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Abstract
Buffered I/O via page cache is used for file scanning in

many cases as page cache can provide buffering, data aggre-
gation, I/O alignment and prefetching transparently. However,
our study indicates that employing page cache for file scan-
ning on fast storage devices presents two performance issues:
it offers limited I/O bandwidth that does not align with the
performance of fast storage devices, and the intensive back-
ground writeback onto fast storage devices can significantly
interfere with foreground I/O requests.

In this paper, we propose StreamCache, a new page cache
management system for file scanning on fast storage de-
vices. StreamCache exploits three techniques to achieve high
I/O performance. First, it uses a lightweight stream tracking
method to record the states of cached pages at the granularity
of sequential streams. Second, it uses a stream-based page
reclaiming method to lower the interference to foreground
I/O requests. Third, it uses a two-layer memory management
method to accelerate page allocation by leveraging CPU cache
locality.

We implement StreamCache in XFS. Experimental results
show that compared with existing methods, StreamCache can
increase the I/O bandwidth of scientific applications by 44%,
and reduce the checkpoint/restart time of large language mod-
els by 15.7% on average.

1 Introduction

In high performance computing, many applications exhibit file
scanning I/O patterns as shown in previous works [7,8,49,56].
Figure 1 illustrates these I/O patterns. Each file may be in-
dependently accessed by one process (N-N mode) or shared
by multiple processes (N-1 mode) during each I/O stage. For
example, scientific applications perform file scanning when
loading initial data, doing checkpoint/restart [43, 50] or visu-
alizing results [15, 31]. AI training jobs also scan files when
loading data files or performing checkpoint/restart [30, 51].

∗Corresponding author: gyzh@tsinghua.edu.cn
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Figure 1: Typical I/O patterns of file scanning.

File scanning has a low data reuse rate because different pro-
cesses will mostly access different parts of each file, even in
the N-1 mode.

Buffered I/O via page cache is used for file scanning in
many cases as page cache can provide buffering, data aggrega-
tion, I/O alignment and prefetching transparently. For exam-
ple, modern HPC clusters build SSD-based burst buffer sys-
tems [16, 17, 32, 48, 49] to quickly absorb bursty I/O requests
from the applications [25]. Representative burst buffer sys-
tems like HadaFS [16], Cray Datawarp [17] and GekkoFS [48]
use kernel file systems and page cache to manage SSDs within
one burst buffer node. Another example is Safetensors [4], a
widely used machine learning checkpoint/restart library that
loads model parameters and writes checkpoint files using the
buffered I/O mode.

Although the buffered I/O mode can provide transparent
caching, our study indicates that using the page cache for
file scanning on fast storage devices like NVMe [53] SSDs
has two performance issues. To demonstrate these issues,
we conduct sequential I/O tests using the fio [6] benchmark,
imitating the most straightforward file scanning workload.
The kernel page size in this experiment is 4KB.

First, we find that buffered I/O scales poorly as the device
bandwidth increases, limiting its performance on fast storage
devices. We evaluate the bandwidth of accessing a 10GB file
with a 4MB I/O size in the buffered I/O mode, and alter the
device bandwidth limit by aggregating different numbers of
Intel Optane 905p NVMe SSDs [20] into RAID-0 arrays.
By comparison, we repeat the experiment with the direct I/O
mode that bypasses the kernel page cache. As shown in Fig-
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Figure 2: Sequential I/O bandwidth upon RAID-0 arrays with
different number of SSDs. The experiment was performed on
XFS, but we found similar trends in other file systems, such
as Ext4 and F2FS.

ure 2, buffered I/O performs better than direct I/O on one SSD,
thanks to the readahead and write buffering mechanisms in
the page cache. However, buffered I/O performance has little
improvement as the storage device becomes faster. When the
number of SSDs is larger than one, buffered read bandwidth
increases no more than 35%, and buffered write bandwidth
does not have obvious improvement. Instead, direct I/O can
achieve better scalability with such a large I/O size. This ex-
periment demonstrates that current page cache management
limits the scalability of buffered I/O in file scanning.

Although direct I/O manifests better scalability than
buffered I/O for file scanning in this experiment, we argue
that file scanning can benefit from the page cache for three
reasons. First, file scanning of small I/Os performs better with
the buffered I/O mode than the direct I/O mode for both read
and write workloads [42]. This improvement is attributed
to prefetching for read workloads and I/O aggregation for
both read and write workloads. Second, the page cache can
buffer data for write workloads and perform asynchronous
writeback, effectively reducing I/O latency in the critical path.
Third, when serving both read and write requests, using direct
I/O requires additional effort for I/O alignment due to the
strict restrictions on I/O addresses and sizes [18].

Second, we find that the performance of write-intensive
file scanning can be significantly affected by background
writeback. We demonstrate this by sequentially issuing
buffered writes on a 30GB file, during which the kernel trig-
gers background writeback to restrict the memory dirty ratio.
As depicted in Figure 3, buffered writes can achieve relatively
consistent performance at the beginning of the test, as the
kernel writeback threads have not yet been woken up. How-
ever, foreground I/O bandwidth can be significantly impacted
when background writeback is active, resulting in a 31.7%
performance degradation during the background writeback
phase. Background writeback is more intensive on fast stor-
age devices due to their abundant device bandwidth, resulting
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Figure 3: Interference between foreground I/O requests and
background writeback.

in significant degradation of foreground I/O performance.
Throttling the background writeback rate is not a permanent
solution because it leads to the accumulation of dirty pages in
memory, which subsequently blocks foreground I/O requests.

The above issues arise due to the combined impact of work-
load characteristics and the in-kernel page cache management.
File scanning has a low data reuse ratio, which results in high
page cache miss rates and rapid growth of memory dirty ratio.
On the one hand, page cache allocates free pages in the criti-
cal path when a page cache miss happens, and the substantial
overhead associated with page allocation in the kernel hin-
ders foreground I/O performance. On the other hand, the page
cache maintains dirty states, such as page dirty and writeback,
at the page granularity. This design causes intensive lock con-
tention between foreground write and background writeback
as they both manipulate the shared index XArray [54].

