
This paper is included in the Proceedings of the
2024 USENIX Annual Technical Conference.

July 10–12, 2024 • Santa Clara, CA, USA
978-1-939133-41-0

Open access to the Proceedings of the
2024 USENIX Annual Technical Conference

is sponsored by

PeRF: Preemption-enabled RDMA Framework
Sugi Lee and Mingyu Choi, Acryl Inc.; Ikjun Yeom, Acryl Inc.

and Sungkyunkwan University; Younghoon Kim, Sungkyunkwan University
https://www.usenix.org/conference/atc24/presentation/lee

PeRF: Preemption-enabled RDMA Framework

Sugi Lee1, Mingyu Choi1, Ikjun Yeom1,2, and Younghoon Kim2∗

1Acryl Inc.
2Sungkyunkwan University

Abstract
Remote Direct Memory Access (RDMA) provides high
throughput, low latency, and minimal CPU usage for data-
intensive applications. However, RDMA was initially de-
signed for single-tenant use, and its application in a multi-
tenant cloud environment poses challenges in terms of perfor-
mance isolation, security, and scalability. This paper proposes
a Preemption-enabled RDMA Framework (PeRF), which of-
fers software-based performance isolation for efficient multi-
tenancy in RDMA. PeRF leverages a novel RNIC preemption
mechanism to dynamically control RDMA resource utiliza-
tion for each tenant, while ensuring that RNICs remain busy,
thereby enabling work conservation. PeRF outperforms exist-
ing approaches by achieving flexible performance isolation
without compromising RDMA’s bare-metal performance.

1 Introduction

Remote Direct Memory Access (RDMA) is a highly promis-
ing network technology that provides high throughput and
ultra-low latency with minimal CPU usage via zero-copy
read/write operations from/to applications’ virtual memory
spaces [12, 18, 34]. Various data-intensive applications, such
as big-data analysis [4, 5], machine learning [2, 11, 15, 33],
distributed storage [21, 27, 28, 41], and key-value stores [20,
25, 27, 38], have demonstrated significant performance im-
provements with RDMA. However, RDMA and its applica-
tions were originally designed for single-tenant use, which
makes it challenging to deploy RDMA in multi-tenant cloud
environments. According to recent studies, multiple tenants
using RDMA can confront various problems such as secu-
rity [19, 32, 39], scalability [16, 22, 36, 37], and performance
isolation [22, 23, 40].

Among these problems, performance isolation is a particu-
larly critical concern because, without adequate performance
isolation, some tenants may fail to achieve the expected per-
formance, thereby compromising the very purpose of utiliz-

∗Younghoon Kim is the corresponding author.

ing RDMA. Several studies have been presented to provide
RDMA performance isolation in multi-tenant environments.
The basic policy of these studies is to regulate the data trans-
mission rate of each tenant for efficient resource utilization,
exploiting either hardware (HW)-based or software (SW)-
based technologies. In [14, 19, 35], several RDMA virtualiza-
tion frameworks have been proposed to leverage SR-IOV [6]
or Virtual Lanes (VLs) [1] supported by RDMA HWs such
as switches or RNICs. The advantage of these HW based
regulation frameworks is that they can provide strict perfor-
mance isolation, but they may not properly handle dynamic
changes of tenants’ requirements. SW-based solutions, mean-
while, focus on intercepting data transmission requests gener-
ated by applications to an RNIC, and controlling the request
rate for each tenant in the user space [22, 30, 40]. They can
achieve more flexible performance isolation against dynamic
changes in network resource sharing compared to HW-based
approaches. However, as they rely on reservation-based re-
source allocation to regulate transmission requests without
help from HW, performance degradation is inevitable.

In this paper, we introduce a Preemption-enabled RDMA
Framework (PeRF), a novel approach that offers SW-based
performance isolation without compromising the bare-metal
performance of RDMA. Previous SW-based solutions have
attempted to regulate tenants’ transmission request rates in
order to control the packet scheduling of an RNIC. However,
there is a significant limitation in these solutions such that
inaccurate estimation of available network resources can lead
to serious performance degradation. If available resources
are underestimated, sufficient requests may not be issued to
the RNIC, resulting in a loss of throughput and processing
rate. Conversely, if overestimated, accumulated requests in
the RNIC can break performance isolation.

In designing PeRF, our goal is to control the packet schedul-
ing of an RNIC without requirement of accurate estimation
of network resources. Unlike a reservation-based, non-work-
conserving scheduling fashion, which demands accurate esti-
mation of network resources, we employ a preemption-based,
work-conserving scheduling approach in order to maximize

USENIX Association 2024 USENIX Annual Technical Conference 209

network utilization while providing performance isolation
to multi-tenants. Our goal could be achieved using specific
verbs (such as IB_WR_WAIT and IB_WR_ENABLE available
in RDMA user-level APIs [8]), which can prompt an RNIC
to temporarily pause packet processing for one connection,
allowing another active connection to take the processing
opportunity, similar to preemptive job scheduling in an OS.
PeRF interleaves this preemption between requests gener-
ated by tenants and succeeds in elastically controlling the
packet transmission of an RNIC. Moreover, by selectively
preempting applications that use large messages or multiple
connections, PeRF can be particularly beneficial for appli-
cations with small messages or a single connection. PeRF
provides them with additional processing opportunities with-
out impacting the performance of the applications currently
occupying the communication channel by using large packets
or multiple connections. Notably, our RNIC preemption mech-
anism may introduce some overhead to the CPU (for splitting
large messages) and the RNIC (for managing larger request
buffers). However, our investigation reveals that this overhead
is minimal and does not adversely affect the performance of
PeRF, as demonstrated in our extensive evaluation.

With the advantages of work-conserving scheduling with
our novel preemption mechanism, PeRF properly isolates
RDMA resource utilization of each tenant against dynami-
cally changing network and tenant states, while maintaining
high performance close to HW-based solutions. Furthermore,
PeRF can be implemented entirely on existing RDMA APIs
without requiring any specialized hardware or modifications
to applications. Our evaluation demonstrates that PeRF de-
livers significantly higher throughput (∼2.04×) with simi-
lar latency compared to previous SW-based schemes. We
also evaluate PeRF with real-world applications including
Apache Crail [27], HERD [20], and rping [10]. Our frame-
work transparently works on these applications, ensuring effi-
cient performance isolation when they share an RNIC. This
transparency also enables PeRF to complement other existing
RDMA solutions, particularly those focused on security, scala-
bility or network congestion control, enhancing its practicality
in multi-tenant cloud environments.

2 Background and Motivation

2.1 RDMA Overview
In RDMA, the entire network stack is offloaded on RNICs,
and applications interact with them by using user-level RDMA
APIs, IB Verbs [8]. To initiate data communication, an
application creates a Queue Pair (QP) and a Completion
Queue (CQ). The QP includes a Send Queue (SQ) and a
Receive Queue (RQ). To send or receive a message, the appli-
cation posts a Work Request (WR) to its QP (SQ or RQ) and
rings a doorbell on an RNIC, prompting the RNIC to fetch
the WR. This process fully offloads the message transmission

to the RNIC, allowing the application to perform other tasks
freely. Upon completing the message transmission, the RNIC
pushes a Completion Queue Element (CQE) into the CQ,
and then the application can recognize the completion of the
message transmission by polling the CQE from its CQ.

RDMA supports two types of primitives: one-sided primi-
tives, such as READ and WRITE operations, and two-sided
primitives, such as SEND/RECV operations. All primitives
are driven by the local application, while the remote applica-
tion passively works. When a local application posts a WR for
one-sided primitives, a local RNIC sends a message (data for
WRITE or request for READ) that includes a remote virtual
address and a memory key to a remote RNIC. This enables the
remote RNIC to directly transmit data to or from the remote
memory space without using the remote CPU. For two-sided
primitives, a local application posts a SEND WR to a local
RNIC, which then performs the SEND operation by transfer-
ring a message without any information related to the remote
memory space. A remote RNIC processes the received mes-
sage referring to a previously posted RECV WR to an RQ by
a remote application. It is noted that performance advantages
of RDMA are achieved mainly by the one-sided primitives,
while the two-sided primitives more focus on flexibility.

2.2 Micro-scale Analysis of RNIC

To understand how RNICs handle heterogeneous WRs posted
to multiple QPs in parallel, we conduct micro-scale bench-
mark on a similar test-bed described in Section 5. The first
benchmark aims to understand how an RNIC schedules mul-
tiple QPs. In this benchmark, each application uses its own
single QP to send batches of messages with different sizes.
Fig. 1(a) illustrates that, when five applications send small
messages (< 1 KB), they achieve the RNIC’s maximum mes-
sage rate for a single QP. However, adding another application
which sends larger messages (1, 2, or 4 KB) limits the mes-
sage rates of other applications. This observation suggests
that the RNIC employs a round-robin QP scheduling method,
processing WRs from different QPs equitably, irrespective of
their message sizes.

The second benchmark test investigates an RNIC’s packet
scheduling when transmitting messages larger than the MTU.
Two applications share an RNIC, and each application uses
a single QP: one sends messages in batches with sizes from
64 B to 1 GB as background traffic, while the other generates
16 B messages, and we measure the message rate (shown
in Fig. 1(b)) and the latency (in Fig. 1(c)). To observe the
impact of the MTU, we vary the MTU from 1 KB to 4 KB.
As the size of the background messages increases from 64
B to the MTUs, the message rate and latency progressively
worsen until the message size reaches the MTU. This occurs
because the RNIC processes all packets with uniform priority,
irrespective of their size. This makes a smaller packet wait for
the transmission of a larger packet of the background traffic

210 2024 USENIX Annual Technical Conference USENIX Association

w/o 1KB 2KB 4KB
Size of Large Message

0

2

4

6

8

10

12
M

s
g
 R

a
te

 (
M

m
p
s
)

16B 32B 64B 128B 256B Large

(a) Round-Robin QP Scheduling of an RNIC

64
B

12
8B

51
2B1K

B
2K

B
4K

B
1M

B
1G

B
0

3

6

9

12

M
s
g
 R

a
te

 (
M

m
p
s
)

[MTU SIZE]

1KB 2KB 4KB

(b) Variation of Message Rate
(by MTU-based Packet Scheduling)

64B

128B

512B
1KB

2KB
4KB

1M
B
1G

B
0
1
2
3
4
5
6

A
v
g
 L

a
te

n
c
y
 (

u
s
)

[MTU SIZE]

1KB 2KB 4KB

(c) Variation of Avg. Latency
(by MTU-based Packet Scheduling)

Figure 1: Micro-scale Analysis of RNIC’s Scheduling

and causes extreme stalls for smaller ones. On the other hand,
when the background message size surpasses the MTU, the
rate of performance decline stabilizes. This stability arises as
the RNIC, upon encountering packets larger than the MTU,
segments these messages into packets of MTU size. Thus,
the delay experienced by smaller packets does not exceed the
time taken to deliver an MTU-sized packet.

