
This paper is included in the Proceedings of the
2024 USENIX Annual Technical Conference.

July 10–12, 2024 • Santa Clara, CA, USA
978-1-939133-41-0

Open access to the Proceedings of the
2024 USENIX Annual Technical Conference

is sponsored by

Harmonizing Efficiency and Practicability:
Optimizing Resource Utilization in Serverless

Computing with Jiagu
Qingyuan Liu, Yanning Yang, Dong Du, and Yubin Xia, Institute of Parallel and
Distributed Systems, SEIEE, Shanghai Jiao Tong University; Engineering Research

Center for Domain-specific Operating Systems, Ministry of Education; Ping Zhang
and Jia Feng, Huawei Cloud; James R. Larus, EPFL; Haibo Chen, Institute of Parallel
and Distributed Systems, SEIEE, Shanghai Jiao Tong University; Engineering Research
Center for Domain-specific Operating Systems, Ministry of Education; Key Laboratory

of System Software (Chinese Academy of Science)

https://www.usenix.org/conference/atc24/presentation/liu-qingyuan

Harmonizing Efficiency and Practicability: Optimizing Resource Utilization in
Serverless Computing with JIAGU

Qingyuan Liu1,2, Yanning Yang1,2, Dong Du1,2, Yubin Xia1,2, Ping Zhang4, Jia Feng4, James R.
Larus5, and Haibo Chen1,2,3

1Institute of Parallel and Distributed Systems, SEIEE, Shanghai Jiao Tong University
2Engineering Research Center for Domain-specific Operating Systems, Ministry of Education

3Key Laboratory of System Software (Chinese Academy of Science)
4Huawei Cloud

5EPFL

Abstract

Current serverless platforms struggle to optimize resource
utilization due to their dynamic and fine-grained nature. Con-
ventional techniques like overcommitment and autoscaling
fall short, often sacrificing utilization for practicability or in-
curring performance trade-offs. Overcommitment requires
predicting performance to prevent QoS violation, introducing
trade-off between prediction accuracy and overheads. Au-
toscaling requires scaling instances in response to load fluc-
tuations quickly to reduce resource wastage, but more fre-
quent scaling also leads to more cold start overheads. This
paper introduces JIAGU to harmonize efficiency with prac-
ticability through two novel techniques. First, pre-decision
scheduling achieves accurate prediction while eliminating
overheads by decoupling prediction and scheduling. Second,
dual-staged scaling achieves frequent adjustment of instances
with minimum overhead. We have implemented a prototype
and evaluated it using real-world applications and traces from
the public cloud platform. Our evaluation shows a 54.8% im-
provement in deployment density over commercial clouds
(with Kubernetes) while maintaining QoS, and 81.0%–93.7%
lower scheduling costs and a 57.4%–69.3% reduction in cold
start latency compared to existing QoS-aware schedulers.

1 Introduction

Serverless computing [34] simplifies the management of
cloud applications with features like on-demand execution
and autoscaling. Through autoscaling, cloud providers can
dynamically deploy numerous instances to run a specific
function in response to real-time demands, optimizing per-
formance and cost efficiency. Critical to this process are
two main components: the autoscaler and the scheduler.
The autoscaler utilizes a predefined threshold for each func-
tion, called saturated value (e.g., the average requests per
second, or RPS, per instance), and triggers the creation of
new instances as needed when the live load approaches this

Configured
Resources

Actual
Load

Saturated
Load

TimeInterference ↓ Interference ↑
① + ② = Opportunity of improving utilization

Utilization

①

②

Figure 1: Opportunities of improving resource utilization.
“Configured resources” are the fully utilized allocated re-
sources. The blue line demonstrates the resource utilization
of instances that are serving a saturated value of load, which
fluctuates due to the variation in resource interference.

threshold [4, 7]1. By doing so, the autoscaler prevents in-
stances from becoming overloaded and guarantees perfor-
mance, which is generally measured in terms of Quality-of-
Service (QoS). When the autoscaler triggers the creation of
a new instance, the scheduler is responsible for scheduling
the instance to a suitable node. In making these assignments,
the scheduler accounts for various aspects, including whether
a node can meet a function’s resource requirements which
developers manually define.

However, current serverless systems still fall short of ef-
ficiently utilizing resources. According to traces from our
public cloud (Huawei Cloud) and AliCloud [68], most server-
less functions can only utilize a small portion of allocated
CPU and memory resources. Figure 1 is a schematic illustra-
tion of resource wastage within an instance. It shows that the
issue of underutilized resources mainly results from two fac-
tors. First, to guarantee performance, users usually consider
the worst case, and thus specify excessive resources. Even
if instances are processing a saturated load of requests, they
cannot fully utilize the allocated resources. This causes the re-
source wastage of part ¬ in Figure 1. Second, in practice, user
loads served by each instance continuously fluctuate. Under-

1This approach typically ensures individual instance loads do not exceed
the saturated value, as doing so would lead to the instantiation of additional
instances, thereby redistributing the load.

USENIX Association 2024 USENIX Annual Technical Conference 1

loaded instances usually require fewer resources and are less
able to utilize the resources, resulting in resource wastage of
part in Figure 1.

To mitigate these two issues, serverless systems can lever-
age overcommitment [41, 68] and autoscaling [56]. First, for
part ¬ in Figure 1, overcommitment is an intuitive solution,
i.e., deploying more instances on a server. This approach
could be implemented by the scheduler, as the scheduler is
responsible for deciding how instances are deployed. Second,
for part , it could be helpful to reduce the load fluctuations
within instances, trying to keep the load close to the saturated
load for each instance. This can be achieved by the autoscaler,
which is responsible for observing load fluctuations and ad-
justing the number of instances accordingly.

Nevertheless, it is challenging to apply the two approaches
while achieving effectiveness with practical cost. First, since
overcommitment may lead to performance degradation and
QoS violation, it is a common practice to predict performance
before scheduling an instance to avoid QoS violation. How-
ever, it is challenging to accurately predict instances’ per-
formance at a practical cost. Although prior predictor-based
schedulers have made great progress [22, 48–50, 68, 73, 81],
they fall short in achieving both high accuracy and low run-
time cost, since the two goals can be a trade-off: making
accurate prediction requires considering complex interfer-
ence on multiple resources imposed by highly heterogeneous
colocated functions, but the complex computation inevitably
introduces high overheads. For example, some prior works
predict with specially designed machine learning models [81],
which is costly for scheduling. Since cold start latency mainly
consists of scheduling latency and instance initialization la-
tency, with initialization having been optimized to <1ms,
scheduling with inference (∼20ms or higher) introduces a
new bottleneck [43]. To compromise, public clouds still use
heuristic policies for scheduling, thus failing to accurately
predict performance and providing limited improvement in
resource utilization.

Second, to efficiently utilize resources under load fluctu-
ation, the autoscaler needs to quickly respond to the load
variation, to evict instances and free the resources when the
load drops. Intuitively, the faster autoscaling can react to load
fluctuations, the more efficiently resources can be used. How-
ever, more sensitive and frequent scaling also means more
additional cold starts, resulting in the trade-off between re-
source utilization and cold start overheads. It is challenging
to achieve both goals simultaneously.

We present two key insights to tackle the aforementioned
challenges. First, the trade-off between scheduling costs and
efficiency is due to the fact that these complex decisions need
to be made at the time of scheduling, using costly predictions.
Therefore, it can be beneficial if we decouple prediction and
decision making. Specifically, we can predict in advance the
performance of possible incoming instances and save the re-
sults. If the incoming instance matches an earlier predicted

scenario, the scheduling can directly check the prepared de-
cisions without model inference. This provides a scheduling
fast path.

Second, the trade-off between resource utilization and cold
starts occurs because instances do not release resources until
they are evicted. Instead, we can decouple resource releasing
and instance eviction. Specifically, sending requests to fewer
instances could achieve a similar effect to releasing resources
by eviction. Releasing resources without instance eviction can
be less costly, and thus can be applied with higher sensitivity
to achieve better resource utilization.

Inspired by the two insights, we propose JIAGU, a server-
less system that harmonizes efficiency and practicability to
improve resource utilization, tackling the challenges with two
techniques. First, JIAGU achieves accurate and low-cost per-
formance prediction with pre-decision scheduling, which de-
couples prediction and decision making, providing a schedul-
ing fast path. For every deployed function, JIAGU predicts in
advance its capacities on a server using a model. A function’s
capacity means the maximum number of its instances that
can be deployed on a server under the interference of cur-
rent neighbors without violating everyone’s QoS. To schedule
a new instance of a deployed function, JIAGU only needs
to compare the function’s capacity with the number of its
instances to determine whether the scheduling can be success-
ful or not. Moreover, JIAGU designs an asynchronous update
approach, which keeps the capacities up-to-date without in-
curring model inference on the scheduling critical path and ap-
plies a concurrency-aware scheduling to batch the scheduling
of concurrent incoming instances upon load spikes. Results
with real-world patterns show that >80% of scheduling goes
through the fast path.

Second, JIAGU designs a dual-staged scaling method.
When the load drops, before instances are evicted, JIAGU
first adjusts the routing with higher sensitivity, sending re-
quests to fewer instances, thus releasing some of the instances’
resources. If the load rises again before idle instances are
evicted, JIAGU can get the instances working again by re-
routing with minimum overhead. Third, to cope with the case
where a node is full and idle instances on it cannot be con-
verted to the saturated state, JIAGU migrates idle instances to
other nodes in advance to hide the overhead of the required
cold starts.

We present a prototype of JIAGU based on an open-source
serverless system, OpenFaaS [6]. We evaluate it using Server-
lessBench [75], FunctionBench [37], and applications with
real-world traces from Huawei Cloud. The results show that
on real-world traces, compared to a state-of-the-art model-
based serverless scheduler [81], JIAGU incurs 81.0%–93.7%
lower scheduling costs and 57.4%–69.3% lower cold start
latency with cfork [25]. It also achieves the highest resource
utilization compared to all baseline schedulers (54.8% higher
instance density than Kubernetes).

2 2024 USENIX Annual Technical Conference USENIX Association

2 Motivation

2.1 Background and Motivation

Notations and terms. The term function denotes the basic
logical unit in user programming within a serverless platform.
A function might comprise multiple homogeneous instances
to serve requests. For example, consider an image resizing
function. Each time an image is uploaded, a new instance
of the function is created to resize that specific file. Each
instance operates independently, processing its assigned im-
age file using the allocated resources. For example, the user
may specify that each image resizing instance requires 2 CPU
cores and 4 GB of memory to ensure efficient processing.
These resources can be predefined by the user or automati-
cally determined by the platform. Quality-of-Service (QoS)
describes performance targets, primarily characterized by tail
latency but extendable to other metrics.

Instance and resource schedulers. When a new instance is
created, an instance scheduler is responsible for assigning a
specific node to it for deployment. The scheduler takes several
factors into account when selecting a node. For example, a
scheduling policy would ensure that if the user specifies that
each instance requires 2 CPU cores and 4 GB of memory, the
scheduler will select nodes that can provide these resources.
Moreover, some platforms also apply a resource scheduler to
manage resource allocation and ensure efficient utilization,
which we will discuss more in §8. The term “scheduler” as
used hereinafter refers mainly to the “instance scheduler”.

Components for load management in serverless platforms.
First, a router dispatches user requests to available instances
of a function, typically employing a load balancing strategy to
ensure equal distribution of requests among instances. Second,
an autoscaler [4, 7] is responsible for determining the number
of instances. It uses a pre-determined RPS threshold, referred
to as the saturated load, to determine whether it is necessary
to create or evict instances, to avoid instance overloaded or re-
source waste. Different from creating instances, the autoscaler
evicts instances with a keep-alive approach, which does not
immediately evict instances when the expected number of
instances drops, but waits for a “keep-alive duration”. This
duration can reflect the sensitivity of the autoscaler — shorter
duration means higher sensitivity and more frequent evictions.

