
This paper is included in the Proceedings of the
2024 USENIX Annual Technical Conference.

July 10–12, 2024 • Santa Clara, CA, USA
978-1-939133-41-0

Open access to the Proceedings of the
2024 USENIX Annual Technical Conference

is sponsored by

Puzzle: Efficiently Aligning Large Language Models
through Light-Weight Context Switch

Kinman Lei, Yuyang Jin, Mingshu Zhai, Kezhao Huang, Haoxing Ye,
and Jidong Zhai, Tsinghua University

https://www.usenix.org/conference/atc24/presentation/lei

PUZZLE: Efficiently Aligning Large Language Models through Light-Weight
Context Switch

Kinman Lei Yuyang Jin Mingshu Zhai Kezhao Huang Haoxing Ye Jidong Zhai

Tsinghua University

Abstract
Aligning Large Language Models (LLMs) is currently the

primary method to ensure AI systems operate in an ethically
responsible and socially beneficial manner. Its paradigm dif-
fers significantly from standard pre-training or fine-tuning
processes, involving multiple models and workloads (context),
and necessitates frequently switching execution, introducing
significant overhead, such as parameter updates and data trans-
fer, which poses a critical challenge: efficiently switching
between different models and workloads.

To address these challenges, we introduce PUZZLE, an
efficient system for LLM alignment. We explore model or-
chestration as well as light-weight and smooth workload
switching in aligning LLMs by considering the similarity
between different workloads. Specifically, PUZZLE adopts a
two-dimensional approach for efficient switching, focusing
on both intra- and inter-stage switching. Within each stage,
switching costs are minimized by exploring model affinities
and overlapping computation via time-sharing. Furthermore,
a similarity-oriented strategy is employed to find the optimal
inter-stage switch plan with the minimum communication
cost. We evaluate PUZZLE on various clusters with up to
32 GPUs. Results show that PUZZLE achieves up to 2.12×
speedup compared with the state-of-the-art RLHF training
system DeepSpeed-Chat.

1 Introduction

Aligning Large Language Models (LLMs) has recently at-
tracted significant interest, emphasizing the importance of
these advanced AI systems operating in an ethically responsi-
ble and socially beneficial manner, as well as their enhanced
accuracy. Notably, recent developments in InstructGPT [20]
or ChatGPT like [18] models, including OpenAI’s GPT-4 [19],
Google’s Bard [6], and Meta’s LLaMA 2-Chat [25], have
highlighted the importance of alignment in these models.
The primary method for achieving this alignment is the Rein-
forcement Learning from Human Feedback (RLHF) approach.

M1

M1 M2

M1 M1 M1 M1

I have a dream
...

M3
Ref RM Critic

Stage 1

Stage 2

Stage 3

Actor

M2M4

Actor Critic

M1

Fwd Bwd

Weight Update

(a) Inference

(b) Fine-tuning / Pre-training (c) Aligning

Fwd

Frozen Frozen R
epeated

Figure 1: An illustration depicting (a) Inference, (b) Full
Parameter Fine-tuning / Pre-training, and (c) Aligning Large
Language Models using the PPO Algorithm.

Within the scope of this approach, Proximal Policy Optimiza-
tion (PPO) emerges as a widely recognized standard algo-
rithm, which significantly improves the reliability of LLMs
in many deep learning tasks, including natural language pro-
cessing [9, 18], text-to-image [11, 27].

The paradigms of aligning LLMs differ significantly from
the standard full-parameter fine-tuning or pre-training pro-
cesses that existing deep learning systems are designed for.
As shown in Figure 1, we take the standard algorithm PPO
in aligning LLMs as an example to illustrate the differences
between the paradigms of inference, typical fine-tuning (or
pre-training), and aligning. In fine-tuning, as illustrated in Fig-
ure 1(b), only a single model is required. However, in aligning,
as depicted in Figure 1(c), multiple models are required, in-
cluding Actor, Critic, Reference, and Reward. Based on the
workload characteristics of models (inference or fine-tuning)
and the data dependence between them, the paradigms can be
divided into several stages. Data dependence between differ-
ent models only exists between stages. Additionally, in the
subsequent discussion, we refer to the workload of model and
the model itself as context.

USENIX Association 2024 USENIX Annual Technical Conference 127

We observe that the current standard approach of LLM
alignment has the following characteristics:

Heterogeneous models and workloads. Alignment methods
such as PPO involve collaborative participation from various
models, resulting in heterogeneity. The heterogeneity arises
from two aspects, model structures and workloads. Firstly,
there is significant variation in the number and structure of
parameters across different models. Secondly, the alignment
process also introduces diverse workloads, such as decoding,
inference, and training. Consequently, these heterogeneous
contexts make alignment process more complex than standard
fine-tuning.

Frequent context switching. The entire process of aligning
involves executing different workloads of different models
(contexts) in a cyclic manner, resulting in frequent context
switching. Context switching occurs not only between stages,
but also within stages, for example when multiple models
within a stage are executed in a sequential mode. Such fre-
quent switching introduces significant overhead, including
model reloading, parameter updates, data transfer, and more.
For instance, DeepSpeed-Chat incurs an overhead of 12.43%
for gathering updated parameters.

Currently, a large number of deep learning systems have
been presented to tackle different complex scenarios such
as inference and training. However, these systems have the
following two limitations.

Exclusively concentrating on an individual model. Existing
works [10, 16, 17, 34] concentrate on optimizing operators,
compute graphs, and parallel execution plans for individual
models. However, these works neglect scenarios that involve
the orchestrated training of multiple models, ignoring the
opportunities for fine-grained cross-model optimizations.

Overlooking diverse workloads in models. Existing infer-
ence [10, 13, 31] and training systems [28, 29] maintain fixed
workloads for their models and do not necessitate configura-
tion changes, such as parallel execution plan, during execu-
tion. In these systems, frequent context switching required in
aligning processes is not sufficiently considered, resulting in
significant and unacceptable costs.

Therefore, we conclude efficient switching between hetero-
geneous contexts as a critical challenge in the LLM alignment,
which is still an open research problem.

To address these challenges, we propose PUZZLE, an effi-
cient LLM alignment system that treats model context as a
first-class citizen. We investigate the model orchestration in
aligning LLMs, taking into account the heterogeneous con-
texts involved. The similarity between heterogeneous contexts
is utilized to achieve light-weight and smooth context switch-
ing. Specifically, to efficiently handle the heterogeneous con-
text properties in the aligning process, PUZZLE incorporates
a two-dimensional approach, considering both intra-stage and
inter-stage context switching. Within each stage, we mini-
mize switching costs by exploring the affinities among dif-
ferent contexts and overlapping computation through time-

sharing plans. Furthermore, to reduce switching overhead
across stages, we develop a similarity-oriented plan to find
the optimal inter-stage context switch plan with minimum
communication cost. We evaluate PUZZLE on different clus-
ters with up to 32 GPUs. Results show that PUZZLE achieves
up to 2.12× speedup in end-to-end training compared with the
state-of-the-art RLHF training system DeepSpeed-Chat [30].

In summary, we make the following contributions:

• We abstract the key concepts of context from the align-
ment problem and identify performance optimization
opportunities by focusing on the context switches.

• We propose a time-sharing strategy to explore the affini-
ties among different contexts within a stage, and inte-
grate it into a hybrid plan.

• We develop a similarity-oriented plan to find the optimal
inter-stage context switch plan with minimum communi-
cation cost.

• We build PUZZLE, an implementation of the above tech-
niques into an end-to-end training system, and achieve
up to 2.12× speedup over state-of-the-art systems.

2 Background and Motivation

2.1 Background

LLM Alignment. LLM alignment, pivotal in the ad-
vancement of conversational AI models like ChatGPT [18],
LLaMA2 [25], and GPT-4 [19], focuses on harnessing their
expansive knowledge and capabilities to produce specific,
user-oriented responses and behaviors, and to enhance ac-
curacy. This concept is critical for ensuring these models
exemplify attributes of safety, efficacy, and manageability. It
has been observed that LLMs, regardless of their size, can
produce outputs that are misleading, harmful, or not particu-
larly useful to the user. It’s essential to recognize that simply
expanding the size of these language models doesn’t automat-
ically translate to an improved alignment with user intentions.
Existing human preference alignment methods can be broadly
categorized into three major categories: reinforcement learn-
ing [20, 23], contrastive learning [21, 33], and hindsight in-
struction relabeling [14, 32].