This paper proposes StreamCache, an efficient page cache
management system for file scanning workloads on fast stor-
age devices. StreamCache includes three techniques to solve
the above problems. First, a lightweight stream tracking
method is designed to maintain the metadata of cached pages
at the granularity of sequential streams. Second, a stream-
based page reclaiming method is designed to perform page
writeback and eviction based on the tracked streams, keeping
interference to foreground I/O requests low. Finally, a two-
layer memory management method is designed to accelerate
page allocation by leveraging CPU cache locality.

We compare StreamCache with the original kernel page
cache and FastMap-cache. FastMap-cache integrates the key
techniques from FastMap [36], a new memory-mapped I/O
(MMIO) design for fast devices, into the buffered I/O stack.
FastMap-cache manages its own memory pool with per-core
free-page lists to enhance the multi-core scalability of page
allocation. Besides, it separates clean and dirty trees by de-
signing dedicated per-core dirty trees to index the dirty pages.
However, we find that allocating each page directly from
global free-page lists does not provide good CPU cache local-
ity in buffered I/O processing, and contention still exists in the
dedicated dirty trees as both foreground write and background
writeback need to get a spinlock to modify the dirty trees.
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We implement StreamCache and FastMap-cache in XFS,
and perform extensive experiments under both real-world and
synthetic workloads. Experimental results show that, com-
pared with the existing methods, StreamCache can increase
the I/O bandwidth of scientific computing applications by
44% and reduce the checkpoint/restart time of large language
models by 15.7% on average.

2 Background and Motivation

In this section, we first present the necessary background
for buffered I/O. Then, we analyze the problems of poor
scalability and high writeback interference when using page
cache for file scanning on fast storage devices. Finally, we
introduce the most relevant work FastMap [36] and analyze
why it cannot fully solve the above problems.

2.1 Buffered I/O and Page Cache

Buffered I/O is a file I/O mode that can leverage the page
cache to provide buffering, data aggregation, I/O alignment
and prefetching transparently. It is used in many scenarios
for file scanning, like local storage management in HPC burst
buffer [16, 17, 48] and checkpoint/restart library for machine
learning [4].

Although buffered I/O implementations vary in different
kernel file systems, the ways they interact with the page cache
are roughly the same. By referring to the source codes of repre-
sentative kernel file systems (XFS [11], Ext4 [27], F2FS [22]
and BtrFS [44]), we summarize the procedure of buffered I/O
as following five parts:

user space

kernel space

offset=2048, size=262144

I/O alignment

0 1 64

0

page indexing

page allocation & data filling

data copying

1

64XA_node

XA_node

XArray

Linux page allocator

per-CPU 

page list

buddy 

allocator

SSD SSD SSD

external storage

...

writeback

rate limit

buffered writebuffered read user buffer

dirty ratio manager

Figure 4: Buffered I/O procedure via page cache. Assuming
that page 0 and page 64 are in the XArray initially, and page
64 is dirty. The page size is 4KB in this example.

I/O aligning and page-level processing. One advantage
of buffered I/O is that applications do not need to do I/O
alignment explicitly, even though block devices require I/O
requests aligned to a certain size (e.g. 4KB). This is realized
by I/O alignment in the kernel. For a buffered I/O request
accessing the logical range [o f f set, o f f set + length) within
one file, the kernel aligns it with the page size (typically 4KB)
as shown in Figure 4. After the alignment, the kernel processes
each page within the aligned range sequentially. Each page
has a page index to describe its position within the file.

Page indexing. File data can only be accessed by buffered
I/O requests after it is cached in the page cache. Linux uses a
per-file data structure called XArray [54] to index the cached
data at the page granularity. As shown in Figure 4, XArray is a
tree-index that consists of many xa_nodes. Each xa_node has
three major fields: (1) pointer fields like the slots and parent
that store the pointers to target pages, next-layer xa_nodes
or the father xa_node, (2) indexing fields like the shi f t and
o f f set, which are used to decide the target pointer in slots
when searching for a certain page, (3) tag fields like the tags
that mark whether the sub-tree of this xa_node indexes any
page that is dirty or under writeback.

For read-write contention, XArray uses RCU [28] lock to
guarantee consistency. Major pointer fields in each xa_node
are marked as read-side critical sections. It provides good
lookup performance as the index modifications (e.g. inserting
a new page or modifying the tag fields) will never block the
index readings (e.g. looking up the page pointers). However,
XArray still relies on the spinlock to guarantee consistency for
write-write contention, like concurrent index modifications.

Page allocating and data populating. If an accessed page
is not found in the page cache, the kernel will allocate a free
page and insert it into the XArray and the kernel LRU list.
Kernel page allocation is first served by the per-cpu page
list [3], which is designed to retain small amounts of free
pages for frequent page allocation and deallocation. If no
page is left in the per-cpu page list, the kernel will supply
free pages from the system-wide buddy allocator [52] in a
batch manner. The buddy allocator maintains free pages in
different orders, each of which is a double-link list protected
by a spinlock [55]. After allocating the page, the kernel may
need to populate it with relevant data from the device.

Data copying. After getting the desired page, the kernel
copies data between the user and kernel space. Buffered reads
copy data from the kernel pages to the user memory buffer
and buffered writes manipulate data in the opposite direction.

Dirty ratio limiting. The kernel monitors the memory dirty
ratio and limits its value according to the user configuration.
Two configurable thresholds related to the memory dirty ratio
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play an important role in this process. When the memory dirty
ratio exceeds dirty_background_ratio, the kernel wakes up
background writeback threads to write the dirty pages back.
When the memory dirty ratio exceeds dirty_ratio, the kernel
blocks buffered writes to limit the growth rate of the memory
dirty ratio.

2.2 Performance Issues of Buffered I/O
Although it’s convenient to use the buffered I/O mode for
file access, we find that running file scanning workloads with
the buffered I/O mode has performance issues, especially on
high-performance NVMe SSDs. This section analyzes the
issues of poor scalability and high background interference
of buffered I/O under file scanning workloads.

