system using android file con-

texts. In Proceedings of the 36th Annual ACM Sympo-
sium on Applied Computing, pages 1203–1208, 2021.

[83] Roy Friedman and David Sainz. File system usage in

android mobile phones. In Proceedings of the 9th ACM
International Systems and Storage Conference, pages

1–11, 2016.

USENIX Association 2024 USENIX Annual Technical Conference 189