Consequently, our observations reveal two distinct behav-
iors of RNICs during data transmission: (1) RNICs process
WRs from multiple QPs with a round-robin scheduling; and
(2) RNICs evenly schedule variously sized packets, which
are segmented from messages originating from different QPs
based on the MTU. Understanding these behaviors is crucial
for developing optimized performance isolation schemes in
RDMA, particularly in contexts where an RNIC is shared
among multiple tenants.

2.3 Challenges of Multi-tenancy in RDMA

In a multi-tenant cloud environment, system resources includ-
ing processing power, storage and communication should be
properly managed by the cloud administrator. Among these re-
sources, however, RDMA networks are challenging for admin-
istrators to manage effectively due to their kernel-bypassing
feature, as discussed in [23, 24, 40]. The straightforward and
greedy packet scheduling mechanism of RDMA induces un-
fair opportunities for packet transmission among tenants, lead-
ing to performance anomalies and resource starvation. In this
section, we analyze these anomalies in detail through micro-
scale experiments.

In our experiments, we examine three types of RDMA
applications classified by the message size and rate: delay-
sensitive, message-intensive, and bandwidth-intensive appli-

write send read0

3

6

9

12

M
s
g
 R

a
te

 (
M

m
p
s
) w/o B_Appsingle with B_Appsingle

(a) M_Appsingle vs. B_Appsingle

write send read0
3
6
9

12
15

L
a
te

n
c
y
 (

u
s
)

avg w/o B_App
avg with B_App

99th w/o B_App
99th with B_App

(b) D_Appsingle vs. B_Appsingle

Figure 2: Anomalies from Different Message Sizes

cations. Delay-sensitive applications (D_Apps) sparsely gen-
erate small messages (≪ MTU) that require a short com-
pletion time. Message-intensive applications (M_Apps) gen-
erate batches of small messages to achieve a high message
rate. Bandwidth-intensive applications (B_Apps) send large
messages (≳ MTU) to achieve high throughput. Each type
of applications is further divided into two subtypes based
on whether it exploits multiple QPs or not. To sum up,
we use six types of applications (B_Appsingle, B_Appmulti,
M_Appsingle, M_Appmulti, D_Appsingle, and D_Appmulti) in
the experiments. The details of these applications are illus-
trated in Section 5.

2.3.1 Anomalies from Different Message Sizes

First, we look at how an application with large messages im-
pacts on small message transmissions. As shown in Fig. 2(a),
when an M_Appsingle shares an RNIC with a B_Appsingle,
the message rate of the M_Appsingle is drastically reduced
while the B_Appsingle achieves high throughput (94.77∼96.89
Gbps) for all operations. Similarly, in Fig. 2(b), a B_Appsingle
can harm the performance of a D_Appsingle by increasing
its average and the 99th percentile (99%) tail MCT (Mes-
sage Completion Time) while the B_Appsingle achieves 97.94
Gbps. We note that no performance anomaly occurs when
an M_Appsingle and a D_Appsingle share an RNIC since their
message sizes are similar. We also have confirmed a perfor-
mance anomaly between two B_Appsingles generating differ-
ent sizes of messages (discussed in Appendix B).

2.3.2 Anomalies from Different QP Numbers

The QP-level round-robin scheduling of an RNIC may
cause serious fairness anomalies by providing more packet-
transmission opportunities to the multi-QP application in
proportion to its number of QPs. Fig. 3(a) depicts the through-
put comparison between a B_Appsingle and a B_Appmulti
when they compete for resources on the same RNIC. The
throughput of the B_Appsingle decreases as the QP num-
ber of the B_Appmulti increases. It has been also confirmed
that the performance degradation of an M_Appsingle and a
D_Appsingle is even more severe when they share the RNIC
with a B_Appmulti.

An M_Appmulti can also degrade the performance of a
D_Appsingle and an M_Appsingle. An RNIC has several Pro-

USENIX Association 2024 USENIX Annual Technical Conference 211

5 10 15 20
QP Num

0
20
40
60
80

100

T
p
u
t

(G
b
p
s
)

B_Appsingle

B_Appmulti

(a)

5 10 15 20
QP Num

0
20
40
60
80

100

M
s
g
 R

a
te

 (
M

m
p
s
)

M_Appsingle

M_Appmulti

(b)

5 10 15 20
QP Num

0
20
40
60
80

100

M
s
g
 R

a
te

 (
M

m
p
s
)

0.0

0.5

1.0

1.5

L
a
te

n
c
y
 (

u
s
)

msg M_Appmulti

avg D_Appsingle

99th D_Appsingle

(c)

Figure 3: Anomalies from Different Numbers of QPs: (a)
shows the throughput reduction of a B_Appsingle by a
B_Appmulti. (b) and (c) describe the performance degradation
of an M_Appsingle and a D_Appsingle due to an M_Appmulti.

cessing Units (PUs), and each PU independently processes
WRs posted in a QP [24, 31]. This enables an RNIC to trans-
mit packets of multiple QPs in parallel and to achieve its
maximum message rate. For example, the RNIC in our experi-
ments achieves approximately 105 Mmps with 9 QPs, while a
single QP can achieve only about 13 Mmps at most. Fig. 3(b)
and 3(c) illustrate that the message rate of an M_Appmulti
increases as the number of its QPs grows. However, when
the RNIC reaches its maximum capacity, the M_Appmulti be-
gins to degrade performance for both an M_Appsingle and a
D_Appsingle. We have conducted similar experiments with
different RNICs and obtained similar results (illustrated in
Section 5.2.5).

3 PeRF Design

3.1 Overview
PeRF, a Preemption-enabled RDMA Framework, is a SW-
based performance isolation framework to rapidly adapt to
dynamic network conditions and varying tenant demands
without compromising resource utilization. Our analysis of
RDMA in a multi-tenant environment (discussed in Sec-
tion 2.3) highlights the necessity of prioritizing the perfor-
mance of applications using small messages or a single QP
over those monopolizing RNIC resources with large messages
or multiple QPs. To address this, we establish three rules:

1. Isolate Small message transmission from large message
transmission.

2. Isolate an application with a single QP from a bandwidth
or message-intensive application with multiple QPs.

3. Ensure uninterrupted message transmission for delay-
sensitive application.

Rules 1&2 enable PeRF to prevent the earlier-mentioned
performance anomalies. To implement these rules efficiently,
PeRF introduces a novel preemption mechanism for work-
conserving performance isolation. Rule 3 necessitates segre-
gated handling of delay-sensitive applications to ensure their

Figure 4: PeRF Architecture

ultra-low latency. The overall architecture of PeRF, designed
to comply with these rules, is described in Fig. 4.

3.2 Splitting Isolation Process

Before delving into detailed design of PeRF, we describe how
to minimize processing overhead for performance isolation.
Implemented as an user-level library, PeRF requires the tem-
porary blocking of an application during the execution of its
performance isolation logic. In order to minimize the duration
of this blocking, PeRF splits its process into two parts: on-
loading and offloading. The onloading process, executed on
the main thread, specifically manages lightweight tasks, while
more complex tasks are delegated to the offloading process
running on a background thread.

The onloading process intercepts application’s verb calls,
and estimates the average message size and the number of
created QPs. It also enforces network policies specified by
the system administrator, including request rate limit or QP
creation limit, for each tenant. PeRF’s isolation manager in the
onloading process dynamically triggers the isolation process
depending on the application type.

The offloading process of PeRF involves two types of back-
ground threads: the PeRF master and PeRF workers. The
PeRF master thread oversees the global states of tenants and
orchestrates multiple worker threads to ensure optimal CPU
utilization without contention. Whenever a tenant initiates a
new RDMA application, PeRF spawns a new PeRF worker
thread dedicated to manage the complex isolation procedures.
The PeRF worker shares memory space with the main thread,
and it can freely post WRs to the application’s QP for PeRF’s
isolation process.

3.3 Design of PeRF Worker

Performance isolation of PeRF begins with identifying the re-
quirements of applications executed by multiple tenants. The
application classifier determines the application type based
on the average message size and the number of created QPs
estimated by the onloading part which intercepts user-level

212 2024 USENIX Annual Technical Conference USENIX Association

RDMA verbs (ibv_create_qp and ibv_post_send). If the av-
erage size is equal to or larger than 1 KB, the application
is classified as a B_App. For applications with smaller mes-
sages, potentially classified as a D_App or an M_App, PeRF
incorporates an additional classification step. It monitors the
number of uncompleted WR in a SQ (SQ_Len) at 5 ms inter-
vals, and an application is labeled as an M_App if the highest
SQ_Len within the last 1,000 ms exceeds a specific threshold
(T hM_App), which we set to five in this study. If an application
utilizes multiple QPs, scheduling messages of varying sizes
and rates across different QPs can pose a challenge for PeRF
in classifying the application type. In such cases, the applica-
tion classifier considers the largest message size or the fastest
rate among all QPs, and utilizes that value to categorize the
application.

The work-conserving scheduler dynamically performs pre-
emption processes to adhere to PeRF’s isolation rules. These
preemption processes utilize the PeRF preemption mecha-
nism, incorporating PAUSE/RESUME operations on QPs and
transmission interrupts. Detailed information about the mech-
anism are presented in the subsequent section. The scheduler
is composed of three engines as outlined below:

• Large Message Scheduling Engine (LMSE): The LMSE
is responsible for message-level isolation for small mes-
sage transmission. It consistently interrupts large mes-
sage transmissions via the PeRF preemption mechanism,
thereby creating opportunities for the transmission of
small messages.

• Multi-QP Scheduling Engine (MQSE): The MQSE pro-
vides QP-level isolation by managing Multi-QP applica-
tions. It employs PAUSE/RESUME operations within
the PeRF preemption mechanism to regulate the num-
ber of QPs utilized by Appmulti, and this facilitates per-
formance isolation among applications with different
numbers of QPs.

