
This paper is included in the Proceedings of the
2024 USENIX Annual Technical Conference.

July 10–12, 2024 • Santa Clara, CA, USA
978-1-939133-41-0

Open access to the Proceedings of the
2024 USENIX Annual Technical Conference

is sponsored by

HydraRPC: RPC in the CXL Era
Teng Ma, Alibaba Group; Zheng Liu, Zhejiang University and Alibaba Group;

Chengkun Wei, Zhejiang University; Jialiang Huang, Alibaba Group and
Tsinghua University; Youwei Zhuo, Alibaba Group and Peking University;

Haoyu Li, Zhejiang University; Ning Zhang, Yijin Guan, and Dimin Niu, Alibaba Group;
Mingxing Zhang, Tsinghua University; Tao Ma, Alibaba Group

https://www.usenix.org/conference/atc24/presentation/ma

HydraRPC: RPC in the CXL Era

Teng Ma1, Zheng Liu3,1, Chengkun Wei3, Jialiang Huang1,2, Youwei Zhuo1,4, Haoyu Li3

Ning Zhang1, Yijin Guan1, Dimin Niu1, Mingxing Zhang2∗, Tao Ma1

1Alibaba Group, 2Tsinghua University, 3Zhejiang University, 4Peking University

Abstract

In this paper, we present HydraRPC, which utilizes CXL
HDM for data transmission. By leveraging CXL, HydraRPC
can benefit from memory sharing, memory semantics, and
high scalability. As a result, expensive network rounds, mem-
ory copying, and serialization/deserialization are eliminated.
Since CXL.cache protocols are not fully supported, we em-
ploy non-cachable sharing to bypass the CPU cache and de-
sign a busy-polling free notification mechanism. This en-
sures efficient data transmission without the need for constant
polling. We conducted evaluations of HydraRPC on real CXL
hardware, which showcased the potential efficiency of utiliz-
ing CXL HDM to build RPC systems.

1 Introduction

Remote Procedure Call (RPC) is a fundamental technology
in distributed systems that facilitates network communication
by allowing functions to execute on a remote server as the
local calls. It simplifies client/server interactions by hiding the
complexities of the underlying communication processes [15].
With RPC, developers can write distributed applications more
efficiently, as the client-side code resembles a regular function
call, while the server-side handlers mirror standard procedures.
RPC has become an essential part of communication infras-
tructure in datacenters: Protobufs [21], Thrift [40], and Fina-
gle [20]. Performance and scalability are critical for modern
RPC implementations. Additional network latency and data
copy for communication and (de)serialization can impede
performance, while congestion at the hardware (network) and
software (buffer management) levels can affect scalability.

Recently, CXL (Compute Express Link), an industry-
supported cache-coherent interconnect for machines [3], mem-
ory and devices, serves as a potential catalyst for the advance-
ment of RPC. CXL enables seamless data sharing and re-
duced latency with CXL-based HDM (host-managed device
memory) by providing a high-speed, efficient, and flexible

∗Corresponding author. This work is supported by National Key Research
& Development Program of China (2022YFB4502004), Natural Science
Foundation of China (62141216, 61877035), Young Elite Scientists Sponsor-
ship Program by CAST (2022QNRC001), and Alibaba RI Program.

interconnect. This environment fosters the development of
more sophisticated and efficient RPC mechanisms that can
leverage the increased throughput and lower overhead. Espe-
cially, memory-sharing feature paves a new way to enable
multiple machines to access the same data [4], a replacement
for heavy network communication.

The implementations of traditional RPC are based on mes-
sage passing, but CXL only provides shared memory abstrac-
tions. Thus, there are three problems we should consider: 1)
How to design the control plane of RPC and the RPC protocol
to fully exploit CXL HDM’s potential performance; 2) CXL
HDM provides shared memory interfaces. Without message
passing interfaces, there is no efficient and easy-to-use mech-
anism to notify CPU of request/response arriving; and 3) how
to manage CXL HDM while using it in the RPC scenario.

In this paper, we propose a new RPC paradigm named Hy-
draRPC, to tackle the problems while building up RPC with
CXL. It leverages CXL HDM shared between multiple ma-
chines to avoid the expensive network round, memory copy
and (de)serialization. Instead of general Load/Store memory
access instructions, we employ non-cachable sharing to by-
pass the CPU cache, including two mechanisms for individual
scenarios. To achieve low CPU utilization and high perfor-
mance, we use the power reduction instruction of SSE3 during
polling-based notifications. Furthermore, HydraRPC supports
sliding window protocol to prevent access congestion.

