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Abstract
Probabilistic graphical models (PGMs) have attracted much
attention due to their firm theoretical foundation and inherent
interpretability. However, existing PGM inference systems
are inefficient and lack sufficient generality, due to issues with
irregular memory accesses, high computational complexity,
and modular design limitation. In this paper, we present Fast-
PGM, a fast and parallel PGM inference system for impor-
tance sampling-based approximate inference algorithms. Fast-
PGM incorporates careful memory management techniques
to reduce memory consumption and enhance data locality. It
also employs computation and parallelization optimizations
to reduce computational complexity and improve the overall
efficiency. Furthermore, Fast-PGM offers high generality and
flexibility, allowing easy integration with all the mainstream
importance sampling-based algorithms. The system abstrac-
tion of Fast-PGM facilitates easy optimizations, extensions,
and customization for users. Extensive experiments show that
Fast-PGM achieves 3 to 20 times speedup over the state-
of-the-art implementation. Fast-PGM source code is freely
available at https://github.com/jjiantong/FastPGM.

1 Introduction

Graph data processing is fundamental in parallel and
distributed computing, and probabilistic graphical models
(PGMs) [32] stand out as a crucial category of graphs that
excel in modeling uncertainty in machine learning systems.
PGMs employ a transparent and intuitive representation to
compactly encode random variables and their interactions,
offering a mathematically sound framework grounded in prob-
ability theory. Typical examples of PGMs include Bayesian
networks (BNs), Markov random fields (MRFs) and factor
graphs, covering directed and undirected graphs as shown in
Figure 1. They have found applications in broad domains like
biomedical informatics [13,52], computer vision [7,53], envi-
ronmental monitoring [23, 34], risk management [4, 40] and
⇤Zeyi Wen is the corresponding author.
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(a) BN example

SAT

7! 7"
.6 .4

8! 8"
.7 .3

9" 9# 9$
8!, 7! .3 .4 .3
8!, 7" .05 .25 .7
8", 7! .9 .08 .02
8", 7" .5 .3 .2

DIF INT

GRD

LTR

Difficulty Intelligence

Grade

Letter

SAT
:! :"

9" .1 .9
9# .4 .6
9$ .99 .01

;! ;"
8! .95 .05
8" .2 .8

A

B

C

D

Alice

Bob

Charles

Debbie

<! =! 30
<! =" 5
<" =! 1
<" =" 10

=! >! 100
=! >" 1
=" >! 1
=" >" 100

!!(#, %)

!"(%, ')

!#((, #)

!$(', ()

7! <! 100
7! <" 1
7" <! 1
7" <" 100

>! 7! 1
>! 7" 100
>" 7! 100
>" 7" 1

(b) MRF example

Figure 1: Two examples of PGMs. BNs are represented by
directed acyclic graphs, while MNs are represented by undi-
rected graphs.

transportation [17, 19]. PGMs also have attracted attention
with the recent demand for interpretable machine learning
models [9, 36, 42, 50, 54, 56].

Probabilistic inference on PGMs is a crucial task that com-
putes the posterior distribution of any subset of random vari-
ables, given some observed values of other variables as evi-
dence. Stochastic sampling methods are a popular subclass
of approximate inference methods. They estimate the prob-
ability of an event from the frequency of event occurrences
in sampling trials and can theoretically converge to the ex-
act solutions with sufficient samples [45]. Furthermore, they
hold an important anytime property [22]: computation can
be interrupted at any time to get the best approximate an-
swer available, which is important in time-critical applica-
tions. Among the stochastic sampling algorithms, importance
sampling-based algorithms [15, 44, 47, 59, 60] are the most
widely used ones, since they perform well even with unlikely
evidence. They use the importance function to generate sam-
ples and aim to find a good importance function.

However, developing efficient approximate inference al-
gorithms is challenging. Firstly, the problem of approximate
inference on PGMs is known to be NP-hard that has a high
computational complexity [18,32]. Secondly, the irregular na-
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ture of the graphical structures and the stochastic nature of the
sampling process introduce additional inefficiencies in mem-
ory and computation. Finally, abstracting and integrating vari-
ous algorithms into a unified and functional system is a non-
trivial endeavor. Several libraries [12,14,27,35,37,38,41,49]
offer implementations of approximate inference methods, but
they suffer from limitations such as low efficiency, a narrow
range of supported importance sampling-based algorithms, or
a lack of complete open-source availability.

To facilitate the widespread adoption of approximate infer-
ence to complex problems, we propose a fast PGM inference
system named Fast-PGM for importance sampling-based ap-
proximate inference algorithms. Fast-PGM is designed for
two primary objectives: (i) good generality and flexibility
and (ii) high efficiency. Firstly, we abstract all the importance
sampling-based algorithms into a general framework with
four crucial modules. Fast-PGM provides the implementa-
tions of mainstream algorithms under this framework and
offers rich interfaces that enable easy optimizations to every
module and fast extensions to other inference algorithms. Sec-
ondly, we improve the efficiency of Fast-PGM by (i) memory
management (i.e., novel data structure design, data fusion and
reordering optimizations), (ii) careful computation simplifica-
tion optimizations, and (iii) parallelization. In summary, the
main contributions of this paper are as follows:

• We propose a system named Fast-PGM for importance
sampling-based approximate inference. Fast-PGM provides
the implementations of various algorithms and allows quick
and easy optimizations, extensions, and customization for
users with the help of novel systematic abstraction.

• Fast-PGM incorporates memory management to reduce
memory consumption and enhance data locality, computa-
tion simplification optimizations to reduce computational
complexity, and parallelization techniques to further en-
hance the overall efficiency of Fast-PGM.

• We conduct extensive experiments to study the effectiveness
of Fast-PGM and the impact of our optimizations. Results
show that Fast-PGM is 3 to 20 times faster than the state-of-
the-art solutions, and the practical parallelization speedups
of our method approach the theoretical speedups.

2 Background and Related Work

Here we introduce the basis and review the related studies.
A summary of the notation used throughout the paper is pro-
vided in Appendix A.1 Table 3.

2.1 Probabilistic Graphical Models
Probabilistic graphical models (PGMs) can be described by
G and P, where G = (V ,A) is the structure and P is the
parameters of the model. The nodes V = {V0,V1, ...,Vn�1}

in G denote the random variables and the edges A denote
the probabilistic interactions among the variables. We use
conditioning set C(Vj) to denote the variables influencing Vj.

Bayesian networks (BNs) are a pivotal type of PGMs. In
a BN, G is a directed graph, and P is a set of conditional
probability distributions (CPDs). Each CPD describes the dis-
tribution of a variable given its possible parent configurations.
Take Figure 1a as an example, GRD is the parent of LT R;
the direct edge between them indicates that a student’s grade
impacts the likelihood of obtaining a strong recommendation
letter. According to the CPD of SAT , the probability of getting
a high SAT score is 0.8 for students with high intelligence and
0.05 for those with relatively lower intelligence. The overall
joint distribution can be factorized as the product of the CPDs:

P(V ) = P(V0,V1, ...,Vn�1) =
n�1

’
j=0

P(Vj|C(Vj)), (1)

where n is the number of random variables, C(Vj) represents
the set of parents of Vj in the context of BNs, and P(Vj|C(Vj))
is the CPD of Vj.

