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Abstract
For over forty years, researchers have demonstrated that

operating system memory managers often fall short in support-
ing memory-hungry applications. The problem is even more
critical today, with disaggregated memory and new memory
technologies and in the presence of tera-scale machine learn-
ing models, large-scale graph processing, and other memory-
intensive applications. Past attempts to provide application-
specific memory management either required significant in-
kernel changes or suffered from high overhead. We present
EXTMEM, a flexible framework for providing application-
specific memory management. It differs from prior solutions
in three ways: (1) It is compatible with today’s Linux de-
ployments, (2) it is a general-purpose substrate for addressing
various memory and storage backends, and (3) it is performant
in multithreaded environments. EXTMEM allows for easy and
rapid prototyping of new memory management algorithms,
easy collection of memory patterns and statistics, and imme-
diate deployment of isolated custom memory management.

1 Introduction

Memory management plays a significant role in application
performance and operational cost [18, 86, 91]. Due to the
cost and scaling trends of DRAM, memory has emerged as a
costly and scarce resource in modern datacenters [57, 63, 87].
This challenge has become even more critical today given
workloads such as tera-scale machine learning [11, 64, 73],
large-scale graph processing [38,79], in-memory databases
[34,83], and other memory-intensive applications [17,46,53].

Operators have turned to innovative memory architectures
such as disaggregated memory [15, 40, 63], tiered memory
[61, 76, 93], and memory-centric computing [68, 69] to ad-
dress the challenges presented by memory-hungry applica-
tions. These approaches have produced a dynamic and diverse
memory hardware landscape, with myriad ongoing develop-
ments [12, 52, 54, 71]. Consequently, system designers must
not only incorporate core kernel support for these novel mem-
ory devices but also revamp memory management policies.

This transformation is essential to fully leverage hardware
benefits and optimize memory utilization [16, 31].

In this evolving landscape, the concept of a one-size-
fits-all memory management policy is no longer tenable
[31, 33, 37]. While researchers have illustrated instances
where general-purpose operating system memory managers
fell short in catering to the needs of data-intensive appli-
cations [2, 21, 55, 92, 94], this inadequacy has been exacer-
bated with the ongoing innovations in memory architecture
and the increasingly diverse range of hardware configura-
tions [22, 33, 48]. For example, researchers showed that a
major system bottleneck can be memory management and
page faults rather than device bandwidth [13]. Consequently,
the selection of memory management policies has become
a case-specific endeavor. For instance, in the context of dat-
acenters, TMO [91] achieved 20% memory saving without
significant performance penalties by tuning the kernel poli-
cies that offload memory to SSD devices. Canvas [90] intro-
duced a prefetcher for the JVM; Semeru [89] modified the
in-kernel swap system to support JVM runtime disaggrega-
tion; and Dilos [95] demonstrated a prefetcher for Redis [25].
Unfortunately, these approaches do not work for the general
case. Prior research has also underscored the inefficacy of
traditional paging policies in tiered memory systems [33, 76],
leading to the development of specialized policies.

Developing, testing, and deploying new memory managers
in the kernel is challenging [39]. The Linux memory manage-
ment system is a core kernel component that must function
effectively for a wide range of responsibilities in the system,
and in recent years, it has become increasingly complex, with
some calling for emulators or simulators to help [4, 7]. De-
veloping new memory policies is a research-intensive task
that is further slowed by the kernel development process. For
example, implementing the Leap prefetching algorithm [14]
required modification of 20 kernel files, even though the algo-
rithm itself can be expressed in 20 lines of code. Researchers
that built Canvas [90] report spending 17 months on kernel
development for paging policy optimizations. Furthermore,
deploying new systems requires rigorous testing to maintain
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system stability and avoid affecting other applications [9]. As
a result, many developers are hesitant to add special-purpose
memory management enhancements to the kernel [6].

Previous efforts addressing memory management chal-
lenges require either substantial kernel modifications [13, 22,
93] or entirely new kernel architectures [58, 80]. Dilos [95]
implemented prefetching in its library OS to circumvent ker-
nel paging stack limitations. FBMM [85] proposes memory
management inside a VFS kernel module. While these con-
ceptual advances hold value, they often prove hard to im-
plement and deploy in real-world use cases. Prior attempts
at user-space memory management have significant short-
comings, as they either require runtime support [41, 77, 89],
application modifications [30, 88], are for specific applica-
tions [56, 81] or specific memory back-ends [76], or cause
high overheads [10, 23, 67, 72].