The results show that HydraRPC can achieve 620KOPS
throughput for each RPC connection, which is 1.6/3.1×
higher than mRPC [17] and RDMA-based RPC. The low-
est RPC latency can reach nearly 1.47µs. Larger latency re-
ductions are possible by fully avoiding network operations
with CXL HDM. In addition, HydraRPC has good scalability
which can scale to more than 96 RPC connections for each
server with only 19% performance degradation.

We make the following contributions: (1) We demonstrate
that CXL is a powerful tool that enhances the performance
and efficiency of RPC. With the emerging memory sharing
feature of CXL, it is time to reconstruct RPC protocol us-
ing CXL HDM. (2) A CXL-based RPC architecture named
HydraRPC that mitigates data copy and (de)serialization by
applying several CXL-specific designs. (3) An implementa-
tion of HydraRPC in a real CXL platform and evaluations on

USENIX Association 2024 USENIX Annual Technical Conference 387

CPU 0 CPU 1 CPU 2
UPI

Physical Server 1Physical Server 0

Shared 1 Shared 1 Shared 1 CXL.cache

PCIe slot PCIe slot PCIe slot

CXL Switch + Fabric Manager

CXL HDMShared 1

CXL 2.0/3.0PCIe x16 Edge
MCIO x8 x 2

Figure 1: CXL Memory Sharing.

synthetic workloads and real applications.

2 Background

CXL. Emerging in 2019, CXL is one of the most
promising technologies not only for memory exten-
sion/expansion/disaggregation but also for high-performance
interconnect between machines. Unlike PCIe, CXL adds extra
capabilities that let the CPU talk to devices and their linked
memory with cache coherency using simple Load/Store in-
structions. The CXL standard defines three separate protocols:
CXL.io for IO devices, CXL.cache for cache coherency, and
CXL.mem for memory semantics. These three protocols can
interoperate to create three types of devices (type 1/2/3). Par-
ticularly, type 3 CXL devices can support the extension of
memory capacity which gains interest from both industries
and academia [5], and major mainstream vendors such as In-
tel, AMD, and Samsung support it. To enable type 3 CXL
devices, CXL.io and CXL.mem are necessary.
Memory Sharing. By combining these protocols, CXL
blurred the line of host memory between different servers/OS.
Current CXL standard [1] proposes to enable memory sharing
for CXL HDM. For instance, a 2TB Pooled CXL Memory Sys-
tem showcased at the Flash Memory Summit combines eight
Samsung 256GB CXL Memory modules with the XConn
XC50256 CXL switch, enabling memory sharing among eight
computing hosts [10].

Fig 1 shows coherent memory sharing [4]. With
CXL.cache, CXL HDM can be shared by all the hosts in
the coherency domain [2], and such memory is also known as
Multi-headed Logical Device (MLD). It defines mechanisms
to enforce hardware cache coherence between copies of the
same data stored in different machines. For instance, CPU
0, CPU 1 and CPU 2 can access the same memory region
(Shared 1).

The coherency model for each shared memory region
is designated as either multi-host hardware coherency or
software-managed coherency. To support multi-host hardware
coherency, it is required to track the host coherence state for
each cache line to varying extents, depending upon the MLD’s

RDMA WR/SEND

RDMA WR/SEND

MEM MEM

RDMA WR/SEND

MEM MEM

RDMA READ

Client ClientServer Server Client Server
STORE

LOAD

CXL-MEM

LOAD
STORE

(B) (C) (D)

RDMA WR/SENDRef Trans

SEND

RECV

MEM MEM

Client Server

(A)

TCP/IP RDMA RDMACopy
Copy

Cop
y

Copy

Message Passing Shared Memory

Figure 2: Different RPC Paradigms.

implementation-specific tracking mechanism such as snoop
filter or full directory. Hosts can perform atomic operations by
getting exclusive control of a cache line in their cache. Once
updated, this data is shared globally through cache coherence
and handled using standard eviction methods.

In software-managed coherency models, the coherence
state of hosts is not maintained by hardware but rather by host
software through specific mechanisms that establish owner-
ship of cache lines. While software takes the lead in managing
coherence within certain memory regions, it can optionally
utilize existing hardware coherency across multiple hosts for
other regions to streamline ownership coordination.

3 Challenges of State-of-the-art RPC

Current state-of-the-art RPC adopts message passing as
shown in Fig 2. The heavy network stacks burden tradi-
tional TCP/IP-based RPC (A), which consistently incur high
CPU overhead. Plenty of research works explore RDMA to
implement RPC to enhance performance while maintaining
compatibility with existing applications. These RDMA-based
works can be divided into two-sided (B) and one-sided (C)
approaches. HERD [29] and FaSST [30] are designed for
scalability, two-sided operation in the RPC design. However,
the extra data copies are inevitable. Some works investigate
ways to improve the communication performance of message
passing under one-sided approaches. RFP [41, 46] proposes a
pass-by-reference solution. For the RPC response, the server
writes a reference to the client side, then client uses the refer-
ence to fetch the response RDMA Read. However, additional
network round trips are needed to discover new incoming
responses under the message passing paradigm.