Among these methods, the reinforcement learning ap-
proach stands out as the primary method for achieving this
alignment. In this work, we focus on the PPO algorithm, rec-
ognized as the most efficient method used in RLHF [4], which
demands high efficiency in alignment.

Reinforcement Learning from Human Feedback. In
RLHF, the process encompasses three primary steps: collect-
ing human feedback data, training a reward model using the
collected human feedback data, and adopting RL optimization

128 2024 USENIX Annual Technical Conference USENIX Association

(a) Model-by-Model (b) Single-Model-Dedicated-Device

(c) Multi-Model-Dedicated-Device

D
ev

ic
e

Time

Model1 Forward Pass
Model1 Backward Pass

Model2 Forward Pass
Model2 Backward Pass

Model3 Forward Pass

Idle

(d) PUZZLE

D
ev

ic
e

Figure 2: Diverse model placement and execution plans for three different models during part of the alignment process, including
forward and backward pass, only pipeline parallelism are shown. (a) MBM: Each model is allocated the same resource setting and
executed sequentially. (b) SMDD: Dedicated devices are allocated to each model, enabling their concurrent execution. (c) MMDD:
Combines MBM and SMDD strategies but misses opportunities for optimization between models. (d) PUZZLE implements
fine-grained time-sharing between models without dependency (The red box).

strategies on LLM [20]. This article primarily focuses on the
third step.

Among all RL alignment methods, Proximal Policy Opti-
mization (PPO) is the most popular choice at the third step.
Many prominent models adopt the PPO algorithm either as
the sole alignment method or in combination with others. An
example of the PPO optimization policy step, as implemented
by InstructGPT, is illustrated in Figure 1(c). This process in-
volves multiple models, including Actor, Ref, Critic, and
RM, as shown in the figure. Technically, a reward model (RM)
is trained on human-labeled data to approximate human pref-
erences. The Actor model serves as the policy model, while
the Critic model functions as the value model in the PPO
learning policy. The reference model (Ref) is employed for
KL regularization. The Actor and Ref models are generally
similar, with Actor being trainable while the parameters of
Ref remain frozen. Similarly, Critic and RM share the same
structure, with Critic being trainable.

The entire alignment process can be abstractly described as
follows: it begins with the Actor generating responses based
on given prompts. These responses are then passed to the Ref,
RM, and Critic to create a batch of learnable experiences.
These experiences are then used to train Actor and Critic,
and the entire process is repeated until the end of the training.
This process can be computationally intensive, as it typically
involves loading four models into GPU memory and entails
online generation and execution of the RL policy training.

Hybrid Parallelization. LLMs with tens of billions of param-
eters can no longer be trained or perform inference efficiently
on a single device, thus necessitating parallel execution plans.
The placement of weights dictates these plans, including par-
allel computation and communication strategies. Data, tensor,
and pipeline are three commonly plan used in distributed
training.

Data parallelism either duplicates model parameters across

all devices (DP) or shards them across devices (Fully Sharded
Data Parallel, FSDP). Each device is then given a different
batch of training data, and the forward and backward passes
are computed independently. The communication process
involves aggregating the gradients or collecting the shared
parameters.

Tensor parallelism, which also involves sharing parameters
and data across devices, entails each worker conducting a por-
tion of the operator computation. Communication is essential
to aggregate the outputs and obtain the final result.

Pipeline parallelism divides the model into multiple parts
sequentially. Each device maintains a specific part of the
model. For a given part of the model, the corresponding device
handles the data from the previous stage (or from training
data), and the output needs to be communicated to another
device that maintains the subsequent part of the model. While
pipeline parallelism generally involves less communication,
it faces the challenge of ’pipeline bubbles’, which have been
intensively studied in prior work [5, 16].

Hybrid Parallelism has emerged for enhanced distributed
training performance, integrating various parallel strategies to
accommodate specific models and unique training hardware
configurations. Notably, Megatron-v2 [17] facilitates high-
performance distributed training through expertly designed
hybrid parallel execution plans, specifically for transformer-
based models. Given the widespread adoption of hybrid paral-
lelism [34], this work focuses on investigating the efficiency
of hybrid parallelism for aligning LLMs.

Multi-Model Execution Plan. LLM alignment involves a va-
riety of models with heterogeneous contexts, each demanding
different computing resource. Consequently, the placement
and execution of these models within the system are critical
for optimal performance. As depicted in Figure 2, existing
plans can be categorized into three types. In this figure, three
different models are depicted during part of the alignment pro-

USENIX Association 2024 USENIX Annual Technical Conference 129

cess, including both forward and backward passes. Notably,
while only pipeline parallelism schedules are shown in the
above example, PUZZLE is not limited to pipeline parallelism
and can be applied to both data and tensor parallelism.

Model-by-model (MBM). MBM is an intuitive method for
model placement and execution in LLM alignment, as shown
in Figure 2(a), where models have identical device settings
and sequential execution. Existing system [12, 30] adopts
this plan. However, although this plan is straightforward and
practical, it has limitations: The model occupies all resources
during runtime and is limited to sequential execution. Further-
more, this plan can lead to inefficiency if workloads aren’t
parallelized effectively.

Single-Model-Dedicated-Device (SMDD). SMDD is an-
other prevalent method for model placement and execution, il-
lustrated in Figure 2(b). This approach involves pre-allocating
devices to different models, ensuring each has a dedicated
device for potentially concurrent execution. While adopted
in works like [15], SMDD faces significant challenges. Its
resource allocation strategy is complex and prone to inef-
ficiency. For instance, if Model2 must wait for Model1 to
complete its execution, this introduces idle time for certain
devices, leading to inefficiencies in resource utilization.

Multi-Model-Dedicated-Device (MMDD). MMDD inte-
grates the previously described MBM and SMDD methods.
Figure 2(c) depicts this plan. This plan involves assigning
some models to the same resource while allocating different
resources to others. Consequently, it enables parallel execu-
tion for certain models, while those allocated the same re-
sources are executed sequentially. Existing work, such as [7],
adopts this plan. However, despite addressing the limitations
of MBM and SMDD, we observe that MMDD lacks in its
consideration for fine-grained scheduling, which is crucial for
effectively managing heterogeneous context switches.

2.2 Challenges and Motivations

As highlighted earlier, efficient switching between heteroge-
neous contexts, including intra-stage context switching and
inter-stage context switching, presents a critical challenge in
aligning LLMs. In this section, we introduce the motivations
for efficient intra- and inter-stage switching.

Intra-Stage Context Switching. Multiple models and work-
loads in the LLM alignment process involve heterogeneous
contexts. Furthermore, because these heterogeneous contexts
within a stage have no data dependence between them, they
can be executed with the multi-model parallel execution plans
introduced in Section 2.1. We observe that the selected plans
frequently exhibit significant idle time during parallel execu-
tion, as illustrated in Figure 2. This can be primarily attributed
to the following reason: The presence of significant differ-
ences in heterogeneous contexts results in idle time, even
when the most optimal combination of plans is employed.

Generation Training

sa

m
pl

es
/s

ec

0

5

10

15

(P,T)
(1, 8) (2, 4) (4, 2) (8, 1)

(a) (b)

Figure 3: The performance comparison of LLaMA-7B on
an 8×A100 PCIe cluster is presented, where P and T denote
pipeline and tensor parallelism, respectively, with data par-
allelism fixed at 1. (a) This includes throughput analysis for
various (P, T) configurations during generation and training
with batch sizes of 64. (b) It also covers the transformation
overhead associated with different parallel execution plans.

As illustrated in Figure 2(d), our motivation is centered
on exploring the affinities between contexts via fine-grained
scheduling, with the goal of minimizing idle time through the
implementation of time-sharing in relatively optimal plans.

