
This paper is included in the Proceedings of the
2024 USENIX Annual Technical Conference.

July 10–12, 2024 • Santa Clara, CA, USA
978-1-939133-41-0

Open access to the Proceedings of the
2024 USENIX Annual Technical Conference

is sponsored by

ExtMEM: Enabling Application-Aware Virtual Memory
Management for Data-Intensive Applications
Sepehr Jalalian, Shaurya Patel, Milad Rezaei Hajidehi, Margo Seltzer,

and Alexandra Fedorova, University of British Columbia
https://www.usenix.org/conference/atc24/presentation/jalalian

EXTMEM: Enabling Application-Aware Virtual Memory Management for
Data-Intensive Applications

Sepehr Jalalian
University of British Columbia

Shaurya Patel
University of British Columbia

Milad Rezaei Hajidehi
University of British Columbia

Margo Seltzer
University of British Columbia

Alexandra Fedorova
University of British Columbia

Abstract
For over forty years, researchers have demonstrated that

operating system memory managers often fall short in support-
ing memory-hungry applications. The problem is even more
critical today, with disaggregated memory and new memory
technologies and in the presence of tera-scale machine learn-
ing models, large-scale graph processing, and other memory-
intensive applications. Past attempts to provide application-
specific memory management either required significant in-
kernel changes or suffered from high overhead. We present
EXTMEM, a flexible framework for providing application-
specific memory management. It differs from prior solutions
in three ways: (1) It is compatible with today’s Linux de-
ployments, (2) it is a general-purpose substrate for addressing
various memory and storage backends, and (3) it is performant
in multithreaded environments. EXTMEM allows for easy and
rapid prototyping of new memory management algorithms,
easy collection of memory patterns and statistics, and imme-
diate deployment of isolated custom memory management.

1 Introduction

Memory management plays a significant role in application
performance and operational cost [18, 86, 91]. Due to the
cost and scaling trends of DRAM, memory has emerged as a
costly and scarce resource in modern datacenters [57, 63, 87].
This challenge has become even more critical today given
workloads such as tera-scale machine learning [11, 64, 73],
large-scale graph processing [38,79], in-memory databases
[34,83], and other memory-intensive applications [17,46,53].

Operators have turned to innovative memory architectures
such as disaggregated memory [15, 40, 63], tiered memory
[61, 76, 93], and memory-centric computing [68, 69] to ad-
dress the challenges presented by memory-hungry applica-
tions. These approaches have produced a dynamic and diverse
memory hardware landscape, with myriad ongoing develop-
ments [12, 52, 54, 71]. Consequently, system designers must
not only incorporate core kernel support for these novel mem-
ory devices but also revamp memory management policies.

This transformation is essential to fully leverage hardware
benefits and optimize memory utilization [16, 31].

In this evolving landscape, the concept of a one-size-
fits-all memory management policy is no longer tenable
[31, 33, 37]. While researchers have illustrated instances
where general-purpose operating system memory managers
fell short in catering to the needs of data-intensive appli-
cations [2, 21, 55, 92, 94], this inadequacy has been exacer-
bated with the ongoing innovations in memory architecture
and the increasingly diverse range of hardware configura-
tions [22, 33, 48]. For example, researchers showed that a
major system bottleneck can be memory management and
page faults rather than device bandwidth [13]. Consequently,
the selection of memory management policies has become
a case-specific endeavor. For instance, in the context of dat-
acenters, TMO [91] achieved 20% memory saving without
significant performance penalties by tuning the kernel poli-
cies that offload memory to SSD devices. Canvas [90] intro-
duced a prefetcher for the JVM; Semeru [89] modified the
in-kernel swap system to support JVM runtime disaggrega-
tion; and Dilos [95] demonstrated a prefetcher for Redis [25].
Unfortunately, these approaches do not work for the general
case. Prior research has also underscored the inefficacy of
traditional paging policies in tiered memory systems [33, 76],
leading to the development of specialized policies.

Developing, testing, and deploying new memory managers
in the kernel is challenging [39]. The Linux memory manage-
ment system is a core kernel component that must function
effectively for a wide range of responsibilities in the system,
and in recent years, it has become increasingly complex, with
some calling for emulators or simulators to help [4, 7]. De-
veloping new memory policies is a research-intensive task
that is further slowed by the kernel development process. For
example, implementing the Leap prefetching algorithm [14]
required modification of 20 kernel files, even though the algo-
rithm itself can be expressed in 20 lines of code. Researchers
that built Canvas [90] report spending 17 months on kernel
development for paging policy optimizations. Furthermore,
deploying new systems requires rigorous testing to maintain

USENIX Association 2024 USENIX Annual Technical Conference 397

system stability and avoid affecting other applications [9]. As
a result, many developers are hesitant to add special-purpose
memory management enhancements to the kernel [6].

Previous efforts addressing memory management chal-
lenges require either substantial kernel modifications [13, 22,
93] or entirely new kernel architectures [58, 80]. Dilos [95]
implemented prefetching in its library OS to circumvent ker-
nel paging stack limitations. FBMM [85] proposes memory
management inside a VFS kernel module. While these con-
ceptual advances hold value, they often prove hard to im-
plement and deploy in real-world use cases. Prior attempts
at user-space memory management have significant short-
comings, as they either require runtime support [41, 77, 89],
application modifications [30, 88], are for specific applica-
tions [56, 81] or specific memory back-ends [76], or cause
high overheads [10, 23, 67, 72].

We introduce EXTMEM, a framework designed for
application-based memory management in user space that
avoids the shortcomings of prior work. EXTMEM elevates the
task of memory management policies and paging mechanisms
to user space. It cleanly separates responsibilities, allowing
the kernel to maintain security and isolation while delegating
memory management policies to user space. Our framework
provides ease of development and rapid testing in user space.
With its observability layer, EXTMEM offers data collection
modules for metrics such as access bits and hardware counter
samples.

EXTMEM builds on well-known ideas and mechanisms,
such as user-level page fault handling, kernel signals and up-
calls, but it brings them together in a novel way to enable
bespoke memory management policies in modern Linux de-
ployments with overhead similar to that of in-kernel paging.
EXTMEM operates seamlessly without necessitating any mod-
ifications to application code, while also empowering appli-
cation developers to implement application-specific memory
management policies. Developers can use EXTMEM for three
main tasks: Developing and testing new memory managers,
deploying highly customized memory managers, and gain-
ing control and observability over the working memory of
software such as serverless frameworks, garbage collectors,
databases, and data-intensive applications.

We considered the design implications of the widely-used
Linux subsystem for user space paging, userfaultfd [10],
which relies on file-based IPC and server threads to handle
page faults, and thus scales poorly for multithreaded work-
loads. In contrast, the EXTMEM architecture is based on
upcalls, allowing for scalable self-paging [43] even in highly
multithreaded environments. We implemented our approach
using existing userfaultfd and signaling interfaces in Linux.
Supporting EXTMEM requires modifications of only 200 lines
of Linux code localized to the userfaultfd and signaling sub-
systems.