Above all, message passing based RPC works have three
major challenges:
Network Overhead. As shown in Fig 2, each RPC processing
contains two messages or RDMA operations, which is at least
10× more expensive than normal memory access. Even with
RDMA, the best network round trip is around 2µs, while this
number is 300ns in CXL HDM.
Data Copy. Unlike traditional pass-by-value approach, mod-
ern distributed processing systems, like Ray [39], com-
monly use pass-by-reference to avoid expensive data copying

388 2024 USENIX Annual Technical Conference USENIX Association

(Fig 2(A/B/C)). Instead of duplicating large request/response
data, they use distributed storage to store the data and only
transmit references of this data via RPC. It reduces data trans-
fer overhead, leading to enhanced efficiency and performance.
Scalability. Multiple RPC connections should build up their
buffer area, and buffer sharing should be limited to the same
server. However, users need to be aware that an imbalanced
RPC connections workload incurs high memory footprint and
poor QoS of each connection. From a network perspective,
numerous RPC connections can incur network congestion.

Regarding traditional pass-by-value RPC, message passing
generally involves data payloads being copied from one server
to another. As an alternative, shared memory abstractions re-
quire just the exchange of object references, embodying a
pass-by-reference method. This facilitates access to only nec-
essary data subparts and enables in-place updates, presenting
distinct benefits for various scenarios.

Using CXL HDM instead of a distributed object store for
pass-by-reference RPC (Fig 2(C)) offers two significant ad-
vantages. Firstly, the traditional object store architecture re-
quires clients to communicate with the server over the net-
work, leading to performance bottlenecks, especially for low-
latency workloads. In contrast, CXL HDM avoids involving
the network. Second, CXL.mem provides byte-addressable
access, enabling the creation of dynamic data structures with
link pointers and allowing in-place updates. This eliminates
the need for (de)serialization, resulting in improved perfor-
mance. When implementing CXL-based RPC, it is essential
to consider the architecture from the perspective of shared
memory abstractions.

4 Real CXL Platform

Hardware Architecture Our platform is based on Intel Ag-
ilex I-Series FPGA [26] and Archer City platform with Sap-
phire Rapids CPU. The server has 96 hyperthreads and 64GB
DIMM, and the CXL FPGA with 16GB CXL HDM is in-
serted into the PCIe slot of one node and connected to the
other node with two 8x MCIO cables. The hard CXL IP in
FPGA strictly adheres to the CXL specification requirement
and is configured to support memory pooling and sharing.

As shown in Fig 3, FPGA design for devkit allows access
to exactly the same memory over each of multiple CXL links.
It is important to understand that CXL HDM is cached by
the host platform the same way it does with DDR memo-
ries directly inserted into the motherboard. The existence of
memory sharing on devkit level is not visible to users of CXL
HDM. FPGA is not creating a single cache-coherent domain.
As described in Section 2, OS/Applications must ensure that
shared memory is used properly.

There are several constraints in our platforms: (1) There
must be alignment on what part of the memory can be ac-
cessed through each CXL link and the type of access (read

Client Server

cachline

Tail

Head

Req Buffer

uint64

Res Buffer

offset

Data

NT
 S

to
re

NT
 L

oa
d

....

1

2 3 4

Sl
id

in
g

W
in

do
w

C/S C/S

R
PC

 S
er

vi
ce

M
em

or
y

M
an

ag
em

en
t

Figure 3: HydraRPC Architecture.

or read-write). Hence, it is impossible to use shared mem-
ory as general purpose system ram through each CXL link,
as this will lead to corruption of each other’s data (stored
in CXL HDM). HydraRPC should manage reservation (e.g.
using memmap kernel option) of that memory to prevent un-
controlled access (Sec 5.4). (2) To ensure that data are read
from devkit memory instead of the local cache, especially in
cases when data could be changed through other CXL link,
cache invalidation needs to happen for address in question.
(3) To ensure that data are written to devkit memory instead
of only written to local cache, flushing of the cacheline (e.g.
clflush/prefetch) needs to happen after write. Thus the
data can be available for other CXL links. According to (2)
and (3), non-cachable sharing (Sec 5.2) is required.
Software Configuration In this platform, we utilize the CXL
1.1+ driver as the current hardware is incompatible with the
CXL 2.0 driver. This driver enables intra-server sharing of
CXL HDM. We utilize the daxctl tool to initialize the CXL
HDM in the devdax (device direct access) mode. This allows
Load/Store instruction to access the CXL HDM by mapping
the dax device through mmap. Thus memory polling is re-
quired to perceive the memory modification (Sec 5.3).