We introduce EXTMEM, a framework designed for
application-based memory management in user space that
avoids the shortcomings of prior work. EXTMEM elevates the
task of memory management policies and paging mechanisms
to user space. It cleanly separates responsibilities, allowing
the kernel to maintain security and isolation while delegating
memory management policies to user space. Our framework
provides ease of development and rapid testing in user space.
With its observability layer, EXTMEM offers data collection
modules for metrics such as access bits and hardware counter
samples.

EXTMEM builds on well-known ideas and mechanisms,
such as user-level page fault handling, kernel signals and up-
calls, but it brings them together in a novel way to enable
bespoke memory management policies in modern Linux de-
ployments with overhead similar to that of in-kernel paging.
EXTMEM operates seamlessly without necessitating any mod-
ifications to application code, while also empowering appli-
cation developers to implement application-specific memory
management policies. Developers can use EXTMEM for three
main tasks: Developing and testing new memory managers,
deploying highly customized memory managers, and gain-
ing control and observability over the working memory of
software such as serverless frameworks, garbage collectors,
databases, and data-intensive applications.

We considered the design implications of the widely-used
Linux subsystem for user space paging, userfaultfd [10],
which relies on file-based IPC and server threads to handle
page faults, and thus scales poorly for multithreaded work-
loads. In contrast, the EXTMEM architecture is based on
upcalls, allowing for scalable self-paging [43] even in highly
multithreaded environments. We implemented our approach
using existing userfaultfd and signaling interfaces in Linux.
Supporting EXTMEM requires modifications of only 200 lines
of Linux code localized to the userfaultfd and signaling sub-
systems.

Our work makes the following contributions: First, we de-
sign and implement EXTMEM, a framework for the rapid

development of customized memory managers in user space.
Second, we propose an innovative page fault handling mecha-
nism in user space, designed to scale and perform effectively
in multi-threaded environments. We demonstrate the appli-
cability of our framework through two case studies. One in-
volves the implementation of a Linux-like memory reclaim
policy, written in only 300 lines of code, with performance
that is similar to Linux in-kernel implementation for memory-
intensive workloads. In the second case study, we demonstrate
a substantial 50% performance improvement over native swap-
based execution in the GAP benchmark suite’s [20] PageRank
algorithm. This boost was achieved through the development
of a custom memory management policy with minimal de-
velopment effort. The major contribution of this work is the
framework and the associated techniques to enable efficient
memory management at the user level. The policies provided
and evaluated in this work are proof-of-concepts that demon-
strate the practicality and utility of our framework.

EXTMEM is publicly available as open-source software.1

2 The 2024 Case for External Paging

For more than four decades, researchers have advocated
for granting applications control over memory management
[24, 82]. Even today, the majority of large-scale commer-
cial database servers implement their own memory manage-
ment [2, 47, 78]. Despite substantial advances in the Linux
memory management subsystem, situations where the ker-
nel’s memory manager is inadequate still arise [28, 55, 95].
While micro-kernels offer an elegant solution to the external
paging problem, their adoption for production use has been
hindered by complexities [26, 44]. In contrast, the monolithic
paging model has gained widespread acceptance due to its
transparency, ease of use, and strong performance in a wide
range of common use cases.

Yet, memory management is even more important today
than in the past, due to new disaggregated memory architec-
tures [13,42] and new memory technology, such as CXL [84]
and processing-in-memory (PIM) [36]. We first discuss how
the need for sophisticated memory management is even more
pressing today than it was in times past (section 2.1). We then
discuss how microkernels addressed this problem and how
newer semi-kernels are a modern-day, deployable technique
to leverage the benefits of the microkernel.

2.1 New Memory Architectures, New Needs
The evolving memory landscape and the increasing hetero-
geneity of execution environments [37, 60, 61] underscores
the increasing importance of memory management. Each en-
vironment and architecture presents unique challenges and
advantages, necessitating specialized memory management

1https://github.com/SepehrDV2/ExtMem
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approaches. For instance, memory disaggregation [13, 40, 42]
extends a system’s memory capacity beyond physical DRAM
by retrieving data from far memory and mapping it into the
local address space. Effectively managing data placement
and movement between local and disaggregated memory falls
within the domain of memory management [15, 91]. This
complexity highlights the need for tailored memory man-
agement solutions to optimize memory utilization and per-
formance in diverse execution environments. Furthermore,
although emerging byte-addressable memory architectures
such as CXL-attached memory [1, 61] can eliminate major
page faults, they require techniques such as page promotion
for optimal performance [60,67]. EXTMEM offers a common
framework for developing paging and page promotion algo-
rithms, simplifying development and code reuse across these
memory systems.