Our work makes the following contributions: First, we de-
sign and implement EXTMEM, a framework for the rapid

development of customized memory managers in user space.
Second, we propose an innovative page fault handling mecha-
nism in user space, designed to scale and perform effectively
in multi-threaded environments. We demonstrate the appli-
cability of our framework through two case studies. One in-
volves the implementation of a Linux-like memory reclaim
policy, written in only 300 lines of code, with performance
that is similar to Linux in-kernel implementation for memory-
intensive workloads. In the second case study, we demonstrate
a substantial 50% performance improvement over native swap-
based execution in the GAP benchmark suite’s [20] PageRank
algorithm. This boost was achieved through the development
of a custom memory management policy with minimal de-
velopment effort. The major contribution of this work is the
framework and the associated techniques to enable efficient
memory management at the user level. The policies provided
and evaluated in this work are proof-of-concepts that demon-
strate the practicality and utility of our framework.

EXTMEM is publicly available as open-source software.1

2 The 2024 Case for External Paging

For more than four decades, researchers have advocated
for granting applications control over memory management
[24, 82]. Even today, the majority of large-scale commer-
cial database servers implement their own memory manage-
ment [2, 47, 78]. Despite substantial advances in the Linux
memory management subsystem, situations where the ker-
nel’s memory manager is inadequate still arise [28, 55, 95].
While micro-kernels offer an elegant solution to the external
paging problem, their adoption for production use has been
hindered by complexities [26, 44]. In contrast, the monolithic
paging model has gained widespread acceptance due to its
transparency, ease of use, and strong performance in a wide
range of common use cases.

Yet, memory management is even more important today
than in the past, due to new disaggregated memory architec-
tures [13,42] and new memory technology, such as CXL [84]
and processing-in-memory (PIM) [36]. We first discuss how
the need for sophisticated memory management is even more
pressing today than it was in times past (section 2.1). We then
discuss how microkernels addressed this problem and how
newer semi-kernels are a modern-day, deployable technique
to leverage the benefits of the microkernel.

2.1 New Memory Architectures, New Needs
The evolving memory landscape and the increasing hetero-
geneity of execution environments [37, 60, 61] underscores
the increasing importance of memory management. Each en-
vironment and architecture presents unique challenges and
advantages, necessitating specialized memory management

1https://github.com/SepehrDV2/ExtMem

398 2024 USENIX Annual Technical Conference USENIX Association

approaches. For instance, memory disaggregation [13, 40, 42]
extends a system’s memory capacity beyond physical DRAM
by retrieving data from far memory and mapping it into the
local address space. Effectively managing data placement
and movement between local and disaggregated memory falls
within the domain of memory management [15, 91]. This
complexity highlights the need for tailored memory man-
agement solutions to optimize memory utilization and per-
formance in diverse execution environments. Furthermore,
although emerging byte-addressable memory architectures
such as CXL-attached memory [1, 61] can eliminate major
page faults, they require techniques such as page promotion
for optimal performance [60,67]. EXTMEM offers a common
framework for developing paging and page promotion algo-
rithms, simplifying development and code reuse across these
memory systems.

2.2 Microkernels and Semi-microkernels

Microkernels [75] offer improved code management [62, 74],
enhanced security [49, 50], and isolation [44] by placing the
operating system functionality in user-space servers. Micro-
kernels address the external paging problem by implementing
memory pagers in user space and using Inter-Process Com-
munication (IPC) [50, 62].

Although for decades microkernels were considered im-
practical for wide deployment [26, 44], we are witnessing
a renewed interest in this architecture. Notably, microker-
nels inspired a line of work called “semi-microkernels”. The
semi-microkernels, exemplified by projects such as Snap [66],
uFS [65], Shenango [70] and ghOSt [45] are user-level pro-
cesses that work alongside the conventional monolithic kernel
while realizing either partial or entire OS subsystems, such as
the networking stack. To facilitate the streamlined develop-
ment of bespoke management policies for memory-intensive
applications, our system adopts a semi-microkernel structure.

3 EXTMEM: Design

Our design goals for EXTMEM are to: a) enable experimen-
tation with new memory management policies, b) provide
observability over the memory of real executions, and c) allow
quick deployment of highly customized memory managers
without kernel modification across a wide range of scenarios,
excluding only the most latency-sensitive situations.

To realize these goals, EXTMEM must be non-intrusive
– ensuring any kernel modifications are small and easily
portable as Linux evolves, extensible – allowing rapid de-
velopment of new memory managers, transparent – requiring
no changes to applications, safe – preventing application-
specific memory managers from compromising the kernel or
unaffected applications, and efficient. These criteria advocate
a library-OS-like design deployable in Linux.

3.1 The User View

EXTMEM is designed as a dynamically linked library that
can be transparently loaded into the application address space
via LD_PRELOAD. User code interacts with EXTMEM in
two ways: explicitly through a library API and implicitly
through native memory-related system calls such as mmap and
madvise, which we intercept using Intel libsyscall_intercept
[8] and handle them in EXTMEM. When an EXTMEM core
function is bound to an intercepted system call such as mmap,
this function is executed upon each invocation of that system
call. The bound function can itself invoke a kernel system
call and/or other ExtMem functions. Explicit interaction is
for developers creating custom memory managers; implicit
interaction is for unmodified applications running on top of
EXTMEM.

EXTMEM is structured in three layers. The core layer is
responsible for interacting with the kernel: it handles sys-
tem calls and receives page faults. The observability layer
provides the functionality commonly used by memory man-
agers such as access to page table access bits and to hardware
counter sampling. The policy layer contains implementations
of policies, e.g., deciding which pages to evict, prefetch, etc.

3.2 The Core Layer

We use the existing userfaultfd interface in Linux to securely
register areas for user-level page faults. Userfaultfd is a ker-
nel subsystem that forwards page faults for these registered
areas to a user process. Memory areas are registered and spe-
cific pages are mapped into the application address space via
ioctl system calls and are unmapped using madvise with
the MADV_DONTNEED flag. EXTMEM relies on this API
to transparently register/deregister the memory of applica-
tions it manages upon intercepting the mmap, munmap, and
madvise system calls; these system calls are used by libc to
grow and shrink the heap area.

EXTMEM maintains direct control over storage space for
swap and file backings; we only require that the backend
support synchronous and asynchronous reads/writes. In the
current prototype, we’ve implemented an interface to NVMe
SSD using Linux io_uring. RDMA interfaces provide similar
semantics. EXTMEM manages the local or remote memory
dedicated to it. In scenarios where multiple applications or
nodes share a remote memory area, a daemon or global man-
ager would do coarse grain management and allocate slabs
to each EXTMEM instance. This case is well studied in the
previous work [15, 40].