We use fio [6] benchmark to simulate the simplest file
scanning workload that sequentially reads or writes one file
in the buffered I/O mode. The tested workloads include a
sequential read workload, a sequential write workload and a
sequential write workload with active background writeback.
Each workload manipulates a 10GB file in XFS. The block
device for XFS is a RAID-0 array of 8 NVMe SSDs, which
simulates a next-generation high-performance NVMe SSD.
In the third workload, we let the kernel flush the dirty pages
actively by setting the dirty_background_ratio to 0, which
can demonstrate the interference from background writeback
more clearly.
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Figure 5: CPU occupation breakdown of buffered I/O.

For each workload, we use the performance analysis tool
perf [5] to capture CPU occupation breakdown of buffered
I/O. Figure 5 gives the CPU cycle breakdown of each test.
We can get three conclusions from the experiments.

Firstly, page allocation (Allocation) takes major time
among the three workloads, with the proportions of 33.45%,
36.06%, and 24.09%, respectively. This result reveals that
high page allocation overhead significantly contributes to
buffered I/O’s poor scalability, especially for buffered reads
and buffered writes without writeback interference. The ratio
of reused data in a file scanning workload is low, resulting in

a high page cache miss ratio. It is worth mentioning that the
kernel needs to allocate a free page for each page cache miss.

Allocating from Linux page allocator may introduce three
expenses. First, free pages are maintained in different orders.
A page of order k contains 2k physically continuous basic
pages. When the lower-order pages run out, page-splitting
overhead is introduced to supply the lower-order pages with
the higher-order pages [55]. Second, pages of the same order
are maintained in the same double-linked list that is protected
by a spinlock, which can cause concurrency bottleneck when
different CPU cores allocate free pages in parallel [55]. Third,
the kernel may be configured to clean the page on allocation
by writing all bytes to zero, introducing extra CPU overheads.

Secondly, background writeback increases the page index-
ing and dirty state maintenance overhead in foreground I/O
requests. Buffered write does not interact with the device di-
rectly (i.e. no Device part in write workloads) because the
page cache buffers the newly written data. However, the com-
parison between two write workloads reveals that background
writeback increases the proportions of Index and Dirtying.
The Dirtying refers to the operations to change the dirty states,
like the XArray tags field in the kernel page cache. The dirty
states are important to efficiently locate the dirty pages for
writeback and make sure that these pages are synchronized to
the external storage under an fsync command. For write work-
loads without active writeback, the proportions of index and
dirtying are 14.53% and 4.03% respectively (with absolute
times of 0.42s and 0.12s). However, under active background
writeback, their proportions increase to 24.51% and 14.67%
respectively, with absolute times increasing to 1.16s and 0.7s.

Further investigation reveals that this interference stems
from the spinlock contention in XArray. Ideally, writing back
a dirty page only needs an XArray search to get a pointer
to the page, and this XArray search does not need to get a
spinlock under the RCU mechanism. However, XArray cou-
ples page indexing and dirty state maintenance, so writeback
operations must get the XArray spinlock to change the tag
fields of xa_nodes. During writeback, the state of a page tran-
sitions from “dirty” to “writeback”, and finally to “clean”.
In this process, XArray spinlock will be repeatedly acquired
and released to change the dirty and writeback tags in the
xa_nodes. The above problem is more severe in a file scan-
ning workload as its ratio of reused data is low, causing a
rapid increase in the memory dirty ratio and triggering the
background writeback.

Lastly, copying data between the user space buffer and the
kernel space pages is costly. However, in this work we do not
optimize this part as data copying between the user space and
the kernel space is necessary for the buffered I/O mode.

2.3 Page Cache Management in FastMap

The most relevant work to this paper is FastMap [36], which
optimizes memory-mapped I/O on fast storage devices. With
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Figure 6: The architecture and workflow of StreamCache.

respect to the two problems in Section 2.2, two techniques in
FastMap may help. However, our analysis reveals that these
techniques are inadequate to exploit the performance of next-
generation storage devices under file scanning workloads.

First, FastMap allocates a dedicated memory pool to ac-
celerate page allocation. Zero-order free pages are allocated
in advance and maintained in per-core double-linked lists.
This can avoid the page-splitting overhead and lower lock
contention on accessing the free-page lists when multiple
CPU cores allocate free pages in parallel. However, as each
page allocation is directly served from the system-wide free-
page lists, we find that it is not cache-efficient for bandwidth-
demanding applications.

Second, for the writeback interference problem, FastMap
separates the dirty page index from the clean page index
by maintaining dedicated dirty trees. In this way, FastMap
does not need to maintain dirty tags to locate the dirty pages.
Furthermore, FastMap scatters the pages into per-core page
indexes to lower conflicts under concurrent accesses. How-
ever, separating the dirty pages from the clean pages only
eliminates the lock contention between inserting clean pages
and dirtying existing clean pages. There is still a conflict when
a foreground I/O operation dirties pages while a background
thread simultaneously performs writeback as they both ma-
nipulate the dirty trees.

3 StreamCache Overview

This paper proposes StreamCache, a high-performance page
cache management system for file scanning workloads to
better utilize the bandwidth of next-generation NVMe SSDs.
Figure 6 presents StreamCache’s architecture and workflow.

Design rationale. StreamCache consists of three modules
to tackle the issues analyzed in Section 2.2.

First, a lightweight stream tracking module is proposed
to maintain the dirty states of cached pages at the sequen-
tial stream granularity. For each opened file, StreamCache
maintains a stream tracking tree and updates the tree when
a buffered I/O request arrives. Furthermore, StreamCache
keeps a stream pointer to lower the stream tracking overhead
when the I/O pattern is highly sequential. All streams are
maintained in two system-level stream LRU lists for page
writeback and eviction.