Markov random fields (MRFs) are another subclass of
PGMs. The major difference is that G of an MRF is an undi-
rected graph. Thus, MRFs imply symmetrical interactions
between variables. P of an MRF is a set of potential functions.
Each potential function f f (V f ) defines a joint distribution
over a set of variables V f ✓ V . We can also get the CPD
P(Vj|C(Vj)) of Vj via the potential functions:

P(Vj|C(Vj)) =
P(Vj,C(Vj))

P(C(Vj))
=

’ f2P{Vj}[C(Vj)
f f (V f )

Âv j ’ f2P{Vj}[C(Vj)
f f (V f )

.

The core is to multiply all the potential functions P{Vj}[C(Vj)

that are related to {Vj}[C(Vj) and sum over all possible val-
ues of Vj. In the context of MRFs, C(Vj) is the Markov blanket
of Vj. This computation allows for a unified perspective on
BNs and MRFs. The conditioning set C(Vj) encompasses
both the parents of Vj in the context of BNs and the Markov
blanket of Vj in the context of MRFs.

2.2 Probabilistic inference on PGMs
Given a PGM, we often have some observed variables E ✓V
and the observed values e of E are called evidence. Probabilis-
tic inference on PGMs is to compute the posterior distribu-
tions of the variables of interest Y ✓ V given e. In Figure 1a,
suppose we know that the course is hard (DIF = d1) and
the student is intelligent (INT = i1), and we want to query
the quality of the professor’s recommendation letter (LT R).
Thus, we compute distribution over LT R given the evidence
of {DIF = d1, INT = i1}, i.e., P(LT R|DIF = d1, INT = i1).

To infer the posterior distribution of Yj 2 Y given E = e, a
common practice is to first compute P(Yj,E = e) and P(E =
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e), then combine them according to the Bayes’ Theorem.

P(Yj|E = e) =
P(Yj,E = e)

P(E = e)
. (2)

2.3 Importance Sampling
The importance sampling approach can be applied to proba-
bilistic inference. It is an alternative to exact numerical inte-
gration. Consider the problem of estimating the integral

I =
Z

W
g(X )dX , (3)

where g(X ) is a function of m variables X =(X0,X1, ...,Xm�1)
over the domain W⇢ Rm. Importance sampling approaches
this problem by rewriting Equation 3 into

I =
Z

W

g(X )

f (X )
f (X )dX ,

where f (X ) is the importance function, which is a probability
density function over W and is easy to sample from. After
generating q samples from f (X ), I can be estimated by

Î =
1
q

q�1

Â
i=0

g(si)

f (si)
,

where g(si)
f (si)

is called the importance score. The accuracy of
Î largely depends on the quality of the importance function,
and if g(X )> 0, the optimal importance function [43] is

f (X ) =
g(X )

I
. (4)

In the context of PGMs, P(E = e) is calculated by marginal-
izing all variables except for E from the joint distribution:

P(E = e) = Â
V \E

P(V \E ,E = e),

which is almost identical to Equation 3. According to Equa-
tion 4, its optimal importance function is actually the posterior
distribution P(V |E = e), which is impossible to obtain [61].
However, the goal is to find a function that is sufficiently close
to the posterior distribution. For the purpose of efficiency, it
is common practice to use the same importance function to
estimate both P(Yj,E = e) and P(E = e), and compute the
posterior distribution according to Equation 2.

2.4 Related Studies on PGM Inference
PGMs are critical in machine learning for modeling uncer-
tainty in complex systems, aligning well with the growing
interest in explainable artificial intelligence [6, 20, 55, 57].
This work focuses on approximate inference on PGMs. Here,

we review the most relevant studies from two categories: ap-
proximate inference algorithms and implementations.
Approximate Inference Algorithms. One class of approx-
imate inference methods is optimization-based methods [2,
11, 24, 39, 51, 58]. They construct an approximation to the
target distribution, which involves optimizing an objective
under a constraint space. Our focus in this paper is on another
category of methods known as stochastic sampling methods.
One notable method within this subclass is probabilistic logic
sampling [26]. It instantiates all variables in the sampling
process and discards samples that are inconsistent with the
evidence. To improve the sample efficiency, likelihood weight-
ing [21] only instantiates non-evidence variables when gener-
ating samples. Follow-up studies investigate the importance
sampling methods to handle extremely unlikely evidence. To
find a better importance function, some algorithms, such as
self-importance sampling [16, 47] and adaptive importance
sampling (AIS-BN) [15], introduce a learning process to grad-
ually learn an importance function. On the other hand, some
algorithms propose to pre-compute a good importance func-
tion. Examples include evidence pre-propagation importance
sampling (EPIS-BN) [59, 60] and importance sampling with
probability trees [44].
Existing PGM Inference Libraries. There are some libraries
supporting inference on PGMs. FastInf [27], libDAI [37],
Factorie [35] and PNL [41] focus more on exact inference or
optimization-based methods. On the other hand, BNT [38]
and UnBBayes [38] implement stochastic sampling algo-
rithms, while they support only a limited set of importance
sampling-based methods. BNJ [12] supports various impor-
tance sampling-based methods but suffers from inefficiency
issues. SMILE [49] is a state-of-the-art software tool for
PGMs. However, it is mainly for business purposes and its
source code is not fully available to academic users, hindering
reproducibility and extension efforts. Furthermore, most of
the libraries lack support for acceleration techniques such
as parallelization, which is increasingly critical for handling
large-scale data and complex problems [30, 62]. To address
these limitations and advance the utilization of approximate
inference on PGMs, we propose a general and efficient so-
lution tailored for importance sampling-based approximate
inference. A summarized comparison of Fast-PGM with the
above libraries is provided in Appendix A.2 Table 4.

3 Overview of Fast-PGM

Here, we present Fast-PGM, a system for importance
sampling-based inference on PGMs. Fast-PGM is designed
for the following two primary objectives (O1 and O2).
O1: Good Generality and Flexibility. On the one hand, we
discover four crucial steps that can form a skeleton for any im-
portance sampling-based algorithm. Fast-PGM provides four
corresponding modules with well-designed abstraction and
interface for each step, thereby achieving a high level of gen-
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Algorithm 1: Fast-PGM
input :prior probability P(V ), weight v0, # of

samples required q, updating interval l
output :estimated posterior marginal probability for

all non-evidence variables
1 k 0, scrArr 0, wcurScr 0, wallScr 0
/* importance function initialization module */

2 f 0(V ) initImpFunc(P(V ))
3 for i 1 to q do
4 if i%l == 0 then
5 k k+1

/* importance function update module */

6 f k(V ), vk updImpFunc(wcurScr, wallScr)
/* sample generation module */

7 si, wiScr genSamp( f k(V ), P(V ))
/* importance score accumulation module */

8 wcurScr, wallScr, scrArr accScr(si, wiScr, vk)