• Early Completion Engine (ECE): PeRF generates extra
WRs within its preemption mechanism to enforce perfor-
mance isolation. However, this may saturate the SQ for
applications and potentially degrade their performance.
The ECE is responsible for periodically polling these
additional WRs, creating room for application WRs and
mitigating potential performance issues.

3.4 Selective Isolation Process in PeRF
Based on our extensive analysis, we have concluded that a
D_App and an M_Appsingle have minimal impact on other
applications even when utilizing multiple QPs concurrently.
However, even a small overhead can result in significant per-
formance degradation for them. To mitigate this issue, we
have designed the PeRF isolation manager to allow WRs gen-
erated by a D_App and an M_Appsingle to bypass all isolation
processes and be passed directly to the RNIC. For the case of
an M_Appmulti, the isolation manager either posts its WRs to

(a) Managed QP and ENABLE_WR (b) WAIT_WR

Figure 5: RNIC Preemption Mechanism of PeRF

(a) PAUSE/RESUME

(b) Transmission Interrupt

Figure 6: Performance Isolation of PeRF

the available QP or passes them to the offloading part to be
posted later. All WRs of a B_App are offloaded.

For an application sending both large and small messages,
PeRF permits bypassing the isolation process for small mes-
sage requests if there is no ongoing transmission of a large
message on a QP, regardless of the application’s type. If a QP
of any Appmulti has a high message rate similar to M_App,
PeRF applies the M_App’s isolation process to that QP. To-
gether, these strategies allow PeRF to maintain ultra-low la-
tency for delay-sensitive messages (whether for a D_App or
not), while still providing performance isolation for many
other RDMA applications.

3.5 PeRF Preemption Mechanism
We devise an innovative RNIC preemption mechanism that
can temporarily pause or resume the RNIC resource utiliza-
tion of each QP. This solution operates smoothly without the
need for network resource estimation and without compro-
mising the packet processing performance of the RNIC. As
a result, PeRF efficiently isolates message transmissions for
multiple tenants, offering a notable improvement compared
to existing RDMA isolation solutions.

Our preemption mechanism uses a managed QP and spe-
cialized WRs (ENABLE and WAIT), which are provided by
the user-level RDMA APIs [8]. When an application creates a
QP in managed mode, any WR posted to the QP by the appli-
cation is stored in host memory instead of being directly sent
to the RNIC as shown in Fig. 5(a). To prompt the RNIC to
fetch that WR, the application needs to issue an ENABLE WR

USENIX Association 2024 USENIX Annual Technical Conference 213

to another regular QP specifying the target managed QP’s ID
in the ENABLE WR. The WAIT WR posted to a QP causes
the RNIC to pause processing subsequent WRs in the QP until
it completes the WAIT WR as in Fig. 5(b). In the WAIT WR,
the application must record the wait_cqe_num and wait_cq,
indicating the number of CQEs to poll and the CQ from which
to poll those CQEs. The WAIT WR can only be completed
if the specified number of CQEs (wait_cqe_num) are polled
from the wait_cq. Following the WAIT WR completion, the
RNIC resumes processing subsequent WRs of the QP.

3.5.1 PAUSE/RESUME Operations for MQSE

PeRF initiates the process by creating an additional managed
QP called Preemption Control QP (PCQ), and a correspond-
ing CQ called Preemption Control CQ (PCC). Subsequently,
PeRF posts a sufficient number of WRs in a host memory
space to fill up the PCQ. These WRs (0_WRs) request zero-
byte messages, containing only a header without a payload.
The PCQ is configured to facilitate loopback communication.
To manage individual QPs of an Appmulti, PeRF utilizes these
components in conjunction with ENABLE and WAIT WRs
as shown in Fig.6(a). During the PAUSE operation, PeRF
posts WAIT WRs to selected QPs of the Appmulti, excluding
QNumallow randomly chosen QPs. The WAIT WRs are con-
figured to be completed when one CQE in the PCC is polled,
and this ensures that the RNIC processes only the WRs from
QNumallow of the non-paused (active) QPs. For the RESUME
operation, PeRF posts an ENABLE WR to one of the active
QPs to prompt the RNIC to resume processing WRs from
one of the paused (non-active) QPs, specifically the oldest
one. Notably, by posting a WAIT WR after the ENABLE
WR, PeRF guarantees that the number of active QPs remains
consistent with QNumallow.

3.5.2 Transmission Interrupts for LMSE

Since an RNIC does not consider packet sizes during packet
handling, it requires the interruption of large message trans-
missions to isolate small message transmissions. PeRF
achieves this through transmission interrupts implemented
via a PAUSE operation with a 0_WAIT WR. A 0_WAIT WR
can be created by setting its wait_cqe_num to zero. When
an RNIC encounters a 0_WAIT WR posted to a QP, it imme-
diately completes it, halts message transmission of the QP,
and proceeds to process WRs posted by another QP. Upon
intercepting a WR requesting large message transmission,
PeRF divides it into several sub-WRs, each requesting trans-
missions of equal-sized sub-messages (SUB_MSG_SIZE).
Between these sub-WRs, PeRF inserts a few 0_WAIT WRs.
This mechanism prevents the overuse of RNIC resources
for transmitting large messages by B_Apps and allocates re-
served resources for transmitting small messages by M_Apps
or D_Apps as in Fig.6(b).

4 PeRF Implementation

PeRF’s implementation consists of approximately 400 lines
of C++ code and 3,000 lines of C code added to the RDMA
user-level driver (libmlx5) in the OpenFabrics Enterprise
Distribution (OFED 4.9-4.1.7.0) [8]. Additionally, we uti-
lize the khash library [3] to manage the context of multi-
ple QPs created by an application. PeRF code is available
via https://github.com/acryl-aaai/perf.

4.1 Large Message Scheduling Engine
Achieving message-level isolation between B_Apps transmit-
ting large messages and other applications such as M_Apps
and D_Apps is facilitated by employing transmission inter-
rupts. The allocation of RNIC resources to applications using
small messages is determined by the number of 0_WAIT
WRs interposed between sub-messages (0_WAIT _NUM).
This value is calculated by dividing SUB_MSG_SIZE by
0_WAIT _UNIT . In this paper, we set the default values of
SUB_MSG_SIZE and 0_WAIT _UNIT to be 16 KB and 1
KB, respectively. With these values, QPs with small messages
have 16 times more transmission opportunities than a QP with
large messages. Reducing 0_WAIT _UNIT results in more
0_WAIT WRs being inserted between sub-WRs, allowing
for a greater allocation of RNIC resources to small message
transmission. Note that large messages (≤ SUB_MSG_SIZE)
that do not need to be split are processed in the onloading part
instead of being passed to the offloading part. This prevents
throughput degradation due to communication overhead be-
tween the main and background threads. Although this may
require the main thread to post several 0_WAIT WRs, we an-
ticipate that it will have minimal impact on the application’s
performance because the number of 0_WAIT WRs will not
be large.

4.2 Multi-QP Scheduling Engine
When an RNIC is shared between a multi-QP application
(Appmulti) and a single-QP application (Appsingle), PeRF ini-
tiates the QP-level isolation process. It can flexibly restricts
the number of active QPs for each tenant with a combina-
tion of PAUSE and RESUME operations. If needed, it can
activate the QPs of an Appmulti one by one in a round-robin
fashion by setting QNumallows for all tenants to one. This
greatly helps PeRF isolate Appmulti’s traffic from Appsingle’s
traffic. However, it is also necessary for MQSE to support the
maximum message rate for M_Appmulti. M_Appmulti needs
parallel utilization of multiple QPs for that. Therefore, con-
sidering QNumcapa, which indicates the minimum number of
QPs needed to fully utilize the RNIC’s maximum message
rate1, PeRF adjusts QNumallow for each tenant starting from
the default value, one.

1The QNumcapa is a unique parameter to each RNIC.

214 2024 USENIX Annual Technical Conference USENIX Association

https://github.com/acryl-aaai/perf

When an application attempts to post WRs through multi-
ple QPs surpassing QNumallow, the MQSE oversees each QP,
ensuring an equal opportunity for activation in a round-robin
fashion. In cases where an application tries to post WRs to
a non-active QP, these WRs are buffered in an MQSE queue
rather than being directly forwarded to an RNIC until the QP
becomes active. When a non-active QP becomes active, the
MQSE initially posts the buffered WRs and subsequently per-
mits the application to directly post WRs to the RNIC. This
strategy enables PeRF to equitably manage both B_Appmulti
and M_Appmulti, allowing them to utilize their multiple QPs
without adversely affecting other applications.

4.3 Early Completion Engine
In RDMA, WRs are stored in an SQ until their corresponding
CQEs are polled by an application. If the SQ becomes full,
preventing the posting of additional WRs, the application
must periodically poll CQEs to create space for future WRs.
However, a PeRF worker posts sub-WRs, 0_WAIT , WAIT , or
ENABLE WRs, which are transparent to an application and
contribute to filling up the SQ. The ECE is responsible for
polling CQEs corresponding to these transparent WRs. Since
the ECE attempts to poll CQEs from the application’s CQ,
it may also poll normal CQEs that need to be passed to the
application. Therefore, the ECE must store them in its buffer
to deliver them to the application later.

4.4 Improving Practicality and Scalability
1) Minimization of Preemption Overhead: The PeRF

preemption mechanism can result in overhead that affects
PeRF’s performance. To mitigate this, our scheme selectively
activates the isolation process based on the global tenant
distribution managed by the PeRF master. The process is
triggered only when the problematic situation arises. For the
message-level isolation, PeRF divides large messages into
chunks larger than or equal to 16 KB and inserts batches
of 0_WAIT WRs rather than posting one sub-WR for each
small chunk alternated with a 0_WAIT WR. This approach
significantly decreases the CPU overhead of the message-
level isolation of PeRF (described in Section 5.2.1). Note that
the QP-level isolation incurs minimal overhead, as only a few
WAIT and ENABLE WRs are posted.

2) Scalable Management of Worker Threads: For CPU
efficiency, we assign the offloading part to a single CPU core.
To facilitate efficient communication between threads, we
have meticulously designed a lock-free data structure in SHM.
This data structure ensures that each element is updated exclu-
sively by individual threads. Additionally, we leverage atomic
operations to manage information shared between QPs for
multi-threaded applications that utilize multiple threads for
posting WRs to their QPs in parallel. To avoid CPU con-
tention between PeRF workers, the PeRF master schedules

the worker threads based on condition variables, enabling
PeRF to support thousands of tenants and QPs in parallel
without performance degradation as seen in Section 5.2.5.