Second, a stream-based page reclaiming module is pro-
posed to perform page writeback and eviction. StreamCache
has a pool of kernel threads that leverage the stream tracking
module to quickly locate the dirty pages for writeback. Then,
the pointers of these dirty pages can be extracted from the
XArray without acquiring a spinlock, lowering the interfer-
ence to foreground I/O requests. Besides, StreamCache uses
per-file writeback counters for file synchronization. When
StreamCache detects an insufficient quantity of spare pages,
it exploits a stream-based eviction to reclaim the clean pages.

Third, a two-layer memory management module is pro-
posed to enable fast page allocation. StreamCache has a
system-level memory pool that maintains zero-order free
pages in per-core double-linked lists. On top of the mem-
ory pool, StreamCache further designs the per-file cache to
batch page allocation from the memory pool for bandwidth-
demanding applications.

The components of each module can be categorized into
system-level entities and per-file entities. The system-level
entities are shared by all opened files to provide a global view
and resource pooling. Each opened file also has its per-file
entities to maintain local data structures.
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Buffered I/O stack in StreamCache. In Figure 6, the solid
arrows denote the reused page cache workflow in Stream-
Cache. The bold arrows are the new workflow introduced
by StreamCache. Before performing the page iterating, each
request gets a range lock of its accessed logical range and
updates the stream tracking module. Then, the request iterates
through the accessed pages and processes them sequentially
as the page cache does. If a target page is not found in the
XArray, StreamCache allocates a free page from the two-layer
memory management module. The request releases the range
lock when all the pages have been processed.

4 Key Techniques

This section presents the detailed designs of StreamCache’s
key modules and how they can optimize the background write-
back interference and page allocation overhead.

4.1 Lightweight Stream Tracking

The goal of the lightweight stream tracking module is to
maintain the metadata for cached pages, both clean and dirty,
at the stream granularity. It is based on an observation that
the cached pages of typical file scanning workloads can be
aggregated into continuous logical ranges that are much larger
than a single page. Maintaining the dirty states of cached
pages at the stream granularity enables kernel background
threads to locate the pages for writeback quickly, lowering the
interference to foreground I/O requests compared to existing
methods that maintain page-level dirty states.

The stream tracking is done in a per-file manner, as mixing
I/O requests at whole system may blur the simple I/O patterns
within each file. Each file records the page indexes of its
cached data by merging the continuous page indexes into
streams. The streams are stored as key-value pairs in a per-
file B-tree-based data structure called stream tracking tree
(STT). A stream’s key is its start page index, considering that
extending a stream sequentially only increases its end page
index. This design can avoid frequent STT modifications,
especially under file scanning workloads. The stream’s value
is a pointer to its stream descriptor. All streams in a valid STT
state are guaranteed to have no intersection. Figure 7 gives an
example of an STT.

A stream descriptor contains several fields to describe a
stream. The address range [start, end) records the start and
end page indexes of the stream. The dirty range [dirtystart ,
dirtyend) records the dirty page indexes within the address
range. A stream is dirty if it has a valid dirty range. These
range fields are protected by a per-stream spinlock for con-
current modifications from foreground and background op-
erations. Besides, each stream has an upper_limit field that
denotes the start page index of its following stream. If a stream
has no following stream, the upper_limit is set to infinite.

start=K1, end=end1, dirtystart=ds1,

dirtyend=de1, upper_limit=K2

K
0
K
1

...

...

start=K4, end=end4, dirtystart=ds4,

dirtyend=de4, upper_limit=infinite

...

stream pointer

K
3 K4

K
2

Figure 7: An example of stream tracking tree and stream
metadata.

For each buffered I/O request, STT merges its page index
range with existing streams to keep them non-intersected.
We design an algorithm to search each intersected stream in
O(log n) complexity, in which n is the number of streams in
the STT. Considering that the number of streams is limited
in file scanning workloads, this search only introduces mi-
nor overhead. When merging an I/O with an existing stream,
the derived address and dirty ranges are the unions of previ-
ous ranges. When merging streams with intersected address
ranges, their dirty ranges may not intersect. In this case, STT
splits the merged address range into two streams, each main-
taining one dirty range. The above process is performed re-
cursively as the merged stream may still intersect with other
streams in the STT.

StreamCache further introduces a stream_pointer to lower
the STT searching overhead for sequential I/O. As shown in
Figure 7, stream_pointer is a per-file pointer to the stream
to which the last I/O request on this file belongs. Consider-
ing that I/O patterns of file scanning workloads are highly
sequential, the stream_pointer provides a “cache” to accel-
erate I/O tracking. For each I/O request, the stream_pointer
is first checked to see if the start page index of the request
falls within the range [start, end] of the cached stream (which
is referred to as a stream hit). A stream hit can eliminate the
need for the STT search. Otherwise, this I/O request incurs
a stream miss, in which StreamCache will perform normal
stream tracking and update the stream_pointer to the newly
accessed stream.

In an STT, some streams may have start page indexes larger
than the end page index of the cached stream. Among these
streams, the one with the smallest start page index is called
the stream following the cached stream. Extending the cached
stream without referring to the STT may cause the cached
stream to intersect with its following stream. StreamCache
introduces a per-stream upper_limit field to solve this problem.
When a stream becomes the cached stream, the start page
index of its following stream is recorded in this field. Each
stream hit only requires referring the upper_limit to decide if
the extended cached stream will intersect with its following
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stream without searching the STT.
Extending the cached stream within the upper_limit will

not violate the non-intersected property as modifications on
STT are serialized by a spinlock. However, there is a false pos-
itive case in which the upper_limit field of the cached stream
is smaller than the actual start page index of the following
stream due to the background page eviction (see Section 4.2).
This case will not violate the non-intersected property, only
introducing a probably unnecessary STT search. It has little
performance impact considering its rarity in file scanning
workloads.