9 normalize scrArr for each variable

erality. On the other hand, to maximize flexibility, Fast-PGM
supports various functionalities within each module, allowing
easy combinations of modules with different functionalities.
Specifically, Fast-PGM naturally supports the following im-
portance sampling-based algorithms: (i) probabilistic logic
sampling (PLS) [26], (ii) likelihood weighting (LW) [21],
(iii) self-importance sampling (SIS) [47], (iv) self-importance
sampling variant (SISv1) [16], (v) adaptive importance sam-
pling (AIS-BN) [15], (vi) evidence pre-propagation impor-
tance sampling (EPIS-BN) [59,60], while also offering a high
degree of flexibility to accommodate additional optimizations
and extensions to any module or functionality. We describe
the details of our system abstraction in Section 4.
O2: High Efficiency. Fast-PGM equips an efficient under-
lying data structure and applies data fusion and reorder-
ing techniques to enhance data locality. Meanwhile, Fast-
PGM reduces the computational complexity of the most time-
consuming operations. Finally, parallelization techniques are
developed to further boost the overall efficiency of Fast-PGM.
These optimizations can be adapted to all the algorithms de-
veloped in Fast-PGM, and the memory and computation op-
timizations can be applied to both sequential and parallel
implementations. We elaborate our optimization techniques
in detail in Section 5.

4 System Abstraction

To boost generality and flexibility, we systematically abstract
Fast-PGM into four modules and provide four corresponding
abstract functions: (i) initImpFunc() function for importance
function initialization module, (ii) genSamp() function for
sample generation module, (iii) accImpScr() function for im-

portance score accumulation module, and (iv) updImpFunc()
function for importance function update module.

The general framework of Fast-PGM is shown in Algo-
rithm 1. In the beginning, the importance function f 0(V ) is
initialized using initImpFunc() (Line 2). After that, inside
each iteration of the main loop, a sample si is generated with
an importance score wiScr using genSamp() (Line 7). Then,
the new importance score wiScr is accumulated using accScr()
(Line 8). During this process, the main loop in Fast-PGM
is divided into multiple stages by the importance function
update module. The importance function f k(V ) of stage k is
updated every l iterations, where each update corresponds to
a new stage (Lines 4-6). The update uses updImpFunc() with
two types of accumulated scores wcurScr and wallScr (Line 6).
After finishing q iterations, the estimated probability for each
variable can be easily obtained by normalization (Line 9).

In what follows, we first briefly describe the above modules.
Then, our comprehensive discussion unfolds, placing particu-
lar emphasis on the generality and flexibility of Fast-PGM.

4.1 Crucial Modules in Fast-PGM

Here, we briefly describe the four crucial modules with a focus
on the distinctions among the algorithms. We omit highly
algorithm-specific details and suggest interested readers refer
to the respective algorithm papers [15, 16, 21, 26, 47, 59, 60]
for a more comprehensive understanding.
Importance Function Initialization. The first module initial-
izes the initial importance function f 0(V ). The importance
function here is a probability distribution over PGMs that
should be easy to sample from. The initial importance func-
tion f 0(V ) can be decomposed into multiple local CPDs (cf.
Equation 1). Thus, each importance function f k(V ) of stage
k can be used and updated by maintaining a tabular CPD
(i.e. conditional probability table (CPT)) of each variable,
which is defined as importance conditional probability table
(ICPT) and has the same structure as that of the CPT. We
let Pk(Vj|C(Vj)) denote the ICPT of variable Vj in stage k.
In PLS, LW, SIS, SISv1 and AIS-BN, f 0(V ) is based on the
CPTs, with detailed formulations available in Appendix A.3.1.
EPIS-BN is different. It uses loopy belief propagation [39]
to pre-compute its f 0(V ). Moreover, this module includes
two heuristics: (i) heuristic U: initializing the ICPTs of the
conditioning set of evidence to uniform distribution, and (ii)
heuristic S: adjusting very small probabilities controlled by q.
EPIS-BN uses heuristic S, while AIS-BN uses both heuristics.
Sample Generation. The second module generates a sample
si and computes its importance score wiScr. According to
Section 2.3, wiScr is the product of the scores for all variables:

wiScr =
P(V \E ,E = e)

f k(V )
=

’n�1
j=0 P(Vj|C(Vj))

����
E=e

’n�1
j=0 Pk(Vj|C(Vj))

. (5)
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Based on this idea, this module iteratively handles each vari-
able Vj. The variable handling ordering differs for BNs and
MRFs. In BNs, we typically use a topological ordering, while
in MRFs, a sampling process similar to Gibbs sampling is
commonly employed, following a random order. Detailed
pseudo-code and descriptions are provided in Appendix A.3.2.
Take the process on BNs as an example, there are four steps
for handling Vj. Firstly, the instantiation c of its parents C(Vj)
is obtained from the current instantiated sample si. The topo-
logical ordering ensures the variables in C(Vj) are always
instantiated before the sampling of Vj. Secondly, we obtain a
weight vector that contains the probabilities of Vj’s possible
states given the instantiation C(Vj) = c. It is obtained by re-
ducing the ICPT Pk(Vj|C(Vj)) based on C(Vj) = c. Thirdly,
a value of Vj is randomly picked from its state space based on
the weight vector, to be si[ j]. Finally, the score of Vj = si[ j] is
computed and multiplied into wiScr. PLS handles all the vari-
ables using the same process above, without distinguishing
evidence and non-evidence variables, while other algorithms
simplify the handling of evidence variables by instantiating
each evidence variable to its observed state.
Importance Score Accumulation. This module accumulates
the newly computed wiScr to the scrArr for each variable Vj.
The scrArr for Vj is a rVj -size array, where rVj is the number
of possible states of Vj. Based on the instantiated value of Vj
in si, the product vk ·wiScr is added to the corresponding entry
of the scrArr of Vj, where vk is the weight of the samples in
stage k. The weight vk is used only in AIS-BN, while being 1
for the other algorithms. Moreover, for SIS, SISv1 and AIS-
BN, an additional process of updating wcurScr or wallScr is
required. wcurScr is the accumulated score for the samples of
the current stage while wallScr is the accumulated score for all
the samples available till now. They have the same structure
as CPT. The product vk ·wiScr is added to wcurScr and wallScr
for each Vj based on the instantiation of Vj and C(Vj) in si.
Importance Function Update. The last module updates the
importance function periodically according to an updating in-
terval l. Among the algorithms developed in Fast-PGM, PLS,
LW, and EPIS-BN never update the importance function. SIS
and AIS-BN update the importance function using wcurScr,
while SISv1 updates using wallScr. Moreover, a learning rate
h(k) is also required in AIS-BN. Detailed updating functions
are available in Appendix A.3.3.