3) Fabric Isolation: PeRF focuses on resolving issues for
tenant-level RNIC resource sharing rather than flow-level
fabric sharing. In PeRF, fabric isolation can be achieved us-
ing existing congestion control mechanisms implemented on
commercial RNICs, such as DCQCN [42], TIMELY [29], and
IBCC [7]. PeRF works well with DCQCN (for RoCEv2) or
IBCC (for Infiniband), as confirmed in Section 5.2.4.

4) Support for Various RDMA Operations: We have
mainly explained the design and implementation of PeRF,
concentrating on the WRITE operation, but PeRF can support
the SEND/RECV and READ operations as well. The SEND
operation is similar to WRITE, and implementing the RECV
operation is straightforward because PeRF’s isolation process
is driven by a sender. For the RECV operation, we add a
mechanism that divides WRs for receiving large messages
and early polls corresponding CQEs in a PeRF worker. We
also develop a simple RPC-based READ operation similar
to [20], allowing PeRF to manage bidirectional data transmis-
sion of the READ operation. The adoption of this RPC-based
method is motivated by the unique challenge posed by READ
operations, where the message generation is executed by a
remote RNIC. In such situations, PeRF’s isolation process
must be carried out remotely. However, keeping the CPU con-
sumption low on the remote RDMA application is a critical
aspect in RDMA contexts. To address this, we employ the
RPC mechanism to send READ requests to PeRF’s offload-
ing part on the remote side using the SEND/RECV operation.
This enables the offloading part to efficiently handle the trans-
fer of READ data using the WRITE operation and initiate the
isolation process.2

5 Evaluation

5.1 Experiment Setup
Throughout the experiments, we set up a rack-scale cluster
of five identical machines. Each machine has a 16-core In-
tel(R) Core(TM) i7-11700K 3.6GHz CPU and 32GB DRAM,
connected via a Mellanox Open Ethernet 100 Gbps switch
(SN-2100). We have conducted evaluations with various com-
mercial RNICs described in Table 1, and ConnectX-6 for
RoCEv2 is used as a default one unless specified otherwise.

Our experiments involve three types of applications:
B_App, M_App and D_App. They post WRITE WRs with
a single QP unless otherwise noted. Specifically, a B_App
continuously sends 1 MB messages while an M_App and a
D_App send 16 B messages. Only the M_App transmits 32
messages in batches. We utilize per f test [9], a widely used
RDMA benchmarking tool. Each tenant is assigned with a

2Engines for exchanging READ requests are incorporated into the PeRF
worker.

USENIX Association 2024 USENIX Annual Technical Conference 215

RNIC Protocol Speed Num. of PUs [23]
ConnectX-5 RoCEv2 40Gbps 8
ConnectX-6 RoCEv2 100Gbps 16
ConnectX-6 Infiniband 100Gbps 16

Table 1: RNICs Specifications

Isolation Type CPU RAM
Message-level (D_App vs. B_App) 0.94% 8.8 MB
QP-level (D_App vs. B_Appmulti) 0.56% 12.2 MB
QP-level (D_App vs. M_Appmulti) 3.62% 14.4 MB

Table 2: The CPU and RAM Usage of PeRF

dedicated core pinned to their processes. For tenants with
multiple QPs, however, we modify the application to support
multi-threading and allocate threads in a way that minimizes
sharing threads between QPs.

To demonstrate the efficiency and practicality of PeRF,
we have conducted a comparison with Justitia [40]. We use
Justitia’s default chunk sizes and the token batch of 1,100
for mitigating an M_App’s overuse. The value is calculated
following the literature, and it is sufficient to fully utilize one
QP (about 13 Mmps). Justitia detects network congestion by
measuring the 99% tail MCT of its monitoring packets. We
also evaluate a relaxed version of Justitia, JustitiaR, with a
more generous latency threshold of 15 µs 3 (compared to the
default 2 µs). By increasing the threshold, JustitiaR is less
likely to perceive the network as congested, allowing more
throughput to B_Apps.

5.2 Baseline Benchmark
We analyze the overhead in the operation of PeRF and how
effectively it isolates tenants in a rack-scale environment.
We construct a single-hop network within a rack, generating
traffic between two nodes. In the result plots below, we use
tput to represent throughput, avg for average latency, and 99th
for 99th percentile tail latency.

5.2.1 PeRF Overhead

This section presents experiments designed to evaluate the
overhead of PeRF. The first experiment assesses the CPU
and RAM usage involved in PeRF’s Message-level and QP-
level isolation processes. In this experiment, a D_App shares
an RNIC with either a B_Appsingle, a B_Appmulti and an
M_Appmulti, and we measure the corresponding resource us-
ages. Given that PeRF’s offloading part is configured to oper-
ate on a single core, as mentioned earlier, Table 2 illustrates
the additional resource usage by applications when executing

3We have identified the optimal threshold value that allows Justitia to
maintain an acceptable level of low latency (average of 1.5 µs) while achiev-
ing a much higher throughput (86 Gbps) in our test-bed.

RDMA SP PeRF
0

25

50

75

100

G
b
p
s

0

2

4

6

8

L
a
te

n
c
y
 (

u
s
)

tput avg 99th

(a) B_App vs. D_App

RDMA SP ETS PeRF
0

25

50

75

100

G
b
p
s

0

3

6

9

12

M
m
p
s

tput msg_rate

(b) B_App vs. M_App

Figure 7: Evaluation of HW-based Solutions and PeRF

PeRF’s onloading part. Notably, isolating M_Appmulti neces-
sitates slightly more CPU usage due to the high number of
WRs for batched small message transmission, resulting in
more frequent calls to PeRF’s isolation mechanism. However,
all isolation processes, including those for M_Appmulti, add
less than 5% CPU usage. It implies that PeRF achieves its
performance isolation benefits almost at the cost of only a
single CPU. Regarding RAM usage, approximately 9 MB
is required by PeRF to isolate an Appsingle. However, for an
Appmulti, each additional QP in the isolation process necessi-
tates about an extra 500 KB of memory.

Subsequently, we compare PeRF’s overhead with HW-
based schemes. Fig.7(a) presents the throughput of a B_App
and the average and tail latency of a D_App when they share
an RNIC. Strict Policy (SP) in the figure is a HW-based
isolation scheme that strictly prioritizes small messages us-
ing priority queues in the RNIC. PeRF achieves comparable
throughput and latencies with SP. Additionally, PeRF’s ef-
ficacy is further evaluated with a B_App and an M_App in
Fig.7(b). In this experiment, SP’s throughput is severely de-
graded since the M_App dominates the RNIC with prioritized
small messages. Thus, we compare with another HW-based
scheme, Enhanced Transmission Selection (ETS) [13], which
schedules message transmissions from both apps based on
weighted round-robin (WRR) queues. For ETS, we configure
two priorities, one each for a B_App and an M_App, with the
weights set at 16 and 1, respectively. This configuration allows
ETS to deliver efficient performance, ensuring high through-
put for the B_App and a high message rate for the M_App.
Remarkably, PeRF demonstrates performance similar to that
of ETS.

During our evaluation, it was observed that ETS is less ef-
fective when a B_App and a D_App coexist.4 This limitation
arises from the inherent nature of WRR-based QoS schemes,
like ETS, which schedule data transmissions primarily based
on bandwidth utilization. While these schemes effectively
manage applications requiring substantial bandwidth, such
as B_App and M_App, they struggle to adequately isolate a
D_App, which requires little (almost zero) bandwidth, from
other RDMA applications.

To sum up, the evaluations in this section underscore

4We omit the graph for this experiment due to the space limit of the paper.

216 2024 USENIX Annual Technical Conference USENIX Association

RDM
A

Ju
st

iti
a

Ju
st

iti
aR

Pe
RF

0

25

50

75

100

G
b
p
s

0

2

4

6

8

L
a
te

n
c
y
 (

u
s
)

tput avg 99th

(a) B_App vs. D_App

RDM
A

Ju
st

iti
a

Ju
st

iti
aR

Pe
RF

0

25

50

75

100

G
b
p
s

0

3

6

9

12

M
m

p
s

tput msg rate

(b) B_App vs. M_App

Figure 8: Message-level Isolation of Various Schemes

PeRF’s proficiency in utilizing its SW-based preemption
mechanism to dynamically manage data transmissions across
various tenants. This mechanism enables the RNIC to differen-
tially schedule packets with negligible overhead, on par with
HW-based schemes, thereby ensuring optimal performance
for various RDMA applications sharing an RNIC.

5.2.2 Message-level Isolation

In this section, we evaluate PeRF’s message-level isolation be-
tween two tenants using a single QP. Native RDMA (RDMA)
is used as a base case, and the performance is compared with
Justitia and JustitiaR. As shown in Fig. 8, RDMA fails to con-
trol a B_App, which leads to higher latency of a D_App and
lower message rate of an M_App.

In contrast, Justitia aims to ensure a fair distribution of
RNIC resources among multiple tenants. To achieve this,
Justitia calculates an equitable available bandwidth and mes-
sage rate for each tenant and adjusts their WR posting rate not
so as to exceed these defined limits. When a B_App operates
alongside a D_App and an increase in the tail latencies of the
D_App is observed, Justitia halves the WR posting rate of the
B_App to promote fair bandwidth sharing, as illustrated in
Fig.8(a). Similarly, when an M_App and a B_App share an
RNIC, Justitia reduces the WR posting rates of both applica-
tions, considering the calculated fair bandwidth and message
rate for each. This adjustment leads to an approximate 50%
decrease in performance for each application, as demonstrated
in Fig.8(b). JustitiaR, an adjusted version of Justitia, is less
sensitive to the increase in tail latencies of the D_App due to
a higher threshold setting, allowing for higher throughput for
the B_App while maintaining similar performance to Justitia
in scenarios where the M_App and the B_App coexist.