Low resource utilization in serverless platforms. Optimiz-
ing resource usage is one of the top cloud initiatives [2], as
every 1% increase in utilization could mean millions of dol-
lars in cost savings. However, production traces show that
the resources of serverless platforms are still severely under-
utilized (Figure 3). In general, the wastage mainly arises from
two parts: part ¬ and in Figure 1.

Part ¬ is because the resources demanded by a user are
usually conservative, considering the worst cases that suffer
the most severe resource interference. Therefore, the allocated

 0

 2

 4

 6

 8

 10

 0 1000 2000 3000 4000 5000 6000

Saturated load
 /

In
v

o
ca

ti
o
n

s
P

er
 S

ec
o

n
d

Time (s)

 Resource wastage

51%

49%

Figure 2: Fluctuation of user load per instance.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F

Used/Allocated Resources

CPU
Memory

Figure 3: Statistics on the ratio of actual resource usage
to allocated resources. The data was collected on Huawei
Cloud over one month from a region. About 80% of servers
only use 8% CPU and 64% memory resources.

resources could be even higher than the actual demand of in-
stances that are processing saturated loads. Part is because
the load served by each instance constantly fluctuates, and
under-loaded instances are less able to fully utilize the re-
sources. For example, Figure 2 shows the average RPS served
by an instance for one of the most popular functions in the
trace of Huawei Cloud. If the instance is always considered
saturated, 51% of resources could possibly be wasted.

Opportunities for improving resource utilization. To miti-
gate the issues, serverless systems could adopt two approaches
respectively. First is overcommitment for part ¬, i.e., the
scheduler could deploy more instances on a server. Second is
autoscaling for part , i.e., the autoscaler dynamically evicts
instances when the load drops, reducing the overestimation
of resource demands for under-loaded instances. With these
approaches, our objective is to simultaneously achieve effec-
tiveness in improving resource utilization at a practical cost.

2.2 Challenges

However, achieving both efficiency and practicability can be
challenging, since the two goals usually have trade-offs.

2.2.1 Challenges for the Scheduler

Although overcommitment helps improve resource utilization,
it could also cause performance degradation, possibly result-
ing in QoS violation. Therefore, a common approach for the
scheduler is to predict instances’ performances when schedul-
ing, maximizing instance deployment density while not violat-
ing instances’ QoS. The goal means that the scheduler should
simultaneously achieve: accurate QoS violation prediction
(with scalable profiling overhead) and low scheduling latency.
Although prior schedulers have made great progress for the
serverless scenario [68, 81] compared with schedulers [22, 48–
50, 73] designed for monolithic services, they fall short of

USENIX Association 2024 USENIX Annual Technical Conference 3

Table 1: A comparison between JIAGU and previously developed methods. “Accurate prediction” cannot be achieved by
simple heuristic algorithms or historical information. Scalable profiling requires no more than O(n) complexity, where n
represents the number of functions, k denotes to the number of instances that can be deployed on a server. Pythia, due to having a
model for each function, incurs O(n2) complexity. Whare-map requires O(nk) complexity to profile all colocation combinations
where k denotes to the number of co-runners allowed on a server. Owl profiles the combination of two functions with k instances,
requiring O(n2k) complexity. “Fast scheduling” implies that the scheduler makes a decision within a few milliseconds (∼1ms).
Gsight requires more than 20ms for scheduling (§7.2).

Workload System Year
Challenge I: efficient QoS-aware scheduling with low cost Challenge II:

handle load dynamicity
with low costPrediction model Accurate

prediction
Overhead

Profiling cost Fast scheduling

Serverless
Jiagu Global statistical model 3 O(n) 3 Dual-staged scaling
Owl [68] 2022 Historical information Limited O(n2k) 3 Autoscaling
Gsight [81] 2021 Global statistical model 3 O(n) 7 Autoscaling

Monolithic
Service

Pythia [73] 2018 Per-function Linear model 3 O(n2) 3 Autoscaling
Paragon [22] 2013 Heuristic N/A O(n) 3 Autoscaling
Whare-map [48] 2013 Historical information Limited O(nk) 3 Autoscaling
Bubble-up [49] 2011 Heuristic Inaccurate O(n) 3 Autoscaling

Resource
Schedulers

Aquatope [82], Cilantro [15], Sinan [79]
FIRM [55], Orion [45], Heracles [44], ...

Dynamically adjust allocated resources to instances.
Resilient to runtime variations with limitations (§8).

achieving both goals. Table 1 summarizes the key differences
of prior schedulers against our objectives.

Accurate QoS prediction. The key to accurately predicting
the QoS violation is to quantify the resource interference
by colocated function instances, which is challenging. First,
in the serverless scenario, the number of colocation combi-
nations grows exponentially with the number of functions,
and ultimately becomes practically infinite. Therefore, the
profiling overhead should be scalable, otherwise it could be
impossible to profile such a large number of colocation combi-
nations. Second, resource interference can be complex, since
plentiful and heterogeneous functions exert various pressures
on multiple resources. The large number of colocation combi-
nations further amplifies the interference complexity.

Some prior schedulers do not meet the goal. For example,
some schedulers predict based on historical performance in-
formation [48, 68], so that their predictive ability is limited
and can only predict the performance of profiled colocated
instance combinations. Their profiling cost is also unscalable
(Table 1). Schedulers that train a model for each function also
have unscalable profiling and training overhead [73]. Sched-
ulers using heuristic algorithms are limited in their ability to
accurately predict performance due to overly simplistic mod-
els [49], or do not actually predict performance at all [22].

Low scheduling latency. The scheduling process is involved
in every instance’s cold start. Given the recent advancements
in optimizing the instance initialization cost to a few mil-
liseconds or even sub-milliseconds [13, 17, 25, 26, 33, 53,
63, 64, 70, 71], it is imperative to ensure that the scheduling
cost remains low as well. Otherwise, the scheduling cost can
become the new bottleneck in startup cost [43]. To illustrate,
we collect the data from several cold start optimization papers
and compare them with scheduling overheads in Table 2. We
use the average scheduling costs of Gsight [81] (our ported
version) to illustrate the overhead of scheduling over the total

Table 2: State-of-the-art serverless systems with startup
optimizations. “Container startup” presents the runtime
startup latency reported by public reports or papers. “Schedul-
ing overhead” presents the overhead of scheduling in a cold
startup with model-based methods. We use 21.78ms as the
model-based scheduling costs, the average result of our ported
Gsight [81] model.

System Container startup Scheduling overhead

AWS Snapstart [16] ∼100ms ∼21.8%
Replayable [71] 54ms 40.3%
Fireworks [64] ∼50ms ∼43.6%
SOCK [53] 20ms 108.9%
Molecule [25] 8.4ms 2.6x
SEUSS [17] 7.5ms 2.9x
Catalyzer [26] 0.97ms 22.5x
Faasm [63] 0.5ms 43.6x

cold startup costs in these systems. Although it can accurately
predict the performance and consider serverless-specific fea-
tures like partial interference, it can incur non-trivial overhead
even in commercial systems like AWS Lambda with Snap-
start [16] (>20%). Scheduling cost can be dominant for cold
starts with state-of-the-art optimizations like Catalyzer [26].
In short, schedulers need to make decisions within a few mil-
liseconds to avoid hindering the startup process.

2.2.2 Challenges for Autoscaling

The autoscaling feature commonly helps mitigate the defect.
When the load drops, the autoscaler would dynamically evict
instances, thus freeing space for deploying new instances,
and preventing those under-loaded instances from wasting re-
sources (typically every instance can be under-loaded because
of load balancing). Intuitively, a more sensitive autoscaler
could better utilize resources in response to load fluctuation.
However, more frequent scaling would also result in more
additional cold starts. It means the trade-off between resource

4 2024 USENIX Annual Technical Conference USENIX Association

utilization and cold start costs.
The irregularity of load fluctuations further complicates the

problem. Prior works have analyzed production traces and
tried to predict the invocation patterns [28, 58, 62, 82], pre-
warming instances accordingly to reduce cold starts. However,
user loads exhibit only moderate regularity over extended
periods of time (e.g., diurnal patterns), but are extremely un-
predictable over shorter intervals. For example, the average
coefficient of variable (CV) over the number of requests in
a minute could be more than 10 [76] in the Azure trace [62].
The more frequent scaling also means a finer-grained pre-
warming prediction and a worse prediction accuracy.

2.3 Insights
We observe two insights that help to tackle the two challenges.

Insight-1: Prediction and decision making can be decou-
pled. The trade-off between prediction accuracy and schedul-
ing cost arises from the coupling of the prediction and deci-
sion making, i.e., the costly model inference is usually made
during scheduling. We can decouple prediction and decision
making. Specifically, the scheduler can model the interfer-
ence environment before a new instance arrives, and make
advance predictions based on the assumptions. When a new
instance arrives and the interference environment at the time
of scheduling matches our previous assumption, the schedul-
ing can be made by directly checking the prepared decisions.
This provides a scheduling fast path without inference.

Insight-2: Resource releasing and instance eviction can be
decoupled. The trade-off between resource utilization and
cold start overheads arises from the coupling of resource
releasing and instance eviction. Instead, we can decouple re-
source releasing and instance eviction. Specifically, even if
an instance is not evicted, we could adjust the routing and not
send requests to it. It consolidates the loads of under-loaded
instances to fewer instances to reduce the waste of resources
caused by treating under-loaded instances as saturated in-
stances, achieving a similar resource releasing effect as an
actual eviction. The overhead of adjusting the routing is much
smaller than actual cold start overheads. Therefore, in this
way, we could release/reclaim resources with higher sensitiv-
ity to cope with load fluctuations, while avoiding excessive
additional cold start overheads.

3 Design Overview

We propose JIAGU, an efficient and practical QoS-aware
serverless system that tackles the two challenges of improving
resource utilization with these insights. The overall design
is shown in Figure 4. First, JIAGU designs a pre-decision
scheduling that could make accurate predictions with low
scheduling latency (§4). When an instance is created, JIAGU
predicts its performance after deployment, trying to increase

Profiling nodes

Client

N
Y

Node Node
…

Training nodes

Node Node
…

Incremental
update

Create

API Gateway

Capacity

is ready?

Deploy a λ instance

Node filter

Select a node

Satisfy other

factors?

N

Y

Y

N

Datasets

Create/evict

λ instance?

Cur-con

< Capacity?

Y

Autoscaler

Scheduler

Predictor

Slow
path

Fast path

Serverless control planeNodes

Profile

High-density nodes

Node

Consolidation

Node

…

Dual-staged
scaling

RPS Evict

Request

Request

Figure 4: JIAGU overview.

the instance deployment density without violating QoS to
fully utilize the resources. Second, JIAGU adopts a dual-
staged scaling design that efficiently utilizes resources under
load fluctuation with minimum overhead (§5).

Cluster setting. To apply JIAGU, our cluster is partitioned
into three types of nodes. A small proportion of nodes are
profiling nodes and training nodes, deploying instances whose
runtime behavior is collected to construct function profiles
and the dataset to train the model used by JIAGU’s scheduler.
JIAGU schedules instances that actually handle user requests
to high-density nodes, maximizing the resource utilization of
these nodes. All types of nodes are homogeneous.