5 Design of HydraRPC

5.1 Architecture Overall
As shown in Fig 3, we design HydraRPC, a CXL-based RPC.
It leverages CXL HDM to avoid the expensive network round,
memory copy and (de)serialization. Multiple clients/servers
connect to the same CXL HDM via physical link or CXL
switch. For each RPC connection, there are two message
queues and the corresponding data area in CXL HDM. Mes-
sage queues are responsible for passing the reference as the
request/response buffer, and the data area stores the raw data
of the request/response. Each entry in the message queue is
64 bits in size, comprising an embedded reference (offset) to
the data area and a one-bit arrival flag. To allocate memory
for the request/response data, we employ a user-space level
memory allocator. This allocator manages the CXL HDM by
mapping the device memory region (details in Section 5.4).

USENIX Association 2024 USENIX Annual Technical Conference 389

Control Plane. Similar to a vanilla RPC, HydraRPC main-
tains at least an RPC service in each physical server. When the
application is deployed, it connects with such service and the
service will distribute the global address of message queues
and data area in CXL HDM for both server and client side.
Then following a typical handshaking protocol [40] between
server and client, the RPC connection is established.
Data Plane. HydraRPC includes three steps: request from
client, server execution, and response to client. 1) Request
Phase: The client first writes the user-defined request data to
the preallocated memory in the data area, which is cache-line
aligned to enable non-cachable sharing (see in Section 5.2).
Next, the client appends an entry to the request message queue.
Before sending the next request, there is no need to wait for
the response from server side (see sliding window mechanism
in Section 5.5). Meanwhile, the server polls the arrival flag
in the tail entry of the request message queue. 2) Execution
Phase: Once gaining the new request, the working process
utilizes the offset in the entry to execute the request. For
lightweight RPC requests, HydraRPC follows the “run-to-
completion” principle to inline the execution phase into the
polling process [11]. If the server has prepared response data,
it writes it to the preallocated memory in the data area. To
reduce memory copy, the server can use preallocated memory
directly during execution. 3) Response Phase: The response
phase may include data being piggybacked to the client side.
Thus the server appends an entry to the response message
queue. Then the entry in response message queue is polled by
client who sends the request. The RPC process is considered
complete when the client acknowledges the response.

5.2 Non-cachable sharing

DDR memories are directly inserted into the motherboard
and thus are cached by the host. CXL HDM must differ from
the DDR memories. Currently, our platform allows access to
exactly the same memory over each of multiple CXL links.
But, without CXL.cache, memory sharing is not visible to
any user of CXL HDM. A single cache-coherent domain for
multiple servers will be available in the upcoming CXL 3.0.
Thus OS/applications should ensure that shared memory is
used properly. Even with CXL 3.0, the overhead to maintain
cache coherency will be intolerable [42]. To avoid the need
for CXL.cache, we provide two alternative mechanisms to
enable non-cachable sharing via bypassing CPU cache.
MTRR. Intel’s Memory Type Range Registers (MTRR) tech-
nology [31] provides a way to control access and cacheability
of physical memory regions. This method is available in both
Intel and AMD CPUs. It improves system performance by
optimizing how the CPU caches certain ranges of memory
addresses, allowing for variations like write-through, write-
combining, or write-back caching.

There are two interfaces to set MTRR: one is an ASCII
interface which allows you to read and write in /proc/mtrr.

The other is an ioctl() interface. Besides, the parameters are
the base physical address and length of the memory region.
We gain the physical memory region of CXL HDM from
SRAT in ACPI, and then use ioctl to set the attribute of such
memory region as uncachable.
Non-temporal Access. Intel ISA provides specific instruc-
tions such as clflush, clwb or ntstore to flush or directly
write data to CXL HDM. In HydraRPC, non-temporal mem-
ory operations are utilized on both the client and server sides.
To ensure that data are loaded or stored from CXL HDM in-
stead of local cache (i.e., visible), we use clflush/prefetch
to bypass local cache. Then it is followed by a mem-
ory store/load fence (sfence/lfence) to synchronize non-
temporal access.

We evaluate the latency of these two bypassing caching
mechanisms, and they show the same performance. Thus, we
won’t distinguish them in subsequent experiments.