Our analysis indicates that while Justitia effectively al-
locates RNIC resources equitably, it introduces significant
overhead by pausing WR postings of RDMA applications.
This pause prevents the RNIC from continuously transmitting
packets, leading to performance degradation. In contrast, our
proposed scheme, PeRF, utilizes the novel preemption mech-
anism that allows RDMA applications to post WRs without
interruption, enabling the RNIC to perform work-conserving
scheduling for packet transmission. As a result, PeRF achieves

5 10 15 20
QP Num

0

25

50

T
p
u
t

(G
b
p
s
)

B_Appsingle B_Appmulti

(a) B_Appsingle vs. B_Appmulti
(with PeRF)

5 10 15 20
QP Num

0

25

50

T
p
u
t

(G
b
p
s
)

B_Appsingle B_Appmulti

(b) B_Appsingle vs. B_Appmulti
(with Justitia)

5 10 15 20
QP Num

0
20
40
60
80

100

T
p
u
t

(G
b
p
s
)

0

3

6

9

12

M
s
g
 R

a
te

 (
M

m
p
s
)B_Appmulti M_Appsingle

(c) M_Appsingle vs. B_Appmulti
(with PeRF)

5 10 15 20
QP Num

0
20
40
60
80

100

T
p
u
t

(G
b
p
s
)

0

3

6

9

12

M
s
g
 R

a
te

 (
M

m
p
s
)B_Appmulti M_Appsingle

(d) M_Appsingle vs. B_Appmulti
(with Justitia)

5 10 15 20
QP Num

0
20
40
60
80

100
T
p
u
t

(G
b
p
s
)

0

1

2

3

L
a
te

n
c
y
 (

u
s
)

tput B_Appm

avg D_Apps

99th D_Apps

(e) D_Appsingle vs. B_Appmulti
(with PeRF)

5 10 15 20
QP Num

0
20
40
60
80

100

T
p
u
t

(G
b
p
s
)

0

1

2

3

L
a
te

n
c
y
 (

u
s
)

tput B_Appm

avg D_Apps

99th D_Apps

(f) D_Appsingle vs. B_Appmulti
(with Justitia)

Figure 9: QP-level Isolation for B_Appmulti

high throughput for a B_App, while maintaining low latency
and high message rate for a D_App and an M_App, respec-
tively, in our evaluations.

5.2.3 QP-level Isolation

We also investigate how PeRF addresses performance anoma-
lies resulting from an Appmulti in this section. A B_Appmulti
and an M_Appmulti have distinct sources of performance
anomalies, such as message sizes and the number of WQEs.
Given that, we design two different sets of experiments where
a B_Appmulti (or an M_Appmulti) coexist with a B_Appsingle,
an M_Appsingle and a D_Appsingle, respectively.

B_Appmulti cases: PeRF successfully isolates tenants with
different numbers of QPs even when a B_App utilizes multi-
ple QPs, as depicted in Fig. 9. It maintains the throughput of
B_Apps regardless of the numbers of QPs while preserving
low latencies of D_Apps and high message rates of M_Apps.
On the other hand, as shown in Fig. 9(d), even though Justi-
tia issues equal amounts of tokens to a B_Appmulti and an
M_Appsingle, it achieves only half of throughput and message
rate due to its working mechanism. As shown in Fig. 9(e) and
(f), PeRF exhibits a marginally higher latency for D_Appsingle
compared to Justitia. However, this increased latency is a rea-

USENIX Association 2024 USENIX Annual Technical Conference 217

5 10 15 20
QP Num

0
20
40
60
80

100

M
s
g
 R

a
te

 (
M

m
p
s
)

0.0
0.2
0.4
0.6
0.8
1.0

N
o
rm

a
li
z
e
d

normalizedsingle

M_Appsingle

M_Appmulti

(a) M_Appsingle vs. M_Appmulti

5 10 15 20
QP Num

0
20
40
60
80

100

M
s
g
 R

a
te

 (
M

m
p
s
)

0.0

0.5

1.0

1.5

L
a
te

n
c
y
 (

u
s
)

msg M_Appmulti

avg D_Appsingle

99th D_Appsingle

(b) D_Appsingle vs. M_Appmulti

5 10 15 20
QP Num

0
20
40
60
80

100

T
p
u
t

(G
b
p
s
)

0
10
20
30
40
50

M
s
g
 R

a
te

 (
M

m
p
s
)B_Appsingle M_Appmulti

(c) B_Appsingle vs. M_Appmulti
(Default QNumallow = 1)

5 10 15 20
QP Num

0
20
40
60
80

100

T
p
u
t

(G
b
p
s
)

0
10
20
30
40
50

M
s
g
 R

a
te

 (
M

m
p
s
)B_Appsingle M_Appmulti

(d) B_Appsingle vs. M_Appmulti
(Default QNumallow = 2)

5 10 15 20
QP Num

0
20
40
60
80

100

T
p
u
t

(G
b
p
s
)

0
10
20
30
40
50

M
s
g
 R

a
te

 (
M

m
p
s
)B_Appsingle M_Appmulti

(e) B_Appsingle vs. M_Appmulti
(Default QNumallow = 4)

5 10 15 20
QP Num

0
20
40
60
80

100

T
p
u
t

(G
b
p
s
)

0
10
20
30
40
50

M
s
g
 R

a
te

 (
M

m
p
s
)B_Appsingle M_Appmulti

(f) B_Appsingle vs. M_Appmulti
(Default QNumallow = 8)

Figure 10: PeRF’s QP-level Isolation for M_Appmulti

sonable trade-off for the benefits of work-conserving schedul-
ing.

M_Appmulti cases: Fig. 10(a) shows the message rates of
an M_Appsingle and an M_Appmulti, and the normalized rate
of the M_Appsingle, which is normalized by the maximum
achievable message rate with a single QP. In Fig. 10(b), the
average and 99% tail MCT of a D_Appsingle are described
with M_Appmulti’s message rate. In both scenarios, by adjust-
ing a QNumallow for each application, PeRF is successful in
segregating the M_Appmulti and achieves up to 35% higher
message rate for the M_Appsingle and up to 22% lower 99%
tail latency (5% for the average) for the D_Appsingle com-
pared to RDMA (as described in Fig. 3(b) and 3(c)).

We have observed that an M_Appmulti also degrades the
performance of a B_Appsingle in RDMA by taking more
chances to transmit its small messages. Even in this case,
PeRF maintains a consistent throughput of 88 Gbps for the
B_App and shows the message rate of 9 Mmps regardless of
the number of QPs in the M_Appmulti (Fig. 10(c)). We would
like to highlight that PeRF perceives this situation as network
resources being fully utilized, and limits the number of QPs
used by an M_Appmulti to a default QNumallow (statically set
to one). It can achieve a comparable message rate by simply
changing the default QNumallow as shown in Fig. 10(d), (e)

0 20 40 60
Time (sec)

0

50

100

B_App1 B_App2 B_App3 B_App4 total tput D_App

0

5

10

u
s

Figure 11: Evaluation of PeRF in Congested Networks

and (f). Note that we do not evaluate Justitia for these cases
since it does not consider performance anomalies caused by
an M_Appmulti.

5.2.4 PeRF in Congested Networks

PeRF primarily focuses on the tenant-level RNIC resource
allocation while leveraging existing congestion control mech-
anisms, as referenced in [7, 26, 29, 42], implemented on com-
mercial RNICs for flow-level network link sharing (or fabric
isolation). This unique approach allows PeRF to dynamically
respond to network changes without the need for additional
network state estimation. To assess PeRF’s compatibility with
DCQCN, one of the most widely deployed congestion con-
trol mechanism, we set up a 2-tier topology comprising three
100 GbE switches and two racks, each containing three nodes.
Rack-1 includes Node-A, Node-B, and Node-C, while Rack-2
houses Node-a, Node-b, and Node-c. We execute a B_App
on each node in Rack-1, transmitting 1 MB WRITE mes-
sages to their corresponding nodes in Rack-2. These B_Apps
run sequentially with a 20-second interval. Concurrently, a
D_App runs on Node-A from the outset to evaluate PeRF’s
performance isolation in congested networks.

The evaluation results, depicted in Fig. 11, illustrate PeRF’s
compatibility with DCQCN. PeRF effectively enables DC-
QCN to equitably distribute network bandwidth among the
B_Apps while maintaining low latency for the D_App. No-
tably, with native RDMA, the MCT for the D_App increased
by approximately 10 microseconds, but the corresponding
graph is excluded in this paper due to space constraints. We
also observed an increase in the MCT after the initiation of
additional B_Apps, a result of congestion from the traffic of
two B_Apps, leading to heightened network queuing delay.
However, minimizing this delay is primarily the responsibility
of congestion control mechanisms, and thus falls outside the
scope of this paper. Based on these results, we conclude that
PeRF’s tenant-level performance isolation seamlessly inte-
grates with existing fabric isolation schemes found in various
commercial RNICs, making PeRF a promising solution for
RDMA-based cloud environments.

5.2.5 Practicality of PeRF

1) Support for other operations: PeRF addresses perfor-
mance anomalies for SEND and READ operations as well.
We demonstrate this by comparing PeRF’s performance to
that of RDMA when running a B_App alongside a D_App or

218 2024 USENIX Annual Technical Conference USENIX Association

SEND READ
0

25
50
75

100

G
b
p
s

0
4
8
12
16

L
a
te

n
c
y
 (

u
s
)

Rtput

Ptput

Ravg

Pavg

R99th

P99th

(a) B_App vs. D_App

SEND READ
0

25
50
75

100

G
b
p
s

0
2
4
6
8
10

M
m
p
s

Rtput

Ptput

Rmsg_rate

Pmsg_rate

(b) B_App vs. M_App

Figure 12: Support for SEND and READ Operations

125 250 5001000
Number of Apps

0

25

50

75

100

G
b
p
s

0

5

10

M
m

p
s

total tput msg rate

(a) Scalability of PeRF (b) Fair Share of Bandwidth with PeRF

Figure 13: Evaluation of PeRF’s Scalability

an M_App for both operations, as shown in Fig.12. As de-
picted in Fig.12(a), PeRF (marked as ‘P’ in the figure) compro-
mises only 5% of B_App’s throughput compared to RDMA
(marked as ‘R’ in the figure), while reducing the average la-
tency of a D_App by 75% for SEND and by 67% for READ.
Similarly, PeRF’s message rate of an M_App reached 2.7×
for SEND and 3× for READ compared to RDMA without sac-
rificing B_App’s throughput, as illustrated in Fig. 12(b). It is
worth noting that these results are comparable to performance
without the B_App, as shown in Fig. 2.

2) Scalability of PeRF: In order to evaluate PeRF’s scal-
ability, we gradually increase the number of B_Apps with
8 QPs up to 1,000 while measuring the message rate of a
single M_App in a single hop environment. As shown in
Fig. 13(a), the message rate of the M_App remains at 9.7
Mmps, while B_Apps achieves a throughput of 87 Gbps. The
standard deviation of the throughput between B_Apps is very
low (Fig. 13(b)), indicating that the B_Apps are perfectly
isolated and fairly share the resources.