4.2 Discussion on Generality and Flexibility
Through identifying the four crucial modules, Fast-PGM de-
velops a framework for importance sampling-based approx-
imate inference on PGMs. We show the overview of Fast-
PGM in Figure 2. It takes the PGM and evidence as input,
and outputs the posterior distribution of all the non-evidence
variables, computed by a selected inference algorithm. The
design of Fast-PGM enables good generality and flexibility.
We highlight the following key features (F1, F2, and F3).

Fast-PGM
importance func. 

initialization
(initImpFunc)

pre-compute

heuristic U
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(genSamp)

does not 
distinguish
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Figure 2: The overview of Fast-PGM with four crucial mod-
ules. Various functionalities are supported inside each module
and we color-code the different functionalities utilized by the
different algorithms. The functionalities with red rectangular
boxes represent the default implementations of the abstract
functions of the corresponding modules.

F1: Versatile Modules and Functionalities Support. As
discussed in Section 4.1, distinctions among the inference
algorithms are evident. Fast-PGM supports various function-
alities inside each module, so that different algorithms can
use different functionalities, as indicated by the colored code
in Figure 2. For instance, to implement EPIS-BN, we use
pre-computation and heuristic S in the first module, distin-
guish variables in the second module, accumulate the variable
scores in the third module, and leave the last module inactive.
F2: Quick New Algorithm Implementation. Fast-PGM
equips the abstract function of each module with a useful
default implementation, illustrated in Figure 2 by the red rect-
angular boxes. It is worth noting that the underlying data
structures are well-implemented with optimizations and are
readily available to use. Therefore, implementing new impor-
tance sampling-based algorithms in Fast-PGM is quick, as we
only need to focus on customizing and refining the aspects
that deviate from the default implementations. For example,
implementing AIS-BN based on the building blocks provided
in Fast-PGM only needs less than 20 lines of code, as shown
in Listing 1. If we consider AIS-BN as a completely new
algorithm, we only need to implement the “updByCurrScr”
function with an additional 5 lines of code. However, imple-
menting AIS-BN from scratch needs at least 400 lines.
F3: Ease of Optimization and Extension. With the rich in-
terfaces provided, Fast-PGM allows users to easily implement
their ideas by optimizing or extending any step of the general
framework. For example, some functionalities1 require hy-
perparameters that may be highly problem-dependent. Thus,
users can optimize the hyperparameters with our user-friendly
interfaces according to their specific requirements. For an-
other example, EPIS-BN uses the pre-computation function-

1Here, the functionalities that require hyperparameters include “heuristic
U”, “heuristic S”, “weight”, and “use learning rate”.
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class AISBN: public PGMSys {
protected:
virtual void initImpFunc(Network *n,Evidence *e)

override{
PGMSys::initImpFunc(n,e); //call default impl.
heurU(n,e); //call the heuristic U func.
heurS(n); //call the heuristic S func.

}
virtual void accImpScr(Network *n, int *s, double &scr,

double w) override{
double w=getW(); //call the weight func.
PGMSys::accImpScr(n,s,scr,w);//call default impl.
accCurrScr(n,scr); //call the w_currScr func.

}
virtual void updImpFunc(int k) override{
double eta=getEta(k); //call learning rate func.
updByCurrScr(eta); //call using w_currScr func

}
}

Listing 1: Implementing AIS-BN with Fast-PGM. Underlying
data structures are omitted for the sake of readability.

ality for computing the initial importance function through
loopy belief propagation, which is an optimization-based ap-
proximate inference algorithm. One also has the flexibility to
integrate alternative algorithms to compute the initial impor-
tance function.

To summarize, Fast-PGM provides a general framework,
with each module equipped with useful default implemen-
tation and supporting various functionalities. The system
abstraction of Fast-PGM facilitates optimizations and ex-
tensions to any module or functionality, enabling users to
effortlessly customize and implement their own inference
algorithms based on their specific needs.

5 Implementation Details

This section focuses on the another primary objective of Fast-
PGM: high efficiency. Since the importance function initial-
ization only performs once and the importance function up-
date is also performed infrequently, the modules of sample
generation and importance score accumulation take up most
of the execution time, becoming our main focus in optimizing
Fast-PGM. Here, we elaborate the implementation details
and our optimization techniques from three aspects: memory
management, computation simplification, and parallelization.

5.1 Memory Management
The core of the underlying implementation of Fast-PGM lies
in manipulating the importance functions f k(V ). This trans-
lates into the manipulation of the ICPT Pk(Vj|C(Vj)) of each
variable within the context of PGM. However, managing large
ICPTs and dealing with irregular memory access patterns pose
significant challenges in memory management. In this section,
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(b) Data structure of the ICPT and CPT after data fusion

Figure 3: Probability table data structure before and after
using the data fusion strategy for variables V1.

we present these challenges (C1, C2, and C3) and propose
solutions (S1, S2, and S3) to alleviate them.

5.1.1 Basic data structure

C1: Large ICPTs. The size of the ICPTs in a PGM can be
remarkably large. For example, suppose that Vj and all the
variables in its conditioning set C(Vj) have r possible states,
then the number of entries in its ICPT is r|C(Vj)|+1. In highly
connected complex problems, the variables may have many
neighbors and a large number of possible states, leading to
extremely large ICPTs. For each of the r|C(Vj)|+1 entries in the
ICPT of Vj, the naive implementation stores all the |C(Vj)|+1
states of {Vj}[C(Vj), as well as the corresponding probabil-
ity values for the state configurations, resulting in substantial
memory consumption.
S1: Avoiding Storing States. We optimize the data storage
via a probability table data structure to avoid storing the state
configurations for each entry in the ICPTs. Specifically, the
probability table of Vj includes:

• vars: an array containing Vj and C(Vj);

• nVars: the size of vars, which equals |C(Vj)|+1;

• prob: the main array, storing the probability values;

• cumSt: a helper array storing the cumulative number of
states starting from the rightmost element of vars.

Figure 3a shows an example of the probability table data
structure of variable V1 with two parents V0 and V2 in a BN,
where V1 has three possible states (i.e., rV1 = 3) and the other
two variables have two possible states (i.e., rV0 = rV2 = 2). In
this case, vars is {V0,V1,V2}, and cumSt is {rV2 ·rV1 ,rV2 ,1}=
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int ProbabilityTable::c2i(int *config) {
int idx=0;
for(int i=0;i<this->nVars;++i)
idx+=config[i]*this->cumSt[i]; // use cumSt

return idx;
}

Listing 2: The c2i method that is used to transform from a
state configuration to an index of prob.

{6,2,1}, which is constructed iteratively starting from the
rightmost element of vars. The main array prob maintains the
probabilities, where each entry corresponds to a state configu-
ration. We avoid storing the states of all the related variables,
because each state configuration (e.g., con f ig = {1,0,1}) can
be easily transformed to and from a table index (e.g., idx = 7)
through the auxiliary array cumSt. For example, Listing 2
describes the c2i function that is able to transform a configu-
ration into an index.

Furthermore, the data structure offers the additional benefit
of reducing computational complexity. Specifically, the time
complexity of the key operation of getting weight vectors is
reduced from an exponential growth rate (i.e. exponential to
nVars) to a linear growth rate (i.e. proportional to nVars). The
details are discussed in Section 5.2.