5.3 Notification

HydraRPC requires a notification mechanism to inform the
client/server about the arrival of request/response. Thus both
sides can handle the request/response on time. We provide
two ways in the protocol of HydraRPC.
Optimized Polling Based. To achieve optimal low latency,
HydraRPC utilizes polling on the CXL HDM to detect in-
coming request/response [23, 47]. In this approach, the CPU
reads the arrival flags of request/ response entries and initiates
processing when the arrival flag is valid. However, this can re-
sult in unnecessary work as the CPU may read and verify the
arrival flags multiple times. To mitigate the issue of spinning
on a memory location during busy polling, we utilize two in-
trinsics (monitor and mwait), specifically designed for Intel
processors with Streaming SIMD Extensions 3 (SSE3). Also,
they have the user mode equivalents (umonitor and umwait).
The client/server can issue a monitor instruction at the cache
line granularity for the circular buffer. Subsequently, an mwait
instruction is executed to halt the CPU and conserve power.
The CPU is then awakened when the monitored data is modi-
fied by the other party. This approach effectively reduces CPU
footprint and improves the performance of memory polling.
Interrupt Based. Even after optimizing the polling, the CPU
overhead cannot be neglected. Currently, PCIe MSI (Mes-
sage Signaled Interrupts) allows PCIe devices to signal inter-
rupts to the CPU via messaging rather than physical interrupt
lines [6]. By allowing multiple and scalable interrupt vectors
for each device, the notification mechanism with PCIe MSI
delivers higher performance. Fortunately, the transaction layer
of CXL is based on PCIe so MSI is implemented in CXL 3.0
specification. We can define a new interrupt type in the MSI
table modifying the kernel. while a new memory write is
coming, it initiates a memory write Transaction Layer Packet
(TLP) directed towards the host software. This TLP packet is
generated with the address and data sourced from the corre-

390 2024 USENIX Annual Technical Conference USENIX Association

sponding entry within the MSI table. Subsequently, the host’s
interrupt service routine identifies the TLP as an interrupt
and proceeds to address it accordingly, and RPC processing
wakes up. Because the current mailbox in our platform cannot
enable register to signal an MSI, we will leave this for future
work.

5.4 Memory Management

In our implementation, the allocation of the message queue
and the data area follows separate paths. For the message
queue, we use a fixed-size memory pool since the allocation is
infrequent, and the ownership of the message queue is <node
1 (client), node 2 (server)>. For the data area, we employ a
two-tier allocator, as described in CXL-SHM [48], to alleviate
the overhead of flexible allocation.

When a physical machine has multiple connections with
another physical machine, these connections can share a sin-
gle message queue. Then the polling process can follow
the same path, which is similar to the sharing approach in
ScaleRPC [18]. It reduces the memory footprint and mitigates
the heavy CPU utilization associated with polling.

5.5 Sliding Window

HydraRPC employs the sliding window protocol to control
the data transmission flow, ensuring high performance and
efficient communication, particularly during large-scale and
high-volume data transfers.

The sliding window limits the number of request/response
messages that can be sent before an acknowledgment is re-
ceived. This window size can be dynamically adjusted based
on the conditions of CPU utilization or receiver processing
capabilities [33]. When the client needs to push multiple re-
quests to the request message queue, it utilizes the sliding
window to control the number of additional requests that can
be sent before an acknowledgment for a previous request is
received. Upon sending a request, the client starts a timeout
timer. If the corresponding response is received before the
timeout, the RPC task is completed, and the client moves the
window to send the subsequent task. However, if a timeout
occurs, the request must be resent.

Once an RPC task is acknowledged or successfully resent
after a timeout, the window slides forward, allowing new re-
quests to be sent. This process enables continuous and orderly
task transmission while controlling the maximum number of
RPC tasks that can be sent without acknowledgment.

By employing the sliding window, HydraRPC can prevent
access congestion of the CXL HDM, ensuring a consistent
data transmission rate and sustaining efficient communication.
It is particularly beneficial for upper-layer distributed systems
requiring high reliability and data integrity.

Table 1: Comparisons between HydraRPC, mRPC and gRPC.

Solution AVG Latency P95 Latency P99 Latency

RDMA
gRPC 100µs 130µs 380µs
mRPC 7.60µs 8.31µs 9.22µs
RDMA-RPC 5.10µs 5.45µs 5.74µs

CXL Load/Store 300ns - -
HydraRPC 1.47µs 1.73µs 2.00µs

6 Demonstrations and Evaluations

We have implemented a CXL platform (see Section 4) that
aligns with the description in Fig 1. We evaluate HydraRPC
with several microbenchmarks. The request and response are
byte arrays, and we adjust the RPC size by changing the array
length. We choose mRPC [17], gRPC [21] and an in-house
RDMA-base RPC as the baselines. RDMA-based RPC is
similar to Herd RPC [29] but under RC mode to promise
reliable delivery. We fix the concurrency of mRPC as 4 and
test it with ConnextX-6 200GbE RDMA NIC.