Inter-Stage Context Switching. In the alignment process,
contexts with the same model may have different workloads
at various stages, such as generation (decoding) and training.
The differences in workload characteristics lead to totally
different optimal parallel execution plans. For instance, Fig-
ure 3(a) illustrates the performance of both generation and
training for LLaMA-7B model under different parallel execu-
tion plans with batch size of 64. For clarity, we have omitted
the data parallelism dimension in this figure and the data
dimension shown in the figure is 1. (P, T) represents the di-
mensions of pipeline and tensor parallelism respectively. The
optimal plans (P, T) for generation and training are (8, 1) and
(4, 2), respectively. Furthermore, in order to achieve the best
performance of the same model across different stages, the
parameter shuffle overhead between different plans, which
is the main cause of inter-stage context switching cost, also
needs to be carefully considered. As shown in Figure 3(b), the
figure illustrates the switching costs under different plans. We
observe that for the plans with higher similarity, the switching
cost between them is much lower.

3 Overview

We propose PUZZLE, an efficient system for aligning LLMs.
The name comes from the fact that each heterogeneous con-
text resembles a piece of a puzzle. Our goals center on strate-
gically placing these pieces and executing them efficiently
within the system.

Figure 4 provides an overview of PUZZLE. The core con-
cept of this system is based on the unique heterogeneous

130 2024 USENIX Annual Technical Conference USENIX Association

model and workload attributes (referred to as contexts in this
paper) encountered during the alignment process. The het-
erogeneous context properties necessitate frequent switching
between intra- and inter-stages, leading to increased overhead.
PUZZLE aims to reduce this overhead and enhance system
efficiency by exploring potential opportunities within intra-
and inter-stage processes.

In Section 4, we minimize intra-stage switching costs by
exploring the affinities among different contexts and overlap-
ping computations through time-sharing plans.

We then introduce the inter-stage context switch in Sec-
tion 5. We minimize inter-stage switching costs by finding
optimal parallel execution plans with minimal communication
costs with highly similarity.

 PUZZLE

Similarity-oriented
Inter-stage Switch

§(5)

Input

Repeated

Context
Stage

Affinity!

Affinity-aware
Intra-stage Switch

§(4)

Differentiated Execution
Engine (§5.1)

Workload-aware
Transformation (§5.2)

Hybrid Placement and
Execution Plan (§4.3)

PPO
Algorithm

Model
Structure

Time-sharing plan
(§4.2)

Figure 4: Overview of PUZZLE

4 Affinity-aware Intra-stage Switch

Although existing parallel execution techniques are highly
efficient, opportunities for further improvement in alignment
remain, particularly due to idle time during intra-context
switches in parallel execution plans. The heterogeneous con-
text in the alignment process can be divided into different
stages, and we have found that orchestrating the context
within each stage can significantly enhance intra-stage context
switching efficiency.

This section describes the affinity-aware intra-stage switch
techniques, which are applied in PUZZLE to explore the place-
ment and execution plan among different contexts. Initially,
we analyze the overhead and opportunities of intra-stage con-
text switch(§4.1) and introduce the new time-sharing switch-
ing plan(§4.2) to explore context collaboration. Finally, inte-
grating all existing approaches results in a diversified space
of placement and execution strategies, termed the hybrid plan
(§4.3).

4.1 Opportunities of Placement and Execution
Plan

Although previous research has explored support for model
placement and execution, a common limitation is the lack of
attention to collaboration between contexts. Significant room
for improvement remains in computational efficiency within
the same stage of the alignment process. We first analyze
the overhead and opportunities associated with intra-stage
context switching.

The Definition of Overhead. First, we analyze the types
of overhead that intra-stage context switching can introduce.
For placement and execution plans where resources are not
shared, there is no need for context switching between them,
and thus no overhead is introduced. However, in scenarios
where resources are shared, contexts are executed sequentially,
thereby introducing overhead.

Opportunities. As illustrated in Figure 2(d), we observe that
two contexts can overlap. This occurs because PUZZLE em-
ploys hybrid parallelism, which includes tensor parallelism,
data parallelism, and pipeline parallelism. Our primary fo-
cus is on the overhead from pipeline parallelism, commonly
known as pipeline bubbles. This overhead causes certain de-
vices to remain idle either during the pipeline’s warm-up
phase or as it nears completion, thereby impacting the overall
throughput. This idle time in the pipeline can be utilized for
other computations, especially in scenarios involving depen-
dencies.

The Affinity-aware Method. During the alignment process,
which involves the participation of multiple models, each
model’s parallel strategy may different. However, depending
on the chosen parallel strategy for each model, we can explore
their affinities. Here, affinity refers to the efficient overlapping
of computational processes when two parallel strategies are
similar.

4.2 Time-sharing Switching Plan
This section introduces a new main execution plan. This plan
is designed to reduce the overhead of context switching within
a stage, enabling fine-grained time-sharing among different
contexts that share the same resources. PUZZLE employ such
time-sharing technique within stages to explore context col-
laboration during the alignment process.

We first revisit the native strategy of training two models in
pipeline parallelism manner, Model1 and Model2, where the
execution order is sequential. As depicted in Figure 5(a), this
example illustrates the training process for two models. Each
model is divided into four parts, with each part allocated to
a device, forming a four-layer pipeline. The workflow also
includes four micro-batches, with the two models executed se-
quentially. However, as shown by the gray box in Figure 5(a),
a large number of bubbles are generated between two context

USENIX Association 2024 USENIX Annual Technical Conference 131

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
1 2 3 1 4 2 3 4 1 2 3 1 4 2 3 4

1 2 1 3 2 4 3 4 1 2 1 3 2 4 3 4
1 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4

Device 1

Device 2

Device 3

Device 4

1 2 3 4 1 1 2 2 3 3 4 4 1 2 3 4
1 2 3 1 4 2 1 3 2 4 3 1 4 2 3 4

1 2 1 3 2 4 3 1 4 2 1 3 2 4 3 4
1 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4

Device 1

Device 2

Device 3

Device 4

Model1 Forward Pass
Model1 Backward Pass

Model2 Forward Pass
Model2 Backward Pass

Time

M
em

or
y

C
on

su
m

pt
io

n
M

em
or

y
C

on
su

m
pt

io
n

(a)

(b)

Intra-stage
context switch

idle time
context switch

Figure 5: An illustration of the training processes of Model1
and Model2 within stage in pipeline parallelism manner. The
figure demonstrates that through efficient time-sharing, idle
time during context switching can be effectively reduced with-
out an increase in memory consumption. (a) In native pipeline,
models within the same stage are executed sequentially. (b)
The training processes of two models can naturally overlap,
reducing the empty periods in the pipeline.

switches. During these idle periods, the device remains idle.
Therefore, this scenario presents significant opportunities for
optimization, particularly in executing tasks that do not have
dependencies.

Figure 5(b) illustrates an example of the time-sharing tech-
nique. By integrating the subsequent training task with the
preceding one, the idle time in the previous task can be effec-
tively utilized. This time-sharing technique is analogous to
process concurrency in operating systems. Since these tasks
lack dependencies, they can be executed concurrently. For
instance, in the case where the forward pass of the first micro-
batch of Model2 is executed immediately after the backward
pass of the first micro-batch of model Model1, this execution
occurs at time 9 instead of the delayed time 15. Furthermore,
the schedule depicted in the figure is similar to completing
the training of eight micro-batches in a single model.