5.1.2 Data fusion

C2: Irregular Memory Access Caused by the Stochastic
Nature of the Sampling Process. As discussed in Section 4.1,
we need to get the weight vector frequently when generating
a sample. For variable Vj, the weight vector is obtained from
Vj’s ICPT, by getting the probabilities of the configurations
that are consistent with the instantiation c of its conditioning
set C(Vj). However, the inherent randomness of c introduced
by sampling leads to irregular access to ICPTs. Moreover,
we need to frequently find the desired probability from CPTs
to compute the importance score. This causes a similar de-
mand for frequent and irregular access to CPTs, which further
exacerbates the memory issue.
S2: Fusing ICPT and CPT. Fast-PGM relieves the burden
of memory access by fusing ICPT and CPT. It stems from
our two practical findings. Firstly, the ICPT and CPT for the
same variable have the same structure, because they both cor-
respond to different state configurations of the variable and
its conditioning set. Secondly, in the process of generating
a sample and computing its importance score, the probabil-
ities at the same position of the paired ICPT and CPT are
frequently accessed together. Building on the two observa-
tions, we propose to fuse the ICPT and CPT of each variable
into a unified structure and integrate the combined structure
into the probability table data structure. ICPT and CPT and
then share the nVars, vars, and cumSt, as illustrated in Fig-
ure 3b. When accessing a certain probability in the ICPT, the

parent variables of V5: {V1, V3}V1 V2 V3 V4

V1 V2 V3 V4

V5 V6

V5 V6

parent variables of V6: {V2, V4}

V1, V2, V3, V4, V5, V6

① reverse

graph G

graph G’
② BFS topo. sort

o’: V5, V6, V1, V3, V2, V4

③ reverse
o: V4, V2, V3, V1, V6, V5

BFS topo. sort

Figure 4: The data reordering strategy to maximize the prox-
imity of each variable’s parents.

related probability in the CPT is readily available in contigu-
ous memory locations, reducing the time for data fetching
and minimizing cache misses. Data fusion capitalizes on the
frequent simultaneous access property of ICPTs and CPTs to
enhance data locality and improve memory access patterns.

5.1.3 Data Reordering

C3: Irregular Memory Access Caused by the Graphical
Structure. To get the weight vector of each variable Vj, we
must pick the instantiation c of its conditioning set C(Vj) from
the current instantiated sample that contains the instantiations
of all the variables. However, the inherent graphical nature
of PGMs often leads to non-contiguous memory layouts for
C(Vj), resulting in irregular memory access patterns that incur
additional memory latency.
S3: Reordering Variables in Memory. We propose a data
reordering strategy to maximize the proximity of each vari-
able’s parent variables in memory on BNs. This involves three
steps. Firstly, we reverse the direction of all the edges in the
underlying graph G of the BN to create a modified graph G0.
Secondly, we apply a breadth-first search (BFS)-based topo-
logical sorting algorithm on G0 to get the topological ordering
o0 of G0. Finally, we get the reverse ordering o of o0. Figure 4
illustrates the process through an example where {V1,V3} is
the parent set of V5 and {V2,V4} is the parent set of V6. The
resulting ordering o is a possible topological ordering of G,
which can be used as the variable sampling ordering. At the
same time, it allows the parent variables of each variable to
be positioned as close as possible in memory. As shown in
Figure 4, variables V1 and V3 can be stored contiguously in
memory, as well as V2 and V4. By storing the variable instan-
tiations according to o, we aim to promote data locality and
thus mitigate irregular memory access issues associated with
BNs as much as possible. Due to space limitation, we provide
more discussion of data reordering in Appendix A.4.

Note that data reordering is designed only for BNs. In
MRFs, the interdependencies between variables make it chal-
lenging to ensure the proximity of one variable’s Markov
blanket without affecting the proximity of another variable’s
Markov blanket.
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prob in data structure operations
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Figure 5: Table reduction operations on the probability table
data structure for variable V1. The prob array in the probabil-
ity table is also provided for convenient cross-referencing.

5.2 Computation Simplification
The most time-consuming operation is to get the weight vector
of variables in the sample generation module. This is done by
reducing its ICPT based on the instantiation of its condition-
ing set. Here, we first analyze the computational complexity,
then present our optimization to reduce the compleixty.

5.2.1 Computational Complexity

To reduce an ICPT, the traversal of the state configurations
in the ICPT is required. The size of ICPT for Vj is equal
to the number of possible states of {Vj}[C(Vj), which is
exponential in |C(Vj)|+1. More precisely, the size is rVj ⇥
’Vi2C(Vj) rVi , where rVj is the number of possible states of Vj.
For example, considering the simplified scenarios that Vj and
all the variables in its conditioning set C(Vj) have r possible
states, then the number of entries in its ICPT is r|C(Vj)|+1.

For each entry of the ICPT to be reduced, we need to com-
pare the state configuration with the instantiation c of C(Vj).
Additionally, the algorithm generates q samples, each involv-
ing sampling all the non-evidence variables. Therefore, the
overall complexity is calculated as

O(q⇥ Â
Vj /2E

(|C(Vj)|⇥ rVj ⇥ ’
Vi2C(Vj)

rVi)), (6)

where E is the set of evidence variables and Vj denotes each
of the non-evidence variables. The complexity of the simpli-
fied scenarios mentioned earlier is O(q⇥ÂVj /2E (|C(Vj)|⇥
r|C(Vj)|+1)).

5.2.2 Table Reorganization Optimization

This ICPT reduction operation can be performed efficiently
with the help of the probability table data structure, as il-

lustrated in Figure 5a. For the example described in Fig-
ure 32, assume that the conditioning set instantiation of V1
is {V0 = 1,V2 = 0}, then the entries that conflict with the
instantiation are ignored and we get {p6, p8, p10} as the
weight vector of V1. It is processed by first constructing rV1
configurations based on the conditioning set configuration
conConfig and location of V1 in vars. Next, the desired in-
dexes idx are obtained by performing the configuration-to-
index mapping c2i. Finally, we can fetch the probabilities
from prob according to idx. Since the complexity of c2i is
O(nVars) = O(|C(Vj)|+ 1), as shown in Listing 2, we can
compute the overall time complexity, which is reduced to
O(q⇥ÂVj /2E (rVj ⇥ (|C(Vj)|+1))).

To further alleviate the computational burden, we carefully
re-organize the probability table data structure in a more
efficient way. Specifically, we constrain the ordering of vars
as follows: for the probability table of variable Vj, Vj itself is
the rightmost element in vars. Figure 5b shows the optimized
process of the table reduction operation in three steps. In the
first step, only the first configuration con f ig1 is required to
be constructed. Next, the first index idx1 is obtained via the
c2i method. Finally, we can fetch values from the contiguous
memory of prob starting from idx1. In this way, the overall
complexity is further reduced to O(q⇥ÂVj /2E (|C(Vj)|+1)),
which is particularly beneficial for complex PGMs with a
large number of possible states for each variable.