User configurations and QoS. In our platform, when upload-
ing a function, a user is expected to specify the allocated
resources (CPU and memory) and the saturated load of the
function (optional with default value). QoS provides basic
performance guarantees for functions, which is beneficial
for most users. Most jobs on our FaaS platform are latency-
sensitive jobs. Hosting latency-insensitive jobs in FaaS is not
considered an industry best practice as they have less need
for ultra-high instance elasticity. On our platform, the QoS
requirement of a function is set by the provider according to
the function’s previously monitored performance without in-
terference. The QoS is set to be slightly more lenient than the
collected performance, e.g., the P95 tail latency should be less
than 120% of the solo-run P95 tail latency. Moreover, we can
establish specific QoS agreements with top-tier customers,
since their workload could be the majority in the cloud.

4 Pre-decision Scheduling

4.1 JIAGU’s Prediciton Model

Prediction model. JIAGU’s QoS-aware scheduling requires
accurate prediction of the functions’ performance under re-
source interference. The prediction model is based on Ran-
dom Forest Regression (RFR). Specifically, JIAGU’s regres-

USENIX Association 2024 USENIX Annual Technical Conference 5

Table 3: Profiling metrics.
Metrics Description

mCPU CPU utilization
Instructions Instructions retired
IPC Instructions per cycle
Context switches Switching between privilege modes
MLP Efficiency of concurrent access indicated by

Memory Level Parallelism (MLP)
L1d/L1i/L2/LLC MPKI Cache locality indicated by misses per thou-

sand instructions (MPKI)
TLB data/inst. MPKI TLB locality indicated by MPKI
Branch MPKI Branch predictor locality indicated by MPKI
Memory bandwidth Memory usage and performance

sion model has the following form:

PA∪{B,C,...} = RFR{PA,RA,CA,RB,CB,RC,CC, ...}

where, PA∪{B,C,...} is function A’s performance2 under the in-
terference of functions B and C. RA, RB and RC is the profile
matrix of function A, B and C respectively. JIAGU uses a
single instance’s multiple resource’s utilization as its profile
(Table 3), and adopts a solo-run approach to collect the pro-
file metrics of functions (details in §6). CA, CB and CC are
concurrency information of the three functions. The concur-
rency information includes two parts: the number of saturated
instances and the number of cached instances (detailed in §5).
PA is the solo-run performance of function A.

The model is proven effective in our public cloud and also
utilized in prior systems [41, 81]. Moreover, compared to
prior models that predict the performance at instance granu-
larity [73, 81], since different instances of the same function
are homogeneous and perform similarly on the same server,
our model predicts performance at function-granularity. We
merge the features of the same function’s instances and in-
troduce concurrency as a new feature for a function. This
effectively reduces the input dimensions, resulting in less
training overhead and possible mitigation of the “curse of
dimensionality” [14]. JIAGU is also flexible to utilize other
prediction models.

Inference overhead. In practice, a policy may require predict-
ing different functions’ performances under various coloca-
tion environments, and the colocation environments can be
described by multiple inputs. Notably, learning frameworks
(e.g., sklearn[9]) have optimizations to infer multiple simulta-
neous inputs, which incurs trivial additional cost (§7). There-
fore, in the descriptions that follow, if multiple predictions
can be merged in the form of multiple inputs, we refer to such
inference overhead as “once” inference overhead.

4.2 Capacity and Capacity Table
Inspired by the first insight, to accurately predict instances’
performances without incurring excessive costs to scheduling,

2 Although we use P90 tail latency as our performance metric, it is a
general model that can be extended to other metrics like costs.

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 100 200 300 400

C
D

F

Weighted Concurrency

(a) Weighted instance
concurrencies of functions.

 0
 0.1
 0.2
 0.3
 0.4
 0.5

 0 2 4 6 8 10 12 14

C
D

F

Weighted Concurrency

(b) Weighted instance
concurrencies (<13) of functions.

Figure 5: Analysis of highly-replicated characteristic.

we can decouple prediction and decision making. However,
making predictions requires knowledge of what the incom-
ing instance is and what the interference environment on the
server is, which is not known until scheduling (decision mak-
ing). Considering there are an infinite number of functions,
it is also impossible to traverse all possible interference envi-
ronments. Therefore, decoupling can be challenging.

Serverless features that help tackle the challenge. We real-
ize that the highly-replicated feature of serverless may help
address the issue. The feature can be illustrated with the fol-
lowing statistical analysis on real-world traces collected from
Huawei Cloud’s production environment. Specifically, we
mainly analyze the concurrency of function instances, i.e.,
the number of concurrently running instances of a function
in a certain time window, rather than the invocation concur-
rencies in previous studies [58, 62, 78, 82]. We weight the
ratio of every concurrency value by itself, e.g., if there are 100
functions that have only 1 concurrency but 1 function whose
concurrency is 100, the CDF point should be (1, 0.5) and
(100, 1). The distribution is shown in Figure 5-a. Each point
(e.g., (x,y)) in the figure indicates that (y×100)% instances be-
long to functions whose concurrencies are ≤ x. For example,
56% of instances are from functions whose concurrency is
>12, which is shown more clearly in Figure 5-b. Instances of
functions with only one concurrent instance are just 23% of
all instances. In conclusion, such analysis shows serverless’s
highly-replicated feature — most serverless functions have
many replicated instances.

Introducing capacity for decoupling. The feature means, that
when deploying an instance on a server, it is likely that more
instances of the same function would come in the future.
Moreover, considering locality when scheduling has also been
proven beneficial by plentiful prior works [11, 61]. Therefore,
to decouple prediction and decision making, we predict in
advance whether the next incoming instance of existing func-
tions can be deployed. With this idea, for every server, JIAGU
calculates capacity for each existing function on that server.
JIAGU predicts in advance the function’s new instance’s per-
formance after deployment, and sets the capacity value “true”
if the predicted performance meets its QoS. The capacities for
all functions on a server form the server’s capacity table. Af-
ter that, when the scheduler is making scheduling decisions,
it can predict QoS violation by simply checking the table
without model inference. This is the scheduling “fast path”.
Moreover, it is only necessary to make predictions on the
critical path if the function to which the incoming instance

6 2024 USENIX Annual Technical Conference USENIX Association

belongs is not in the capacity table. This is the scheduling
“slow path”.

4.3 Asynchronous Update
Although introducing capacity could predict the QoS viola-
tion of new instances in advance, the deployment of a new
instance could impose resource interference to its neighbors,
possibly causing them QoS violations. Therefore, it is nec-
essary to introduce a validation process, which predicts and
checks whether neighbors will violate their QoS after deploy-
ing the new instance. However, such validation introduces
costly inference for cold starts if done before deployment, or
the risk of QoS violation if done after deployment.

To mitigate the defect, JIAGU applies an asynchronous up-
date approach. To avoid the cost, asynchronous update refines
the way to calculate the capacity, predicting all colocated
functions’ performances, and setting the capacity “true” if the
predicted performance of each function meets its own QoS.
In this way, after deploying the new instance, the predicted
performances of either the new instance itself or the neighbors
would not violate the QoS. This prevents the validation from
affecting the scheduling latency.

Furthermore, when a new instance is scheduled to a server,
it triggers updating the capacity table. Now that the validation
can be delayed, and this update can be done asynchronously,
outside the scheduling critical path. By asynchronous update,
the capacity table is always up-to-date with minimum over-
head, ensuring that the capacity table always reflects real-time
interference on servers when scheduling.

The “asynchronous update” is the way to make the neces-
sary updates to the capacity table when a new instance arrives
with low overhead. Besides, JIAGU also allows for additional
updates to be conducted on a regular and timely basis, which
does not affect the execution of functions. These updates can
further help keep the capacity table up-to-date in case the
workload pattern changes, etc. More details in §6.

4.4 Concurrency-aware Scheduling
Decoupling prediction efficiently reduces model inference
for individual schedulings. Moreover, one of the extreme
invocation patterns in the cloud is a load spike, where the
load rises rapidly so that multiple instances are created si-
multaneously. In such case, the asynchronous update of the
previous instance could possibly block the scheduling of the
next instance, as shown in Figure 7-a. To mitigate, JIAGU fur-
ther adopts concurrency-aware scheduling, which batches the
scheduling of concurrent incoming instances at load spikes.

JIAGU further refines the way of calculating capacity, con-
sidering not only whether the next instance can be deployed,
but also how many next instances can be deployed, as shown
in Figure 6. The capacity value of each function is no longer
a bool value, but a specific numerical value indicating how

Input profiles Predictor Output
PA, RA, CA=1, RB, CB, ...

PA, RA, CA=5, RB, CB, ...

PA, RA, CA=6, RB, CB, ...

...
PA1

PA5

PA6

...

Capacity of FuncA = 4

PB, RB, CB, RA, CA=1, ...

PB, RB, CB, RA, CA=4, ...

PB, RB, CB, RA, CA=5, ...

...
PB1

PB4

...

PB5
......

QoSA

QoSA

QoSA

QoSB

QoSB

QoSB

Figure 6: Calculating capacity. It finds the maximum concur-
rency value as the capacity which every colocated function’s
predicted performance can guarantee its QoS.

f1 f1f1f1 f1

f1 f1

f1

Step 1

Step 2

Step 3

QoS?
Deploy!

f1

f1

f1

QoS?

QoS?

C
ap

ac
ity

 T
ab

le

Async Updates

(a) Without batching.

f1 f1f1f1 f1Step1

Deploy!

f1

f1

f1

Async Update
Capacity Table

Capacity ≥ concurrency + 3 ?

(b) With batching.
Figure 7: Concurrency-aware scheduling enables batch
scheduling for one function’s multiple instances.

many instances of the function can be deployed with cur-
rent neighbors. For example, for a server where there are 2
f1 and 3 f2 instances, with f1 and f2’s capacities are 4 and
6 respectively. It means that 4 f1 instances can be deployed
with 3 f2 instances, while 6 f2 instances can be deployed with
2 f1 instances. Then, as shown in Figure 7-b, when multi-
ple instances of the same function arrive, if the function’s
capacity on the server is sufficient to accommodate those new
instances, the scheduling and the asynchronous update can be
done once for scheduling multiple instances.

4.5 Put It All Together: Scheduling Example

Now we describe the complete scheduling process and pro-
vide an example. As shown in Figure 4, when a function’s
new instance is created, JIAGU will first select a node for it
using a node filter (detailed in §6). Then, based on the node’s
capacity table built in advance, the scheduler decides whether
to schedule the instance via a fast path or a slow path.

Figure 8 demonstrates an example. First, an instance of
f3 arrives, and the node filter selects the node in Figure 8 for
it. The scheduler checks the capacity table of the node and
finds that there is no entry for f3. Therefore, the scheduler
calculates f3’s capacity using the prediction model (as shown
in Figure 6). The result means that 3 f3’s instances can be
deployed with current numbers of f1 and f2 instances, so the
new instance of f3 can be deployed on that server. It is the
scheduling slow path involving a costly model inference.

Then, when a load spike occurs, two instances of f3 are
created and come to the node. The scheduler checks the ca-
pacity table that the number of f3’s instances will not exceed
its capacity after deployment, so that the scheduling decision
is made quickly without model inference. This is the schedul-

USENIX Association 2024 USENIX Annual Technical Conference 7

f1: 6

f2: 8

f1: 6 → 5

f2: 8 → 8

f3: 3

Capacity
Table

Instance
f3 comes

① Check
(Not found)

② Update

Slow path
Fast path

Event II

① Check
(3 ≥ 1 + 2)

③ Deploy

& Check
(3 > 0)

② Deploy

Asynchronous
Update

f1: 5 → 3

f2: 8 → 6

f3: 3

Evict f3

Asynchronous
Update

f1: 3 → 4

f2: 6 → 7

f3: 3

Non-critical pathEvent I

2 × Instance
f3 comes

Event III

Scheduler

Figure 8: Scheduling example on a node.
overall RPS = 70, saturated load = 20

overall RPS = 60

load

Evict

0 s

60 s

(a) Existing eviction.

overall RPS = 70, saturated load = 20

overall RPS = 60
load

Release

0 s

10 s

60 s

Evict
saturated cached

(b) Dual-staged eviction.