2.2 Microkernels and Semi-microkernels

Microkernels [75] offer improved code management [62, 74],
enhanced security [49, 50], and isolation [44] by placing the
operating system functionality in user-space servers. Micro-
kernels address the external paging problem by implementing
memory pagers in user space and using Inter-Process Com-
munication (IPC) [50, 62].

Although for decades microkernels were considered im-
practical for wide deployment [26, 44], we are witnessing
a renewed interest in this architecture. Notably, microker-
nels inspired a line of work called “semi-microkernels”. The
semi-microkernels, exemplified by projects such as Snap [66],
uFS [65], Shenango [70] and ghOSt [45] are user-level pro-
cesses that work alongside the conventional monolithic kernel
while realizing either partial or entire OS subsystems, such as
the networking stack. To facilitate the streamlined develop-
ment of bespoke management policies for memory-intensive
applications, our system adopts a semi-microkernel structure.

3 EXTMEM: Design

Our design goals for EXTMEM are to: a) enable experimen-
tation with new memory management policies, b) provide
observability over the memory of real executions, and c) allow
quick deployment of highly customized memory managers
without kernel modification across a wide range of scenarios,
excluding only the most latency-sensitive situations.

To realize these goals, EXTMEM must be non-intrusive
– ensuring any kernel modifications are small and easily
portable as Linux evolves, extensible – allowing rapid de-
velopment of new memory managers, transparent – requiring
no changes to applications, safe – preventing application-
specific memory managers from compromising the kernel or
unaffected applications, and efficient. These criteria advocate
a library-OS-like design deployable in Linux.

3.1 The User View

EXTMEM is designed as a dynamically linked library that
can be transparently loaded into the application address space
via LD_PRELOAD. User code interacts with EXTMEM in
two ways: explicitly through a library API and implicitly
through native memory-related system calls such as mmap and
madvise, which we intercept using Intel libsyscall_intercept
[8] and handle them in EXTMEM. When an EXTMEM core
function is bound to an intercepted system call such as mmap,
this function is executed upon each invocation of that system
call. The bound function can itself invoke a kernel system
call and/or other ExtMem functions. Explicit interaction is
for developers creating custom memory managers; implicit
interaction is for unmodified applications running on top of
EXTMEM.

EXTMEM is structured in three layers. The core layer is
responsible for interacting with the kernel: it handles sys-
tem calls and receives page faults. The observability layer
provides the functionality commonly used by memory man-
agers such as access to page table access bits and to hardware
counter sampling. The policy layer contains implementations
of policies, e.g., deciding which pages to evict, prefetch, etc.

3.2 The Core Layer

We use the existing userfaultfd interface in Linux to securely
register areas for user-level page faults. Userfaultfd is a ker-
nel subsystem that forwards page faults for these registered
areas to a user process. Memory areas are registered and spe-
cific pages are mapped into the application address space via
ioctl system calls and are unmapped using madvise with
the MADV_DONTNEED flag. EXTMEM relies on this API
to transparently register/deregister the memory of applica-
tions it manages upon intercepting the mmap, munmap, and
madvise system calls; these system calls are used by libc to
grow and shrink the heap area.

EXTMEM maintains direct control over storage space for
swap and file backings; we only require that the backend
support synchronous and asynchronous reads/writes. In the
current prototype, we’ve implemented an interface to NVMe
SSD using Linux io_uring. RDMA interfaces provide similar
semantics. EXTMEM manages the local or remote memory
dedicated to it. In scenarios where multiple applications or
nodes share a remote memory area, a daemon or global man-
ager would do coarse grain management and allocate slabs
to each EXTMEM instance. This case is well studied in the
previous work [15, 40].

Second-tier memory devices, such as CXL-attached mem-
ory, are typically presented as additional NUMA nodes with-
out CPUs. We perform basic page migration using the Linux
move_pages system call. We defer further exploration of tier-
ing to future work and believe that more robust interfaces,
including userfaultfd and madvise options for direct page
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Figure 1: Userfaultfd method: 1. Application registers a mem-
ory area with the kernel and receives a file descriptor. 2. A
handler thread calls a select/poll system call on the file de-
scriptor. 3. A thread triggers a page fault and context switches
into the kernel. 4. After verifying the faulting address, ker-
nel submits the fault information to the file descriptor and
blocks the faulting thread. 5. The user-level handler receives
the fault, and performs the necessary IO and data preparation.
6. A user level makes a system call to map the new page
and unblock the faulting thread. 7. Faulting thread goes back
to continue the execution. The red arrows are inter-process-
communication.

allocation on specific nodes, can be developed for improved
performance. Tiering interfaces are under active development
in the kernel community [5].