Second-tier memory devices, such as CXL-attached mem-
ory, are typically presented as additional NUMA nodes with-
out CPUs. We perform basic page migration using the Linux
move_pages system call. We defer further exploration of tier-
ing to future work and believe that more robust interfaces,
including userfaultfd and madvise options for direct page

USENIX Association 2024 USENIX Annual Technical Conference 399

Kernel

Application User fault
endpoint

1
23

4

8

5

6

fdPage Fault

Figure 1: Userfaultfd method: 1. Application registers a mem-
ory area with the kernel and receives a file descriptor. 2. A
handler thread calls a select/poll system call on the file de-
scriptor. 3. A thread triggers a page fault and context switches
into the kernel. 4. After verifying the faulting address, ker-
nel submits the fault information to the file descriptor and
blocks the faulting thread. 5. The user-level handler receives
the fault, and performs the necessary IO and data preparation.
6. A user level makes a system call to map the new page
and unblock the faulting thread. 7. Faulting thread goes back
to continue the execution. The red arrows are inter-process-
communication.

allocation on specific nodes, can be developed for improved
performance. Tiering interfaces are under active development
in the kernel community [5].

3.2.1 Handling page faults

The primary challenge for EXTMEM is effectively handling
page faults in user space. In current architectures, page fault
triggers a context switch to the kernel. There are two main
approaches for forwarding these page faults to user space:
IPC (Inter-Process Communication) and upcalls.

Microkernels, such as sel4 [50], use IPC both to transmit
fault information to a user-space fault handler and to return
a response. Linux’s userfaultfd [10] uses a similar approach.
When a program registers a memory area with userfaultfd, it
receives a file descriptor. When a thread faults in that area,
the kernel sends the fault information to the file descriptor
and blocks the thread. A handler thread monitors the file
descriptor and handles the received page faults, waking up
the faulting thread via ioctl.

While userfaultfd has been adopted in recent memory man-
agers [23, 76, 90], it exhibits two inherent performance is-
sues. First, the communication between faulting and handler
threads essentially constitutes an IPC mechanism, incurring
considerable overhead and burdening the scheduler. Second,
userfaultfd becomes a point of serialization, limiting scala-
bility. Even if multiple handler threads are active, they must
synchronize over the file descriptor and the wait queue of
faulting threads. Consequently, userfaultfd excels only in sce-
narios where page faults are infrequent, not time-sensitive, or
already require IPC.

Another approach for user-space, page-fault handling is

Kernel

Application User Fault
Endpoint

1
2

36

4

5

Page Fault

Figure 2: Upcall method based on Linux signal path: 1. Appli-
cation registers a memory area with the kernel and registers
an upcall handler function. 2. A thread triggers a page fault
and context switches into the kernel. 3. Kernel makes an up-
call by registering the upcall handler context on the faulting
thread’s stack 4. The faulting thread is back in userland, and
executes handler code to perform the necessary IO and data
preparation. 5. Faulting thread makes a system call to map
the new page and return from the upcall. 6. Faulting thread
goes back to continue the execution. No IPC is necessary.

via upcalls. Exokernels [32, 43] and multi-kernels [19] use
upcalls to handle page faults in the same process in user
space. This approach, known as self-paging, offers advantages
in terms of flexibility [47], scalability [19], and Quality of
Service (QoS) [43]. The closest element to an upcall inside
the Linux kernel is the signal handling path. The kernel can
direct signals such as SIGBUS to the same thread that caused
the fault and set up a new context on the thread’s stack to
handle it in user space. The thread jumps to the signal handler
function, resembling an upcall.

We adopt this SIGBUS pathway to implement upcalls. Us-
ing the existing signal path instead of implementing a new
upcall means that EXTMEM requires only a few isolated
changes to the kernel. To that end, we modified userfaultfd to
not block the faulting thread upon a pagefault, but to generate
a SIGBUS instead. Our core layer provides a corresponding
signal handler, which eventually calls the policy layer.

Unfortunately, the SIGBUS path produces contention on
the per-process signal handler structure in the kernel and
limits the signal handler to async-safe functions, only. To
address contention, we introduce an additional signal handler
structure within the Linux task struct, localized to each thread
(task), exclusively used for handling the SIGBUS forced by
the same task in page faults. Consequently, tasks no longer
contend for access to a shared structure. Although this method
incurs some overhead compared to a pure upcall, it exhibits
the same scalability as a traditional upcall.

The signal/upcall handler must, in the general case, only
execute functions that are async-safe, i.e., functions that can
be asynchronously interrupted and re-entered. To address
these constraints, EXTMEM (1) disallows user-level page
faults in itself (i.e., we never register EXTMEM memory for
user-level fault handling), 2) never manipulates user memory
that hasn’t been locked by the kernel due to a page fault, 3)

400 2024 USENIX Annual Technical Conference USENIX Association

does not maintain global state and (4) refrains from using
stateful libc functions such as malloc and printf.

3.3 Observability Layer
One essential tool used by memory managers is tracking
memory accesses to differentiate frequently accessed (hot)
and infrequently accessed (cold) data, enabling efficient
cache replacement, page promotion, and prefetching strate-
gies. EXTMEM provides access to: 1) the faulting addresses
of page faults, 2) MMU access and dirty bits (via new ioctl
calls), and 3) hardware counters. Specialized ioctl system
calls for accessing these bits in user space are pending in the
upstream kernel [3].

3.4 Policy Layer
Within the policy layer, developers implement custom poli-
cies that identify cold pages for eviction or demotion and
select potential pages for prefetching or promotion. To im-
plement parts of EXTMEM, we adopted some pieces of API
from HeMem [76]. The policy layer maintains a list of free
pages and returns them to faulting threads for allocation or
swap operations. EXTMEM tracks pages using page structs,
and a policy can choose to maintain additional metadata as
necessary.

To demonstrate the ease of development provided by
EXTMEM, we implemented a 2Q-LRU page eviction policy
similar to the Linux kernel policy. Like Linux, our implemen-
tation uses page table access bits to track access recency and
maintains active and inactive pages using two FIFO lists. A
user-level kswapd thread scans page access bits and reclaims
inactive pages. When a specific threshold is reached, user
kswapd awakens evictor threads to write the least recently
accessed pages to swap. Our implementation required only
about 300 lines of localized code, compared to over 500 scat-
tered across many sub-systems in Linux.

Additionally, we implemented a straightforward sequential
page prefetcher (in 200 LOC) that, upon a page fault, fetches
not only the faulting page but also asynchronously fetches
the next n pages in the virtual address space, and a custom
memory manager for graph applications using the compressed
sparse row (CSR) layout (described in the next section).

4 Evaluation

Our evaluation answers the following questions: 1) How does
EXTMEM’s method of handling page faults in user space
perform compared to native Linux and userfaultfd? 2) How
well does EXTMEM scale with increasing thread counts? 3)
How does the performance of our implementation of 2Q-LRU
compare to that of the native Linux implementation? 4) What
are the performance advantages of our application-specific
memory manager?

Kernel SIGBUS Userfaultfd Upcall
0

2

4

6

8

10

12

L
a
te

n
cy

(µ
s)

Figure 3: Average latency of resolving a single minor fault in a
single-threaded execution

We ran all experiments on a 2-socket machine (16 cores,
32 hardware threads each) with 2.30GHz Intel Xeon 5218
processors and 198GB of DDR4 DRAM, running a modified
Linux 5.15. We used an NVMe SSD disk with 2700 MB/s
read rate as our storage/swap backend. We use the Linux swap
system as our baseline and use Cgroups to control the amount
of available physical memory for the baseline. EXTMEM
explicitly controls available memory.