Finally, we talk about STT consistency. As stated above,
stream tracking of I/O requests on the same file are serialized
by a spinlock. This won’t cause high contention as: (1) The
I/O sizes of many file scanning workloads are much larger
than one page (e.g. hundreds of KB in parallel applications
[9]), and tracking each I/O only need to get the spinlock once.
(2) Many kernel file systems serialize the buffered writes
with the inode lock, which decreases the application-level
concurrency [21,29]. However, batching updates to page dirty
states at the I/O granularity does not come with no cost. It
makes the dirty states between STT and XArray be eventually
consistent because the STT is updated before the pages are
dirtied. In view of this, StreamCache implements a per-file
range lock manager to synchronize foreground I/O requests
and background reclaiming on the same page range. The I/O
tracking and page accesses in the buffered I/O mode should
perform within the relative range lock.

4.2 Stream-based Page Reclaiming
StreamCache employs a stream-based page reclaiming
method. It maintains the order of page writeback and evic-
tion at the stream granularity and keeps multiple reclaiming
threads running in the background.

Figure 8 presents the system-level LRU lists in Stream-
Cache. The dirty streams in all STTs are linked in a double-
linked list called dirty stream list. Likewise, all streams,
whether dirty or not, are linked in another double-linked list
called stream list. StreamCache aggregates the updates to
LRU lists to lower maintaining overhead. A stream updates
its position in LRU lists immediately if another stream be-
comes the cached stream due to a stream miss.

Based on the system-level LRU lists, StreamCache can effi-
ciently perform writeback and eviction by finding a bundle of
target pages with one search. This can lower the interference
to the foreground I/O requests.

Page writeback. Like the Linux kernel, StreamCache
writes dirty pages back when a certain condition is met (e.g.,
the memory dirty ratio reaches the dirty_background_ratio in
StreamCache). The main difference from the Linux kernel is
that StreamCache does not rely on the tag field in the XAr-
ray to locate the dirty pages. Instead, the reclaiming threads
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Figure 8: System-level LRU lists and stream-based page re-
claiming.

traverse the system-level dirty list to find a dirty stream for
writeback. For each traversed dirty stream, the reclaiming
thread picks a range of dirty pages and tries to acquire the
range lock on this range. If the range lock is acquired, the
reclaiming thread will submit a writeback of relevant pages,
shrink the dirty ranges (perhaps the stream is removed from
the dirty stream list if all dirty pages are written back), and
release the range lock. Otherwise, it repeats the above process
until it succeeds. StreamCache issues asynchronous I/O for
page writeback. After submitting write requests to the block
device, the reclaim thread finishes the writeback and releases
the range lock.

When a file synchronization command like fsync is called,
StreamCache writes back all relative dirty pages in the STT
of the file. A per-file writeback counter is used to indicate
the writeback completion without the need for manipulating
the writeback tags in the XArray. When a reclaiming thread
submits an I/O to write nr dirty pages back, it increases the
writeback counter by nr atomically. In the I/O completion call-
back function, the relevant writeback counter is deceased. File
data synchronization operations like fsync and fsync_range
can return if all relevant dirty pages are submitted for write-
back and the writeback counter becomes 0.

During the writeback, StreamCache still needs to extract
the pointers of target pages from the XArray with their page
indexes. However, as StreamCache decouples the dirty state
maintenance from the XArray, the background writeback only
needs to get an RCU read lock for page searching instead of an
RCU write lock (i.e. XArray spinlock). When a foreground
I/O request requires a write lock to insert new pages, this
design brings great benefits by converting the write-write con-
tention to the read-write contention, and the RCU mechanism
can handle the read-write contention efficiently [28]. FastMap
does a similar optimization by recording dirty pages in sepa-
rated data structures, but it cannot solve the background inter-
ference problem as both foreground writes and background
writeback need a write lock to modify the same dirty page
index.
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Page eviction. When StreamCache detects an insufficient
quantity of spare pages, it makes the reclaiming threads tra-
verse the system-level stream list for page eviction. Like the
page cache and FastMap, StreamCache only evicts the clean
pages to avoid writeback blocking. Dirty streams are also
traversed because their dirty ranges may not equal to their ad-
dress ranges, indicating that the streams contain clean pages
eligible for eviction. Unlike the page writeback, page eviction
will change the STT when the first page of a stream is evicted
as STT indexes each stream with its start page index.

4.3 Two-layer Memory Management

StreamCache manages the free pages with the two-layer mem-
ory management module to mitigate the high page allocation
overhead. Figure 9 gives the main components of this module.
It contains a system-level memory pool to manage the major-
ity of free pages. Per-file caches are designed to accelerate
page allocation for bandwidth-demanding applications.

memory pool

...... ......

region 0 region 1 region N-1

...

per-file cache 0

...
per-file cache M-1

...

batch movement

page allocation

page eviction

flag setting

low urgent

Figure 9: Two-layer memory management in StreamCache.

The memory pool consists of multiple memory regions,
each of which allocates a preset number of zero-order pages
when StreamCache kernel module is loaded. The number
of memory regions equals the number of physical cores in
the machine. The administrator can adjust the total pool size
at runtime. Memory regions maintain the free pages with
double-linked lists and per-region spinlocks. The free-page
lists do not introduce additional memory overhead as they
reuse the LRU fields of Linux page descriptors.

On top of the memory regions, StreamCache further de-
signs the per-file caches to store a small number of free pages
in file-local list headers. When a file is opened for the first
time, StreamCache will allocate a per-file cache for it. All
page cache misses on this file will allocate free pages from the
relative per-file cache. If a per-file cache is empty on page allo-
cation, StreamCache tries to allocate low_mark (50 by default)
free pages from one memory region in a batch manner. The
target memory region is decided by the application’s currently
running CPU core ID. If the preferred memory region does
not have enough free pages, StreamCache will traverse other
memory regions to steal free pages until low_mark pages are
allocated or wait for page eviction if the allocation still fails
after StreamCache traversing all memory regions once.
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Figure 10: Allocation performance of memory pool and per-
file cache.