The optimized probability table data structure benefits all
the importance sampling-based algorithms under the general
framework in Fast-PGM. For the algorithms that need to up-
date the importance function, such as SIS and AIS-BN, the
required current-stage score wcurScr and all-state score wallScr
also have the same structure as that of CPT and ICPT. Thus,
they also benefit from the optimized probability table data
structure. In fact, most of the inference algorithms on PGMs
can take advantage of the probability table data structure,
since both the exact and approximate inference algorithms re-
quire computations on the input CPTs, which can be stored via
the probability table data structure. Moreover, the overhead
of re-organizing the probability table is negligible, because
the probability tables of all the variables are constructed only
once in the importance function initialization module.

5.3 Parallelization

Here, we aim to parallelize the importance sampling frame-
work. From coarse-grained to fine-grained, we identify three
granularities of parallelism, including case-level, sample-
level, and variable-level. In what follows, we first analyze
the shortcomings of accelerating Fast-PGM using case-level
and variable-level parallelism, then propose to exploit sample-
level parallelism to improve the efficiency of Fast-PGM.

2Example: V1 has two variables in its conditioning set: V0 and V2. More-
over, rV1 = 3, rV0 = rV2 = 2.
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5.3.1 Case-level and Variable-level Parallelism

The most natural scheme is to parallelize different test cases,
which is a coarse-grained parallelism. In many scenarios,
dealing with a large number of test cases is common, and these
test cases are independent of each other. Therefore, we can
simply dedicate these test cases to different threads equally.
However, the major limitation of case-level parallelism is load
unbalancing. Although different test cases are used for the
same PGM, they often involve different evidence variables. As
analyzed in Equation 6, such difference in evidence variables
E greatly influences the computational complexity, leading
to highly different workloads across different test cases.

Another scheme is variable-level parallelism, a fine-grained
scheme that parallelizes the sampling process of different
variables. Since the sampling of different variables is inher-
ently sequential, this method requires first partitioning the
PGM into independent and parallelizable subgraphs. This
corresponds to another research topic: graph partitioning [10].
However, graph partitioning relies on the PGM structure. Not
all graphs are easy to partition, particularly those with high
connectivity. This reliance also diverges from our objective
of developing a unified framework. Another limitation of
variable-level parallelism is the relatively small workload as-
sociated with each variable operation. We typically need a
larger amount of workload for each thread to amortize the
overhead of parallel computing like frequent thread creation.
Additionally, graph partitioning introduces extra overhead.

5.3.2 Sample-level Parallelism

To overcome the limitations, Fast-PGM exploits sample-level
parallelism. The main loop (cf. Algorithm 1 Lines 3-8) of
the framework is divided into multiple stages by the impor-
tance function update module, where the size of each stage k
depends on the updating interval l. Different samples gener-
ated inside the same stage use the same importance function,
and the workloads for different samples are the same. Thus,
the importance sampling-based algorithms under the general
framework are well-suited for sample-level parallelism.

Specifically, there are always l samples to be generated
inside each stage except for the last stage, which may have
more than l samples. Inside each stage, the samples to be
generated are dedicated to the parallel threads equally. Each
thread independently generates a number of samples and com-
putes an importance score wiScr for each sample, similar to
the sequential implementation. The difference is that each
thread maintains private wcurScr, wallScr and scrArr. The im-
portance score wiScr is accumulated to these private vectors
inside each thread. After all the threads finish their tasks of
each stage, the partial results in the private vectors of all the
threads are reduced to get the final results of wcurScr, wallScr
and scrArr. This process is even simpler for some algorithms,
such as PLS, LW and EPIS-BN: since they never update their
importance functions, they contain only one stage. In other

Table 1: Information of reference PGMs.

PGMs # nodes # edges # parameters
Alarm [8] 37 46 509
Hailfinder [1] 56 66 2656
Pathfinder [25] 109 195 77155
Pigs [48] 441 592 5618
Munin2 [5] 1003 1244 69431
Munin4 [5] 1038 1388 80352

words, all the desired q samples are in the same stage and are
generated using the same importance function f 0(V ). The q
samples can be parallelized directly, and the multiple threads
only require to be synchronized once. We also consider the
hybrid sample-level and variable-level parallelization scheme,
but it faces some challenges such as communication over-
head and additional computation costs. Detailed discussion is
provided in Appendix A.5 due to space limitation.

Moreover, PGMs are relatively small in memory. Most
PGMs contain no more than hundreds of variables. For ex-
ample, a BN with hundreds of variables is considered a large
network [15,28,46,59]. Therefore, the model and data can be
stored in a single machine easily without being distributed to
multiple machines.

6 Experimental Evaluation

We perform experiments to evaluate the effectiveness of our
proposed techniques and compare with existing methods.

6.1 Experimental Setup
Baselines and platform. We implemented Fast-PGM using
C++ for importance sampling-based approximate inference
on PGMs. We compared the performance of Fast-PGM with
the existing work SMILE [49] and BNJ [12]. SMILE and BNJ
are both sequential implementations. All experiments were
conducted on a Linux machine with a 16-core 3.2GHz Intel(R)
Core(TM) i9-12900K CPU and 128GB main memory.
Data sets. Our experiments were tested on BNs as exemplary
instances of PGMs. We tested Fast-PGM on six real-world
BNs as shown in Table 1. They have been widely used for
comparative studies, and the last four are considered as large-
scale networks in the community [15, 29, 46]. We generated
1,000 test cases from each network. Following the common
settings [15, 59, 60], each test case has 20 observed variables.
Parameter settings. The default number of samples q is 4,000
for Alarm and Hailfinder, and 40,000 for the other larger net-
works. For the tunable parameters in AIS-BN3 and EPIS-BN4,

3Parameter settings for AIS-BN: h(k) = a( b
a )

k/kmax , where a = 0.4, b =
0.14, kmax is the times of importance function updating and is no more than
10; vk = 1 for the last updating interval and vk = 0 otherwise; q = 0.4.

4Parameter settings for EPIS-BN: d = 2; q = 0.006 for variables with
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Table 2: Execution time comparison of Fast-PGM (“Ours”) with SMILE (“S”) and BNJ (“B”) on 1000 test cases. Speedups of
Fast-PGM over SMILE and BNJ are also reported. “N/A” means that the library does not support the corresponding algorithm.