4.1 Upcall Performance
We evaluate our upcall performance under a high fault rate
(Figure 3, Figure 4). A varying number of threads continually
access pages in a newly allocated memory area to generate
minor faults. Minor page faults occur when a page is in mem-
ory but is not mapped in process page tables. Therefore, it
does not require any IO or data movement and represents
the basic fault resolution cost. We record the end-to-end la-
tency for each memory access and compute the average page
fault latency. As expected, the performance of userfaultfd
(UFFD) scales poorly due to the round-trip IPC in the fault
handling path. While the default SIGBUS approach exhibits
better scalability, it suffers from a serialization bottleneck.
In contrast, our upcall method exhibits superior scalability,
closely mirroring the kernel’s performance; both methods ul-
timately bottleneck on mmap lock contention. Ongoing work
in lockless paging [9,27,59] should benefit both in-kernel and
user-level self-paging.

1 2 4 8 16 32
Number of Threads

0

25

50

75

100

125

150

175

L
a
te

n
cy

(µ
s)

Kernel

SIGBUS

Userfaultfd

Upcall

Figure 4: Average latency of resolving a minor fault in a multi-
threaded system under pressure

USENIX Association 2024 USENIX Annual Technical Conference 401

4.2 Microbenchmarks
For the remaining tests, we use the mmap microbenchmark
derived from Crotty et al [28]. The benchmark initializes a 16
GB region of memory and updates bytes in that region using
different patterns. We limit the amount of available RAM to
8 GB, to encourage page faults.

Random Access: First, we update the bytes uniformly at
random, so 50% of the memory is paged out, and each access
has a 50% chance of causing a major page fault. Figure 5a
shows the memory update throughput as a function of the
number of threads. We see that the 2Q-LRU policy imple-
mented in EXTMEM performs better than Linux and scales
well with multiple threads. The EXTMEM implementation
evicts pages more quickly than Linux does, because its evic-
tion code path is simpler, thereby explaining its performance
advantage. Policy and prefetching have no effect on this test
since the access pattern is uniformly random.

(a) Random Updates

1 2 4 8 16
Threads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

T
h

ro
u

g
h

p
u

t
(G

B
/
s)

Linux

ExtMem

(b) Sequential Updates

1 2 4 8 16
Threads

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T
h

ro
u

g
h

p
u

t
(G

B
/
s)

Linux

ExtMem

Figure 5: Throughput of the system making byte-sized updates when
50% of the working set fits in memory.

Sequential Access: Next, we evaluate our sequential
prefetcher used in conjunction with the 2Q-LRU in EXTMEM.
Here we use a sequential update pattern. Figure 5b shows
that EXTMEM outperforms Linux, because we prefetch more
aggressively. Throughput levels off at about four threads in
EXTMEM, due to expensive userfaultfd’s write-protect and
madvise operations required when evicting pages to storage.
These operations operate on only one page at a time, hold the
mmap lock, and are generally slow. A faster page unmapping
path can resolve this in the future.

Working Set Access: Our last microbenchmark is a variant

0 40 80 120 160
Time (s)

1

2

4

8

16

T
h

ro
u

g
h

p
u

t
(G

B
/
s)

ExtMem

Linux

Figure 6: Throughput over time of EXTMEM and Linux for the
working set access microbenchmark both implementing the 2Q-
LRU policy. EXTMEM-2Q-LRU efficiently keeps working set in
memory.

of the random one; rather than updating bytes uniformly at
random, we update them with a skewed distribution in which
90% of updates are to 10% of the memory, and the remain-
ing 10% of updates are randomly distributed in the whole
region. As in the other experiments, we use the 2Q-LRU in
EXTMEM. This experiment illustrates how EXTMEM effi-
ciently identifies and keeps the working set in memory, much
like Linux. Figure 6 shows system performance as a function
of time, when we run with eight threads. In both systems,
performance climbs quickly and then levels off, demonstrat-
ing that both Linux and EXTMEM maintain the hot working
set in memory, while swapping less frequently accessed data.
As before, EXTMEM is faster than Linux, due to its simpler
eviction code path.

4.3 Application Study

Graph processing under memory constraints is an exam-
ple of an application that can benefit from EXTMEM with
application-specific memory management. As a proof of con-
cept, we implemented custom memory management for a
graph processing system that uses the compressed sparse row
layout to store the graph. Our goal is to achieve good run-
time performance using in-memory data structures, even if
the graph exceeds available memory.

Compressed Sparse Row (CSR) [29] is a prevalent data
structure used for in-memory graph analytics. It consists of
two arrays: a vertex array and an edge array. The vertex array
stores a pointer to the data structure of vertex attributes and
a pointer to the starting position of the vertex edges in the
edge array. The edge array stores all edges, grouped by source
vertex ID, and sorted by destination vertex ID within each
group. Many graph algorithms process vertices’ neighbor-
hoods sequentially [35] (e.g., PageRank), so CSR’s sequential

402 2024 USENIX Annual Technical Conference USENIX Association

layout is attractive.
We developed a custom memory manager based on the fol-

lowing intuition. First, edges account for the majority of space
consumed by a graph, because graphs typically have many
more edges than vertices. Second, many algorithms repeat-
edly iterate over neighborhoods. Our policy keeps the vertex
array, arrays that store vertex attributes, and intermediate val-
ues (e.g., the rank of vertices in a PageRank computation) in
memory. In contrast, we store only a sliding window of the
edge array in memory. In each iteration over the edge array,
we move this sliding window, evicting the pages that are no
longer necessary and prefetching the next window of pages
in the background. We implemented this custom policy over
the existing default policy by changing fewer than 100 lines
of code. This implementation is available in the published
artifact.

Figure 7 demonstrates the benefit of the custom memory
management policy for computing PageRank (EXTMEM-PR).
We ran 10 iterations of the algorithm using the standard GAP
[20] benchmarking suite on the Twitter graph [51], limiting
memory to 50% of the total graph size. Figure 7 shows that
using EXTMEM with an algorithm almost identical to that of
Linux (EXTMEM-2QLRU) produces a modest improvement,
but when we deploy the custom algorithm (EXTMEM-PR),
we obtain a speedup over 2×. Perhaps even more surprisingly,
using our user-level custom paging policy, when only 50%
of the graph fits in memory, our runtime is only slightly over
twice that of a pure in-memory solution.

Linux ExtMem-2QLru
ExtMem-Pr InMemory

0

25

50

75

100

125

150

175

200

R
u

n
ti

m
e

(s
)

Figure 7: Runtime of 10 iterations of pagerank on the Twitter dataset
using GAP benchmark suite.