We find that the per-file cache plays a key role in optimiz-
ing the bandwidth-demanding workloads compared to the
memory-pool-only solution (like the memory management in
FastMap). We perform two experiments on these two memory
allocation methods to demonstrate this point. First, we test
the average time of allocating free pages from the memory
pool for the per-file cache with different batch sizes. For each
batch size, we repeat the allocation 1024 times and calculate
the average time. As shown in Figure 10(a), the allocation
time does not grow so fast as the batch size increases within
64. This is because the allocation overhead is dominated by
referring to the system-level free-page list for page allocation,
even though no contention exists in this experiment. Sec-
ond, we perform another test by repeating the page allocation
200 times with the per-file cache and the memory pool, re-
spectively. Figure 10(b) demonstrates the time of each page
allocation. It is shown that although the per-file cache sees
latency spikes every 50 allocations due to its batch allocation
from the memory pool, it can achieve relatively low allocation
latency other times. This is because the local free-page list
of a per-file cache can be embedded into the frequently used
per-file entity, providing better CPU cache hit rates than the
memory pool does.

The two-layer memory management module uses a global
memory flag to control the page eviction. One background
reclaiming thread is chosen to traverse all memory regions
periodically, count the remaining free pages and set the global
memory flag according to the free page ratio. StreamCache
uses threshold_low and threshold_urgent for memory man-
agement. If the free-page ratio is lower than the threshold_low
but higher than the threshold_urgent, the global memory flag
is set to “low” so that all reclaiming threads start to evict
pages from the system-level stream LRU list. If the free-page
ratio is further lower than the threshold_urgent, the flag is
set to “urgent” so that all reclaiming threads will additionally
shrink all per-file caches by half and reclaim these pages to
the memory pool. This can rebalance the free pages among
different files quickly.

Evicted pages are put into the relevant per-file caches for
potential reuse. Each per-file cache has a high_mark to restrict
the number of free pages it can keep. StreamCache sets the
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high_mark to be twice as the low_mark. StreamCache makes
a further optimization by moving the page cleaning operation
from the allocation to the eviction. Linux kernel can be con-
figured to clean the page on allocation, like setting all bytes
in the page to zero. Thanks to memory pool management in
StreamCache, all pages can be cleaned when evicted, saving
the cleaning cost from the allocation critical path.

5 Implementation

We replace the default page cache in XFS [11] with Stream-
Cache and compile it as a new kernel module. To use Stream-
Cache, the user needs to format a block device with the XFS
formatting tool [24] and mount the device to a certain direc-
tory. Buffered I/O requests to files in this directory will be
handled by StreamCache.

The design of StreamCache is not coupled with XFS and
can be integrated into other file systems. To ease these new
implementations, StreamCache functions are categorized into
three types with respect to the positions they are inserted:

Module-level functions. Module-level functions only run
once during the kernel module lifetime. They are inserted into
the module initialization and exit functions and take effects
when insmod and rmmod commands are called. During the
module initialization, StreamCache starts its core modules
and allocates global data structures. The memory pool is
initialized at this stage to allocate free pages from the kernel.
StreamCache also starts a number of background reclaiming
threads at this stage for page writeback and eviction. The exit
functions do the opposite things.

File-level functions. File-level functions are called when a
file is opened or closed. These functions are mainly used to
allocate and reclaim the per-file entities. During the buffered
I/O requests handling, StreamCache may frequently refer to
the per-file entity, like accessing the STT during I/O tracking
or getting free pages from the per-file cache when a page
cache miss happens. StreamCache maintains a concurrent-
friendly hash table to map the file inode ID to its per-file
entity. Multiple applications may share a per-file entity when
a file is opened multiple times, and a new entity is allocated
when no relative per-file entity exists. StreamCache maintains
the same semantic with the kernel page cache that the cached
pages are not written back or evicted immediately when all
applications close the file. Background reclaiming threads
will periodically do page writeback and eviction on cached
data of zero-referred files.

I/O-level functions. I/O-level functions are called during
each I/O request. These functions include I/O tracking, acquir-
ing/releasing the range lock and the page allocation for page
cache misses. Some background operations that manipulate

the page cache also need to call the I/O-level functions, like
the asynchronous readahead when a sequential access pattern
is detected by the kernel [2]. These functions should also be
tracked by STT to provide a holistic view of the cached pages
in StreamCache.

6 Performance Evaluation

Our evaluation tries to answer the following questions:

• How does StreamCache perform on real-world file scanning
workloads? (§6.1)

• How does StreamCache perform under synthetic workloads,
with different parameter settings? (§6.2)

• What are the effects of individual techniques used by
StreamCache? (§6.3)

• How much overhead will be introduced by the stream track-
ing in StreamCache when the I/O workload is not file scan-
ning? (§6.4)

Platform. We conduct the experiment on a server that con-
sists of a 32-core AMD Rome EPYC 7542 CPU and 128GB
DDR4 memory, running Ubuntu 18.04 with Linux kernel
version 5.4. The server can support ten PCIe 4.0 devices in
parallel.

For evaluation, we use eight Intel Optane SSDs [20], the
same as our motivation test in Section 2. In our platform, we
measure that each SSD can provide 2581MB/s sequential read
bandwidth and 2179MB/s sequential write bandwidth, very
close to those in the specification [20]. To simulate a future
high-performance NVMe SSD, we use Linux md (Multiple
Devices) to aggregate these SSDs into a RAID-0 array with
64KB chunk size. Raw device test reveals that our platform
can achieve 19558.4MB/s aggregated read bandwidth and
14745.6MB/s aggregated write bandwidth, approaching the
aggregated device limits. Unless otherwise stated, the follow-
ing tests are performed on this eight-SSD array. We evaluate
the influence of different device bandwidth in Section 6.2.

Page cache management methods. We compare Stream-
Cache with the original kernel page cache and FastMap-
cache. As applications cannot directly interact with the page
cache, we perform all our tests on XFS with different page
cache management methods, abbreviated to as Page Cache,
FastMap-cache and StreamCache hereafter. As FastMap [36]
is designed for memory-mapped I/O, we implement its sep-
arated clean and dirty trees as well as the dedicated DRAM
cache in XFS according to the paper and its source code [10].
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I/O workloads. The evaluation is performed on real-world
workloads and synthetic workloads. For real-world workloads,
we test the I/O performance of scientific computing and the
checkpoint/restart in the large language model (LLM), which
are all typical file scanning workloads. Additionally, we use
fio [6] as a micro-benchmark to evaluate how StreamCache
performs under various parameters.