Figure 9: Dual-staged scaling. In the example, the release
and keep-alive duration are 10 and 60 seconds respectively.

ing fast path. The deployment also triggers an asynchronous
update of the capacity table, which can be done outside the
scheduling critical path. The schedulings of two instances are
batched, triggering only one update of the capacity table.

When the load drops and an instance of f3 is evicted, such
an event will also trigger an update to the capacity table. The
increased capacities of f1 and f2 mean that the resources can
be reutilized by the scheduler to deploy more instances later.
Of course, this update would hardly affect the scheduling.

5 Dual-staged Scaling

Motivated by the second insight, JIAGU designs dual-staged
scaling to efficiently utilize resources under load fluctuation
while minimizing cold start overheads.

Dual-staged eviction. The key technique of the scaling ap-
proach is dual-staged eviction. When the load drops and so as
the expected number of instances decreases, instead of directly
evicting instances after the keep-alive duration as shown in
Figure 9-a, JIAGU introduces a “release” duration (Figure 9-b).
The “release” duration is (much) shorter than the keep-alive
duration, i.e., the “release” operation is more sensitively trig-
gered before eviction. After the expected number of instances
drops for the release duration, the autoscaler first triggers the
“release” operation, which changes the routing rules, sending
requests to fewer instances, but does not actually evict any
instances. The instances not actually processing requests are
called cached instances, while other instances that are still
processing requests are called saturated instances, as shown
in Figure 9-b. In the example, the load of four instances is
consolidated into three instances. Therefore, when consider-
ing resource interference, the scheduler would consider only
three saturated instances instead of four.

Logical cold start. If the load rises again and the expected
number of instances exceeds the current number of saturated
instances, if there are cached instances, JIAGU triggers a “log-
ical cold start”. Specifically, JIAGU’s scheduler chooses a
cached instance, and then the router re-routes requests to
the selected instance, letting it return to a saturated instance.
This “logical cold start” is fast since the re-routing only takes
< 1ms, while a real instance initialization is more costly.

Real eviction. If the load does not rise again after the ini-
tial drop, after the keep-alive duration, the cached instances
are actually evicted. If the load rises again and there are no
cached instances, it will trigger the autoscaler to initialize new
instances, which involves “real cold starts”. It is consistent
with the traditional autoscaling approach.

Scheduling with dual-staged scaling. The scheduler is re-
sponsible for maintaining and updating the capacity tables.
After applying dual-staged scaling, the scheduler would be
triggered to update the capacity tables not only in response to
actual creation (or eviction) of instances, but also to instance
releases (or logical cold starts). Specifically, after the “re-
lease” operation, since some saturated instances are released
to cached instances, the scheduler will trigger asynchronous
updates as if they are evicted, which may increase the ca-
pacities of other functions on the server. It means that the
resources can be reutilized by the scheduler to deploy more
instances, thus reducing resource wastage caused by over-
estimation of loads. Similarly, after logical cold starts, the
scheduler will also trigger asynchronous updates and may de-
crease other functions’ capacities. Therefore, the release (or
logical cold starts) could release (or reclaim) resources with
greater sensitivity and efficiency than actual instance evic-
tions (or creations), without the need to incur the overheads
associated with actual cold starts.

On-demand migration. If the number of saturated instances
of a function on a server drops and new instances of other
functions are deployed to the server, the function’s capacity
could be updated and reduced. Thus, after a while, the server
could possibly be “full”, i.e., the conversion of the function’s
cached instances to saturated instances on that server could
result in the number of saturated instances surpassing its ca-
pacity. For example, if f1’s capacity is 5 (possibly updated
several times as instances of other functions’ arrive), and it
has 4 saturated instances and 3 cached instances, this means
that there is no room for 2 (= 3+4−5) cached instances to
convert back to saturated instances. At this moment, if the
load rises again, JIAGU has to re-initialize instances on other
feasible nodes, rather than merely trigger “logical cold starts”.

To avoid incurring such additional “real cold starts”, JIAGU
learns in advance how many cached instances can no longer
be converted to saturated instances by comparing the capacity
with the sum of the numbers of both types of instances (2 in
the above example). Then, it migrates these cached instances
to other feasible servers in advance before they are required to

8 2024 USENIX Annual Technical Conference USENIX Association

be converted. Therefore, such additional cold start overheads
can be hidden and will not affect the running of instances.

6 Implementation

We implement JIAGU based on OpenFaaS [6], requiring 4.5k+
LoCs changes. JIAGU is also developed and studied at Huawei
Cloud.
OpenFaaS architecture. OpenFaaS is a high-level controller
based on Kubernetes (K8s), which schedules instances with
the K8s scheduler and deploys instances with K8s resources
(e.g., K8s Deployment and Service [3, 10]). It receives user
requests from its gateway, and distributes requests to each in-
stance’s queue. OpenFaaS relies on Prometheus [8] to monitor
the RPS of user requests and autoscale instances accordingly.
The autoscaler calculates the expected number of instances
of a function by dividing the overall RPS by the predefined
saturated load. By default, it applies a 60-second keep-alive
duration, i.e., it evicts instances after the expected number
of instances is less than the current number and lasts 60 sec-
onds. If the expected number of instances is larger than the
current number, it creates an instance immediately to avoid
performance degradation.
JIAGU’s scheduling controller. JIAGU’s scheduling logic is
implemented as a centralized controller, which manages the
model, capacity tables,and other information required by the
scheduling. It works together with a plugin for the Kubernetes
scheduler in the prototype, allowing for interaction between
the scheduler and the controller and enabling the scheduler
to obtain placement decisions for incoming instances. It also
implements the asynchronous update, where the scheduling
results are returned first before performing the update. More-
over, it is responsible for choosing instances for “logical scal-
ing” for dual-staged scaling with its scheduling algorithm.
Implementing dual-staged scaling. To implement dual-
staged scaling, JIAGU adds new Prometheus rules to mon-
itor RPS, and calculates the expected number of saturated
instances according to the monitored values. It applies a 45
(or 30, this sensitivity can be configured) seconds “release”
duration, i.e., if the expected number of saturated instances
decreases and lasts for 45 (or 30) seconds, it notifies the router
to re-route. To re-route, the scheduling controller chooses an
instance and labels it as “cached”. The “cached” instances are
excluded by the function’s corresponding K8s Service [10]
so that new requests will not be routed to them. When the
load rises and the expected number of saturated instances in-
creases, it immediately triggers a logical cold start, i.e., the
scheduler chooses a cached instance and unlabels it.
Profiling and model training. JIAGU adopts a solo-run ap-
proach motivated by Gsight [81] to collect the profile metrics
of functions. To profile a function, JIAGU additionally de-
ploys an instance to the profiling node exclusively, executes
the function by the instance under the saturated load, and

profiles the resource utilizations using tools such as perf for
a duration. Moreover, to construct and maintain a training
dataset, JIAGU further collects the performance metrics of
various colocation combinations at runtime.

User configurations for functions. How users properly con-
figure their functions [45, 56] (e.g., configure resources and
the saturated value) is out of the scope of the paper. Even
if a user wisely configures their functions, the traditional ap-
proach of scheduling and autoscaling could still suffer from
interference and load fluctuations (shown in Figure 1), leading
to resource underutilization.

Node filter and management. The node filter described in
Figure 4 prioritizes worker nodes in JIAGU. For a new in-
stance, it grants higher priority to nodes that have deployed
instances of the same function, as scheduling on those nodes
possibly follows a fast path. While the current implementa-
tion focuses on this simple priority scheme, future work may
explore extending it with additional scheduling policies, such
as placing multiple instances of the same function on a single
node to benefit from the locality [11, 61]. In cases where no
usable nodes are available for an instance, JIAGU will request
the addition of a new server to the cluster. Similarly, an empty
server will be evicted to optimize costs.

System parameter configuration. The implementation in-
volves configuring several specific parameters, including the
profiling time, the definition of model convergence, or the
release/keep-alive durations. Setting these parameters re-
quires careful consideration of trade-offs based on the actual
scenario. For example, for dual-staged scaling, a shorter re-
lease duration (e.g., a 30-second duration) could mean that the
system would be more sensitive to load variations (e.g., than
a 45-second duration), and therefore more likely to achieve
higher resource utilization. However, it could also lead to
more logical cold starts, which in turn could lead to more real
cold starts or on-demand migrations. Therefore, these param-
eters should be configured carefully, taking into account the
actual requirements of the system and these trade-offs.

Performance predictability in the cloud. QoS violations are
mostly predictable, especially when using tail latency as the
QoS metric, which considers the overall performance of mul-
tiple requests over a period of time. It is consistent with
the observations in our production environment and prior
works [41, 50, 73, 81]. In Huawei Cloud, JIAGU keeps moni-
toring the QoS violation and adopts two ways to handle the
incidental unpredictability. First, the random forest model is
naturally feasible for incremental learning, and we contin-
uously collect runtime performance metrics and retrain the
model periodically with the up-to-date training set in case the
behavior of functions changes. Second, if the prediction error
does not converge after several iterations, JIAGU disables over-
commitment and uses traditional conservative QoS-unaware
policies to schedule the instances of the unpredictable func-
tion on separate nodes. JIAGU can perform well and improve

USENIX Association 2024 USENIX Annual Technical Conference 9

resource utilization in the real world.
Overheads of (re-)training and inference. With JIAGU’s ran-
dom forest model, the (re-)training and inference only require
one core. We also evaluate the temporal cost, and the results
are illustrated in Figure 17. The overhead is non-trivial com-
pared to the saved resources.

7 Evaluation

7.1 Methodology

Experimental setup. We use a cluster of 24 machines for eval-
uation. Each machine is equipped with an Intel Xeon E5-2650
CPU (2.20GHz 48 logical cores in total) and 128GB mem-
ory, running Ubuntu LTS 18.04 with Linux 4.15 kernel. One
machine is dedicated to OpenFaaS control plane components
(gateway, scheduler, JIAGU’s controller, etc.). The machine is
also responsible for sending requests and collecting QoS and
utilization results. The other machines are worker machines
responsible for executing or profiling function instances.
Baseline systems. We compare JIAGU with three baseline
systems: Kubernetes, Gsight [81] and Owl [68]. Kubernetes
scheduler is one of the mostly used serverless scheduler sys-
tems in production [1, 5]. Gsight [81] and Owl [68] represent
state-of-the-art predictor-based and historical information-
based serverless scheduling systems. Since they do not open
source the implementation, we implement comparable proto-
types of them. Moreover, we evaluate three versions of JIAGU.
Jiagu-30 and Jiagu-45 denote prototypes with 30 and 45 sec-
onds “release duration” of dual-staged scaling respectively,
while JIAGU-NoDS disables dual-staged scaling. We mainly
compare JIAGU with instance schedulers rather than resource
schedulers like Orion [45]. We believe that these two types
of schedulers are not incompatible and can benefit from each
other. Details on the comparisons are in Section 8.
Scheduling effect metrics. To evaluate the scheduling effect,
we compare JIAGU with our baseline scheduling algorithms
by two metrics. First is the QoS violation rate, which is the
percentage of requests that violate QoS in all requests to all
functions. The QoS constraint is chosen to be 120% of the
tail latency when the instance is saturated and suffers no in-
terference, consistent with previous work [20, 68, 81, 82] and
in-production practice. In the evaluation, we aim to achieve a
QoS violation rate of less than 10% so we predict the p90 tail
latency accordingly. Second is the function density, higher
density means better resource utilization. We normalize the
traditional Kubernetes scheduler’s function density to one,
meaning that instances are deployed with exactly the amount
of configured resources. One of the goals of JIAGU is to
increase function density (>1) as much as possible while
achieving an acceptable QoS violation rate (<10%).
Workloads and traces. We use six representative functions in
ServerlessBench [75] and FunctionBench [37] for evaluation,

including model inference (rnn), batch processing applica-
tions (image resize, linpack), log processing, chameleon and
file processing (gzip). All functions are configured with the
same amount of resources. To ensure the robustness of our sys-
tem to perturbations in the benchmark inputs, we optionally
add zero-mean Gaussian noise to the inputs.