Theoretical Speedup. In Figure 5(b), it is shown that the
first micro-batch forward of Model2 starts after Model1’s first
micro-batch backward, placing Model1 in its cool-down phase
and Model2 in the warm-up phase. Let T f represent the dura-
tion of each forward pass, T b the backward pass, and P the
number of pipeline stages. Assuming equal model sizes and
micro-batch numbers, with T f

1 = T f
2 = T f and T b

1 = T b
2 = T b,

the pipeline idle time reduces from T ser
idle = 2(P−1)(T f +T b)

to T ts
idle = (P− 1)(T f +T b) in time-sharing scenarios. This

implies a halving of the idle time with time-sharing.
However, due to the heterogeneous contexts in LLM align-

ment, their durations vary. To gain a more comprehensive
understanding of the speedup brought about by the use of
fine-grain time-sharing techniques, we conduct a theoretical
analysis here. Revisiting the essence of time-sharing technol-
ogy, which interleaves two contexts, this approach results in
the reduction of the warmup and cool-down phases for con-
texts with shorter durations. Therefore, given that the number
of microbatches is denoted as NB, the theoretical speedup can
be expressed as:

T heoretical Speedup

=
(NB +P−1)∑k∈{1,2}(T

f
k +T b

k)

NB ∑k∈{1,2}(T
f

k +T b
k)+(P−1) max

k∈{1,2}
(T f

k +T b
k)

(1)

Memory Consumption. Compared to the original sequen-
tial version, our new plan exhibits the same peak memory con-
sumption. Since our system follows the 1F1B synchronous
pipeline pattern, its memory consumption first peaks with
the retention of forward pass activations and then gradually
decreases with the completion of the backward pass.

In Figure 5(a), memory consumption initially rises from
valley to peak, then falls back to the valley, a process that is re-
peated twice. Conversely, considering Device1 as an example,
when the activation tensor of the first micro-batch forward
propagation of Model1 is released, our system begins the
first micro-batch forward propagation of Model2, as shown in
Figure 5(b). Therefore, this time-sharing approach does not
increase memory pressure and, furthermore, it optimizes the
computational resources of the device.

4.3 Hybrid Placement and Execution Plan
Finally, by combining all the existing methods, the composite
space of placement and execution plans is enriched, referred
to as the hybrid plan. In the hybrid plan, the alignment pro-
cess can be divided into multiple stage groups based on the
workload characteristics of each stage, and these stage groups
can be further divided into sub-stage groups. Therefore, each
sub-stage can adopt an appropriate placement and execution
plan based on its characteristics. The execution plans between
sub-stage groups are sequential. This means that each sub-
stage group can occupy all computing resources to execute
the functions of that stage group. For stage groups requiring
fine-grained scheduling, parallel execution plans should re-
main consistent. Figure 6 provides some simple examples to
demonstrate the working principle of the hybrid layout and
execution plan.

As shown in Figure 6(a), the alignment process can be di-
vided into three stages, each with dependencies on the previ-
ous stage. The different boxes represent various models, with

132 2024 USENIX Annual Technical Conference USENIX Association

Act

Stage 1

RefRM Critic

Stage 2 Stage 3

Act Critic

(a) PPO algorithm graph

Act

MBM

RefRM Critic

SMDD Time Sharing

Act Critic

MBM

Act

MBM

RefRM Critic

SMDD SMDD

Act Critic

…
(b) Hybrid placement and execution plan space

Figure 6: Example of different hybrid placement and execu-
tion plans. (a) The aligning algorithm graph is divided into
stages, with each stage having data dependencies on the pre-
vious one. Within a stage, there are no dependencies. (b)
Illustration of two possible examples of placement and execu-
tion plans according to the algorithm graph.

models potentially existing in multiple stages simultaneously.
As previously mentioned, stage groups can be divided into
smaller sub-stage groups, with each sub-stage group able to
choose different placement and execution plans. Two potential
plans are shown in Figure 6(b). In the first plan, single model
stage group is equivalent to applying the MBM plan, while
the Act and Critic stage groups leverage a fine-grained
time-sharing plan. In the second plan, similar to the scheduler
approach, each stage group basically uses the SMDD plan,
where each model within a stage group exclusively utilizes
computing resources.

5 Similarity-oriented Inter-stage Switch

An adaptive parallel execution plan is necessary for the
alignment process to maintain optimal performance between
stages, taking into account its current computing characteris-
tics. However, adjusting a parallel execution plan at runtime
is non-trivial, especially in hybrid parallelism where differ-
ent plans distribute parameters across devices based on the
parallelism degree. This results in variations in the number of
layers and parameters per layer. Therefore, the main challenge
in runtime transformation is the efficient switching of plans
with minimal overhead, while considering the distribution of
parameters.

This section introduces the similarity-oriented inter-stage
switch technique, which is applied in PUZZLE to maximize
performance while considering switching overhead. An exam-
ple of inter-stage switching in PUZZLE is shown in Figure 7.
PUZZLE uses a similarity criterion to find optimal parallel
execution plans with minimal communication costs. Initially,

Workload-aware Transformation (§5.2)

Goal (§5.3)

Differentiated
Execution Engine

(§5.1)

D
ev

 1
D

ev
 2

D
ev

 3
D

ev
 4

+

Min:

+

+ +

Comm

Comm

Execution:

e.g.,
Fine-tuning → Generation

+ Comm

C2

C2C1

C1
C1

C2

Figure 7: An illustration of inter-stage switching in PUZZLE

we introduce the differentiated execution engine(§5.1) which
is used to execute different workloads for the same model.
Second, the workload-aware transformation (§5.1) is intro-
duced to transform the execution plan with minimal com-
munication costs. Finally, we outline the goal of inter-stage
switching(§5.3) and propose our similarity-oriented plan.

5.1 Differentiated Execution Engine

In LLM alignment, the same model may be responsible for
different types of workloads, termed differentiated workloads.
For instance, the Actor model needs to handle both genera-
tion and fine-tuning tasks, representing the context in the two
stages respectively. However, these two workloads exhibit dif-
ferent computational characteristics and demands. Therefore,
a differentiated execution engine has been designed to accom-
modate the model’s varying workloads at different stages. As
shown in Figure 7, before the model executes the next stage,
such as changing from fine-tuning to generation, it needs to
go through workload-aware transformation (§5.2) to adopt
a more efficient parallel execution plan with minimal com-
munication costs. After the transformation, the differentiated
execution engine executes the workload based on the trans-
formed stage.

5.2 Workload-aware Transformation

We now introduce the workload-aware transformation used in
PUZZLE, designed for efficient inter-stage context switching
with minimal communication costs, as illustrated in Figure 7.
From our previous analysis, we understand that the transfor-
mation of parallelism from training to generation involves
shifting from a higher to a lower degree of pipeline paral-
lelism. This process involves sharing the parameters of the
original layer with other peers to form a tensor parallel group.
Therefore, we initially analyze the communication traffic as-
sociated with such switching and introduce the concept of
similarity to identify optimal parallel execution plans with
minimal communication costs.

Communication Volume Analysis. In PUZZLE, hybrid par-

USENIX Association 2024 USENIX Annual Technical Conference 133

allelism, which encompasses data, tensor, and pipeline paral-
lelism, is employed to significantly reduce communication.
Below, we conduct an analysis of this communication reduc-
tion, using mixed precision training as a case study.

Suppose a model contains L layers, and the training is con-
ducted on a cluster of N workers. P,D,T represent the ways of
pipeline, data, and tensor parallelism respectively. The num-
ber of broadcasts required by each device can be determined
by the formula fP = Psrc

Pdst
. We use a concrete example in Fig-

ure 7 to illustrate the process, where (L,N) = (4,4). The plan
transformation involves shifting from (P,D,T) = (4,1,1) to
(2,1,2). It is important to note that the above example only
illustrates the case where D = 1. However, PUZZLE is capable
of handling cases where D > 1. Therefore, during a single
training step in PUZZLE, the transfer involves only D− 1

fP
copies of parameters between GPUs.

Routing Table Generation. PUZZLE utilizes a routing table
to determine which worker needs to broadcast data and which
group of workers needs to receive it. Based on the parallel ex-
ecution plans before and after the transformation, PUZZLE is
able to generate a corresponding routing table.

Drawing inspiration from number system conversion, we
designed Algorithm 1 to generate routing tables for plan trans-
formations. In this algorithm, base is defined as the triplet
(P,D,T), which indicates that the rank follows to the dimen-
sion order of tensor, data, and pipeline parallelism. For ex-
ample, if the rank is 3, in base1 = (4,1,1) it corresponds to
(3,0,0)base1 , whereas in base2 = (2,1,2), it corresponds to
(1,0,1)base2 . We utilize the function GETINDEX to convert
the rank to an index with base, and the function GETRANK to
revert to the rank. The variables fP, fD, fT represent the ratios
of different dimensions between src and dst.