The memory pool sizes of both FastMap-cache and Stream-
Cache are 64GB. When evaluating the Page Cache, we limit
memory usage to 64GB with cgroup [1]. One exception is
that for LLM I/O tests, we don’t limit the memory usage as
the application itself uses a non-negligible amount of memory
and cgroup counts memory usage of both user space memory
and kernel page cache. In all tests, background writeback is
triggered when 10% of the maximum available pages become
dirty, the same as the default value in Linux. Before each test,
we drop all cached pages to exclude their impacts.

6.1 Performance on Real-world Applications
Scientific computing. We use the PF3DIO [26] I/O kernel
to test how StreamCache behaves under parallel applications,
arguing that it is a solution for local storage management in
burst buffer [16,17,32]. I/O kernels extract the I/O patterns of
scientific applications and are widely adopted in testing HPC
file system performance [16, 32, 49]. PF3DIO is derived from
a laser-plasma simulation application developed by Lawrence
Livermore National Lab (LLNL). It contains six workloads
that write checkpoint files in different formats. We test these
workloads in both small problem size and large problem size.
The total checkpoint file size of each workload is shown in
Table 1.

Table 1: Total checkpoint file sizes of PF3DIO workloads.
problem size dir scdir pdb scpdb multi smulti

small 1.5GB 1.5GB 1.5GB 1.5GB 1.5GB 156MB
large 30.4GB 30.4GB 30.4GB 30.4GB 30.4GB 3.0GB
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Figure 11: I/O performance of PF3DIO scientific computing.

As is shown in Figure 11, StreamCache consistently outper-
forms the other two systems under different workloads. The
first four workloads primarily write large arrays of floating-
point numbers and two of them (scdir and scpdb) additionally

write some scalar floating-point numbers after each array.
These workloads mainly consist of large sequential I/O re-
quests, and StreamCache provides 28%-62% improvements
compared to the best-behaving one of the existing methods.
The multi and smulti workloads have many small unaligned
I/O requests, making their bandwidth lower than the other
workloads. However, StreamCache can still provide 26%-
48% improvements. That is because these workloads have
high page cache miss ratios which need to allocate free pages
frequently, and the two-layer memory management in Stream-
Cache can provide faster page allocation than the other two
methods.

Larger problem sizes make the checkpoint files larger, trig-
gering the background writeback and degrading the fore-
ground I/O performance. However, thanks to stream-based
page reclaiming in StreamCache, the background interference
to foreground I/O performance is smaller than that of the other
two methods. Comparing Figure 11(a) and Figure 11(b), it
can be seen that StreamCache can provide larger improve-
ments on a large problem size (53% on average) than that on
a small problem size (35% on average).
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Figure 12: LLM checkpoint and restart performance.

Large language models. Previous works [30, 51] indicate
that checkpoint/restart (C/R) introduces high overhead in ma-
chine learning, especially in large models. We demonstrate
how StreamCache can boost the LLM training by testing the
C/R performance of two large language models, ChatGLM-
6B [46] and OPT-13B [13].

Figure 12 presents the checkpoint/restart times with differ-
ent page cache management methods. The total checkpoint
sizes of ChatGLM-6B and OPT-13B are 12GB and 24GB,
respectively, which will trigger background writeback during
the checkpoint process. Consequently, we observed longer
checkpoint times than restart times in both models. Despite
this background interference, StreamCache can cut the check-
point times by 15% and 12% for the two models, thanks to
its faster page allocation and stream-based page reclaiming.
Additionally, StreamCache can reduce the restart times by
19% and 17% for the two models, mainly due to its faster
page allocation.
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(c) Read bandwidth with different parallelisms.
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(d) Write bandwidth with different block sizes.
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(e) Write bandwidth with different file sizes.
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(f) Write bandwidth with different parallelisms.

Figure 13: I/O performance under synthetic workloads.

6.2 Performance under Synthetic Workloads
We use fio benchmark to produce synthetic workloads and
evaluate how StreamCache performs under different I/O pa-
rameters, including varying I/O sizes, total file sizes, paral-
lelisms, and device bandwidth.

Different block sizes. Figure 13(a) and Figure 13(d) present
the bandwidth of accessing a 1GB file with different block
sizes. Both FastMap-cache and StreamCache outperform the
page cache under read workloads due to their optimized mem-
ory management. Additionally, StreamCache achieves higher
bandwidth than FastMap-cache because its per-file cache can
batch page allocation. As for the write workloads, FastMap-
cache does not perform better than the page cache. This is
because FastMap-cache needs to access multiple dirty trees
to record the dirty pages, resulting in worse cache locality
than just manipulating one tree (as the page cache does) under
sequential I/Os.

Different file sizes. Figure 13(b) and Figure 13(e) present
the bandwidth of accessing files of different sizes with a
256KB block size. For read workloads, although FastMap-
cache achieves better performance on small files, its band-
width drops with larger file sizes. This is because it divides
the system memory into 32 (the number of physical cores)
free-page lists, incurring memory-stealing overhead when the
preferred free-page list runs out of pages. This problem also
influences the page allocation in StreamCache, but the per-file

cache batches page allocation and amortizes this overhead.
The write bandwidth of all methods drops at a 32GB file size
because the high dirty page ratio triggers the background
writeback. However, StreamCache achieves lower foreground
performance degradation than the page cache and FastMap-
cache thanks to its stream-based page reclaiming.