3.2.1 Handling page faults

The primary challenge for EXTMEM is effectively handling
page faults in user space. In current architectures, page fault
triggers a context switch to the kernel. There are two main
approaches for forwarding these page faults to user space:
IPC (Inter-Process Communication) and upcalls.

Microkernels, such as sel4 [50], use IPC both to transmit
fault information to a user-space fault handler and to return
a response. Linux’s userfaultfd [10] uses a similar approach.
When a program registers a memory area with userfaultfd, it
receives a file descriptor. When a thread faults in that area,
the kernel sends the fault information to the file descriptor
and blocks the thread. A handler thread monitors the file
descriptor and handles the received page faults, waking up
the faulting thread via ioctl.

While userfaultfd has been adopted in recent memory man-
agers [23, 76, 90], it exhibits two inherent performance is-
sues. First, the communication between faulting and handler
threads essentially constitutes an IPC mechanism, incurring
considerable overhead and burdening the scheduler. Second,
userfaultfd becomes a point of serialization, limiting scala-
bility. Even if multiple handler threads are active, they must
synchronize over the file descriptor and the wait queue of
faulting threads. Consequently, userfaultfd excels only in sce-
narios where page faults are infrequent, not time-sensitive, or
already require IPC.

Another approach for user-space, page-fault handling is

Kernel

Application User Fault
Endpoint

1
2

36

4

5

Page Fault

Figure 2: Upcall method based on Linux signal path: 1. Appli-
cation registers a memory area with the kernel and registers
an upcall handler function. 2. A thread triggers a page fault
and context switches into the kernel. 3. Kernel makes an up-
call by registering the upcall handler context on the faulting
thread’s stack 4. The faulting thread is back in userland, and
executes handler code to perform the necessary IO and data
preparation. 5. Faulting thread makes a system call to map
the new page and return from the upcall. 6. Faulting thread
goes back to continue the execution. No IPC is necessary.

via upcalls. Exokernels [32, 43] and multi-kernels [19] use
upcalls to handle page faults in the same process in user
space. This approach, known as self-paging, offers advantages
in terms of flexibility [47], scalability [19], and Quality of
Service (QoS) [43]. The closest element to an upcall inside
the Linux kernel is the signal handling path. The kernel can
direct signals such as SIGBUS to the same thread that caused
the fault and set up a new context on the thread’s stack to
handle it in user space. The thread jumps to the signal handler
function, resembling an upcall.

We adopt this SIGBUS pathway to implement upcalls. Us-
ing the existing signal path instead of implementing a new
upcall means that EXTMEM requires only a few isolated
changes to the kernel. To that end, we modified userfaultfd to
not block the faulting thread upon a pagefault, but to generate
a SIGBUS instead. Our core layer provides a corresponding
signal handler, which eventually calls the policy layer.

Unfortunately, the SIGBUS path produces contention on
the per-process signal handler structure in the kernel and
limits the signal handler to async-safe functions, only. To
address contention, we introduce an additional signal handler
structure within the Linux task struct, localized to each thread
(task), exclusively used for handling the SIGBUS forced by
the same task in page faults. Consequently, tasks no longer
contend for access to a shared structure. Although this method
incurs some overhead compared to a pure upcall, it exhibits
the same scalability as a traditional upcall.

The signal/upcall handler must, in the general case, only
execute functions that are async-safe, i.e., functions that can
be asynchronously interrupted and re-entered. To address
these constraints, EXTMEM (1) disallows user-level page
faults in itself (i.e., we never register EXTMEM memory for
user-level fault handling), 2) never manipulates user memory
that hasn’t been locked by the kernel due to a page fault, 3)
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does not maintain global state and (4) refrains from using
stateful libc functions such as malloc and printf.

3.3 Observability Layer
One essential tool used by memory managers is tracking
memory accesses to differentiate frequently accessed (hot)
and infrequently accessed (cold) data, enabling efficient
cache replacement, page promotion, and prefetching strate-
gies. EXTMEM provides access to: 1) the faulting addresses
of page faults, 2) MMU access and dirty bits (via new ioctl
calls), and 3) hardware counters. Specialized ioctl system
calls for accessing these bits in user space are pending in the
upstream kernel [3].