The function GETROUTINGTBL generates a routing ta-
ble that requires broadcasting parameters from rank to the
destinations. In this function, the rank is first converted to
the index idsrc under basesrc (Line 10), and then the corre-
sponding index iddst under basedst is calculated (Line 12).
Finally, the rank number is obtained using GETRANK. Each
rank corresponds to fP destinations to which data needs to be
broadcast.

Asynchronous Weight Transformation. In the alignment
process, training data generation typically utilizes the latest
parameters, which are updated during the optimizer step. Fur-
thermore, parameter updates are performed using optimizer
states and gradients, with no dependencies among these up-
dates. Therefore, the optimizer step and parameter exchange
can be executed asynchronously and interleaved.

We minimize the weight transformation overhead with a
two-stream schedule. In PUZZLE, trainable parameters are
partitioned into n segments, such as P1,P2, . . . ,Pk. Following
each partial optimizer step and parameter update, the transfor-
mation engine broadcasts these parameters to other devices,
enabling parallel operations and reducing end-to-end latency.

Algorithm 1 Routing Table Generation
1: function GETINDEX(r,base) ▷ base is (P,D,T)
2: P,D,T ← base
3: return (r

D×T mod P, r
T mod D,r mod T)

4: function GETRANK(idx,base)
5: P,D,T ← base
6: return idx[0]×D×T + idx[1]×T + idx[2]
7: function GETROUTINGTBL(rank,basesrc,basedst)
8: T BL←{rank : []}
9: fP, fD, fT ← BITWISEDIV(basesrc,basedst)

10: idsrc← GETINDEX(rank,basesrc)
11: for i← 0 to fP−1 do
12: iddst ← (idsrc[0]

fP
, idsrc[1],

idsrc[2]
fT

+ i)
13: Append GETRANK(iddst ,basedst) to T BL[rank]
14: return T BL

5.3 Similarity-oriented Plan

The transformation of parallel execution plans enables PUZ-
ZLE to identify more efficient strategies for executing differ-
entiated workloads, although this process incurs additional
communication costs. In this section, our goal is to delin-
eate the objectives of inter-stage context switching, with a
particular focus on achieving this transition in a lightweight
manner.

Assuming the objective is to transition from context A to
context B by moving from plan i to plan j. We define the
time taken for context A under plan i as T A

i , and the time for
context B under plan j as T B

j . Additionally, the time required
to switch from plan i to plan j is denoted as Ti j. With these
definitions, the goal of the inter-stage switch can be expressed
as follows:

min
i, j

T A
i +T B

j +Ti j (2)

However, identifying the optimal solution to achieve the
minimum objective in parallel execution plans is non-trivial.
As observed in Figure 3, the overhead tends to be lower when
the parallel execution plans are more similar. This ’similar-
ity’ is defined in terms of the distance between the tuples
(Pi,Di,Ti) and (Pj,D j,Tj).

Consequently, we propose a similarity-oriented approach
for the inter-stage switch. Drawing from these observations,
we begin with the (P,D,T) configuration of plan i. The pro-
cess involves gradually reducing the size of P and increasing
the size of T , while continually assessing whether there is a
decrease according to Equation (2). This process is repeated
until no further decrease is observed.

134 2024 USENIX Annual Technical Conference USENIX Association

6 Implemenation

We implemented PUZZLE based on Megatron-LM [17] which
applies hybrid parallelism. PUZZLE utilizes the light-weight
context switch techniques described in §4 and §5 to opti-
mize the heterogeneous context switches introduced by LLM
alignment. Moreover, the number of GPUs allocated can vary
for each model depending on the placement and execution
plan. Therefore, PUZZLE configures a communicator for each
model to adapt different parallel execution plans. Here are
some implementation details about PUZZLE:

Hybrid Inference Scheduling. Since the alignment process
involves both generation and training, we have implemented
the hybrid inference scheduling proposed in DeepSpeed In-
ference [1] to enhance generation performance when using
pipeline parallelism. Additionally, a few configurations also
need to be considered, particularly the micro-batch size for
different phases in generation.

Shadow Generation Model. To adapt the training-to-
generation transformation within the alignment process, PUZ-
ZLE utilizes a shadow model that has the same architecture as
the original model. This shadow model only occupies mem-
ory during the parallel execution plan transformation and
generation process, and releases it upon completion of the
process.

Performance Profiling. To determine the placement and
execution plan of each model within a stage and the transfor-
mation of the parallel execution plan between stages, PUZ-
ZLE employs an offline profiler to gather runtime data un-
der various settings prior to the alignment process. For each
model, three key metrics are considered: (P, D, T), which
represent pipeline parallelism, data parallelism, and tensor
parallelism, respectively. Moreover, the micro-batch size in
each phase of generation needs to be considered.

7 Evaluation

7.1 Experimental Setup

Cluster Testbed. We evaluate PUZZLE on two different
representative clusters, which differ in network topology and
network bandwidth.

orion is a cluster with 32 GPUs on four worker nodes.
Each worker node has 8 NVIDIA A100-PCIe-80GB GPUs
connected to 2 CPU sockets via PCIe switches and is equipped
with 100 Gb/s Infiniband EDR.

phoenix is another cluster with 32 GPUs with four worker
nodes. Each node is equipped with 8 NVIDIA A100-SXM-
80GB GPUs, interconnected via NVLink to form a heteroge-
neous ring, where half of the connections have double band-
width due to a bond of two links. Infiniband EDR at 100Gb/s
is used for communication. Compared to PCIe, NVLink pro-

vides significantly higher communication throughput for GPU
connections.

LLMs Configuration. Our experimental focus centers on the
Proximal Policy Optimization (PPO) algorithm, a prominent
technique in the RLHF alignment of modern LLMs. We em-
ploy LLaMA models with a range of parameter sizes, specifi-
cally 350M, 7B, 13B, and 33B, with specifications detailed
in Table 1.

Table 1: Specification of models setup
Parameters 350M 7B 13B 33B

num_layer 16 32 40 64
hidden_size 512 4096 5120 6656
intermediate_size 11008 11008 13824 17920

PPO Hyperparameters and Datasets. Throughout our ex-
periments, we use the following hyperparameter configuration
for the PPO algorithm. The number of PPO epochs and the
batch size for rollouts are both set to 1. Additionally, the
prompt sequence length and the generation length are each
set to 256. We configured the lower tensor parallelism set-
ting in the generation phase of DeepSpeed-Chat to fit the
limited memory capacity of the GPU. We utilize the default
dataset Dahoas/rm-static in DeepSpeed-Chat. This is an
open-source dataset hosted on HuggingFace, designed for
aligning LLMs. This dataset is typically used for training a
helpful and harmless assistant using RLHF.

Baselines and Software Configuration. We compare PUZ-
ZLE with the state-of-the-art RLHF training framework
DeepSpeed-Chat [30]. In comparative tests with DeepSpeed-
Chat, a hybrid engine [30] implemented by DeepSpeed is
used, capable of switching parallel strategies during the train-
ing and generation phases. This strategy employs ZeRO stage
3 [22] during training, while it utilizes tensor parallelism dur-
ing the generation phase.

Evaluation Metrics. For the end-to-end evaluation, we
measure the sample throughput during alignment. Sample
throughput is defined as the rate of processing samples from
start to finish, typically quantified in samples per second (sam-
ples/sec).

Table 2: PPO algorithm setup used for Evaluation
Configuration Batch Size # GPUs

7B/350M 128 8
7B/7B 256 16
13B/350M 256 16
13B/7B 256 16
33B/7B 128 32

USENIX Association 2024 USENIX Annual Technical Conference 135

DS-Chat PUZZLE-Base PUZZLE

on orion on phoenix

S
pe

ed
up

0

0.5

1.0

1.5

2.0

2.5

3.0

7B/350M 13B/350M 7B/7B 13B/7B 33B/7B 7B/350M 13B/350M 7B/7B

Figure 8: End-to-End Speedup of different configurations.