5 Conclusion

We introduced EXTMEM, a versatile framework tailored
for application-specific memory management in user space.
EXTMEM seamlessly integrates into Linux-based environ-
ments, offering developers a flexible platform with high code
velocity while maintaining isolation by running in the applica-
tion’s address space. Using an upcall approach, it establishes
a scalable self-paging architecture, resolving shortcomings
of previous user-space paging systems. By reusing the signal
handling code path for upcalls, EXTMEM requires only small
isolated changes to Linux.

EXTMEM still faces limitations stemming from scalability
issues within the underlying operating system’s virtual mem-
ory system, particularly the mmap lock. Despite these limita-
tions, EXTMEM empowers users to harness the performance
advantages of application-aware memory management in real-
world scenarios. As we continue to explore the workload and
hardware-aware memory management policies, EXTMEM
provides a promising framework for future developments in
this domain.

6 Acknowledgement

We acknowledge the support of Intel and the Natural Sciences
and Engineering Research Council of Canada (NSERC). Nous
remercions le Conseil derecherches en sciences naturelles et
en génie du Canada (CRSNG) de sonsoutien. We appreciate
the constructive feedback from the reviewers and thank the
artifact reviewers for their collaborative efforts in verifying
the functionality and reproducibility of our results. We also
want to thank David Holland for sharing his insights on kernel
internals and his valuable feedback. We thank Hemem authors
for their functional artifact which helped us in implementing
EXTMEM.

USENIX Association 2024 USENIX Annual Technical Conference 403

References

[1] Cxl consortium — computeexpresslink.org. https:
//www.computeexpresslink.org. [Accessed 09-01-
2024].

[2] Database Concepts — docs.oracle.com.
https://docs.oracle.com/en/database/
oracle/oracle-database/19/cncpt/
memory-architecture.html.

[3] Implement IOCTL to get and optionally clear info
about PTEs [LWN.net] — lwn.net. https://lwn.net/
Articles/934580/. [Accessed 11-01-2024].

[4] lpc.events. https://lpc.events/event/11/
contributions/896/attachments/793/1493/
slides-r2.pdf. [Accessed 09-01-2024].

[5] Memory-management changes for CXL [LWN.net] —
lwn.net. https://lwn.net/Articles/931416/. [Ac-
cessed 11-01-2024].

[6] Memory-management patch review [LWN.net] —
lwn.net. https://lwn.net/Articles/718212/.

[7] Readahead: the documentation I wanted to read
[LWN.net] — lwn.net. https://lwn.net/Articles/
888715/.

[8] syscall_intercept. https://github.com/pmem/
syscall_intercept.

[9] The ongoing search for mmap lock — lwn.net. https:
//lwn.net/Articles/893906/.

[10] Userfaultfd(2). https://man7.org/linux/
man-pages/man2/userfaultfd.2.html.

[11] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, et al.
TensorFlow: a system for Large-Scale machine learn-
ing. In 12th USENIX symposium on operating systems
design and implementation (OSDI 16), pages 265–283,
2016.

[12] Ahmed Abulila, Vikram Sharma Mailthody, Zaid
Qureshi, Jian Huang, Nam Sung Kim, Jinjun Xiong,
and Wen-mei Hwu. Flatflash: Exploiting the byte-
accessibility of ssds within a unified memory-storage
hierarchy. In Proceedings of the Twenty-Fourth Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages
971–985, 2019.

[13] Marcos K Aguilera, Nadav Amit, Irina Calciu, Xavier
Deguillard, Jayneel Gandhi, Pratap Subrahmanyam,

Lalith Suresh, Kiran Tati, Rajesh Venkatasubramanian,
and Michael Wei. Remote memory in the age of fast
networks. In Proceedings of the 2017 Symposium on
Cloud Computing, pages 121–127, 2017.

[14] Hasan Al Maruf and Mosharaf Chowdhury. Effectively
prefetching remote memory with leap. In 2020 USENIX
Annual Technical Conference (USENIX ATC 20), pages
843–857, 2020.

[15] Emmanuel Amaro, Christopher Branner-Augmon, Zhi-
hong Luo, Amy Ousterhout, Marcos K Aguilera, Aurojit
Panda, Sylvia Ratnasamy, and Scott Shenker. Can far
memory improve job throughput? In Proceedings of the
Fifteenth European Conference on Computer Systems,
pages 1–16, 2020.

[16] Sebastian Angel, Mihir Nanavati, and Siddhartha Sen.
Disaggregation and the application. In 12th USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud
20), 2020.

[17] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song
Jiang, and Mike Paleczny. Workload analysis of a large-
scale key-value store. In Proceedings of the 12th ACM
SIGMETRICS/PERFORMANCE joint international con-
ference on Measurement and Modeling of Computer
Systems, pages 53–64, 2012.

[18] Luiz André Barroso, Urs Hölzle, and Parthasarathy Ran-
ganathan. The datacenter as a computer: Designing
warehouse-scale machines. Springer Nature, 2019.

[19] Andrew Baumann, Paul Barham, Pierre-Evariste Da-
gand, Tim Harris, Rebecca Isaacs, Simon Peter, Timo-
thy Roscoe, Adrian Schüpbach, and Akhilesh Singha-
nia. The multikernel: a new os architecture for scalable
multicore systems. In Proceedings of the ACM SIGOPS
22nd symposium on Operating systems principles, pages
29–44, 2009.

[20] Scott Beamer, Krste Asanović, and David Patterson. The
gap benchmark suite. arXiv preprint arXiv:1508.03619,
2015.

[21] Andrew Borg, Andy Wellings, Christopher Gill, and
Ron K Cytron. Real-time memory management: Life
and times. In 18th Euromicro Conference on Real-Time
Systems (ECRTS’06), pages 11–pp. IEEE, 2006.

[22] Irina Calciu, M Talha Imran, Ivan Puddu, Sanidhya
Kashyap, Hasan Al Maruf, Onur Mutlu, and Aasheesh
Kolli. Rethinking software runtimes for disaggregated
memory. In Proceedings of the 26th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems, pages 79–92, 2021.

404 2024 USENIX Annual Technical Conference USENIX Association

https://www.computeexpresslink.org
https://www.computeexpresslink.org
https://docs.oracle.com/en/database/oracle/oracle-database/19/cncpt/memory-architecture.html
https://docs.oracle.com/en/database/oracle/oracle-database/19/cncpt/memory-architecture.html
https://docs.oracle.com/en/database/oracle/oracle-database/19/cncpt/memory-architecture.html
https://lwn.net/Articles/934580/
https://lwn.net/Articles/934580/
https://lpc.events/event/11/contributions/896/attachments/793/1493/slides-r2.pdf
https://lpc.events/event/11/contributions/896/attachments/793/1493/slides-r2.pdf
https://lpc.events/event/11/contributions/896/attachments/793/1493/slides-r2.pdf
https://lwn.net/Articles/931416/
https://lwn.net/Articles/718212/
https://lwn.net/Articles/888715/
https://lwn.net/Articles/888715/
https://github.com/pmem/syscall_intercept
https://github.com/pmem/syscall_intercept
https://lwn.net/Articles/893906/
https://lwn.net/Articles/893906/
https://man7.org/linux/man-pages/man2/userfaultfd.2.html
https://man7.org/linux/man-pages/man2/userfaultfd.2.html

[23] Blake Caldwell, Sepideh Goodarzy, Sangtae Ha, Richard
Han, Eric Keller, Eric Rozner, and Youngbin Im. Flu-
idmem: Full, flexible, and fast memory disaggregation
for the cloud. In 2020 IEEE 40th International Confer-
ence on Distributed Computing Systems (ICDCS), pages
665–677. IEEE, 2020.