PGM
PLS LW SIS

Time (sec) Speedup Time (sec) Speedup Time (sec) Speedup
S B Ours S B S B Ours S BNJ S B Ours S B

Alarm 0.39 1.59 0.13 3.0 12.0 0.42 1.50 0.11 3.7 13.2 N/A 3.0 0.14 N/A 20.7
Hailfinder 0.76 5.7 0.26 3.0 22.1 0.66 2.7 0.21 3.1 13.1 N/A 15.8 0.26 N/A 60.0
Pathfinder 5.0 76.0 1.1 4.4 66.8 6.1 88.0 1.0 5.8 84.2 N/A 1.1k 1.3 N/A 850
Pigs 21.4 1.2k 1.4 15.0 841 14.6 1.2k 1.5 10.1 854 N/A 4.9k 1.8 N/A 2.8k
Munin2 68.4 6.2k 4.5 15.1 1.4k 48.9 6.0k 4.5 10.8 1.3k N/A 27k 5.9 N/A 4.5k
Munin4 67.8 6.1k 5.1 13.4 1.2k 47.7 7.6k 5.2 9.2 1.5k N/A 32k 6.9 N/A 4.6k

PGM
SISv1 AIS-BN EPIS-BN

Time (sec) Speedup Time (sec) Speedup Time (sec) Speedup
S B Ours S B S B Ours S B S B Ours S B

Alarm 0.46 N/A 0.15 3.2 N/A 0.77 10.2 0.15 5.2 69.3 0.65 N/A 0.14 4.5 N/A
Hailfinder 0.83 N/A 0.27 3.1 N/A 1.3 27.7 0.27 4.9 104 0.83 N/A 0.26 3.2 N/A
Pathfinder 13.0 N/A 1.3 10.0 N/A 11.5 2.7k 1.3 8.8 2.1k 6.0 N/A 1.3 4.5 N/A
Pigs 30.0 N/A 1.8 16.8 N/A 32.0 6.9k 1.8 17.9 3.9k 17.8 N/A 1.8 10.2 N/A
Munin2 94.2 N/A 6.1 15.4 N/A 121 47k 6.2 19.7 7.4k 56.3 N/A 5.8 9.7 N/A
Munin4 63.9 N/A 6.8 9.3 N/A 119 55k 6.9 17.2 7.9k 62.9 N/A 6.6 9.6 N/A

we used the default settings following the suggestions in the
original papers [15, 59, 60]. For the algorithms that require
a learning process, i.e., SIS, SISv1 and AIS-BN, we varied
the updating interval l to achieve better accuracy. Specifically,
large or complex networks often require a larger l. The set-
tings of l used in our experiments are: 2,500 for Alarm, Hail-
finder and Pathfinder; 50,000 for Pigs, Munin2 and Munin4.

6.2 Overall Comparison
In this section, we first compare Fast-PGM with existing
works for the overall execution time, then investigate the
impact of our proposed optimizations, and finally study the
speedup obtained by multi-thread parallelization.

6.2.1 Execution Time Comparison with Existing Work

We compare the overall efficiency of Fast-PGM with the exist-
ing implementations SMILE and BNJ. Among the importance
sampling-based algorithms, SMILE implements five of them:
PLS, LW, SISv1, AIS-BN and EPIS-BN; BNJ has implemen-
tations of four: PLS, LW, SIS and AIS-BN. Therefore, we
compare the implementations of these algorithms with the
corresponding implementations in Fast-PGM. The number of
samples q in this experiment is set to 1000. For the last four
networks, we varied the number of threads t from 1 to 16 for
Fast-PGM and chose the one with the shortest execution time.

Our experimental results are summarized in Table 2, where
“N/A” means the algorithm is not implemented in the library.

fewer than 5 possible states, q = 0.001 for variables with the number of states
between 5 and 8, and otherwise, q = 0.0005.

As can be seen from the “Speedup” columns, Fast-PGM is
3 to 20 times faster than the state-of-the-art implementation
SMILE. When compared to BNJ, Fast-PGM can often achieve
three orders of magnitude significant speedup. The speedups
are mainly due to our careful optimizations on memory, com-
putation and parallelization aspects for improving the effi-
ciency of Fast-PGM. The experiments on the relatively small
networks Alarm and Hailfinder were conducted under one sin-
gle thread, since the optimizations on the sequential version
of Fast-PGM already lead to a short execution time (i.e., less
than 0.5s). For the other larger networks, Fast-PGM always
achieves its shortest execution time when t = 16.

Meanwhile, since both SMILE and BNJ do not support
acceleration using multi-thread techniques, we also conduct
experiments to compare SMILE and BNJ with the sequential
version of Fast-PGM. We find that sequential Fast-PGM still
outperforms SMILE, achieving up to 5 times speedup, and can
achieve two to three orders of magnitude speedup than BNJ.
Due to space limitation, we provide the detailed experimental
results in Appendix A.6.

6.2.2 Impact of Individual Optimizations

Here, we study the impact of individual optimizations on
the overall efficiency. The optimizations include (i) memory
management: includes data structure, data fusion and data
reordering, to avoid frequent finding operations and improve
data locality; (ii) computation simplification: re-organizes
the data structure to simplify key computations; (iii) paral-
lelization: sample-level parallelism for the most expensive
modules. To investigate the impacts of the optimizations, we
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Figure 6: Impact of the individual optimizations on the overall
efficiency improvement of Fast-PGM.

successively switched off parallelization, computation simpli-
fication, and memory management. Hence, the contribution
of each optimization to the overall efficiency improvement
can be observed, as shown in Figure 6.

On average of the six algorithms, 25% of the improvement
originates from memory management, 14% from computation
simplification, and 61% from parallelization. Among them,
AIS-BN, SIS and SISv1 need to learn an importance function
(i.e., learning-based algorithms), and we observe that 41% of
their improvement originates from memory management and
computation simplification, and 59% from parallelization. On
the other hand, for EPIS-BN, PLS and LW that use a fixed im-
portance function (i.e., non-learning-based algorithms), 37%
of the improvement originates from memory management
and computation simplification, while 63% from paralleliza-

tion. To conclude, the learning-based algorithms benefit more
from memory management and computation simplification
compared to the non-learning-based algorithms. There are
two main reasons for this. Firstly, the learning-based algo-
rithms maintain additional wcurScr or wallScr for each variable
in the PGMs. Since wcurScr and wallScr are integrated into the
probability table data structure, the computations on them can
take advantage of memory management and computation sim-
plification on the probability table data structure. Secondly,
parallelizing non-learning-based algorithms requires less syn-
chronization. Thus, they benefit more from parallelization.

It is worth noting that although parallelization contributes
more, memory management and computation simplification
play a critical role in the efficiency improvement. For example,
running the 1,000 test cases on Munin4 using EPIS-BN with
40,000 samples takes 9,808 seconds for the naive implemen-
tation. The execution time is significantly reduced to 2,099
seconds after careful memory management and computation
simplification optimizations. They bring 4.7 times speedup.
On the basis of the two optimizations, parallelization is able
to further reduce the time to 263 seconds.

To evaluate the impact of the proposed optimizations on
the inference results, we compare the probability results of
the algorithms before and after applying the optimizations
using the same test cases. In this experiment, we also fixed
the random seed for each run to avoid the variance caused
by the sampling processes. Our experiments show that the
results with and without our optimizations are identical for
all the implemented approximate inference algorithms. The
reason is that our optimizations on memory, computation, and
parallelization do not involve any approximation or alteration
of the algorithms themselves.