7.2 End-to-End Performance
We evaluate the end-to-end performance of various model
combinations across two distinct clusters. The evaluation
setup is detailed in Table 2. Configuration X/Y reflects param-
eter counts in PPO’s actor and critic models, mirrored in the
reference and reward models, respectively. These configura-
tions are done in the form of weak scaling, where batch sizes
are increased along with the number of GPUs. Except for the
33B/350M configuration, which is adjusted to accommodate
the GPU memory capacity.

Figure 8 illustrates the end-to-end speedup comparison be-
tween PUZZLE and DeepSpeed-Chat with a hybrid engine
under two different cluster configurations, while also incor-
porating PUZZLE-Base, which exclusively applies pipeline
parallelism, into the experiment. PUZZLE achieves an average
speedup of 1.83× and 1.50×, respectively, on the two clusters.
In the comparison between phoenix and orion, PUZZLE ex-
hibits a higher speedup on orion. This reason is due to the
bandwidth limitations among the cluster’s GPUs and frequent
intra-node communication, there is a reduction in efficiency.
Specifically, during the generation stage, DeepSpeed-Chat
opts for increased tensor parallelism to accommodate GPU
memory constraints. PUZZLE addresses this issue by selecting
the optimal hybrid parallel execution plan for various stages,
utilizing light-weight inter-stage switching.

PUZZLE-Base, which solely utilizing pipeline parallelism
and is devoid of additional optimizations, and its batch size in
decode phase is evenly divided by the pipeline size, was fur-
ther evaluated. This evaluation highlights our system’s base-
line performance, which notably surpasses that of DeepSpeed-
Chat. Furthermore, this also demonstrates that relying solely
on static parallelism in the alignment process is suboptimal
due to heterogeneous models and workloads involved. There-
fore, it necessitates considering optimizations both intra-stage
and inter-stage to achieve enhanced performance.

7.3 Intra-stage Ablation Study
This section analyzes the effectiveness of time-sharing tech-
niques used for intra-stage context switching. As shown in

Figure 9, we compared the performance of intra-stage across
different configurations on two cluster, as outlined in Table 2.
We used configurations without time-sharing as a baseline
for comparison. It is evident that the use of time-sharing
techniques significantly enhances intra-stage context switch
performance, reducing idle time, with up to 1.12× speedup
within stage. The figure also reveals that the speedup ratios in
both clusters are essentially consistent, indicating that time-
sharing is effective across different clusters. Furthermore,
under configurations with similar models, a more pronounced
speedup is observed, which will be analyzed subsequently.

PUZZLE w/o ts PUZZLE w/ ts

on phoenixon orion

S
pe

ed
up

0

0.5

1.0

7B/350M 7B/7B 13B/7B 7B/350M 7B/7B 13B/7B

Figure 9: Performance of using time-sharing

Figure 10 illustrates the speedup achieved by PUZZLE un-
der various configurations and batch sizes relative to theoret-
ical speedup, calculated using Equation (1). (P,D,T) repre-
sents data, tensor, and pipeline parallelism dimensions. It has
been observed that the actual speedup closely aligns with the
theoretical predictions. We observed that with an increased
number of pipelines, the performance improves, as demon-
strated by the (16,1,1) configuration under 7B/7B in the figure.
This is reasonable because time-sharing primarily eliminates
idle time, and more pipelines mean more potential idle time.
Furthermore, it was noted that using more similar models or
smaller batch sizes also lead to better performance, achieving
up to a 1.34× speedup within the stage.

136 2024 USENIX Annual Technical Conference USENIX Association

Theoretical PUZZLE

Sp
ee
du
p

0

0.5

1.0

1.5

(8,1,2) (4,1,4) (8,2,1)

Theoretical PUZZLE

Sp
ee
du
p

0

0.5

1.0

1.5

(8,1,2) (4,1,4) (8,2,1)

Theoretical PUZZLE

Sp
ee
du
p

0

0.5

1.0

1.5

(16,1,1)(8,1,2) (4,1,4) (8,2,1)

Theoretical PUZZLE
Sp
ee
du
p

0

0.5

1.0

1.5

(16,1,1)(8,1,2) (4,1,4) (8,2,1)

Theoretical PUZZLE

Sp
ee
du
p

1.0

1.1

1.2

(16,1,1)(8,1,2) (4,1,4) (8,2,1)
Batch size = 128 Batch size = 256

7B
/7
B

Batch size = 64 Batch size = 128

13
B
/7
B

Figure 10: Theoretical speedup and PUZZLE speedup of intra-
stage switching

7.4 Inter-stage Ablation Study

We now evaluate the performance improvements resulting
from the parallel execution plan transformation involving
inter-stage context switching in PUZZLE. Our evaluation fol-
lows to the configurations listed in Table 2. Fixed generation-
optimal and training-optimal parallel execution plans (same
with PUZZLE-Base) were used as the basis for comparison in
the experiment. Figure 11 illustrates the end-to-end speedup
across various settings.

PUZZLE achieves an average speedup of 1.22× compared
to the generation-optimal plan and 1.34× compared to the
training-optimal plan. The overhead is studied in the next
section. Additionally, we found that generation-optimal strate-
gies consistently outperform training-optimal ones, primarily
because generation stages are typically more time-consuming,
making the choice of an appropriate generation plan more crit-
ical. Moreover, a greater speedup was observed in the phoenix
setting with higher communication throughput, attributed to
enhanced opportunities for tensor parallelism during genera-
tion.

This further demonstrates that selecting a parallel strategy
based solely on the characteristics of a single workload is
insufficient for optimal performance. Conversely, an optimal
approach requires considering the characteristics of various
workloads collectively and accounting for the overhead during
transitions to enhance performance in the alignment process.

7.5 Fine-Grained Performance Breakdown

To thoroughly understand the PUZZLE alignment process, we
conducted a fine-grained performance breakdown, compar-
ing it with DeepSpeed-Chat and incorporating PUZZLE-Base
into the analysis. Our study, focusing on the 7B/7B align-

train-opt gen-opt PUZZLE
on phoenixon orion

S
pe

ed
up

0

0.5

1.0

1.5

7B/350M 7B/7B 33B/7B 7B/350M 7B/7B 33B/7B

Figure 11: Performance of PUZZLE is compared to that of
optimal parallelism plan for training and generation.

17.6

11.7

6.94

6.75

3.01

2.91

10.1

8.45

7.69

1.32

0

0.31

Stage1 (Gen.) Stage2 (Infer.) Stage3 (Train.) Comm.

DS-Chat

PUZZLE-Base

PUZZLE

Execution time (sec.)
0 5 10 15 20 25 30 35 40 45

11

8.94

6.77

3.73

3.34

3.53

8.24

8.24

7.32

0.97

0

0.02

Stage1 (Gen.) Stage2 (Infer.) Stage3 (Train.) Comm.

DS-Chat

PUZZLE-Base

PUZZLE

Execution time (sec.)
0 5 10 15 20 25 30 35 40 45

orion

phoenix

Figure 12: Fine-grained performance breakdown in one itera-
tion in aligning 7B/7B under two different cluster configura-
tions.

ment in two different cluster configurations, is presented in
Figure 12, where the performance of each stage is measured
separately. This analysis clearly outlines performance metrics
for each context within an iteration, highlighting our method’s
advantages.

The data shows PUZZLE outperforms DeepSpeed-Chat
in various stages. We discuss the reasons behind the per-
formance optimization of these three stages respectively. In
Stage 1, PUZZLE uses light-weight parallel execution plan
transformation for optimal strategy selection, favoring ten-
sor parallelism over pipeline parallelism to enhanced perfor-
mance. In contrast, DeepSpeed-Chat employs only tensor
parallelism leads to lower performance. For Stages 2 and 3,
PUZZLE achieves significant improvements by selecting ap-
propriate placement and execution plans, with notable gains
in Stage 2. The effectiveness of Phase 3 is further enhanced
by the use of time-sharing technology.