[24] Pei Cao, Edward W Felten, Anna R Karlin, and Kai Li.
A study of integrated prefetching and caching strategies.
ACM SIGMETRICS Performance Evaluation Review,
23(1):188–197, 1995.

[25] Josiah Carlson. Redis in action. Simon and Schuster,
2013.

[26] J Bradley Chen and Brian N Bershad. The impact of
operating system structure on memory system perfor-
mance. In Proceedings of the fourteenth ACM sympo-
sium on Operating systems principles, pages 120–133,
1993.

[27] Austin T Clements, M Frans Kaashoek, and Nickolai
Zeldovich. Scalable address spaces using rcu balanced
trees. ACM SIGPLAN Notices, 47(4):199–210, 2012.

[28] Andrew Crotty, Viktor Leis, and Andrew Pavlo. Are
you sure you want to use mmap in your database man-
agement system. In CIDR 2022, Conference on In-
novative Data Systems Research. https://db. cs. cmu.
edu/papers/2022/p13-crotty. pdf, 2022.

[29] J. Dongarra, P. Koev, X. Li, J. Demmel, and H. van der
Vorst. 10. Common Issues, pages 315–336.

[30] Aleksandar Dragojević, Dushyanth Narayanan, Miguel
Castro, and Orion Hodson. FaRM: Fast remote mem-
ory. In 11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 14), pages 401–414,
2014.

[31] Padmapriya Duraisamy, Wei Xu, Scott Hare, Ravi Ra-
jwar, David Culler, Zhiyi Xu, Jianing Fan, Christopher
Kennelly, Bill McCloskey, Danijela Mijailovic, et al. To-
wards an adaptable systems architecture for memory
tiering at warehouse-scale. In Proceedings of the 28th
ACM International Conference on Architectural Support
for Programming Languages and Operating Systems,
Volume 3, pages 727–741, 2023.

[32] Dawson R Engler, M Frans Kaashoek, and James
O’Toole Jr. Exokernel: An operating system architec-
ture for application-level resource management. ACM
SIGOPS Operating Systems Review, 29(5):251–266,
1995.

[33] Shai Bergman1 Priyank Faldu and Boris Grot3 Lluís
Vilanova4 Mark Silberstein. Reconsidering os memory
optimizations in the presence of disaggregated memory.
2022.

[34] Brad Fitzpatrick. Distributed caching with memcached.
Linux journal, 2004(124):5, 2004.

[35] Per Fuchs, Domagoj Margan, and Jana Giceva. Sortled-
ton: a universal, transactional graph data structure. Pro-
ceedings of the VLDB Endowment, 15(6):1173–1186,
2022.

[36] Saugata Ghose, Kevin Hsieh, Amirali Boroumand,
Rachata Ausavarungnirun, and Onur Mutlu. The
processing-in-memory paradigm: Mechanisms to en-
able adoption. Beyond-CMOS Technologies for Next
Generation Computer Design, pages 133–194, 2019.

[37] Christina Giannoula, Kailong Huang, Jonathan Tang,
Nectarios Koziris, Georgios Goumas, Zeshan Chishti,
and Nandita Vijaykumar. Daemon: Architectural sup-
port for efficient data movement in fully disaggregated
systems. Proceedings of the ACM on Measurement and
Analysis of Computing Systems, 7(1):1–36, 2023.

[38] Joseph E Gonzalez, Reynold S Xin, Ankur Dave, Daniel
Crankshaw, Michael J Franklin, and Ion Stoica. GraphX:
Graph processing in a distributed dataflow framework.
In 11th USENIX symposium on operating systems de-
sign and implementation (OSDI 14), pages 599–613,
2014.

[39] Mel Gorman. Understanding the Linux virtual memory
manager. Prentice Hall Upper Saddle River, 2004.

[40] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf
Chowdhury, and Kang G Shin. Efficient memory dis-
aggregation with infiniswap. In 14th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 17), pages 649–667, 2017.

[41] Zhiyuan Guo, Zijian He, and Yiying Zhang. Mira: A
program-behavior-guided far memory system. In Pro-
ceedings of the 29th Symposium on Operating Systems
Principles, pages 692–708, 2023.

[42] Zhiyuan Guo, Yizhou Shan, Xuhao Luo, Yutong Huang,
and Yiying Zhang. Clio: A hardware-software co-
designed disaggregated memory system. In Proceedings
of the 27th ACM International Conference on Architec-
tural Support for Programming Languages and Operat-
ing Systems, pages 417–433, 2022.

[43] Steven M Hand. Self-paging in the nemesis operating
system. In OSDI, volume 99, pages 73–86, 1999.

[44] Gernot Heiser and Kevin Elphinstone. L4 microker-
nels: The lessons from 20 years of research and deploy-
ment. ACM Transactions on Computer Systems (TOCS),
34(1):1–29, 2016.

USENIX Association 2024 USENIX Annual Technical Conference 405

[45] Jack Tigar Humphries, Neel Natu, Ashwin Chaugule,
Ofir Weisse, Barret Rhoden, Josh Don, Luigi Rizzo, Oleg
Rombakh, Paul Turner, and Christos Kozyrakis. ghost:
Fast & flexible user-space delegation of linux schedul-
ing. In Proceedings of the ACM SIGOPS 28th Sympo-
sium on Operating Systems Principles, pages 588–604,
2021.

[46] Congfeng Jiang, Yitao Qiu, Weisong Shi, Zhefeng Ge,
Jiwei Wang, Shenglei Chen, Christophe Cérin, Zujie
Ren, Guoyao Xu, and Jiangbin Lin. Characterizing co-
located workloads in alibaba cloud datacenters. IEEE
Transactions on Cloud Computing, 10(4):2381–2397,
2020.

[47] M Frans Kaashoek, Dawson R Engler, Gregory R
Ganger, Héctor M Briceno, Russell Hunt, David
Mazieres, Thomas Pinckney, Robert Grimm, John Jan-
notti, and Kenneth Mackenzie. Application performance
and flexibility on exokernel systems. In Proceedings
of the sixteenth ACM symposium on Operating systems
principles, pages 52–65, 1997.

[48] Jonghyeon Kim, Wonkyo Choe, and Jeongseob Ahn.
Exploring the design space of page management for
Multi-Tiered memory systems. In 2021 USENIX Annual
Technical Conference (USENIX ATC 21), pages 715–
728, 2021.