6.1 Performance

Overall, HydraRPC achieves a throughput of 620 KOPS in
a one-to-one scenario (two nodes). This throughput is 1.6
and 3.1× higher than mRPC and RDMA-based RPC with a
64Bytes payload. As we increase the number of connections
(up to 96), the peak throughput reaches 49MOPS.
Small RPC latency. Table 1 shows the latency comparisons
between raw CXL, HydraRPC, gRPC, mRPC and RDMA-
based RPC by issuing 64Bytes request. We measured the CXL
device using the Intel MLC toolkit [9]. The raw Load/Store
latency is 300 ns without adding extra flush instructions. Hy-
draRPC achieves an average latency of 1.47µs. Relative to
raw CXL access latency (around 300 ns), assuming a total of
four CXL accesses, mRPC adds 0.27µs extra latency. This is
the cost of polling, memory management and other overheads.
Compared with mRPC, HydraRPC speeds up the average la-
tency by 5.17× and the P99 tail latency by 4.16×. Because
the FPGA’s logic frequency is low (around 400MHz). An
ASIC-based CXL device, with superior manufacturing such
as Montage [7], Samsung [32], would be possible to greatly
improve the latency leading to an even better performance of
HydraRPC [43].
Large RPC throughput. As shown in Fig 4, Hy-
draRPC speeds up mRPC and RDMA-based RPC by 1.6
∼96/3.1∼247× when request/response size is from 64Bytes
to 2MB. mRPC and RDMA-based RPC performs a poor
throughput when request/response size exceeds 4KB. The
cause of performance degradation is that these two RPCs are
bounded in the maximum bandwidth of RDMA network. In
HydraRPC, the request/response data can be updated in place,
and it can further exploit the high bandwidth of CXL HDM.

USENIX Association 2024 USENIX Annual Technical Conference 391

HydraRPC
RDMA-based RPC
mRPC

Th
ro

ug
hp

ut
 (K

O
PS

)

0

500

1,000

Size (Bytes)
64B 512B 4KB 32KB 512KB

Figure 4: Performance compar-
isons w/ different RPC size.

HydraRPC

Th
ro

ug
hp

ut
 (K

O
PS

)

0

500

1,000

Sliding Window Size
W/O 1 2 4 8 16

Figure 5: HydraRPC with dif-
ferent sliding window size.

HydraRPC
RDMA-based RPC

mRPC

Th
ro

ug
hp

ut
 (M

O
PS

)

0

20

40

RPC Connection Number
148 16 32 48 64 96

Figure 6: The scalability of Hy-
draRPC.

W/O OPT
HydraRPCC

PU
 U

til
iz

at
io

n
(%

)

0

50

100

Client Request Rate (KOPS)
1 10 100 MAX

Figure 7: The server-side CPU
utilization of HydraRPC.

We also evaluate HydraRPC with different sliding win-
dow size from 0 to 16. Fig 5 shows that the throughput of
HydraRPC can achieve 1.28 MOPS when sliding window
size is 16, and it is 2.06× higher than HydraRPC without
applying sliding window (620 KOPS). Even if the sliding
window size is only 1, the throughput can be 792 KOPS (27%
improvement).

6.2 Efficiency

We also consider the efficiency from the aspect of scalability
and CPU overhead.
Scalablity. We assessed the scalability of HydraRPC by set-
ting the RPC request size at 64Bytes and increasing the num-
ber of client threads. Correspondingly, the server used an
equal number of threads, with each client thread connecting to
a specific server thread. The results illustrated in Fig 6 indicate
that the performance of HydraRPC is 1.6∼11.4/3.8∼10.1×
higher than mRPC and RDMA-based RPC. RDMA-based
RPC performs a performance degradation (5.33 MOPS to
4.64 MOPS) when RPC connection number is higher than 48,
because of the poor scalability of RDMA network. In contrast,
the throughput of HydraRPC increases from 28.5 MOPS to
49.0 MOPS when the connection number is 48 to 96.
CPU overhead. Fig 7 shows CPU utilization of the server
side. We adjust the request rate of workloads in client side
from 1KOPS to the maximum throughput (around 620KOPS).
In the maximum throughput scenario, the server keeps run-
ning with nearly 100%CPU utilization. In the low request rate
scenario, HydraRPC with polling optimization incurs less
CPU usage (45%CPU utilization) than the busy polling case.

6.3 End-to-end Application

We choose TensorPipe [24] from the Tensorflow [13] as the
end-to-end application. TensorPipe is an open-source library
for high-performance tensor transfers in distributed machine
learning, enabling efficient GPU communication and designed
to integrate with deep learning frameworks like PyTorch for
streamlined model training across multiple devices. Tensor-
Pipe has a shared memory (SHM) transport, which two pro-
cesses on the same server can use to communicate by perform-

Table 2: Comparisons between native TensorPipe and
HydraRPC-based TensorPipe.