We use various traces for evaluation. We mainly use real-
world traces from Huawei Cloud since they possess a similar
level of complexity as in the production environment. The
traces and the existing open source traces [35] are collected
at different times on the same system. We take the following
approaches to ensure that our evaluated traces are represen-
tative and generalizable. First, to generate a set of traces, we
randomly select six functions’ invocation patterns from real-
world Huawei Cloud traces and map each pattern to a function
with a similar execution time. The randomness here is to en-
sure the generality of the traces. Second, we generate four
different sets of real-world traces, each with six invocation
patterns, to prevent the evaluation results from being influ-
enced by randomness in the traces. Third, the four traces are
selected from various geographical regions. Fourth, for each
set of real-world traces, we exclude inactive functions with
very low request rates. Finally, to adapt sampled traces to our
cluster size, we use methods similar to prior works [69, 82],
i.e., scale patterns such as request frequency proportionally
so that our cluster is not overloaded with peak loads.

In addition, we also use specially constructed traces to
evaluate the scheduling performance in extreme scenarios.

7.2 Scheduling Performance Analysis
In this section, we evaluate the scheduling costs with different
traces in two aspects. First, we evaluate the average schedul-
ing costs of the two algorithms. Second, we simulate how
JIAGU can optimize the cold start in conjunction with one
of the state-of-the-art instance initialization optimizations,
container fork (cfork) [25], which can create an instance in ∼
8.4ms. We also analyze the cold start with Docker (∼85.5ms).
In each test, we compare JIAGU’s default version (Jiagu-45)
with Gsight, whose performance is normalized to 1.

Performance under extreme scenarios. We first analyze the
extreme performance of JIAGU using specific traces. For the
best case, we use a timer trace with only one function. It as-
sumes that the function is invoked and instances are scaled at
a fixed frequency. The results (Figure 10-a) show that Gsight
suffers a scheduling overhead 11.9x larger than JIAGU. This is
because almost all scheduling decisions of JIAGU go through
the fast path in this case. Considering cold start latency (Fig-
ure 10-b), Gsight’s is 126.3% longer than JIAGU when using
cfork because of its costly scheduling. For the worst case,
we construct a rare trace where the function concurrencies
recurrently change from 0 and 1, so that every scheduling
process goes through the slow path. The results show that
JIAGU’s performance degraded to a similar level as Gsight.

10 2024 USENIX Annual Technical Conference USENIX Association

 0

 5

 10

 15

 20

 25

Best Case Worst Case
0

0.2

0.4

0.6

0.8

1

S
ch

ed
u
le

 C
o
st

 (
m

s)

N
u
m

b
er

 o
f

In
fe

re
n
ce

sGsight
Jiagu

Gsight-infers
Jiagu-infers

(a) Scheduling cost and model inferences.

Gsight Jiagu Gsight Jiagu
0

0.2

0.4

0.6

0.8

121.5 26.3

N
o
rm

al
iz

ed
 L

at
en

cy

Scheduler
Runtime

 Worst CaseBest Case

(b) Cold start optimization with cfork.

Gsight Jiagu Gsight Jiagu
0

0.2

0.4

0.6

0.8

198.6 103.4

N
o
rm

al
iz

ed
 L

at
en

cy

Scheduler
Runtime

 Worst CaseBest Case

(c) Cold start optimization with docker.
Figure 10: Performance analysis under extreme scenarios. It includes scheduling cost, number of model inferences per
schedule and cold start latency optimizations. We normalize results and label concrete numbers (ms) in the figure.

 0

 5

 10

 15

 20

 25

 30

Trace A Trace B Trace C Trace D
0

0.2

0.4

0.6

0.8

1

S
ch

ed
u
le

 C
o
st

 (
m

s)

N
u
m

b
er

 o
f

In
fe

re
n
ce

sGsight
Jiagu

Gsight-infers
Jiagu-infers

(a) Scheduling cost and model inferences.

Gsight Jiagu Gsight Jiagu Gsight Jiagu Gsight Jiagu
0

0.2

0.4

0.6

0.8

129.2 32.2 30.4 28.9

N
o
rm

al
iz

ed
 L

at
en

cy

Scheduler
Runtime

 Trace D Trace C Trace BTrace A

(b) Cold start optimization with cfork.

Gsight Jiagu Gsight Jiagu Gsight Jiagu Gsight Jiagu
0

0.2

0.4

0.6

0.8

1106.3 109.3 107.5 106

N
o
rm

al
iz

ed
 L

at
en

cy

Scheduler
Runtime

 Trace D Trace C Trace BTrace A

(c) Cold start optimization with docker.
Figure 11: Performance analysis on real-world traces. It includes scheduling cost, number of model inferences per schedule
and cold start latency optimizations. We normalize results and label concrete numbers (ms) in the figure.

When using Docker in both cases, the cost of instance
initialization becomes the bottleneck. We believe that as a
growing number of efforts have limited initialization over-
head to <10ms [13, 17, 25, 26, 33, 53, 63, 64, 70, 71], the
reduction in scheduling costs will be increasingly meaningful.

Performance with real-world traces. We then analyze JI-
AGU’s scheduling costs with four real-world traces. The
results (Figure 11) show that for real-world traces, JIAGU
achieves 81.0%–93.7% lower scheduling costs than Gsight.
This is because JIAGU’s scheduling policy can drastically re-
duce the number of model inferences (83.8%–92.1%, shown
in the y2 axis of Figure 11-a), so that the inference overhead
is amortized over multiple cold starts. For cold start latency,
when applying JIAGU with cfork, the reduced scheduling costs
lead to 57.4%–69.3% lower cold start latency than Gsight.

Breakdown of cold start overhead reduction. This paragraph
shows how JIAGU’s design effectively reduces cold start over-
head with a breakdown analysis. As shown in Figure 12, we
evaluate the total cold start latencies with cfork/docker, and
with different scaling/releasing sensitivities (30 or 45-second
keep-alive duration). For each trace, the highest total cold-
start overhead is normalized to one, i.e., scheduling without a
fast path and scaling instances with a 30-second keep-alive du-
ration. The result shows that dual-staged scaling significantly
reduces the total cold-start overhead compared to the base-
line. This is achieved by reducing the number of cold starts.
In addition, pre-decision scheduling could further reduce the
cold-start overhead by reducing the scheduling latency.

In conclusion, JIAGU’s scheduling algorithm can signif-
icantly reduce model inference times and result in lower

scheduling costs, leading to better cold start latency.

7.3 Scheduling Effect on OpenFaaS
This section describes how JIAGU improves resource utiliza-
tion while guaranteeing QoS. We analyze JIAGU and the base-
line systems by function density and QoS violation rate, with
the four real-world traces. The density result is the average
value during the evaluation weighted by duration.

According to Figure 13, all QoS-aware schedulers improve
function density compared with Kubernetes (which is normal-
ized to 1). Without dual-staged scaling, Gsight and JIAGU
(Jiagu-NoDS) achieve higher function density than Owl. It
shows Owl’s limitation of allowing only two colocated func-
tions prevents optimal scheduling decisions. With dual-staged
scaling, JIAGU further optimizes resource utilization. Higher
sensitivity performs better in improving the instance density.
Specifically, Jiagu-30 achieves up to 54.8% higher function
density than Kubernetes, 22.0% higher than Gsight and 38.3%
higher than Owl, while its QoS violation rate is compara-
ble with Gsight and Jiagu-NoDS. This is because when user
load drops, JIAGU can quickly utilize the resources of the un-
saturated instances. Moreover, on four traces, all schedulers
achieve an acceptable QoS violation rate of less than 10%,
and the four results are similar. Therefore, we only show the
result on Trace A (Figure 14-a).

Reducing cold starts by migration of cached instances. This
section describes how many additional cold starts can be
avoided by migrating cached instances. According to Fig-
ure 14-b, for 45 seconds sensitivity, all re-routing operations
are logical cold starts, needless to migrate instances. With

USENIX Association 2024 USENIX Annual Technical Conference 11

0

0.2

0.4

0.6

0.8

1
 Scale-30

/
 Scale-45

/

cfork

N
o

rm
al

iz
ed

 L
at

en
cy

Scheduler
Runtime

+PS+DSBL
0

0.2

0.4

0.6

0.8

1
 Scale-30

/
 Scale-45

/

docker

N
o

rm
al

iz
ed

 L
at

en
cy

Scheduler
Runtime

+PS+DSBL

(a) Trace A.

0

0.2

0.4

0.6

0.8

1
 Scale-30

/

 Scale-45
/

cfork

N
o

rm
al

iz
ed

 L
at

en
cy

Scheduler
Runtime

+PS+DSBL
0

0.2

0.4

0.6

0.8

1
 Scale-30

/

 Scale-45
/

docker

N
o

rm
al

iz
ed

 L
at

en
cy

Scheduler
Runtime

+PS+DSBL

(b) Trace B.

0

0.2

0.4

0.6

0.8

1
 Scale-30

/ Scale-45
/

cfork

N
o

rm
al

iz
ed

 L
at

en
cy

Scheduler
Runtime

+PS+DSBL
0

0.2

0.4

0.6

0.8

1
 Scale-30

/
 Scale-45

/

docker

N
o

rm
al

iz
ed

 L
at

en
cy

Scheduler
Runtime

+PS+DSBL

(c) Trace C.

0

0.2

0.4

0.6

0.8

1
 Scale-30

/

 Scale-45
/

cfork

N
o

rm
al

iz
ed

 L
at

en
cy

Scheduler
Runtime

+PS+DSBL
0

0.2

0.4

0.6

0.8

1
 Scale-30

/

 Scale-45
/

docker

N
o

rm
al

iz
ed

 L
at

en
cy

Scheduler
Runtime

+PS+DSBL

(d) Trace D.
Figure 12: Total cold start overheads during evaluations with various runtimes and optimizations. “BL” is the baseline
with no fast path and scales instances directly with a 30/45 second keep-alive duration. “+DS” applies dual-staged scaling
(60-second keep-alive duration and 30/45-second release duration) which reduces the number of cold starts. “+PS” further applies
pre-decision scheduling, which reduces the overhead of each cold start.

100%

120%

140%

160%

Trace A Trace B Trace C Trace D

N
o

rm
al

iz
ed

 D
en

si
ty

Owl
Gsight

Jiagu-NoDS
Jiagu-45

Jiagu-30

Figure 13: Normalized function density. Density on K8s is
normalized to 100%. JIAGU achieves the highest density with
all of the real-world traces.