3) Support for Differentiation: In a cloud environment,
it is sometimes necessary to adopt a weighted policy that
differentiates resource allocation between tenants. We run
two B_Apps under a weighted policy based on the static to-
ken bucket (used in Freeflow [22]) and add a single D_App.
Both RDMA and PeRF distribute throughput proportional to
the weights. RDMA achieves the maximum throughput but
worsens the overall latency of the D_App (Fig.14(a)). On the
other hand, PeRF reduces the average latency by up to 70%
compared to RDMA (Fig. 14(b)). PeRF’s latency decreases
as it gets close to the 10G-90G range, because the B_App
with lower weight has fewer chances to request to the RNIC,
opening up opportunities for the D_App.

4) Support for Other RNICs: We conduct an investiga-
tion into the anomalies that other RNICs in Table 1 encounter

50G-50G 30G-70G 10G-90G
0

25

50

75

100

G
b
p
s

0

2

4

6

8

L
a
te

n
c
y
 (

u
s
)

tput1 tput2 avg 99th

(a) Native RDMA

50G-50G 30G-70G 10G-90G
0

25

50

75

100

G
b
p
s

0

2

4

6

8

L
a
te

n
c
y
 (

u
s
)

tput1 tput2 avg 99th

(b) PeRF

Figure 14: Weighted Policy Based on Token Bucket

CX5 CX6-IB
0

25

50

75

100

G
b
p
s

0

2

4

6

8

L
a
te

n
c
y
 (

u
s
)

Rtput

Ptput

Ravg

Pavg

R99th

P99th

(a) B_App vs. D_App

CX5 CX6-IB
0

25

50

75

100

G
b
p
s

0

3

6

9

12

M
m
p
s

Rtput

Ptput

Rmsg_rate

Pmsg_rate

(b) B_App vs. M_App

Native PeRF
0

10
20
30
40
50

T
p
u
t

(G
b
p
s
)

B_Appsingle B_Appmulti

(c) 1 QP vs. 5 QPs for CX5

Native PeRF
0

25

50

75

100

T
p
u
t

(G
b
p
s
)

B_Appsingle B_Appmulti

(d) 1 QP vs. 5 QPs for CX6-IB

Figure 15: Evaluation with Other Commercial RNICs

and evaluate how PeRF handles them. Our experiments, as
shown in Fig.15, revealed that both the ConnectX-5 40GbE
and ConnectX-6 100G Infiniband RNICs exhibit similar per-
formance anomalies to those of CX6. PeRF significantly im-
proves the performance of both a D_App and an M_App
when coexisting with a B_App. Specifically, PeRF reduces the
D_App’s average latency by up to 80% as shown in Fig.15(a)
and increases the M_App’s message rate up to 5× as shown
in Fig.15(b). Additionally, We evaluate the performance of a
B_Appsingle and a B_Appmulti using five QPs when they share
both RNICs, and PeRF provides both applications with an
equal share of the link bandwidth, as in Fig. 15(c) and 15(d).

5.3 Real-World Applications with PeRF
We apply PeRF in a practical scenario with three real-world
applications: Apache Crail [27], HERD [20], and rping [10].
Crail is a distributed storage system sending large messages
(B_App). HERD is a key-value store where clients send re-
quests in batches (M_App). rping is a basic ping application
for RDMA (D_App). In our experiment, we use four physical
machines: three separate server nodes (Crail datanode, HERD
server and rping server) and one client node with all client ap-
plications (including Crail namenode). Specifically, the Crail
client continuously writes 1 GB files (to be divided into 1 MB
chunks) to the Crail datanode. We configure HERD to create

USENIX Association 2024 USENIX Annual Technical Conference 219

Crail
0

25

50

75

100

T
p
u
t

(G
b
p
s
)

HERD
0

1

2

3

4

M
s
g
 R

a
te

 (
M

m
p
s
)

rping avg rping 99th
0

5

10

15

20

L
a
te

n
c
y
 (

u
s
)

RDMA Justitia JustitiaR PeRF

(a) Without Background Traffic

Crail BG
0

25

50

75

100

T
p
u
t

(G
b
p
s
)

HERD
0

1

2

3

4

M
s
g
 R

a
te

 (
M

m
p
s
)

rping avg rping 99th
0

5

10

15

20

L
a
te

n
c
y
 (

u
s
)

Native Justitia JustitiaR PeRF PeRFS

(b) With Background Traffic

Figure 16: Evaluation of PeRF with Real-World Application

one client thread and densely send a mix of 5% PUT and 95%
GET requests to eight workers. For rping, we simply ping
from the client to the server.

In the first scenario, we execute Crail, HERD and rping
simultaneously. Fig. 16(a) demonstrates that PeRF improves
the throughput of Crail by 55% compared to Justitia, while
compromising less than 1µs in rping latencies. The throughput
of JustitiaR’s Crail is close to PeRF’s, but PeRF still has lower
average latency and 99% tail MCT than JustitiaR. PeRF also
outperforms both Justitia and JustitiaR in the message rate of
HERD.

Next, in the same environment above, we generate back-
ground traffic from the client node to an additional node,
transmitting 1 MB messages with 16 QPs. Fig. 16(b) demon-
strates the impact of background traffic. Compared to Justitia
and JustitiaR, PeRF not only increases the message rate by
14% but earns higher throughput in both Crail and background
flow, utilizing 10∼30% more bandwidth in total. However,
JustitiaR’s rping gets better latency than PeRF’s. Thus, we also
evaluate the small-message-friendly version of PeRF(PeRFS)
whose 0_WAIT _UNIT is set to 900, allowing more process-
ing opportunities for small messages in RNIC. Consequently,
PeRFS reduces its latency below JustitiaR’s while maintain-
ing higher throughput and message rate. Notably, certain
parameters in PeRF, including 0_WAIT _UNIT and default
QNumallow, are designed as configurable options. This allows
cloud providers the flexibility to adjust these parameters to fit
their specific operational strategies and requirements. Details
of such parameters are illustrated in Appendix A.

6 Related Works

Various studies have been conducted to improve the efficiency
of RDMA data transmission in multi-tenant cloud environ-
ments. Collie [24] introduces an automatic tool for detecting
performance anomalies due to varying application workloads.

Husky [23] goes further by analyzing RDMA performance
issues related to RNIC’s micro-architecture, such as PU and
cache, and highlights a new anomaly type associated with
atomic operations in RDMA. While PeRF’s specific response
to this anomaly isn’t detailed here, its preemption mechanism
is potentially adaptable for isolating such operations.

In addressing RDMA anomalies, HW or SW-based virtual-
ization solutions have been proposed. Frameworks utilizing
SR-IOV [6], as mentioned in [14, 17, 19], allocate Virtual
Functions (VFs) to manage packet rates, while LITE [35] in-
troduces a Linux kernel indirection layer, employing Virtual
Lanes (VLs) [1] for data plane separation. These HW-based
solutions offer effective isolation without compromising
RDMA performance but necessitate static pre-configuration,
which may not only lead to inefficiencies in dynamic cloud
environments but also result in performance anomalies among
tenants sharing the same group, such as VFs or VLs.

To overcome these limitations, SW-based solutions like
Freeflow [22] and Justitia [40] have been developed. Freeflow
uses a token bucket for WR rate control, though its static
nature limits flexibility. Justitia, on the other hand, catego-
rizes RDMA applications into three types and uses an adap-
tive token bucket to manage WR post rates, ensuring low
latency for delay-sensitive applications. However, both these
SW solutions face the risk of underutilizing network band-
width or RNIC resources. This underutilization stems not only
from potential inaccuracies in bandwidth estimation but also
from their tendency to induce non-work-conserving packet
scheduling in the RNIC. In contrast, PeRF overcomes these
issues by incorporating an innovative preemption mechanism.
This approach ensures efficient and work-conserving packet
scheduling, thereby optimizing the use of RNIC and network
resources.

7 Conclusion

In this paper, we introduce PeRF that offers software-based
performance isolation while maintaining the high perfor-
mance inherent to RDMA. Through micro-scale analysis, we
have identified the RNIC’s packet/QP scheduling mechanism
and observed how various traffic types from applications can
lead to significant performance anomalies. PeRF addresses
these challenges by utilizing an RNIC preemption mecha-
nism, built upon RDMA user-level verbs, and implementing
work-conserving packet/QP scheduling. As a result, PeRF
effectively delivers performance isolation without compro-
mising RNIC performance in a range of experimental setups.

Acknowledgments
This work was supported in part by Institute for Information
& communications Technology Promotion(IITP) and the Na-
tional Research Foundation of Korea (NRF) grant funded by
the Korea government(MSIP). (IITP-RS-2021-II210875 and
NRF-2021R1C1C1009778)

220 2024 USENIX Annual Technical Conference USENIX Association

References

[1] Infiniband trade association. infiniband architecture
specification volume 1. https://cw.infinibandta.
org/document/dl/7859, 2015.

[2] CNTK. https://github.com/Microsoft/CNTK/
wiki, 2018.

[3] Klib. https://github.com/attractivechaos/
klib, 2018.

[4] RDMA-based apache hadoop. http://hibd.cse.
ohio-state.edu/, 2018.

[5] RDMA-based apache spark. http://hibd.cse.
ohio-state.edu/, 2018.

[6] PCI special interest group. https://pcisig.com,
2021.

[7] Infiniband architecture specification. https://www.
infinibandta.org/ibta-specification, 2022.

[8] MLNX_OFED drivers. https://network.nvidia.
com/products/infiniband-rivers/linux/mlnx_
ofed, 2023.

[9] perftest. https://github.com/linux-rdma/
perftest, 2023.

[10] rping. https://github.com/linux-rdma/
rdma-core/tree/master/librdmacm, 2023.

[11] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker,
Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu,
and Xiaoqiang Zheng. Tensorflow: A system for large-
scale machine learning. OSDI’16, page 265–283, USA,
2016. USENIX Association.

[12] Wei Bai, Shanim Sainul Abdeen, Ankit Agrawal, Kris-
han Kumar Attre, Paramvir Bahl, Ameya Bhagat, Gowri
Bhaskara, Tanya Brokhman, Lei Cao, Ahmad Cheema,
et al. Empowering azure storage with rdma. In 20th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 23), pages 49–67, 2023.

[13] Motti Beck and Michael Kagan. Performance evaluation
of the rdma over ethernet (roce) standard in enterprise
data centers infrastructure. In Proceedings of the 3rd
Workshop on Data Center-Converged and Virtual Ether-
net Switching, pages 9–15, 2011.