Different parallelisms. Figure 13(c) and Figure 13(f)
present the aggregated I/O bandwidth of different number
of processes, each of which accesses a 1GB file with a 256KB
block size. Although FastMap-cache achieves better read per-
formance than the page cache with one process, its perfor-
mance grows slower than the page cache when the number
of processes increases. This is because the page cache can
batch the page allocation from the buddy system with per-
CPU page lists. StreamCache has the best performance as it
not only eliminates page-splitting overhead and lowers multi-
process contention with the memory pool but also batches
the page allocation with the per-file cache. The write perfor-
mance of the page cache drops under 16 processes because
the high parallelism accelerates the rise of memory dirty ra-
tio and triggers background writeback. Both FastMap-cache
and StreamCache do not see degraded performance under 16
processes due to their optimized index designs.

Different device bandwidth. The above experiments
demonstrate that StreamCache can boost the performance
of file scanning workloads on a high-bandwidth storage de-
vice. In this part, we evaluate how StreamCache performs
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Figure 14: Impact of device bandwidth.

with varying device bandwidth.
We simulate a storage device of different bandwidth by

constructing RAID-0 arrays with different numbers of NVMe
SSDs. Figure 14 presents the results of running the fio bench-
mark on a large file (10GB). For the read workload, all three
methods could approach the device bandwidth limit (2.5GB/s)
upon one SSD, thanks to the readahead mechanism. However,
as the device becomes faster, StreamCache can better utilize
fast devices due to its fast page allocation. The bandwidth for
the write workload does not change with the increased device
bandwidth because data is buffered in memory. StreamCache
achieves better performance due to its fast page allocation and
lower interference from background writeback. We observe
similar trends when the file size is small.

6.3 Effects of Individual Techniques
To isolate the improvement brought by StreamCache’s key
techniques, we use PF3DIO with a large problem size as an
example and progressively add three techniques to test the
performance.
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Figure 15: Effects of individual techniques.

Figure 15 shows that designing a dedicated memory pool
boosts the performance of some workloads (like scdir and
scpdb), as the memory pool can eliminate page-splitting over-
head and reduce multi-process lock contention on free-page
lists. However, in some bandwidth-demanding workloads that
mostly consist of large I/O requests (like dir and pdb), al-
locating from the memory pool at the page granularity can
impair the performance compared to the page cache. Using
the memory pool only brings a 1.3% improvement on average.

Adding the stream tracking module and stream-based page
reclaiming can additionally bring a 21.3% improvement on
average. This is because the large problem size triggers back-
ground writeback during the checkpoint, and the stream-based
page reclaiming decouples the dirty state maintenance from
page indexing in the XArray. This lowers the background in-
terference to the foreground I/O requests and enhances overall
performance.

Finally, adding the per-file cache can additionally bring a
27.5% improvement because it batches page allocation from
the memory pool, providing good cache locality and lowering
contention in the memory pool under parallel file I/O requests.

6.4 Stream Tracking Overhead

4KB 8KB 16KB 32KB 64KB
0

1

2

3

4

5

6

B
a

n
d

w
id

th
 (

G
B

/s
)

Block size

 w/o tracking, read

 w/ tracking, read

 w/o tracking, write

 w/ tracking, write

(a) Uniform distribution.

4KB 8KB 16KB 32KB 64KB

2

4

6

8

B
a

n
d

w
id

th
 (

G
B

/s
)

Block size

 w/o tracking, read

 w/ tracking, read

 w/o tracking, write

 w/ tracking, write

(b) Zipfian distribution.

Figure 16: Stream tracking overhead under random I/O re-
quests.

Finally, there is a concern about whether the stream track-
ing in StreamCache will introduce significant overhead when
the workload is not sequential. We use fio to compare the ran-
dom I/O performance between XFS without stream tracking
and with stream tracking. As shown in Figure 16, the stream
tracking only introduces minor overhead under random I/O
requests. This is because stream tracking is done at the I/O
granularity, and this overhead is at least comparable to that
of the XArray indexing and page copying, considering that
the page cache processes buffered I/O requests at the page
granularity.

7 Related Work

Page cache management. Previous works that optimize
page cache management mainly fall into two categories. The
first category aims to make the page cache index friendly
to concurrent accesses by redesigning the page cache in-
dex [36, 40, 41] or recording dirty pages in dedicated in-
dexes [34–36]. However, these works do not address the
contentions on dirty state maintenance between foreground
I/O requests and background writeback. The second cate-
gory focuses on promoting performance isolation between
multiple applications, proposing solutions like per-VM evic-
tion list [45] or weight-aware request scheduling for buffered
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I/O [37]. These works are orthogonal to StreamCache, and
their techniques can be integrated into our system.

Kernel page allocator. The page allocator is the basic mod-
ule in the Linux kernel to support memory allocation, and the
allocation overhead is vital to application performance. The
Linux kernel uses the buddy system to manage free pages
and proposes the per-CPU page list to batch page allocation
and deallocation [3]. Some works design dedicated memory
management modules for the page cache by storing the free
pages in multiple double-linked lists [23,36,47]. LLFree [55]
discards the list-based free page management in the Linux
kernel and allocates the free pages with bit-vector searching.
StreamCache differs from these works by devising a two-
layer memory management method for cache-friendly page
allocation.

Designing user space cache. One work [12] points out that
the transparent kernel page cache may not be the best choice
for database management systems (DBMS), and some works
design their own user space cache [38, 39, 57] for DBMS.
While the user space cache allows convenient customization
and can exploit the user space I/O stacks like the SPDK [19],
this solution is not transparent for applications [14], and the
cache hit performance can be worse than the kernel cache [33].
Tricache [14] provides a transparent user space cache, but it
needs compile-time instrumentation on application source
codes and may perform worse than the kernel page cache
under cache hits. StreamCache differs from these works in
that it does not need any extra work on application programs.

8 Conclusion

In this work, we propose a new page cache management
system called StreamCache and implement it in XFS to ex-
ploit the performance of fast storage devices. StreamCache
can boost the performance of buffered I/O requests under
various file scanning workloads with three key techniques:
lightweight stream tracking, stream-based page reclaiming,
and two-layer memory management. Extensive experiments
demonstrate that StreamCache can outperform existing page
cache management systems in both real-world applications
and various synthetic workloads.
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