The communication overhead is detailed in Table 3. This
table compares the overheads of PUZZLE and DeepSpeed-
Chat in two different clusters. The inter-stage switch in the
experiment focused on Actor, we altered only the parameters

USENIX Association 2024 USENIX Annual Technical Conference 137

Table 3: Inter-stage Switching Overhead Breakdown

Config.
orion phoenix

PUZZLE DS-Chat PUZZLE DS-Chat
7B/350M 0.31 s 1.32 s 0.02 s 1.03 s
13B/350M 0.37 s 3.02 s 0.20 s 2.02 s
33B/7B 0.49 s 7.54 s 0.48 s 3.37 s

of Actor, and followed the configurations outlined in Table 2.
As the table shows, the overhead of PUZZLE in both clus-

ters is lower than that of DeepSpeed-Chat, with each being
less than one second. Particularly in the orion cluster, and
notably in the 33B/7B configuration, where the 33B model’s
parameters are relatively large and are distributed across 32
GPUs, the switch incurs significant overhead, with up to 7.54
seconds in DeepSpeed-Chat. PUZZLE, however, achieves the
switch with minimal overhead, transitioning from (32,1,1)
to (16,1,2), incurring only 0.49 seconds in the orion. Mean-
while, in the phoenix cluster, transitioning to (8,1,4) increases
overhead but also significantly enhances performance. This
demonstrates the effective balance PUZZLE achieves between
overhead and performance optimization across various clus-
ter configurations. Moreover, in the phoenix cluster, where
most communication is completed intra-node, PUZZLE effec-
tively leverages the communication advantages of NVLink,
resulting in lower overhead.

8 Related Work

LLM Alignment. Existing alignment methods, especially
human preference alignment can be broadly categorized into
three major categories: reinforcement learning [20, 23], con-
trastive learning [21, 33], and hindsight instruction relabel-
ing [14, 32]. Among these methods, the reinforcement learn-
ing approach stands out as the primary method for achieving
this alignment. Representative work is InstructGPT [20].

Following the development of ChatGPT [18] or Instruct-
GPT, numerous distributed frameworks have been proposed.
DeepSpeed-Chat [30] compose the full system capability
of DeepSpeed training and inference into a unified engine
called hybrid engine. ColossalAI [12] uses various tech-
niques like ZeRO [22] to accelerate the RLHF alignment
paradigms. trlX [7] propose both online and offline training
methods, along with algorithmic system enhancements to min-
imize compute and memory requirements. Beaver [2], leverag-
ing DeepSpeed, is introduced to parallelize InstructGPT-like
alignment paradigms using Safe RLHF methods. These frame-
works primarily utilize the PPO algorithm for alignment. It
represents the mainstream approach for aligning LLMs.

Parallelization Training Systems. Previous works target
different parallel strategies. GPipe [8] employs pipeline par-
allelism by distributing layer-level weights across multiple

devices. It facilitates parallel computations among these de-
vices in a sequential, pipelined fashion. PipeDream [16] and
DAPPLE [5] proposes pipeline parallelism planners for ef-
ficient pipeline partitioning and scheduling. Tofu [26] gen-
erates tensor model parallel execution plans by a novel DP
algorithm. Alpa [34] generates more sophisticated execution
plans, considering both inter-operator and intra-operator par-
allelism. These works primarily focus on optimizing a single
target model. In contrast, PUZZLE addresses the efficient con-
text switching of multiple models under an optimal parallel
strategy, making it orthogonal to these studies.

LLM Inference Optimization. DeepSpeed-Inference [1]
employs a range of techniques, including hybrid inference
scheduling, to utilize the power of multi-GPU systems and
enhance inference performance. vLLM [10] implements Page-
dAttention, which partitions each sequence’s KV cache into
fixed-size blocks, facilitating memory sharing and reducing
memory consumption. FlashAttention [3] provides an opti-
mized implementation of SelfAttention operation by reducing
data movement via blockwise computation. FlexGen [24] de-
signed an efficient swapping schedule to maximize throughput
on a single GPU while sacrificing latency. These works have
implemented a series of optimizations for inference and can
be effectively applied to PUZZLE.

9 Conclusion

We propose PUZZLE, an efficient system for aligning LLMs
that treats model context as a first-class citizen. We abstract
the key concepts of context from the alignment problem and
identify the key challenge of LLM as efficient switching be-
tween heterogeneous contexts. To address the challenge, we
propose a two-dimensional approach for efficient handling
of heterogeneous contexts, focusing on both intra- and inter-
stage context switching. In each stage, we reduce switching
costs by analyzing affinities between various contexts and
leveraging overlapping computation through time-sharing
strategies. Additionally, to minimize switching overhead be-
tween stages, we formulate a similarity-based approach to
identify the most efficient inter-stage context-switching plan,
aiming to lower communication expenses. PUZZLE achieves
up to 2.12× speedup in end-to-end LLM alignment.

10 Acknowledgments

We sincerely thank the anonymous reviewers for their
valuable feedback on this paper. This work is sup-
ported by National Key R&D Program of China under
Grant 2023YFB3001704, NSFC for Distinguished Young
Scholar (62225206), and National Natural Science Foun-
dation of China under Grants 62302251, U23B2027. Ji-
dong Zhai is the corresponding author of this paper (zhai-
jidong@tsinghua.edu.cn).

138 2024 USENIX Annual Technical Conference USENIX Association

zhaijidong@tsinghua.edu.cn
zhaijidong@tsinghua.edu.cn

References

[1] Reza Yazdani Aminabadi, Samyam Rajbhandari, Am-
mar Ahmad Awan, Cheng Li, Du Li, Elton Zheng,
Olatunji Ruwase, Shaden Smith, Minjia Zhang, Jeff
Rasley, et al. Deepspeed-inference: enabling efficient in-
ference of transformer models at unprecedented scale. In
SC22: International Conference for High Performance
Computing, Networking, Storage and Analysis, pages
1–15. IEEE, 2022.

[2] Josef Dai, Xuehai Pan, Ruiyang Sun, Jiaming Ji, Xinbo
Xu, Mickel Liu, Yizhou Wang, and Yaodong Yang. Safe
rlhf: Safe reinforcement learning from human feedback.
arXiv preprint arXiv:2310.12773, 2023.

[3] Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and
Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances
in Neural Information Processing Systems, 35:16344–
16359, 2022.

[4] Yann Dubois, Xuechen Li, Rohan Taori, Tianyi Zhang,
Ishaan Gulrajani, Jimmy Ba, Carlos Guestrin, Percy
Liang, and Tatsunori B Hashimoto. Alpacafarm: A sim-
ulation framework for methods that learn from human
feedback. arXiv preprint arXiv:2305.14387, 2023.

[5] Shiqing Fan, Yi Rong, Chen Meng, Zongyan Cao, Siyu
Wang, Zhen Zheng, Chuan Wu, Guoping Long, Jun
Yang, Lixue Xia, et al. Dapple: A pipelined data paral-
lel approach for training large models. In Proceedings
of the 26th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, pages 431–445,
2021.

[6] Google. Bard. https://bard.google.com/.

[7] Alexander Havrilla, Maksym Zhuravinskyi, Duy Phung,
Aman Tiwari, Jonathan Tow, Stella Biderman, Quentin
Anthony, and Louis Castricato. trlx: A framework for
large scale reinforcement learning from human feedback.
In Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, pages 8578–
8595, 2023.

[8] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan
Firat, Dehao Chen, Mia Xu Chen, HyoukJoong Lee, Ji-
quan Ngiam, Quoc V. Le, Yonghui Wu, and Zhifeng
Chen. Gpipe: Efficient training of giant neural networks
using pipeline parallelism. In Advances in Neural Infor-
mation Processing Systems 32: Annual Conference on
Neural Information Processing Systems 2019, NeurIPS
2019, December 8-14, 2019, Vancouver, BC, Canada,
pages 103–112, 2019.

[9] Julia Kreutzer, Joshua Uyheng, and Stefan Riezler. Re-
liability and learnability of human bandit feedback for
sequence-to-sequence reinforcement learning. arXiv
preprint arXiv:1805.10627, 2018.