[14] Davda Bhavesh and Josh Simons. Rdma on vsphere: Up-
date and future directions. In Open Fabrics Workshop,
2012.

[15] Rajarshi Biswas, Xiaoyi Lu, and Dhabaleswar K. Panda.
Accelerating tensorflow with adaptive rdma-based grpc.
In 2018 IEEE 25th International Conference on High
Performance Computing (HiPC), pages 2–11, 2018.

[16] Youmin Chen, Youyou Lu, and Jiwu Shu. Scalable
rdma rpc on reliable connection with efficient resource
sharing. In Proceedings of the Fourteenth EuroSys Con-
ference 2019, pages 1–14, 2019.

[17] Daniel Firestone, Andrew Putnam, Sambhrama Mund-
kur, Derek Chiou, Alireza Dabagh, Mike Andrewartha,
Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric
Chung, Harish Kumar Chandrappa, Somesh Chaturmo-
hta, Matt Humphrey, Jack Lavier, Norman Lam, Fengfen
Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Popuri,
Shachar Raindel, Tejas Sapre, Mark Shaw, Gabriel Silva,
Madhan Sivakumar, Nisheeth Srivastava, Anshuman
Verma, Qasim Zuhair, Deepak Bansal, Doug Burger,
Kushagra Vaid, David A. Maltz, and Albert Greenberg.
Azure accelerated networking: SmartNICs in the pub-
lic cloud. In 15th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 18), pages
51–66, Renton, WA, April 2018. USENIX Association.

[18] Yixiao Gao, Qiang Li, Lingbo Tang, Yongqing Xi,
Pengcheng Zhang, Wenwen Peng, Bo Li, Yaohui Wu,
Shaozong Liu, Lei Yan, et al. When cloud storage meets
rdma. In NSDI, pages 519–533, 2021.

[19] Zhiqiang He, Dongyang Wang, Binzhang Fu, Kun Tan,
Bei Hua, Zhi-Li Zhang, and Kai Zheng. Masq: Rdma
for virtual private cloud. In Proceedings of the An-
nual Conference of the ACM Special Interest Group on
Data Communication on the Applications, Technologies,
Architectures, and Protocols for Computer Communica-
tion, SIGCOMM ’20, page 1–14, New York, NY, USA,
2020. Association for Computing Machinery.

[20] Anuj Kalia, Michael Kaminsky, and David G Ander-
sen. Design guidelines for high performance rdma sys-
tems. In 2016 USENIX Annual Technical Conference
(USENIX ATC 16), pages 437–450, 2016.

[21] Daehyeok Kim, Amirsaman Memaripour, Anirudh
Badam, Yibo Zhu, Hongqiang Harry Liu, Jitu Pad-
hye, Shachar Raindel, Steven Swanson, Vyas Sekar,
and Srinivasan Seshan. Hyperloop: Group-based nic-
offloading to accelerate replicated transactions in multi-
tenant storage systems. In Proceedings of the 2018
Conference of the ACM Special Interest Group on Data
Communication, SIGCOMM ’18, page 297–312, New
York, NY, USA, 2018. Association for Computing Ma-
chinery.

[22] Daehyeok Kim, Tianlong Yu, Hongqiang Harry Liu,
Yibo Zhu, Jitu Padhye, Shachar Raindel, Chuanxiong

USENIX Association 2024 USENIX Annual Technical Conference 221

https://cw.infinibandta.org/document/dl/7859
https://cw.infinibandta.org/document/dl/7859
https://github.com/Microsoft/CNTK/wiki
https://github.com/Microsoft/CNTK/wiki
https://github.com/attractivechaos/klib
https://github.com/attractivechaos/klib
http://hibd.cse.ohio-state.edu/
http://hibd.cse.ohio-state.edu/
http://hibd.cse.ohio-state.edu/
http://hibd.cse.ohio-state.edu/
https://pcisig.com
https://www.infinibandta.org/ibta-specification
https://www.infinibandta.org/ibta-specification
https://network.nvidia.com/products/infiniband-rivers/linux/mlnx_ofed
https://network.nvidia.com/products/infiniband-rivers/linux/mlnx_ofed
https://network.nvidia.com/products/infiniband-rivers/linux/mlnx_ofed
https://github.com/linux-rdma/perftest
https://github.com/linux-rdma/perftest
https://github.com/linux-rdma/rdma-core/tree/master/librdmacm
https://github.com/linux-rdma/rdma-core/tree/master/librdmacm

Guo, Vyas Sekar, and Srinivasan Seshan. FreeFlow:
Software-based virtual RDMA networking for container-
ized clouds. In 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19), pages
113–126, Boston, MA, February 2019. USENIX Asso-
ciation.

[23] Xinhao Kong, Jingrong Chen, Wei Bai, Yechen Xu,
Mahmoud Elhaddad, Shachar Raindel, Jitendra Padhye,
Alvin R. Lebeck, and Danyang Zhuo. Understanding
RDMA microarchitecture resources for performance
isolation. In 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 23), pages
31–48, Boston, MA, April 2023. USENIX Association.

[24] Xinhao Kong, Yibo Zhu, Huaping Zhou, Zhuo Jiang,
Jianxi Ye, Chuanxiong Guo, and Danyang Zhuo. Collie:
Finding performance anomalies in RDMA subsystems.
In 19th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 22), pages 287–305,
Renton, WA, April 2022. USENIX Association.

[25] Pengfei Li, Yu Hua, Pengfei Zuo, Zhangyu Chen, and
Jiajie Sheng. Rolex: A scalable rdma-oriented learned
key-value store for disaggregated memory systems. In
21st USENIX Conference on File and Storage Technolo-
gies (FAST 23), pages 99–114, 2023.

[26] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan
Zhuang, Fei Feng, Lingbo Tang, Zheng Cao, Ming
Zhang, Frank Kelly, Mohammad Alizadeh, and Min-
lan Yu. Hpcc: High precision congestion control. In
Proceedings of the ACM Special Interest Group on
Data Communication, SIGCOMM ’19, page 44–58,
New York, NY, USA, 2019. Association for Computing
Machinery.

[27] Bing Liu, Fang Liu, Nong Xiao, and Zhiguang Chen.
Accelerating spark shuffle with rdma. In 2018 IEEE
International Conference on Networking, Architecture
and Storage (NAS), pages 1–7. IEEE, 2018.

[28] Youyou Lu, Jiwu Shu, Youmin Chen, and Tao Li. Octo-
pus: an RDMA-enabled distributed persistent memory
file system. In 2017 USENIX Annual Technical Confer-
ence (USENIX ATC 17), pages 773–785, Santa Clara,
CA, July 2017. USENIX Association.

[29] Radhika Mittal, Vinh The Lam, Nandita Dukkipati,
Emily Blem, Hassan Wassel, Monia Ghobadi, Amin
Vahdat, Yaogong Wang, David Wetherall, and David
Zats. Timely: Rtt-based congestion control for the data-
center. In Proceedings of the 2015 ACM Conference on
Special Interest Group on Data Communication, SIG-
COMM ’15, page 537–550, New York, NY, USA, 2015.
Association for Computing Machinery.

[30] Jonas Pfefferle, Patrick Stuedi, Animesh Trivedi,
Bernard Metzler, Ionnis Koltsidas, and Thomas R. Gross.
A hybrid i/o virtualization framework for rdma-capable
network interfaces. In Proceedings of the 11th ACM
SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments, VEE ’15, page 17–30, New
York, NY, USA, 2015. Association for Computing Ma-
chinery.

[31] Waleed Reda, Marco Canini, Dejan Kostić, and Simon
Peter. RDMA is turing complete, we just did not know it
yet! In 19th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 22), pages 71–85,
Renton, WA, April 2022. USENIX Association.

[32] Arjun Singhvi, Aditya Akella, Dan Gibson, Thomas F
Wenisch, Monica Wong-Chan, Sean Clark, Milo MK
Martin, Moray McLaren, Prashant Chandra, Rob Cauble,
et al. 1rma: Re-envisioning remote memory access for
multi-tenant datacenters. In Proceedings of the Annual
conference of the ACM Special Interest Group on Data
Communication on the applications, technologies, ar-
chitectures, and protocols for computer communication,
pages 708–721, 2020.

[33] Feng Tian, Yang Zhang, Wei Ye, Cheng Jin, Ziyan Wu,
and Zhi-Li Zhang. Accelerating distributed deep learn-
ing using multi-path rdma in data center networks. In
Proceedings of the ACM SIGCOMM Symposium on
SDN Research (SOSR), SOSR ’21, page 88–100, New
York, NY, USA, 2021. Association for Computing Ma-
chinery.

[34] Animesh Trivedi, Bernard Metzler, and Patrick Stuedi.
A case for rdma in clouds: Turning supercomputer net-
working into commodity. In Proceedings of the Sec-
ond Asia-Pacific Workshop on Systems, APSys ’11, New
York, NY, USA, 2011. Association for Computing Ma-
chinery.

[35] Shin-Yeh Tsai and Yiying Zhang. Lite kernel rdma
support for datacenter applications. In Proceedings of
the 26th Symposium on Operating Systems Principles,
SOSP ’17, page 306–324, New York, NY, USA, 2017.
Association for Computing Machinery.

[36] Xizheng Wang, Guo Chen, Xijin Yin, Huichen Dai, Bo-
jie Li, Binzhang Fu, and Kun Tan. Star: Breaking the
scalability limit for rdma. In 2021 IEEE 29th Interna-
tional Conference on Network Protocols (ICNP), pages
1–11. IEEE, 2021.

[37] Zilong Wang, Layong Luo, Qingsong Ning, Chaoliang
Zeng, Wenxue Li, Xinchen Wan, Peng Xie, Tao Feng,
Ke Cheng, Xiongfei Geng, Tianhao Wang, Weicheng
Ling, Kejia Huo, Pingbo An, Kui Ji, Shideng Zhang, Bin

222 2024 USENIX Annual Technical Conference USENIX Association

Xu, Ruiqing Feng, Tao Ding, Kai Chen, and Chuanx-
iong Guo. SRNIC: A scalable architecture for RDMA
NICs. In 20th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 23), pages 1–14,
Boston, MA, April 2023. USENIX Association.

[38] Xingda Wei, Rong Chen, and Haibo Chen. Fast rdma-
based ordered key-value store using remote learned
cache. In Proceedings of the 14th USENIX Confer-
ence on Operating Systems Design and Implementation,
pages 117–135, 2020.