3.4 Policy Layer
Within the policy layer, developers implement custom poli-
cies that identify cold pages for eviction or demotion and
select potential pages for prefetching or promotion. To im-
plement parts of EXTMEM, we adopted some pieces of API
from HeMem [76]. The policy layer maintains a list of free
pages and returns them to faulting threads for allocation or
swap operations. EXTMEM tracks pages using page structs,
and a policy can choose to maintain additional metadata as
necessary.

To demonstrate the ease of development provided by
EXTMEM, we implemented a 2Q-LRU page eviction policy
similar to the Linux kernel policy. Like Linux, our implemen-
tation uses page table access bits to track access recency and
maintains active and inactive pages using two FIFO lists. A
user-level kswapd thread scans page access bits and reclaims
inactive pages. When a specific threshold is reached, user
kswapd awakens evictor threads to write the least recently
accessed pages to swap. Our implementation required only
about 300 lines of localized code, compared to over 500 scat-
tered across many sub-systems in Linux.

Additionally, we implemented a straightforward sequential
page prefetcher (in 200 LOC) that, upon a page fault, fetches
not only the faulting page but also asynchronously fetches
the next n pages in the virtual address space, and a custom
memory manager for graph applications using the compressed
sparse row (CSR) layout (described in the next section).

4 Evaluation

Our evaluation answers the following questions: 1) How does
EXTMEM’s method of handling page faults in user space
perform compared to native Linux and userfaultfd? 2) How
well does EXTMEM scale with increasing thread counts? 3)
How does the performance of our implementation of 2Q-LRU
compare to that of the native Linux implementation? 4) What
are the performance advantages of our application-specific
memory manager?
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Figure 3: Average latency of resolving a single minor fault in a
single-threaded execution

We ran all experiments on a 2-socket machine (16 cores,
32 hardware threads each) with 2.30GHz Intel Xeon 5218
processors and 198GB of DDR4 DRAM, running a modified
Linux 5.15. We used an NVMe SSD disk with 2700 MB/s
read rate as our storage/swap backend. We use the Linux swap
system as our baseline and use Cgroups to control the amount
of available physical memory for the baseline. EXTMEM
explicitly controls available memory.

4.1 Upcall Performance
We evaluate our upcall performance under a high fault rate
(Figure 3, Figure 4). A varying number of threads continually
access pages in a newly allocated memory area to generate
minor faults. Minor page faults occur when a page is in mem-
ory but is not mapped in process page tables. Therefore, it
does not require any IO or data movement and represents
the basic fault resolution cost. We record the end-to-end la-
tency for each memory access and compute the average page
fault latency. As expected, the performance of userfaultfd
(UFFD) scales poorly due to the round-trip IPC in the fault
handling path. While the default SIGBUS approach exhibits
better scalability, it suffers from a serialization bottleneck.
In contrast, our upcall method exhibits superior scalability,
closely mirroring the kernel’s performance; both methods ul-
timately bottleneck on mmap lock contention. Ongoing work
in lockless paging [9,27,59] should benefit both in-kernel and
user-level self-paging.
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Figure 4: Average latency of resolving a minor fault in a multi-
threaded system under pressure
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4.2 Microbenchmarks
For the remaining tests, we use the mmap microbenchmark
derived from Crotty et al [28]. The benchmark initializes a 16
GB region of memory and updates bytes in that region using
different patterns. We limit the amount of available RAM to
8 GB, to encourage page faults.

Random Access: First, we update the bytes uniformly at
random, so 50% of the memory is paged out, and each access
has a 50% chance of causing a major page fault. Figure 5a
shows the memory update throughput as a function of the
number of threads. We see that the 2Q-LRU policy imple-
mented in EXTMEM performs better than Linux and scales
well with multiple threads. The EXTMEM implementation
evicts pages more quickly than Linux does, because its evic-
tion code path is simpler, thereby explaining its performance
advantage. Policy and prefetching have no effect on this test
since the access pattern is uniformly random.
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(b) Sequential Updates
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Figure 5: Throughput of the system making byte-sized updates when
50% of the working set fits in memory.