6.2.3 Comparison with Theoretical Speedup

We compare the speedups of the parallel version of Fast-PGM
to the sequential version with the theoretical speedups. The
theoretical speedups are computed by Amdahl’s Law [3],
which gives the theoretical speedup of a parallel program by

Speedup(t) =
1

(1� rp)+ rp
t
,

where t is the number of parallel threads, rp is the ratio of
the parallel part of the program, and Speedup(t) means the
theoretical speedup under t threads. We can easily obtain rp
from one sequential run of the program.

Figure 7 shows the theoretical speedups and the speedups
of the parallel version of Fast-PGM on the four larger models.
We can observe that the speedups of Fast-PGM approach the
theoretical speedups, especially for the largest model Munin4.
Figure 7 also provides the ratios of the parallel and sequential
parts of the program respectively. As shown in Figure 7b,
Pigs has the largest rp, which is 99%. Therefore, it has the
largest theoretical speedup as well as the practical speedup of
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Figure 7: Theoretical and practical speedups of Fast-PGM
under different number of threads. The ratios of parallel part
and sequential part of the program are also provided.

Fast-PGM among the networks. On the other hand, Fast-PGM
has a relatively small speedup on Pathfinder due to the small
ratio of its parallel part (i.e., rp = 81%).

6.3 Effectiveness of Algorithms in Fast-PGM

We first compare the accuracy of the importance sampling
algorithms in Fast-PGM, and then discuss the efficiency com-
parison among different algorithms.

6.3.1 Accuracy of Approximation

The accuracy of an approximate algorithm is inherently deter-
mined by the algorithm itself. For the sake of completeness,
we here provide the accuracy results of the six algorithms
implemented in Fast-PGM. The accuracy of approximation
was measured by computing the probability distance between
exact and approximate solutions. The distance metric we used
is Hellinger’s distance [31], consistent with the choice of
EPIS-BN [59, 60]. Hellinger’s distance H(F1,F2) between
two distributions F1 and F2, which have probabilities P1(xi j)
and P2(xi j) for state j where j = 1,2, ...ri for variable i re-
spectively, is defined as:

H(F1,F2) =

vuutÂXi2V \E Âri
j=1(

p
P1(xi j))�

p
P2(xi j))2

ÂXi2V \E ri
,

(a) Alarm (b) Hailfinder

(c) Pathfinder (d) Pigs

(e) Munin2 (f) Munin4

Figure 8: Convergence curves of the sampling-based algo-
rithms measured by Hellinger’s distance.

where V is the variables in the PGM, E is the evidence
variables, and ri is the number of states for variable i. We
obtained the exact probability distribution of each variable
using the exact inference method junction tree algorithm [33].
Fast-PGM also supports the Mean Square Error (MSE) metric,
and other distance metrics can be easily extended. A major
advantage of Hellinger’s distance is that it can handle zero
probabilities, which are common in PGMs. It weighs small
absolute probability differences near 0 much more heavily
than those near 1, where the probability differences near 0 are
indeed more important.

Figure 8 shows Hellinger’s distance with varying number
of samples of the six importance sampling-based algorithms.
The number of samples q ranges from 1,000 to 32,000 for
Alarm and Hailfinder, since they can obtain good accuracy
under this setting. For other larger networks, we varied q from
10,000 to 320,000 to achieve reasonably good accuracy. We
also report the results of loopy belief propagation [39] after
100 iterations as a reference. The reported Hellinger’s distance
is averaged over the 1,000 test cases.
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Figure 9: Comparisons of execution time with the number of
samples generated on the sampling-based algorithms.

From Figure 8, we have the following four key observa-
tions. Firstly, EPIS-BN is the best, which is consistent with
the findings in [59,60]. The propagation length d in EPIS-BN
was set to only 2, which is already sufficient for EPIS-BN to
yield very good results. In comparison, loop belief propaga-
tion with d = 100 is at least one order of magnitude worse
than EPIS-BN. Secondly, PLS performance is the worst due
to its poor sample efficiency. It discards many inconsistent
samples, and the ratio of the valid samples is close to the like-
lihood of evidence. Therefore, PLS does not work on cases
with extremely unlikely evidence, such as on Hailfinder, Pigs
and Munin4. Due to this reason, we omit the results of PLS.
Thirdly, among the algorithms that are required to update the
importance function, AIS-BN is often better than SIS and
SISv1. These algorithms try to gradually learn a better im-
portance function, and the quality of the generated samples
impacts the quality of the learned function. AIS-BN intro-
duces sample weight and learning rate, which can weight the
samples generated in the later stage more heavily. Fourthly,
the default settings of the parameters in the heuristics may
not be suitable for all the case, since the parameters are highly
problem-dependent. After fine-tuning the parameters, the ac-
curacy of EPIS-BN and AIS-BN could be further improved.

6.3.2 Efficiency Comparison Among Algorithms

We briefly discuss the comparisons of execution time with the
number of samples here. Figure 9 shows the average number
of samples generated per second per test case for the sequen-
tial run. We used the experiments on Pigs and Munin4 as
examples and similar observations can be made from other
tested networks. We have the following three key observa-
tions. Firstly, PLS and LW can generate more samples per
second compared to the other algorithms. The time saved
comes from the fact that they do not need to compute the im-
portance scores when instantiating the non-evidence variables
because they are always 1. Due to its simplicity, LW becomes
one of the most popular sampling algorithms for approxi-
mate inference. It often approaches or even outperforms some
more sophisticated algorithms by generating more samples in
the same amount of time. Secondly, SIS, SISv1 and AIS-BN

generate fewer samples per second because of their learn-
ing overhead. For example, learning the importance function
spends the three algorithms about an extra 1.07 seconds per
test case for the experiment on Munin4 using 32,0000 sam-
ples. Thirdly, EPIS-BN can generate slightly more samples
than SIS, SISv1 and AIS-BN, since the overhead of EPIS-BN
running loopy belief propagation is less than that of these
learning-based algorithms.

7 Conclusion and Future Work

In this paper, we have proposed an efficient inference system,
namely Fast-PGM, for importance sampling-based approxi-
mate inference on PGMs. Fast-PGM provides the implemen-
tations of mainstream importance sampling-based algorithms,
together with various functionalities and rich interfaces that fa-
cilitate fast and easy optimizations, extensions and customiza-
tion. Moreover, Fast-PGM is powered by a series of optimiza-
tions, including the data structure design, data fusion and
reordering optimizations, computation simplification, and par-
allelization techniques. We highlight that our optimizations
are easily applicable to various other PGM-related topics like
structure learning or exact inference. Furthermore, our op-
timizations can inspire acceleration for a broader class of
graph-based and probability-based algorithms.

Extensive experimental results showed that (i) Fast-PGM is
3 to 20 times faster than SMILE, and significantly outperforms
another solution BNJ; (ii) Fast-PGM is effective regarding
the accuracy of the approximate inference algorithms; (iii)
parallelization notably improves the efficiency, where the
practical speedups approach to the theoretical ones.

While this paper provides a strong foundation, we see many
challenges that demand future improvements. Future work
could extend Fast-PGM to distributed computing environ-
ments to improve its scalability and incorporate additional
inference methods to broaden its applicability.
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