10

20

Cha Gzip Img Lin Log RNN

Goal
 /

Q
o
S

 V
io

la
ti

o
n
 (

%
) Owl

Gsight
Jiagu-NoDS

Jiagu-45
Jiagu-30

(a) QoS violation of Trace A.

0

20%

40%

60%

80%

100%

R
ed

u
ce

d
 C

o
ld

 S
ta

rt
s Jiagu-45

Jiagu-30
Migration

Trace DTrace CTrace BTrace A

(b) Reduced cold starts.
Figure 14: QoS violations and reduced cold starts. Applica-
tions are chameleon (Cha), gzip, image resize (Img), linpack
(Lin), log processing (Log) and RNN.

30-second sensitivity, only a small proportion of re-routing,
i.e., < 20% for four traces and 0 for Trace B, require “real”
rather than “logical” cold starts, most of which can be avoided
by migrating cached instances in advance. Only Trace A has
very few additional real cold starts at 30-second sensitivity.
Similar results can be found in Figure 12, i.e., after apply-
ing dual-staged scaling, the cold start overheads are almost
the same for both 30/45 second sensitivities. It illustrates that
with dual-staged scaling, JIAGU effectively improves resource
utilization at minimum cost.

In conclusion, with the prediction-based scheduler and dual-
staged scaling, JIAGU can achieve high resource utilization
while limiting QoS violations with less scheduling overhead
than state-of-the-art model-based scheduling policy.

7.4 Prediction Analysis

Prediction accuracy. We evaluate the prediction accuracy of
our model, as shown in Figure 15. We define the prediction
error rate of a model as |P̂−P|

P , where P̂ and P are predicted

 0.05

 0.1

 0.15

Accuracy Overfitting Scalability

E
rr

o
r

R
at

e

Gs
Jg

Jg-1
Jg-2

30-Fun
60-Fun

 0

 0.5

 1

 1.5

 2

 0 20 40 60 80 100

E
rr

o
r

R
at

e

Samples

Chameleon
Gzip

Image
Linpack

Log
RNN

Figure 15: Model accuracy. (a) is the error rate of the pre-
diction models. (b) shows that the prediction error drops with
new samples.

 0

 0.1

 0.2

RFR
ESP

X
G

Boost

Linear

M
LP-2

M
LP-3

M
LP-4

E
rr

o
r

R
a
te

Figure 16: Prediction errors of various models.

performances and real performances, respectively. First, we
analyze the accuracy of the model used by previous evalua-
tions. The model could accurately predict the performance of
the six functions, with similar prediction error to Gsight (Jg
and Gs in the Figure). Second, we evaluate the overfitting of
the model by splitting the test set into two equal-sized sets
(Jg-1 and Jg-2). The model achieves similar prediction errors
on the two different sets, showing that it does not overfit to
a specific test set. Third, we evaluate the model’s scalabil-
ity, i.e., how the model can predict the performance of an
increasing number (30/60) of functions. The result shows that
additional functions do not affect the prediction precision.
Fourth, we evaluate how the model is resilient to the changes
in the function’s behavior. Each time, we train the model
with five functions, and add the remaining function to the sys-
tem, collect performance metrics as new samples and retrain
the model once a sample is added. Figure 15-b shows that
the performance prediction error of the new function drops
rapidly under increasing number of samples, and converges
after about 5–30 samples. It means that it takes limited time to
retrain an accurate model after collecting a couple of samples.

Finally, we evaluate the model choices, comparing JIAGU’s
random forest regression (RFR) with ESP [50], XGBoost, lin-
ear regression, and three multi-layer perception (MLP) models
with 2,3,4 layers respectively. The result (Figure 16) confirms
our choice of the RFR model considering its high accuracy,

12 2024 USENIX Annual Technical Conference USENIX Association

 0

 5

 10

 15

 20

 25

Gsight Jiagu Gsight Jiagu
 0

 50

 100

 150

 200

 250

 300

T
ra

in
in

g
 T

im
e

(s
)

D
im

en
si

o
n
s

Training times
Dimensions

 5

 5.5

 6

 6.5

 7

 7.5

 8

 0 20 40 60 80 100P
re

d
ic

ti
o
n
 C

o
st

s
(m

s)

Number of Inputs

Figure 17: Model performance. (a) is the training time and
the total number of dimensions of the two models. (b) JIAGU’s
model inference overhead with the number of inputs increases.

low training overhead and capability of incremental learning,
etc. Possible other models or algorithms (e.g., ridge regres-
sion) can be explored to improve JIAGU in future work.
Model performance. We evaluate JIAGU’s model training
and inference costs. Figure 17-a shows that JIAGU’s model
has better training performance and a lower number of input
dimensions. Moreover, Figure 17-b demonstrates that the
model inference costs increase only 2 milliseconds even when
the number of inputs increases to 100. Therefore, although
JIAGU batches multiple inputs to the prediction model when
calculating the capacity, it will not significantly increase the
inference overhead.

In conclusion, JIAGU’s model can predict the performance
accurately with a much lower number of input dimensions
and training overhead.

8 Related Work

Resource schedulers. Another widely studied (and orthogo-
nal) scheduler is the online resource scheduler [12, 15, 18–
21, 23, 24, 27, 29, 30, 39, 40, 44, 46, 47, 51, 52, 54, 55, 57,
59, 60, 72, 74, 77, 79, 80, 82], which tunes the allocated
resources according to functions’ online performance to guar-
antee QoS and improve resource efficiency. Many of them
are designed for long-running services [19, 20, 27, 29, 30,
44, 47, 54, 55, 57, 59, 72, 74, 77, 79, 80], which are chal-
lenging to apply directly to transient serverless instances. In
addition, some serverless resource schedulers [12, 60, 82] use
algorithms like Bayesian Optimization to search the resource
configuration space and make optimal decisions based on run-
time performance. They are resilient to runtime performance
variations but still fail to guarantee QoS before convergence.

In practice, the resource scheduler can function orthogo-
nally to the instance scheduler, effectively complementing
the instance scheduler’s shortcomings in dynamics and rapid
decision-making. The coordination of the two types of sched-
ulers enhances efficiency through broader resource allocation
insights, leading to better load balancing and utilization. This
synergy maybe crucial in serverless computing, aligning with
principles of minimal user intervention and optimized automa-
tion, ensuring instance schedulers are effective and adaptable
in dynamic environments.
Request schedulers. Rather than scheduling instances, many
prior works tackle the problem of assigning instances for re-

quests. Atoll [65] overcomes many latency challenges in the
serverless platform via a ground-up redesign of system con-
trol and data planes, utilizing deadline-aware scheduling. Her-
mod [36] analyzes and tunes different design choices on Open-
Whisk and improves function performance. Fifer [31] queues
requests to warm containers to reduce the number of instances
and prewarms instances with LSTM resource interference to
optimize the cold starts. Sequoia [67] is deployed as a proxy
to control user requests and enable QoS. Neither of them
considers resource interference. Golgi [41] applies a model
for the router, predicting requests’ performance and sending
them to overcommitted instances if the performance does not
violate QoS, or otherwise to non-overcommitted instances. It
can avoid QoS violation for a fixed number of instances, but
does not guide for how many overcommitted instances need
to be deployed, while an excessive number of overcommitted
instances could cause resource under-utilization.

Other optimizations. There are many related serverless op-
timizations [32, 38, 42, 45, 57, 58, 66, 67]. For exam-
ple, Orion [45] optimizes the colocation of parallel invoca-
tions, enhancing the performance of serverless DAG systems.
WiseFuse [46] introduces a joint optimization approach for
both serial functions and parallel invocations, further improv-
ing serverless DAG efficiency. Their designs contain resource
schedulers to right-size VMs, while also adapting other key
optimizations for other aspects, such as bundling for parallel
executions. FaasFlow [42] proposes a worker-side workflow
schedule pattern that enables better scalability and perfor-
mance. All of these systems can benefit from JIAGU with an
effective scheduler to also improve the resource utilization
for cloud vendors without introducing high scheduling costs.

9 Conclusion

This paper presents our experience in optimizing resource
utilization in Huawei Cloud for serverless computing with
JIAGU. JIAGU decouples prediction and decision making to
achieve efficient and fast scheduling, and decouples resource
releasing and instance eviction to achieve a fast reaction to
load fluctuation without incurring excessive cold start over-
head. Our results show JIAGU brings significant benefits for
resource efficiency using real-world traces.

10 Acknowledgement

We sincerely thank our shepherd Somali Chaterji and
anonymous reviewers for their insightful suggestions. This
work is supported in part by National Key Research and
Development Program of China (No. 2022YFB4502003),
China National Natural Science Foundation (No. 62302300,
61925206), the HighTech Support Program from STCSM
(No. 22511106200), and Startup Fund for Young Faculty at
SJTU (SFYF at SJTU). Dong Du is the corresponding author.

USENIX Association 2024 USENIX Annual Technical Conference 13

References

[1] Apache openwhisk is a serverless, open source cloud platform. http:
//openwhisk.apache.org/, 2023. Referenced 2023.

[2] Cloud computing trends and statistics: Flexera 2023 state of the cloud
report. https://www.flexera.com/blog/cloud/cloud-computing-trends-
flexera-2023-state-of-the-cloud-report/, 2023.

[3] Deployments | kubernetes. https://kubernetes.io/docs/concepts/services-
networking/service/, 2023.

[4] Knative autoscaling. https://knative.dev/docs/serving/
autoscaling/, 2023.

[5] Kubernetes scheduler. https://kubernetes.io/docs/concepts/
scheduling-eviction/kube-scheduler/, 2023.

[6] Openfaas - serverless functions made simple. https://www.
openfaas.com, 2023.

[7] Openfaas autoscaling. https://docs.openfaas.com/
architecture/autoscaling/, 2023.

[8] Prometheus - monitoring system and time series database. https:
//prometheus.io/, 2023.

[9] scikit-learn: machine learning in python. https://scikit-learn.
org/, 2023.

[10] Service | kubernetes. https://kubernetes.io/docs/concepts/services-
networking/service/, 2023.

[11] Mania Abdi, Samuel Ginzburg, Xiayue Charles Lin, Jose Faleiro, Go-
har Irfan Chaudhry, Inigo Goiri, Ricardo Bianchini, Daniel S Berger,
and Rodrigo Fonseca. Palette load balancing: Locality hints for server-
less functions. In Proceedings of the Eighteenth European Conference
on Computer Systems, EuroSys ’23, page 365–380, New York, NY,
USA, 2023. Association for Computing Machinery.

[12] Nabeel Akhtar, Ali Raza, Vatche Ishakian, and Ibrahim Matta. Cose:
Configuring serverless functions using statistical learning. In IEEE
INFOCOM 2020 - IEEE Conference on Computer Communications,
pages 129–138, 2020.

[13] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, Klaus
Satzke, Andre Beck, Paarijaat Aditya, and Volker Hilt. SAND: Towards
high-performance serverless computing. In 2018 USENIX Annual
Technical Conference (USENIX ATC 18), pages 923–935, 2018.

[14] R.E. Bellman. Dynamic Programming. Dover Books on Computer
Science Series. Dover Publications, 2003.

[15] Romil Bhardwaj, Kirthevasan Kandasamy, Asim Biswal, Wenshuo Guo,
Benjamin Hindman, Joseph Gonzalez, Michael Jordan, and Ion Stoica.
Cilantro: Performance-Aware resource allocation for general objectives
via online feedback. In 17th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 23), pages 623–643, Boston, MA,
July 2023. USENIX Association.

[16] Marc Brooker. Lambda snapstart, and snapshots as a tool for system
builders. https://brooker.co.za/blog/2022/11/29/snapstart.
html, 2022. Referenced Dec 2022.