[39] Jiarong Xing, Kuo-Feng Hsu, Yiming Qiu, Ziyang Yang,
Hongyi Liu, and Ang Chen. Bedrock: Programmable
network support for secure RDMA systems. In 31st
USENIX Security Symposium (USENIX Security 22),
pages 2585–2600, Boston, MA, August 2022. USENIX
Association.

[40] Yiwen Zhang, Yue Tan, Brent Stephens, and Mosharaf
Chowdhury. Justitia: Software Multi-Tenancy in hard-
ware Kernel-Bypass networks. In 19th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 22), pages 1307–1326, Renton, WA, April 2022.
USENIX Association.

[41] Bohong Zhu, Youmin Chen, Qing Wang, Youyou Lu,
and Jiwu Shu. Octopus+: An rdma-enabled distributed
persistent memory file system. ACM Trans. Storage,
17(3), aug 2021.

[42] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong
Guo, Marina Lipshteyn, Yehonatan Liron, Jitendra Pad-
hye, Shachar Raindel, Mohamad Haj Yahia, and Ming
Zhang. Congestion control for large-scale rdma deploy-
ments. In Proceedings of the 2015 ACM Conference on
Special Interest Group on Data Communication, SIG-
COMM ’15, page 523–536, New York, NY, USA, 2015.
Association for Computing Machinery.

USENIX Association 2024 USENIX Annual Technical Conference 223

APPENDIX

We note that configurations used for evaluations in the ap-
pendices are the same as those presented in Section 5, unless
otherwise stated.

A Configurable Parameters of PeRF

PeRF provides message-level isolation by 1) splitting
WRs for large messages into multiple sub-WRs re-
questing SUB_MSG_SIZE of messages and 2) inserting
0_WAIT _NUM of 0_WAIT WRs between the sub-WRs.
0_WAIT _NUM is calculated by dividing SUB_MSG_SIZE
by 0_WAIT _UNIT . In this paper, we set SUB_MSG_SIZE
and 0_WAIT _UNIT to 16 KB and 1 KB by default, re-
spectively. However, the performance and CPU efficiency
of PeRF’s message isolation are highly dependent on these
parameters. Therefore, PeRF allows cloud providers to config-
ure these parameters flexibly to achieve their own policies and
objectives. To assist cloud providers in making informed de-
cisions, this section presents several evaluations that illustrate
the trade-offs between those parameters.

Impact of SUB_MSG_SIZE: In Fig. 17(a), we ex-
ecute both a B_App and an M_App under various
SUB_MSG_SIZEs. In this evaluation, we have observed that
PeRF’s message isolation has minimal impact on the through-
put and message processing rate when SUB_MSG_SIZE is
larger than 8KB, thanks to the improved CPU efficiency
achieved by using larger sub-messages. On the other hand, too
large SUB_MSG_SIZE can harm the performance of applica-
tions using small messages. As SUB_MSG_SIZE increases, a
larger number of 0_WAIT WRs are generated at longer inter-
vals, which may cause oscillations for M_App’s message rate
or D_App’ latency, leading to degradation of their stability
and reliability.

Impact of 0_WAIT_UNIT: Fig. 17(b) illustrates the
performance of a B_App and an M_App with different
0_WAIT _UNIT s. A larger 0_WAIT _UNIT value indicates
fewer 0_WAIT WRs issued between each sub-message,
which leads to PeRF allocating more resources to the B_App
while reducing the message rate of the M_App. As a result,
we recommend cloud providers use a smaller 0_WAIT _UNIT
if they want to prioritize message rate or latency over link
utilization, otherwise, use a larger one.

B Performance Anomaly Between Bandwidth-
intensive Applications

In this paper, we extensively analyze performance anomalies
that arise when different types of RDMA applications are in
conflict. Additionally, we also have confirmed the existence
of a performance anomaly between the same types of appli-
cations, specifically B_Appsingles, when their message sizes

4 8 12 16 20
Sub-Message Size (KB)

0

25

50

75

100

G
b
p
s

0

3

6

9

12

M
m

p
s

tput msg rate

(a) SUB_MSG_SIZE

800 900 1000 1100 1200

Unit (Bytes)

0

25

50

75

100

G
b
p
s

0

3

6

9

12

M
m

p
s

tput msg rate

(b) 0_WAIT _UNIT

Figure 17: SUB_MSG_SIZE and 0_WAIT _UNIT : PeRF pa-
rameters involve tradeoffs between the performance of differ-
ent applications.

1 2 3 4 5
TX Queue Size

0

25

50

T
p
u
t

(G
b
p
s
)

1MB B_Appsingle

1GB B_Appsingle

(a) Naitve RDMA

1 2 3 4 5
TX Queue Size

0

25

50

T
p
u
t

(G
b
p
s
)

1MB B_Appsingle

1GB B_Appsingle

(b) PeRF

Figure 18: Performance Anomaly between B_Apps: In con-
trast to RDMA, PeRF properly manages B_Apps using differ-
ent message sizes.

are different. Based on our analysis illustrated in Section 2.2,
network resources should be equally distributed between ap-
plications that use large messages, with the help of the gran-
ularity of MTU. However, as depicted in Fig. 18(a), when
the SQ sizes are set to one (we varied the size of the SQ for
both applications from one to five), the throughput for 1 MB
message transmission is lower than that for 1 GB message
transmission. This is because 1 MB message delivery requires
more frequent posting of WRs and polling of CQEs than 1
GB message delivery, resulting in more processing or PCIe
overhead. This often causes the SQ of the application using a
1 MB message to become empty, which pauses the message
delivery.

Fortunately, this degradation can be easily mitigated by in-
creasing the size of the SQ, which keeps the message delivery
from being stalled while a new WR is being posted. Fur-
thermore, Fig.18(b) shows PeRF addresses the performance
anomaly between B_Apps with different message sizes even
when SQ is set to one. PeRF divides a large message WR into
smaller sub-WRs, allowing them to be treated as identical to
an application sending SUB_MSG_SIZE of messages.

224 2024 USENIX Annual Technical Conference USENIX Association

(a) B_Appsingle vs. D_Appsingle (b) B_Appsingle vs. M_Appsingle

(c) B_Appmulti vs. D_Appsingle (d) B_Appmulti vs. M_Appsingle

Figure 19: Performance Anomalies between Inbound READ
and Outbound WRITE Operations: PeRF provides isolation
between tenants in situations in which inbound READ(R-)
and outbound WRITE(W-) traffic coexist on the same host.
In (c) and (d), B_Appmulti utilized 15 QPs.

C Deep Consideration of READ Isolation in
PeRF

When a local node initiates a READ operation, it requires data
transmission from a remote node, which can cause contention
with outbound WRITE operations at the remote node. How-
ever, PeRF appropriately isolates WRITE and READ opera-
tions on the same RNIC. We evaluate PeRF in eight different
scenarios, combining different cases of a B_Appsingle com-
peting with a B_Appmulti, a D_Appsingle, or an M_Appsingle.
In each scenario, a local node runs a B_Appsingle performing
inbound READ operations 5 while executing other applica-
tions performing outbound WRITE operations, and vice versa.
Our results, shown in Fig. 19, demonstrate that PeRF reduces
average latency by at least 65% for the D_App and improves
message rates by 3∼50× for the M_App, with only a 5%
compromise on the throughput of the B_Appsingle.

D Future Works in PeRF Implemetation

This paper provides a systematic illustration of PeRF’s design
and implementation, accompanied by extensive evaluations.
However, there are additional implementation issues that need
to be addressed to ensure PeRF’s perfect compatibility with
applications utilizing various features of RDMA. We leave
these issues as our future work and explain their details in the
following.

5A read request is transmitted from a local node to a remote node while
read data is sent from the remote to the local.

1) Support for UD Connection: RDMA supports three
types of connections for message transmission: Reliable Con-
nection (RC), Unreliable Connection (UC), and Unreliable
Datagram (UD). Our novel preemption mechanism, which
leverages experimental verbs like WAIT and ENABLE, oper-
ates effectively with RC and UC. However, these experimental
verbs are not supported in UD, making it necessary to develop
a new isolation mechanism for PeRF to be compatible with
UD. Fortunately, we have discovered that it is easy to provide
QP-level isolation in UD, since a single UD QP can communi-
cate with multiple destinations based on network information
recorded in WRs by applications. Thus, we can modify PeRF
to dynamically regulate the number of active UD QPs, pro-
viding QP-level isolation in UD. Additionally, 0_WR can be
used instead of 0_WAIT to achieve message-level isolation
in UD. This approach may introduce some network overhead,
but it is negligible in networks with rich bandwidth.

2) Support for Event-driven Message Transmission:
RDMA provides an event-handling mechanism that allows
an application to poll CQEs only after they are generated.
This event-driven approach provides RDMA applications with
great CPU efficiency for transmitting large messages, as it
eliminates the need for busy polling CQEs. Since PeRF’s
completion process based on the ECE is perfectly transparent
to applications, implementing event-driven WR completion
in PeRF is straightforward.

3) Support for Atomic Operations: RDMA supports two
types of atomic operations: fetch and add (FAA) and compare
and swap (CAS). As seen in [23], the atomic operations also
cause performance anomalies in multi-tenant environments.
Consequently, we plan to analyze these anomalies and explore
the possibility of applying our preemption mechanism based
on 0_WAIT WRs.

USENIX Association 2024 USENIX Annual Technical Conference 225

	Introduction
	Background and Motivation
	RDMA Overview
	Micro-scale Analysis of RNIC
	Challenges of Multi-tenancy in RDMA
	Anomalies from Different Message Sizes
	Anomalies from Different QP Numbers

	PeRF Design
	Overview
	Splitting Isolation Process
	Design of PeRF Worker
	Selective Isolation Process in PeRF
	PeRF Preemption Mechanism
	PAUSE/RESUME Operations for MQSE
	Transmission Interrupts for LMSE

	PeRF Implementation
	Large Message Scheduling Engine
	Multi-QP Scheduling Engine
	Early Completion Engine
	Improving Practicality and Scalability

	Evaluation
	Experiment Setup
	Baseline Benchmark
	PeRF Overhead
	Message-level Isolation
	QP-level Isolation
	PeRF in Congested Networks
	Practicality of PeRF

	Real-World Applications with PeRF

	Related Works
	Conclusion
	Configurable Parameters of PeRF
	Performance Anomaly Between Bandwidth-intensive Applications
	Deep Consideration of READ Isolation in PeRF
	Future Works in PeRF Implemetation