Sequential Access: Next, we evaluate our sequential
prefetcher used in conjunction with the 2Q-LRU in EXTMEM.
Here we use a sequential update pattern. Figure 5b shows
that EXTMEM outperforms Linux, because we prefetch more
aggressively. Throughput levels off at about four threads in
EXTMEM, due to expensive userfaultfd’s write-protect and
madvise operations required when evicting pages to storage.
These operations operate on only one page at a time, hold the
mmap lock, and are generally slow. A faster page unmapping
path can resolve this in the future.

Working Set Access: Our last microbenchmark is a variant
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Figure 6: Throughput over time of EXTMEM and Linux for the
working set access microbenchmark both implementing the 2Q-
LRU policy. EXTMEM-2Q-LRU efficiently keeps working set in
memory.

of the random one; rather than updating bytes uniformly at
random, we update them with a skewed distribution in which
90% of updates are to 10% of the memory, and the remain-
ing 10% of updates are randomly distributed in the whole
region. As in the other experiments, we use the 2Q-LRU in
EXTMEM. This experiment illustrates how EXTMEM effi-
ciently identifies and keeps the working set in memory, much
like Linux. Figure 6 shows system performance as a function
of time, when we run with eight threads. In both systems,
performance climbs quickly and then levels off, demonstrat-
ing that both Linux and EXTMEM maintain the hot working
set in memory, while swapping less frequently accessed data.
As before, EXTMEM is faster than Linux, due to its simpler
eviction code path.

4.3 Application Study

Graph processing under memory constraints is an exam-
ple of an application that can benefit from EXTMEM with
application-specific memory management. As a proof of con-
cept, we implemented custom memory management for a
graph processing system that uses the compressed sparse row
layout to store the graph. Our goal is to achieve good run-
time performance using in-memory data structures, even if
the graph exceeds available memory.

Compressed Sparse Row (CSR) [29] is a prevalent data
structure used for in-memory graph analytics. It consists of
two arrays: a vertex array and an edge array. The vertex array
stores a pointer to the data structure of vertex attributes and
a pointer to the starting position of the vertex edges in the
edge array. The edge array stores all edges, grouped by source
vertex ID, and sorted by destination vertex ID within each
group. Many graph algorithms process vertices’ neighbor-
hoods sequentially [35] (e.g., PageRank), so CSR’s sequential
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layout is attractive.
We developed a custom memory manager based on the fol-

lowing intuition. First, edges account for the majority of space
consumed by a graph, because graphs typically have many
more edges than vertices. Second, many algorithms repeat-
edly iterate over neighborhoods. Our policy keeps the vertex
array, arrays that store vertex attributes, and intermediate val-
ues (e.g., the rank of vertices in a PageRank computation) in
memory. In contrast, we store only a sliding window of the
edge array in memory. In each iteration over the edge array,
we move this sliding window, evicting the pages that are no
longer necessary and prefetching the next window of pages
in the background. We implemented this custom policy over
the existing default policy by changing fewer than 100 lines
of code. This implementation is available in the published
artifact.

Figure 7 demonstrates the benefit of the custom memory
management policy for computing PageRank (EXTMEM-PR).
We ran 10 iterations of the algorithm using the standard GAP
[20] benchmarking suite on the Twitter graph [51], limiting
memory to 50% of the total graph size. Figure 7 shows that
using EXTMEM with an algorithm almost identical to that of
Linux (EXTMEM-2QLRU) produces a modest improvement,
but when we deploy the custom algorithm (EXTMEM-PR),
we obtain a speedup over 2×. Perhaps even more surprisingly,
using our user-level custom paging policy, when only 50%
of the graph fits in memory, our runtime is only slightly over
twice that of a pure in-memory solution.
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Figure 7: Runtime of 10 iterations of pagerank on the Twitter dataset
using GAP benchmark suite.

5 Conclusion

We introduced EXTMEM, a versatile framework tailored
for application-specific memory management in user space.
EXTMEM seamlessly integrates into Linux-based environ-
ments, offering developers a flexible platform with high code
velocity while maintaining isolation by running in the applica-
tion’s address space. Using an upcall approach, it establishes
a scalable self-paging architecture, resolving shortcomings
of previous user-space paging systems. By reusing the signal
handling code path for upcalls, EXTMEM requires only small
isolated changes to Linux.

EXTMEM still faces limitations stemming from scalability
issues within the underlying operating system’s virtual mem-
ory system, particularly the mmap lock. Despite these limita-
tions, EXTMEM empowers users to harness the performance
advantages of application-aware memory management in real-
world scenarios. As we continue to explore the workload and
hardware-aware memory management policies, EXTMEM
provides a promising framework for future developments in
this domain.
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