Latency (µs) UV SHM CXL

avg 29.579 10.535 13.004
P90 30.258 11.086 13.338
P95 30.717 13.222 13.470

ing just a memory copy. We reuse the underlying transport by
modifying it as the paradigm in HydraRPC.

As we can see from Table 2, Tensorpipe using HydraRPC
as the transport performs at least 2× lower latency than using
UV library [36]. Compared to SHM transport, which exploits
local shared memory but cannot support inter-node RPC, it
shows similar performance with only a 20% latency increase.

7 Related Works

RPC. Existing works focus on reducing the round trips of
RPC protocol [16] or using fast network [34,44] to accelerate
RPC, or avoid the need for (de)serialization in upper layer
applications [19, 37]. For instance, mRPC [17] eliminates the
overhead by applying policy to RPC data before serializa-
tion and only copying data when necessary for security. For
RPC communication in the same-machine, the lightweight
RPC [14] is proposed to reduce unnecessarily high cost. Hy-
draRPC relies on current hardware advancements CXL 3.0,
to solve the performance and efficiency issue. The building
block of HydraRPC is memory sharing feature of CXL HDM,
which is orthogonal to existing works.
CXL. Currently, most works use CXL to mitigate the mem-
ory utilization problem in datacenters. For instance, Di-
rectCXL [22] connects a host processor with remote memory
over CXL.mem, allowing direct memory access for load/store
operations. Pond [35] explores utilizing a CXL-based mem-
ory pool for cloud infrastructure, finding that pooling across
8-16 sockets offers optimal cloud configuration. TPP [38]
introduces tiered-memory subsystems based on CXL.mem
and employs an operating system-level mechanism for page
placement to enhance memory management. In terms of stor-
age, CXL-SSD [28] indicates that CXL is advantageous for
integrating PCIe-based block devices, enabling expansive and

392 2024 USENIX Annual Technical Conference USENIX Association

scalable memory. However, none of these approaches are tai-
lored to the sharing of fine-grained objects across different
hosts. HydraRPC pave a new path by utilizing shared memory
abstraction of CXL to construct RPC.

Combing CXL with RDMA, RCMP [45] enables intra-
node access of CXL HDM. With RCMP and RDMA cache
coherency protocol [16], HydraRPC can scale beyond a rack.
The CXL switches (Xconn [12]/FADU [8]) can also enhance
the scalability of HydraRPC to sub-hundred machines.
Shared Memory Communication. Several distributed ap-
plications can support single-server deployment by replacing
network with shared memory. NCCL [27] utilizes shared
memory as one of its communication methods to efficiently
transfer data between GPUs within the same node. This ap-
proach leverages the high-speed data exchange capabilities of
shared memory, reducing the need for data to travel through
the slower PCIe bus, thus accelerating intra-node GPU com-
munication. In Linux Kernel, SMC (Shared Memory Com-
munications) [25] leverages shared memory for fast and effi-
cient data transfer. By using a shared memory buffer, SMC
bypasses the traditional TCP/IP stack, reducing latency and
CPU utilization for communication.

8 Conclusion

In this paper, we propose HydraRPC that implements across-
node RPC over one CXL HDM. HydraRPC utilizes non-
cachable sharing and zero copy data layout to enable CXL-
based RPC and applies sliding window and bus-polling free
notification mechanisms for higher performance. The results
of our real platform show that HydraRPC can enjoy benefits
from memory sharing and achieve several orders of magnitude
higher throughput than RDMA-based RPC.

References

[1] Compute express link 3.0. https://www.computeexp
resslink.org/_files/ugd/0c1418_a8713008916
044ae9604405d10a7773b.pdf, 2022.

[2] Compute express link cxl 3.0 is the exciting building
block for disaggregation. https://www.servetheho
me.com/compute-express-link-cxl-3-0-is-the
-exciting-building-block-for-disaggregatio
n/, 2022.

[3] Compute express link™: The breakthrough cpu-to-
device interconnect. https://www.computeexpre
sslink.org/home, 2022.

[4] Cxl 2.0 and 3.0 for storage and memory applications.
https://www.synopsys.com/designware-ip/te
chnical-bulletin/cxl2-3-storage-memory-app
lications.html, 2022.

[5] Documentation for linux pmem and cxl tools. https:
//pmem.io/ndctl/cxl/, 2022.

[6] Handling pcie interrupts - intel community. https:
//community.intel.com/t5/FPGA-Wiki/Handling
-PCIe-Interrupts/ta-p/736044, 2022.

[7] Cxl memory expander controller (mxc).
https://www.montage-tech.com/MXC,

[8] Fadu cxl 2.0 switch and pcie gen5 nvme ssds at fms
2023. https://www.servethehome.com/fadu-cxl-2-0-
switch-and-pcie-gen5-nvme-ssds-at-fms-2023/, 2023.