[10] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gonzalez,
Hao Zhang, and Ion Stoica. Efficient memory man-
agement for large language model serving with page-
dattention. In Proceedings of the 29th Symposium on
Operating Systems Principles, pages 611–626, 2023.

[11] Kimin Lee, Hao Liu, Moonkyung Ryu, Olivia Watkins,
Yuqing Du, Craig Boutilier, Pieter Abbeel, Mohammad
Ghavamzadeh, and Shixiang Shane Gu. Aligning text-
to-image models using human feedback. arXiv preprint
arXiv:2302.12192, 2023.

[12] Shenggui Li, Hongxin Liu, Zhengda Bian, Jiarui Fang,
Haichen Huang, Yuliang Liu, Boxiang Wang, and Yang
You. Colossal-ai: A unified deep learning system for
large-scale parallel training. In Proceedings of the 52nd
International Conference on Parallel Processing, pages
766–775, 2023.

[13] Zhuohan Li, Lianmin Zheng, Yinmin Zhong, Vincent
Liu, Ying Sheng, Xin Jin, Yanping Huang, Zhifeng Chen,
Hao Zhang, Joseph E. Gonzalez, and Ion Stoica. Al-
paServe: Statistical multiplexing with model parallelism
for deep learning serving. In 17th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 23), pages 663–679, 2023.

[14] Hao Liu, Carmelo Sferrazza, and Pieter Abbeel. Lan-
guages are rewards: Hindsight finetuning using human
feedback. arXiv preprint arXiv:2302.02676, 2023.

[15] Philipp Moritz, Robert Nishihara, Stephanie Wang,
Alexey Tumanov, Richard Liaw, Eric Liang, Melih Eli-
bol, Zongheng Yang, William Paul, Michael I Jordan,
et al. Ray: A distributed framework for emerging {AI}
applications. In 13th USENIX symposium on operating
systems design and implementation (OSDI 18), pages
561–577, 2018.

[16] Deepak Narayanan, Aaron Harlap, Amar Phanishayee,
Vivek Seshadri, Nikhil R Devanur, Gregory R Ganger,
Phillip B Gibbons, and Matei Zaharia. Pipedream: Gen-
eralized pipeline parallelism for dnn training. In Pro-
ceedings of the 27th ACM Symposium on Operating
Systems Principles, pages 1–15, 2019.

[17] Deepak Narayanan, Mohammad Shoeybi, Jared Casper,
Patrick LeGresley, Mostofa Patwary, Vijay Korthikanti,
Dmitri Vainbrand, Prethvi Kashinkunti, Julie Bernauer,
Bryan Catanzaro, Amar Phanishayee, and Matei Zaharia.
Efficient large-scale language model training on gpu

USENIX Association 2024 USENIX Annual Technical Conference 139

https://bard.google.com/

clusters using megatron-lm. In Proceedings of the Inter-
national Conference for High Performance Computing,
Networking, Storage and Analysis. Association for Com-
puting Machinery, 2021.

[18] OpenAI. Chatgpt. https://chat.openai.com/chat.

[19] OpenAI. GPT-4 technical report. arXiv preprint
arXiv:2308.01320, 2023.

[20] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
Training language models to follow instructions with
human feedback. Advances in Neural Information Pro-
cessing Systems, 35:27730–27744, 2022.

[21] Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano
Ermon, Christopher D Manning, and Chelsea Finn. Di-
rect preference optimization: Your language model is se-
cretly a reward model. arXiv preprint arXiv:2305.18290,
2023.

[22] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and
Yuxiong He. Zero: Memory optimizations toward train-
ing trillion parameter models. In SC20: International
Conference for High Performance Computing, Network-
ing, Storage and Analysis, pages 1–16. IEEE, 2020.

[23] Rajkumar Ramamurthy, Prithviraj Ammanabrolu,
Kianté Brantley, Jack Hessel, Rafet Sifa, Christian
Bauckhage, Hannaneh Hajishirzi, and Yejin Choi.
Is reinforcement learning (not) for natural language
processing?: Benchmarks, baselines, and building
blocks for natural language policy optimization. arXiv
preprint arXiv:2210.01241, 2022.

[24] Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan
Li, Max Ryabinin, Beidi Chen, Percy Liang, Christopher
Ré, Ion Stoica, and Ce Zhang. Flexgen: High-throughput
generative inference of large language models with a
single gpu. In International Conference on Machine
Learning, pages 31094–31116. PMLR, 2023.

[25] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert,
Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov,
Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al.
Llama 2: Open foundation and fine-tuned chat models.
arXiv preprint arXiv:2307.09288, 2023.

[26] Minjie Wang, Chien-chin Huang, and Jinyang Li. Sup-
porting very large models using automatic dataflow
graph partitioning. In Proceedings of the Fourteenth
EuroSys Conference 2019, pages 1–17, 2019.

[27] Chenfei Wu, Shengming Yin, Weizhen Qi, Xiaodong
Wang, Zecheng Tang, and Nan Duan. Visual chatgpt:
Talking, drawing and editing with visual foundation
models. arXiv preprint arXiv:2303.04671, 2023.

[28] Wencong Xiao, Romil Bhardwaj, Ramachandran Ram-
jee, Muthian Sivathanu, Nipun Kwatra, Zhenhua Han,
Pratyush Patel, Xuan Peng, Hanyu Zhao, Quanlu Zhang,
et al. Gandiva: Introspective cluster scheduling for deep
learning. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18), pages
595–610, 2018.

[29] Wencong Xiao, Shiru Ren, Yong Li, Yang Zhang,
Pengyang Hou, Zhi Li, Yihui Feng, Wei Lin, and
Yangqing Jia. {AntMan}: Dynamic scaling on {GPU}
clusters for deep learning. In 14th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 20), pages 533–548, 2020.

[30] Zhewei Yao, Reza Yazdani Aminabadi, Olatunji Ruwase,
Samyam Rajbhandari, Xiaoxia Wu, Ammar Ahmad
Awan, Jeff Rasley, Minjia Zhang, Conglong Li, Connor
Holmes, et al. Deepspeed-chat: Easy, fast and affordable
rlhf training of chatgpt-like models at all scales. arXiv
preprint arXiv:2308.01320, 2023.

[31] Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soo-
jeong Kim, and Byung-Gon Chun. Orca: A distributed
serving system for {Transformer-Based} generative
models. In 16th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 22), pages
521–538, 2022.

[32] Tianjun Zhang, Fangchen Liu, Justin Wong, Pieter
Abbeel, and Joseph E Gonzalez. The wisdom of hind-
sight makes language models better instruction follow-
ers. arXiv preprint arXiv:2302.05206, 2023.

[33] Yao Zhao, Rishabh Joshi, Tianqi Liu, Misha Khalman,
Mohammad Saleh, and Peter J Liu. Slic-hf: Sequence
likelihood calibration with human feedback. arXiv
preprint arXiv:2305.10425, 2023.

[34] Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao
Zhuang, Zhifeng Chen, Yanping Huang, Yida Wang,
Yuanzhong Xu, Danyang Zhuo, Eric P. Xing, Joseph E.
Gonzalez, and Ion Stoica. Alpa: Automating inter- and
Intra-Operator parallelism for distributed deep learning.
In 16th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 22), pages 559–578,
2022.

140 2024 USENIX Annual Technical Conference USENIX Association

https://chat.openai.com/chat

	Introduction
	Background and Motivation
	Background
	Challenges and Motivations

	Overview
	Affinity-aware Intra-stage Switch
	Opportunities of Placement and Execution Plan
	Time-sharing Switching Plan
	Hybrid Placement and Execution Plan

	Similarity-oriented Inter-stage Switch
	Differentiated Execution Engine
	Workload-aware Transformation
	Similarity-oriented Plan

	Implemenation
	Evaluation
	Experimental Setup
	End-to-End Performance
	Intra-stage Ablation Study
	Inter-stage Ablation Study
	Fine-Grained Performance Breakdown

	Related Work
	Conclusion
	Acknowledgments