[17] James Cadden, Thomas Unger, Yara Awad, Han Dong, Orran Krieger,
and Jonathan Appavoo. Seuss: skip redundant paths to make serverless
fast. In Proceedings of the Fifteenth European Conference on Computer
Systems, pages 1–15, 2020.

[18] Jiahao Chen, Zeyu Mi, Yubin Xia, Haibing Guan, and Haibo Chen.
CPC: Flexible, secure, and efficient CVM maintenance with Confiden-
tial Procedure Calls. In 2024 USENIX Annual Technical Conference
(USENIX ATC 24), Santa Clara, CA, July 2024. USENIX Association.

[19] Quan Chen, Zhenning Wang, Jingwen Leng, Chao Li, Wenli Zheng, and
Minyi Guo. Avalon: Towards qos awareness and improved utilization
through multi-resource management in datacenters. In Proceedings
of the ACM International Conference on Supercomputing, ICS ’19,
pages 272–283, New York, NY, USA, 2019. Association for Computing
Machinery.

[20] Shuang Chen, Christina Delimitrou, and José F. Martínez. Parties:
Qos-aware resource partitioning for multiple interactive services. In
Proceedings of the Twenty-Fourth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
ASPLOS ’19, pages 107–120, New York, NY, USA, 2019. Association
for Computing Machinery.

[21] Shuang Chen, Angela Jin, Christina Delimitrou, and José F. Martínez.
Retail: Opting for learning simplicity to enable qos-aware power man-
agement in the cloud. In 2022 IEEE International Symposium on
High-Performance Computer Architecture (HPCA), pages 155–168,
2022.

[22] Christina Delimitrou and Christos Kozyrakis. Paragon: Qos-aware
scheduling for heterogeneous datacenters. In Proceedings of the Eigh-
teenth International Conference on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS ’13, pages 77–88,
New York, NY, USA, 2013. Association for Computing Machinery.

[23] Christina Delimitrou and Christos Kozyrakis. Quasar: Resource-
efficient and qos-aware cluster management. In Proceedings of the 19th
International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’14, pages 127–144, New
York, NY, USA, 2014. Association for Computing Machinery.

[24] Christina Delimitrou, Daniel Sanchez, and Christos Kozyrakis. Tar-
cil: Reconciling scheduling speed and quality in large shared clusters.
In Proceedings of the Sixth ACM Symposium on Cloud Computing,
SoCC ’15, pages 97–110, New York, NY, USA, 2015. Association for
Computing Machinery.

[25] Dong Du, Qingyuan Liu, Xueqiang Jiang, Yubin Xia, Binyu Zang, and
Haibo Chen. Serverless computing on heterogeneous computers. In
Proceedings of the 27th ACM International Conference on Architec-
tural Support for Programming Languages and Operating Systems,
ASPLOS 2022, pages 797–813, New York, NY, USA, 2022. Associa-
tion for Computing Machinery.

[26] Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu Yan, Cheng-
gang Qin, Qixuan Wu, and Haibo Chen. Catalyzer: Sub-millisecond
startup for serverless computing with initialization-less booting. In
Proceedings of the Twenty-Fifth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
ASPLOS ’20, pages 467–481, New York, NY, USA, 2020. Association
for Computing Machinery.

[27] Joshua Fried, Zhenyuan Ruan, Amy Ousterhout, and Adam Belay. Cal-
adan: Mitigating Interference at Microsecond Timescales. USENIX
Association, USA, 2020.

[28] Alexander Fuerst and Prateek Sharma. Faascache: keeping serverless
computing alive with greedy-dual caching. In Proceedings of the 26th
ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems, pages 386–400, 2021.

[29] Yu Gan, Mingyu Liang, Sundar Dev, David Lo, and Christina Delim-
itrou. Sage: Practical and scalable ml-driven performance debugging

14 2024 USENIX Annual Technical Conference USENIX Association

http://openwhisk.apache.org/
http://openwhisk.apache.org/
https://knative.dev/docs/serving/autoscaling/
https://knative.dev/docs/serving/autoscaling/
https://kubernetes.io/docs/concepts/scheduling-eviction/kube-scheduler/
https://kubernetes.io/docs/concepts/scheduling-eviction/kube-scheduler/
https://www.openfaas.com
https://www.openfaas.com
https://docs.openfaas.com/architecture/autoscaling/
https://docs.openfaas.com/architecture/autoscaling/
https://prometheus.io/
https://prometheus.io/
https://scikit-learn.org/
https://scikit-learn.org/
https://brooker.co.za/blog/2022/11/29/snapstart.html
https://brooker.co.za/blog/2022/11/29/snapstart.html

in microservices. In Proceedings of the 26th ACM International Con-
ference on Architectural Support for Programming Languages and Op-
erating Systems, ASPLOS ’21, pages 135–151, New York, NY, USA,
2021. Association for Computing Machinery.

[30] Yu Gan, Yanqi Zhang, Kelvin Hu, Dailun Cheng, Yuan He, Meghna
Pancholi, and Christina Delimitrou. Seer: Leveraging big data to navi-
gate the complexity of performance debugging in cloud microservices.
In Proceedings of the Twenty-Fourth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
ASPLOS ’19, pages 19–33, New York, NY, USA, 2019. Association
for Computing Machinery.

[31] Jashwant Raj Gunasekaran, Prashanth Thinakaran, Nachiappan C.
Nachiappan, Mahmut Taylan Kandemir, and Chita R. Das. Fifer: Tack-
ling resource underutilization in the serverless era. In Proceedings of
the 21st International Middleware Conference, Middleware ’20, pages
280–295, New York, NY, USA, 2020. Association for Computing Ma-
chinery.

[32] Zhipeng Jia and Emmett Witchel. Boki: Stateful serverless computing
with shared logs. In Proceedings of the ACM SIGOPS 28th Symposium
on Operating Systems Principles, SOSP ’21, pages 691–707, New York,
NY, USA, 2021. Association for Computing Machinery.

[33] Zhipeng Jia and Emmett Witchel. Nightcore: Efficient and scalable
serverless computing for latency-sensitive, interactive microservices.
In Proceedings of the 26th ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
ASPLOS 2021, pages 152–166, New York, NY, USA, 2021. Associa-
tion for Computing Machinery.

[34] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai,
Anurag Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl
Krauth, Neeraja Yadwadkar, et al. Cloud programming simpli-
fied: A berkeley view on serverless computing. arXiv preprint
arXiv:1902.03383, 2019.

[35] Artjom Joosen, Ahmed Hassan, Martin Asenov, Rajkarn Singh, Luke
Darlow, Jianfeng Wang, and Adam Barker. How does it function?
characterizing long-term trends in production serverless workloads.
In Proceedings of the 2023 ACM Symposium on Cloud Computing,
SoCC ’23, page 443–458, New York, NY, USA, 2023. Association for
Computing Machinery.

[36] Kostis Kaffes, Neeraja J. Yadwadkar, and Christos Kozyrakis. Her-
mod: Principled and practical scheduling for serverless functions. In
Proceedings of the 13th Symposium on Cloud Computing, SoCC ’22,
pages 289–305, New York, NY, USA, 2022. Association for Computing
Machinery.

[37] Jeongchul Kim and Kyungyong Lee. Practical cloud workloads for
serverless faas. In Proceedings of the ACM Symposium on Cloud
Computing, pages 477–477, 2019.

[38] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas
Pfefferle, and Christos Kozyrakis. Pocket: Elastic ephemeral storage for
serverless analytics. In 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18), pages 427–444, Carlsbad, CA,
2018. USENIX Association.

[39] Neeraj Kulkarni, Gonzalo Gonzalez-Pumariega, Amulya Khurana,
Christine Shoemaker, Christina Delimitrou, and David Albonesi. Cut-
tleSys: Data-Driven Resource Management for Interactive Applications
on Reconfigurable Multicores. In 53rd IEEE/ACM International Sym-
posium on Microarchitecture (MICRO), October 2020.

[40] Qian Li, Bin Li, Pietro Mercati, Ramesh Illikkal, Charlie Tai, Michael
Kishinevsky, and Christos Kozyrakis. Rambo: Resource allocation for
microservices using bayesian optimization. IEEE Computer Architec-
ture Letters, 20(1):46–49, 2021.

[41] Suyi Li, Wei Wang, Jun Yang, Guangzhen Chen, and Daohe Lu. Golgi:
Performance-aware, resource-efficient function scheduling for server-
less computing. In Proceedings of the 2023 ACM Symposium on
Cloud Computing, SoCC ’23, page 32–47, New York, NY, USA, 2023.
Association for Computing Machinery.

[42] Zijun Li, Yushi Liu, Linsong Guo, Quan Chen, Jiagan Cheng, Wenli
Zheng, and Minyi Guo. Faasflow: Enable efficient workflow execution
for function-as-a-service. In Proceedings of the 27th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’22, pages 782–796, New York, NY, USA,
2022. Association for Computing Machinery.

[43] Qingyuan Liu, Dong Du, Yubin Xia, Ping Zhang, and Haibo Chen. The
gap between serverless research and real-world systems. In Proceed-
ings of the 2023 ACM Symposium on Cloud Computing, SoCC ’23,
page 475–485, New York, NY, USA, 2023. Association for Computing
Machinery.

[44] David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ran-
ganathan, and Christos Kozyrakis. Heracles: Improving resource ef-
ficiency at scale. In Proceedings of the 42nd Annual International
Symposium on Computer Architecture, ISCA ’15, pages 450–462, New
York, NY, USA, 2015. Association for Computing Machinery.

[45] Ashraf Mahgoub, Edgardo Barsallo Yi, Karthick Shankar, Sameh El-
nikety, Somali Chaterji, and Saurabh Bagchi. ORION and the three
rights: Sizing, bundling, and prewarming for serverless DAGs. In 16th
USENIX Symposium on Operating Systems Design and Implementa-
tion (OSDI 22), pages 303–320, Carlsbad, CA, July 2022. USENIX
Association.

[46] Ashraf Mahgoub, Edgardo Barsallo Yi, Karthick Shankar, Eshaan
Minocha, Sameh Elnikety, Saurabh Bagchi, and Somali Chaterji.
Wisefuse: Workload characterization and dag transformation for server-
less workflows. Proc. ACM Meas. Anal. Comput. Syst., 6(2), jun 2022.

[47] Amiya K. Maji, Subrata Mitra, Bowen Zhou, Saurabh Bagchi, and
Akshat Verma. Mitigating interference in cloud services by middleware
reconfiguration. In Proceedings of the 15th International Middleware
Conference, Middleware ’14, pages 277–288, New York, NY, USA,
2014. Association for Computing Machinery.

[48] Jason Mars and Lingjia Tang. Whare-map: Heterogeneity in "homo-
geneous" warehouse-scale computers. In Proceedings of the 40th
Annual International Symposium on Computer Architecture, ISCA ’13,
pages 619–630, New York, NY, USA, 2013. Association for Computing
Machinery.

[49] Jason Mars, Lingjia Tang, Robert Hundt, Kevin Skadron, and Mary Lou
Soffa. Bubble-up: Increasing utilization in modern warehouse scale
computers via sensible co-locations. In Proceedings of the 44th Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO-
44, pages 248–259, New York, NY, USA, 2011. Association for Com-
puting Machinery.

[50] Nikita Mishra, John D. Lafferty, and Henry Hoffmann. Esp: A machine
learning approach to predicting application interference. In 2017 IEEE
International Conference on Autonomic Computing (ICAC), pages 125–
134, July 2017.