[49] Gerwin Klein, June Andronick, Kevin Elphinstone, Toby
Murray, Thomas Sewell, Rafal Kolanski, and Gernot
Heiser. Comprehensive formal verification of an os
microkernel. ACM Transactions on Computer Systems
(TOCS), 32(1):1–70, 2014.

[50] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June
Andronick, David Cock, Philip Derrin, Dhammika Elka-
duwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish,
et al. sel4: Formal verification of an os kernel. In
Proceedings of the ACM SIGOPS 22nd symposium on
Operating systems principles, pages 207–220, 2009.

[51] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue
Moon. What is twitter, a social network or a news me-
dia? In Proceedings of the 19th international conference
on World wide web, pages 591–600, 2010.

[52] Miryeong Kwon, Sangwon Lee, and Myoungsoo Jung.
Cache in hand: Expander-driven cxl prefetcher for next
generation cxl-ssd. In Proceedings of the 15th ACM
Workshop on Hot Topics in Storage and File Systems,
pages 24–30, 2023.

[53] Andres Lagar-Cavilla, Junwhan Ahn, Suleiman Souhlal,
Neha Agarwal, Radoslaw Burny, Shakeel Butt, Jichuan
Chang, Ashwin Chaugule, Nan Deng, Junaid Shahid,
et al. Software-defined far memory in warehouse-scale

computers. In Proceedings of the Twenty-Fourth Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages
317–330, 2019.

[54] Mario Lanza, Abu Sebastian, Wei D Lu, Manuel
Le Gallo, Meng-Fan Chang, Deji Akinwande,
Francesco M Puglisi, Husam N Alshareef, Ming Liu,
and Juan B Roldan. Memristive technologies for data
storage, computation, encryption, and radio-frequency
communication. Science, 376(6597):eabj9979, 2022.

[55] Niel Lebeck, Arvind Krishnamurthy, Henry M Levy,
and Irene Zhang. End the senseless killing: Improving
memory management for mobile operating systems. In
2020 USENIX Annual Technical Conference (USENIX
ATC 20), pages 873–887, 2020.

[56] Sekwon Lee, Soujanya Ponnapalli, Sharad Singhal,
Marcos K Aguilera, Kimberly Keeton, and Vijay
Chidambaram. Dinomo: an elastic, scalable, high-
performance key-value store for disaggregated persis-
tent memory. Proceedings of the VLDB Endowment,
15(13):4023–4037, 2022.

[57] Seok-Hee Lee. Technology scaling challenges and op-
portunities of memory devices. In 2016 IEEE Inter-
national Electron Devices Meeting (IEDM), pages 1–1.
IEEE, 2016.

[58] Seung-seob Lee, Yanpeng Yu, Yupeng Tang, Anurag
Khandelwal, Lin Zhong, and Abhishek Bhattacharjee.
Mind: In-network memory management for disaggre-
gated data centers. In Proceedings of the ACM SIGOPS
28th Symposium on Operating Systems Principles, pages
488–504, 2021.

[59] Viktor Leis, Adnan Alhomssi, Tobias Ziegler, Yannick
Loeck, and Christian Dietrich. Virtual-memory assisted
buffer management. Proceedings of the ACM on Man-
agement of Data, 1(1):1–25, 2023.

[60] Philip Levis, Kun Lin, and Amy Tai. A case against cxl
memory pooling. In Proceedings of the 22nd ACM Work-
shop on Hot Topics in Networks, pages 18–24, 2023.

[61] Huaicheng Li, Daniel S Berger, Stanko Novakovic, Lisa
Hsu, Dan Ernst, Pantea Zardoshti, Monish Shah, Samir
Rajadnya, Scott Lee, Ishwar Agarwal, et al. Pond: Cxl-
based memory pooling systems for cloud platforms. In
Proc. Int. Conf. Archit. Support Program. Lang. Oper.
Syst, 2023.

[62] Jochen Liedtke. On micro-kernel construction. ACM
SIGOPS Operating Systems Review, 29(5):237–250,
1995.

406 2024 USENIX Annual Technical Conference USENIX Association

[63] Kevin Lim, Jichuan Chang, Trevor Mudge,
Parthasarathy Ranganathan, Steven K Reinhardt,
and Thomas F Wenisch. Disaggregated memory for
expansion and sharing in blade servers. ACM SIGARCH
computer architecture news, 37(3):267–278, 2009.

[64] Jimmy Lin and Alek Kolcz. Large-scale machine learn-
ing at twitter. In Proceedings of the 2012 ACM SIG-
MOD International Conference on Management of Data,
pages 793–804, 2012.

[65] Jing Liu, Anthony Rebello, Yifan Dai, Chenhao Ye,
Sudarsun Kannan, Andrea C Arpaci-Dusseau, and
Remzi H Arpaci-Dusseau. Scale and performance in
a filesystem semi-microkernel. In Proceedings of the
ACM SIGOPS 28th Symposium on Operating Systems
Principles, pages 819–835, 2021.

[66] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christo-
pher Alfeld, Sean Bauer, Carlo Contavalli, Michael Dal-
ton, Nandita Dukkipati, William C Evans, Steve Gribble,
et al. Snap: A microkernel approach to host network-
ing. In Proceedings of the 27th ACM Symposium on
Operating Systems Principles, pages 399–413, 2019.

[67] Hasan Al Maruf, Hao Wang, Abhishek Dhanotia, Jo-
hannes Weiner, Niket Agarwal, Pallab Bhattacharya,
Chris Petersen, Mosharaf Chowdhury, Shobhit Kanaujia,
and Prakash Chauhan. Tpp: Transparent page placement
for cxl-enabled tiered-memory. In Proceedings of the
28th ACM International Conference on Architectural
Support for Programming Languages and Operating
Systems, Volume 3, pages 742–755, 2023.

[68] Onur Mutlu, Saugata Ghose, Juan Gómez-Luna, and
Rachata Ausavarungnirun. Processing data where it
makes sense: Enabling in-memory computation. Micro-
processors and Microsystems, 67:28–41, 2019.

[69] Joel Nider, Craig Mustard, Andrada Zoltan, John Rams-
den, Larry Liu, Jacob Grossbard, Mohammad Dashti,
Romaric Jodin, Alexandre Ghiti, Jordi Chauzi, et al. A
case study of Processing-in-Memory in off-the-Shelf
systems. In 2021 USENIX Annual Technical Confer-
ence (USENIX ATC 21), pages 117–130, 2021.

[70] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam
Belay, and Hari Balakrishnan. Shenango: Achieving
high CPU efficiency for latency-sensitive datacenter
workloads. In 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19), pages
361–378, 2019.

[71] Shaurya Patel, Sidharth Agrawal, Alexandra Fedorova,
and Margo Seltzer. Cheri-picking: Leveraging capability
hardware for prefetching. In Proceedings of the 12th
Workshop on Programming Languages and Operating
Systems, pages 58–65, 2023.

[72] Ivy Peng, Marty McFadden, Eric Green, Keita Iwabuchi,
Kai Wu, Dong Li, Roger Pearce, and Maya Gokhale.
Umap: Enabling application-driven optimizations for
page management. In 2019 IEEE/ACM Workshop
on Memory Centric High Performance Computing
(MCHPC), pages 71–78. IEEE, 2019.