[51] Joe Novak, Sneha Kumar Kasera, and Ryan Stutsman. Auto-scaling
cloud-based memory-intensive applications. In 2020 IEEE 13th Inter-
national Conference on Cloud Computing (CLOUD), pages 229–237,
2020.

[52] Joe H. Novak, Sneha Kumar Kasera, and Ryan Stutsman. Cloud func-
tions for fast and robust resource auto-scaling. In 2019 11th Inter-
national Conference on Communication Systems & Networks (COM-
SNETS), pages 133–140, 2019.

USENIX Association 2024 USENIX Annual Technical Conference 15

[53] Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck, Tyler Har-
ter, Andrea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. SOCK:
Rapid task provisioning with serverless-optimized containers. In 2018
USENIX Annual Technical Conference (USENIX ATC 18), pages 57–
70, 2018.

[54] Tirthak Patel and Devesh Tiwari. Clite: Efficient and qos-aware co-
location of multiple latency-critical jobs for warehouse scale computers.
In 2020 IEEE International Symposium on High Performance Com-
puter Architecture (HPCA), pages 193–206, 2020.

[55] Haoran Qiu, Subho S. Banerjee, Saurabh Jha, Zbigniew T. Kalbarczyk,
and Ravishankar K. Iyer. FIRM: An Intelligent Fine-Grained Resource
Management Framework for SLO-Oriented Microservices. USENIX
Association, USA, 2020.

[56] Haoran Qiu, Weichao Mao, Chen Wang, Hubertus Franke, Alaa
Youssef, Zbigniew T. Kalbarczyk, Tamer Başar, and Ravishankar K.
Iyer. AWARE: Automate workload autoscaling with reinforcement
learning in production cloud systems. In 2023 USENIX Annual Techni-
cal Conference (USENIX ATC 23), pages 387–402, Boston, MA, July
2023. USENIX Association.

[57] Francisco Romero, Mark Zhao, Neeraja J. Yadwadkar, and Christos
Kozyrakis. Llama: A heterogeneous & serverless framework for auto-
tuning video analytics pipelines. In Proceedings of the ACM Sym-
posium on Cloud Computing, SoCC ’21, pages 1–17, New York, NY,
USA, 2021. Association for Computing Machinery.

[58] Rohan Basu Roy, Tirthak Patel, and Devesh Tiwari. Icebreaker: Warm-
ing serverless functions better with heterogeneity. In Proceedings
of the 27th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS ’22,
pages 753–767, New York, NY, USA, 2022. Association for Computing
Machinery.

[59] Krzysztof Rzadca, Pawel Findeisen, Jacek Swiderski, Przemyslaw
Zych, Przemyslaw Broniek, Jarek Kusmierek, Pawel Nowak, Beata
Strack, Piotr Witusowski, Steven Hand, and John Wilkes. Autopilot:
Workload autoscaling at google. In Proceedings of the Fifteenth Euro-
pean Conference on Computer Systems, EuroSys ’20, New York, NY,
USA, 2020. Association for Computing Machinery.

[60] Aakanksha Saha and Sonika Jindal. Emars: Efficient management and
allocation of resources in serverless. In 2018 IEEE 11th International
Conference on Cloud Computing (CLOUD), pages 827–830, 2018.

[61] David Schall, Artemiy Margaritov, Dmitrii Ustiugov, Andreas Sandberg,
and Boris Grot. Lukewarm serverless functions: Characterization
and optimization. In Proceedings of the 49th Annual International
Symposium on Computer Architecture, ISCA ’22, page 757–770, New
York, NY, USA, 2022. Association for Computing Machinery.

[62] Mohammad Shahrad, Rodrigo Fonseca, Íñigo Goiri, Gohar Chaudhry,
Paul Batum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark
Russinovich, and Ricardo Bianchini. Serverless in the wild: Character-
izing and optimizing the serverless workload at a large cloud provider.
In 2020 USENIX Annual Technical Conference (USENIX ATC 20),
pages 205–218, 2020.

[63] Simon Shillaker and Peter Pietzuch. Faasm: lightweight isolation
for efficient stateful serverless computing. In 2020 USENIX Annual
Technical Conference (USENIX ATC 20), pages 419–433, 2020.

[64] Wonseok Shin, Wook-Hee Kim, and Changwoo Min. Fireworks: A
fast, efficient, and safe serverless framework using vm-level post-jit
snapshot. In Proceedings of the Seventeenth European Conference on
Computer Systems, EuroSys ’22, pages 663–677, New York, NY, USA,
2022. Association for Computing Machinery.

[65] Arjun Singhvi, Arjun Balasubramanian, Kevin Houck, Mo-
hammed Danish Shaikh, Shivaram Venkataraman, and Aditya
Akella. Atoll: A scalable low-latency serverless platform. In
Proceedings of the ACM Symposium on Cloud Computing, SoCC
’21, pages 138–152, New York, NY, USA, 2021. Association for
Computing Machinery.

[66] Vikram Sreekanti, Chenggang Wu, Xiayue Charles Lin, Johann
Schleier-Smith, Joseph E. Gonzalez, Joseph M. Hellerstein, and Alexey
Tumanov. Cloudburst: Stateful functions-as-a-service. Proc. VLDB
Endow., 13(12):2438–2452, sep 2020.

[67] Ali Tariq, Austin Pahl, Sharat Nimmagadda, Eric Rozner, and Siddharth
Lanka. Sequoia: Enabling quality-of-service in serverless computing.
In Proceedings of the 11th ACM Symposium on Cloud Computing,
SoCC ’20, pages 311–327, New York, NY, USA, 2020. Association for
Computing Machinery.

[68] Huangshi Tian, Suyi Li, Ao Wang, Wei Wang, Tianlong Wu, and Hao-
ran Yang. Owl: Performance-aware scheduling for resource-efficient
function-as-a-service cloud. In Proceedings of the 13th Symposium on
Cloud Computing, SoCC ’22, pages 78–93, New York, NY, USA, 2022.
Association for Computing Machinery.

[69] Dmitrii Ustiugov, Dohyun Park, Lazar Cvetković, Mihajlo Djokic,
Hongyu Hè, Boris Grot, and Ana Klimovic. Enabling in-vitro server-
less systems research. In Proceedings of the 4th Workshop on Resource
Disaggregation and Serverless, WORDS ’23, page 1–7, New York, NY,
USA, 2023. Association for Computing Machinery.

[70] Ao Wang, Shuai Chang, Huangshi Tian, Hongqi Wang, Haoran Yang,
Huiba Li, Rui Du, and Yue Cheng. Faasnet: Scalable and fast provision-
ing of custom serverless container runtimes at alibaba cloud function
compute. In Irina Calciu and Geoff Kuenning, editors, 2021 USENIX
Annual Technical Conference, USENIX ATC 2021, July 14-16, 2021,
pages 443–457. USENIX Association, 2021.

[71] Kai-Ting Amy Wang, Rayson Ho, and Peng Wu. Replayable execution
optimized for page sharing for a managed runtime environment. In
Proceedings of the Fourteenth EuroSys Conference 2019, pages 1–16,
2019.

[72] Ziliang Wang, Shiyi Zhu, Jianguo Li, Wei Jiang, K. K. Ramakrish-
nan, Yangfei Zheng, Meng Yan, Xiaohong Zhang, and Alex X. Liu.
Deepscaling: Microservices autoscaling for stable cpu utilization in
large scale cloud systems. In Proceedings of the 13th Symposium on
Cloud Computing, SoCC ’22, pages 16–30, New York, NY, USA, 2022.
Association for Computing Machinery.

[73] Ran Xu, Subrata Mitra, Jason Rahman, Peter Bai, Bowen Zhou, Greg
Bronevetsky, and Saurabh Bagchi. Pythia: Improving datacenter utiliza-
tion via precise contention prediction for multiple co-located workloads.
In Proceedings of the 19th International Middleware Conference, Mid-
dleware ’18, pages 146–160, New York, NY, USA, 2018. Association
for Computing Machinery.

[74] Hailong Yang, Alex Breslow, Jason Mars, and Lingjia Tang. Bubble-
flux: Precise online qos management for increased utilization in ware-
house scale computers. SIGARCH Comput. Archit. News, 41(3):607–
618, jun 2013.

[75] Tianyi Yu, Qingyuan Liu, Dong Du, Yubin Xia, Binyu Zang, Ziqian
Lu, Pingchao Yang, Chenggang Qin, and Haibo Chen. Characteriz-
ing serverless platforms with serverlessbench. In Proceedings of the
ACM Symposium on Cloud Computing, SoCC ’20. Association for
Computing Machinery, 2020.

[76] Hong Zhang, Yupeng Tang, Anurag Khandelwal, and Ion Stoica. SHEP-
HERD: Serving DNNs in the wild. In 20th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 23), pages 787–
808, Boston, MA, April 2023. USENIX Association.

16 2024 USENIX Annual Technical Conference USENIX Association

[77] Xiao Zhang, Eric Tune, Robert Hagmann, Rohit Jnagal, Vrigo Gokhale,
and John Wilkes. Cpi2: Cpu performance isolation for shared compute
clusters. In Proceedings of the 8th ACM European Conference on
Computer Systems, EuroSys ’13, pages 379–391, New York, NY, USA,
2013. Association for Computing Machinery.

[78] Yanqi Zhang, Íñigo Goiri, Gohar Irfan Chaudhry, Rodrigo Fonseca,
Sameh Elnikety, Christina Delimitrou, and Ricardo Bianchini. Faster
and cheaper serverless computing on harvested resources. In Pro-
ceedings of the ACM SIGOPS 28th Symposium on Operating Systems
Principles, SOSP ’21, pages 724–739, New York, NY, USA, 2021. As-
sociation for Computing Machinery.

[79] Yanqi Zhang, Weizhe Hua, Zhuangzhuang Zhou, G. Edward Suh, and
Christina Delimitrou. Sinan: Ml-based and qos-aware resource man-
agement for cloud microservices. In Proceedings of the 26th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2021, pages 167–181,
New York, NY, USA, 2021. Association for Computing Machinery.

[80] Yunqi Zhang, Michael A. Laurenzano, Jason Mars, and Lingjia Tang.
Smite: Precise qos prediction on real-system smt processors to improve
utilization in warehouse scale computers. In Proceedings of the 47th
Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO-47, pages 406–418, USA, 2014. IEEE Computer Society.

[81] Laiping Zhao, Yanan Yang, Yiming Li, Xian Zhou, and Keqiu Li. Un-
derstanding, predicting and scheduling serverless workloads under
partial interference. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, SC
’21, New York, NY, USA, 2021. Association for Computing Machinery.

[82] Zhuangzhuang Zhou, Yanqi Zhang, and Christina Delimitrou.
Aquatope: Qos-and-uncertainty-aware resource management for multi-
stage serverless workflows. In Proceedings of the 28th ACM Inter-
national Conference on Architectural Support for Programming Lan-
guages and Operating Systems, Volume 1, ASPLOS 2023, pages 1–14,
New York, NY, USA, 2022. Association for Computing Machinery.

USENIX Association 2024 USENIX Annual Technical Conference 17

	Introduction
	Motivation
	Background and Motivation
	Challenges
	Challenges for the Scheduler
	Challenges for Autoscaling

	Insights

	Design Overview
	Pre-decision Scheduling
	Jiagu's Prediciton Model
	Capacity and Capacity Table
	Asynchronous Update
	Concurrency-aware Scheduling
	Put It All Together: Scheduling Example

	Dual-staged Scaling
	Implementation
	Evaluation
	Methodology
	Scheduling Performance Analysis
	Scheduling Effect on OpenFaaS
	Prediction Analysis

	Related Work
	Conclusion
	Acknowledgement