[73] Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley,
Shaden Smith, and Yuxiong He. Zero-infinity: Breaking
the gpu memory wall for extreme scale deep learning.
In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Anal-
ysis, pages 1–14, 2021.

[74] Richard Rashid, Avadis Tevanian, Michael Young,
David Golub, Robert Baron, David Black, William
Bolosky, and Jonathan Chew. Machine-independent vir-
tual memory management for paged uniprocessor and
multiprocessor architectures. In Proceedings of the sec-
ond international conference on Architectual support for
programming languages and operating systems, pages
31–39, 1987.

[75] Richard F Rashid. From rig to accent to mach: The
evolution of a network operating system. In Proceed-
ings of 1986 ACM Fall joint computer conference, pages
1128–1137, 1986.

[76] Amanda Raybuck, Tim Stamler, Wei Zhang, Mattan
Erez, and Simon Peter. Hemem: Scalable tiered memory
management for big data applications and real nvm. In
Proceedings of the ACM SIGOPS 28th Symposium on
Operating Systems Principles, pages 392–407, 2021.

[77] Zhenyuan Ruan, Malte Schwarzkopf, Mar-
cos K Aguilera, and Adam Belay. AIFM:High-
Performance,Application-Integrated far memory. In
14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 20), pages 315–332, 2020.

[78] rwestMSFT. Memory Management
Architecture Guide - SQL Server —
learn.microsoft.com. https://learn.microsoft.
com/en-us/sql/relational-databases/
memory-management-architecture-guide. [Ac-
cessed 09-01-2024].

[79] Sherif Sakr, Angela Bonifati, Hannes Voigt, Alexan-
dru Iosup, Khaled Ammar, Renzo Angles, Walid Aref,
Marcelo Arenas, Maciej Besta, Peter A Boncz, et al. The
future is big graphs: a community view on graph process-
ing systems. Communications of the ACM, 64(9):62–71,
2021.

[80] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying
Zhang. LegoOS: A disseminated, distributed OS for
hardware resource disaggregation. In 13th USENIX

USENIX Association 2024 USENIX Annual Technical Conference 407

https://learn.microsoft.com/en-us/sql/relational-databases/memory-management-architecture-guide
https://learn.microsoft.com/en-us/sql/relational-databases/memory-management-architecture-guide
https://learn.microsoft.com/en-us/sql/relational-databases/memory-management-architecture-guide

Symposium on Operating Systems Design and Imple-
mentation (OSDI 18), pages 69–87, 2018.

[81] Jiacheng Shen, Pengfei Zuo, Xuchuan Luo, Tianyi Yang,
Yuxin Su, Yangfan Zhou, and Michael R Lyu. FUSEE:
A fully Memory-DisaggregatedKey-Value store. In 21st
USENIX Conference on File and Storage Technologies
(FAST 23), pages 81–98, 2023.

[82] Michael Stonebraker. Operating system support for
database management. Communications of the ACM,
24(7):412–418, 1981.

[83] Michael Stonebraker and Ariel Weisberg. The voltdb
main memory dbms. IEEE Data Eng. Bull., 36(2):21–
27, 2013.

[84] Yan Sun, Yifan Yuan, Zeduo Yu, Reese Kuper, Ipoom
Jeong, Ren Wang, and Nam Sung Kim. Demystifying
cxl memory with genuine cxl-ready systems and devices.
arXiv preprint arXiv:2303.15375, 2023.

[85] Bijan Tabatabai, Mark Mansi, and Michael M Swift.
Fbmm: Using the vfs for extensibility in kernel memory
management. In Proceedings of the 19th Workshop on
Hot Topics in Operating Systems, pages 181–187, 2023.

[86] Andrew S Tanenbaum and Albert S Woodhull. Oper-
ating systems: design and implementation, volume 68.
Prentice Hall Englewood Cliffs, 1997.

[87] Thomas N Theis and H-S Philip Wong. The end of
moore’s law: A new beginning for information technol-
ogy. Computing in science & engineering, 19(2):41–50,
2017.

[88] Shin-Yeh Tsai and Yiying Zhang. Lite kernel rdma
support for datacenter applications. In Proceedings of
the 26th Symposium on Operating Systems Principles,
pages 306–324, 2017.

[89] Chenxi Wang, Haoran Ma, Shi Liu, Yuanqi Li, Zhenyuan
Ruan, Khanh Nguyen, Michael D Bond, Ravi Netravali,
Miryung Kim, and Guoqing Harry Xu. Semeru: A
Memory-Disaggregated managed runtime. In 14th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20), pages 261–280, 2020.

[90] Chenxi Wang, Yifan Qiao, Haoran Ma, Shi Liu, Wen-
guang Chen, Ravi Netravali, Miryung Kim, and Guo-
qing Harry Xu. Canvas: Isolated and adaptive swapping
for Multi-Applications on remote memory. In 20th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 23), pages 161–179, 2023.

[91] Johannes Weiner, Niket Agarwal, Dan Schatzberg, Leon
Yang, Hao Wang, Blaise Sanouillet, Bikash Sharma,
Tejun Heo, Mayank Jain, Chunqiang Tang, et al. Tmo:

transparent memory offloading in datacenters. In Pro-
ceedings of the 27th ACM International Conference on
Architectural Support for Programming Languages and
Operating Systems, pages 609–621, 2022.

[92] Luna Xu, Min Li, Li Zhang, Ali R Butt, Yandong Wang,
and Zane Zhenhua Hu. Memtune: Dynamic memory
management for in-memory data analytic platforms. In
2016 IEEE international parallel and distributed pro-
cessing symposium (IPDPS), pages 383–392. IEEE,
2016.

[93] Zi Yan, Daniel Lustig, David Nellans, and Abhishek
Bhattacharjee. Nimble page management for tiered
memory systems. In Proceedings of the Twenty-Fourth
International Conference on Architectural Support for
Programming Languages and Operating Systems, pages
331–345, 2019.

[94] Ting Yang, Emery D Berger, Scott F Kaplan, and
J Eliot B Moss. Cramm: Virtual memory support for
garbage-collected applications. In Proceedings of the
7th symposium on Operating systems design and imple-
mentation, pages 103–116, 2006.

[95] Wonsup Yoon, Jisu Ok, Jinyoung Oh, Sue Moon, and
Youngjin Kwon. Dilos: Do not trade compatibility for
performance in memory disaggregation. In Proceedings
of the Eighteenth European Conference on Computer
Systems, pages 266–282, 2023.

408 2024 USENIX Annual Technical Conference USENIX Association

	Introduction
	The 2024 Case for External Paging
	New Memory Architectures, New Needs
	Microkernels and Semi-microkernels

	ExtMem: Design
	The User View
	The Core Layer
	Handling page faults

	Observability Layer
	Policy Layer

	Evaluation
	Upcall Performance
	Microbenchmarks
	Application Study

	Conclusion
	Acknowledgement