[9] Intel® memory latency checker (intel® mlc). https:
//www.intel.com/content/www/us/en/download
/736633/intel-memory-latency-checker-intel
-mlc.html, 2023.

[10] Samsung, memverge, h3 platform, and xconn demon-
strate memory pooling and sharing for ‘endless mem-
ory’. https://www.hpcwire.com/off-the-wire/samsung-
memverge-h3-platform-and-xconn-demonstrate-
memory-pooling-and-sharing-for-endless-memory/,
2023.

[11] Seastar. https://seastar.io/, 2023.

[12] World’s first cxl 2.0 and pcie gen5 switch ic.
https://www.xconn-tech.com/product, 2023.

[13] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, et al.
{TensorFlow}: a system for {Large-Scale} machine
learning. In 12th USENIX symposium on operating
systems design and implementation (OSDI 16), pages
265–283, 2016.

[14] Brian Bershad, Thomas Anderson, Edward Lazowska,
and Henry Levy. Lightweight remote procedure call.
ACM SIGOPS Operating Systems Review, 23(5):102–
113, 1989.

[15] Andrew D Birrell and Bruce Jay Nelson. Implementing
remote procedure calls. ACM Transactions on Computer
Systems (TOCS), 2(1):39–59, 1984.

[16] Qingchao Cai, Wentian Guo, Hao Zhang, Divyakant
Agrawal, Gang Chen, Beng Chin Ooi, Kian-Lee Tan,
Yong Meng Teo, and Sheng Wang. Efficient distributed
memory management with rdma and caching. Proceed-
ings of the VLDB Endowment, 11(11):1604–1617, 2018.

[17] Jingrong Chen, Yongji Wu, Shihan Lin, Yechen Xu, Xin-
hao Kong, Thomas Anderson, Matthew Lentz, Xiaowei
Yang, and Danyang Zhuo. Remote procedure call as
a managed system service. In 20th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 23), pages 141–159, 2023.

USENIX Association 2024 USENIX Annual Technical Conference 393

https://www.computeexpresslink.org/_files/ugd/0c1418_a8713008916044ae9604405d10a7773b.pdf
https://www.computeexpresslink.org/_files/ugd/0c1418_a8713008916044ae9604405d10a7773b.pdf
https://www.computeexpresslink.org/_files/ugd/0c1418_a8713008916044ae9604405d10a7773b.pdf
https://www.servethehome.com/compute-express-link-cxl-3-0-is-the-exciting-building-block-for-disaggregation/
https://www.servethehome.com/compute-express-link-cxl-3-0-is-the-exciting-building-block-for-disaggregation/
https://www.servethehome.com/compute-express-link-cxl-3-0-is-the-exciting-building-block-for-disaggregation/
https://www.servethehome.com/compute-express-link-cxl-3-0-is-the-exciting-building-block-for-disaggregation/
https://www.computeexpresslink.org/home
https://www.computeexpresslink.org/home
https://www.synopsys.com/designware-ip/technical-bulletin/cxl2-3-storage-memory-applications.html
https://www.synopsys.com/designware-ip/technical-bulletin/cxl2-3-storage-memory-applications.html
https://www.synopsys.com/designware-ip/technical-bulletin/cxl2-3-storage-memory-applications.html
https://pmem.io/ndctl/cxl/
https://pmem.io/ndctl/cxl/
https://community.intel.com/t5/FPGA-Wiki/Handling-PCIe-Interrupts/ta-p/736044
https://community.intel.com/t5/FPGA-Wiki/Handling-PCIe-Interrupts/ta-p/736044
https://community.intel.com/t5/FPGA-Wiki/Handling-PCIe-Interrupts/ta-p/736044
https://www.intel.com/content/www/us/en/download/736633/intel-memory-latency-checker-intel-mlc.html
https://www.intel.com/content/www/us/en/download/736633/intel-memory-latency-checker-intel-mlc.html
https://www.intel.com/content/www/us/en/download/736633/intel-memory-latency-checker-intel-mlc.html
https://www.intel.com/content/www/us/en/download/736633/intel-memory-latency-checker-intel-mlc.html

[18] Youmin Chen, Youyou Lu, and Jiwu Shu. Scalable
rdma rpc on reliable connection with efficient resource
sharing. In Proceedings of the Fourteenth EuroSys Con-
ference 2019, pages 1–14, 2019.

[19] Aleksandar Dragojević, Dushyanth Narayanan, Orion
Hodson, and Miguel Castro. Farm: Fast remote mem-
ory. In Proceedings of the 11th USENIX Conference on
Networked Systems Design and Implementation, pages
401–414, 2014.

[20] Marius Eriksen. Your server as a function. ACM
SIGOPS Operating Systems Review, 48(1):51–57, 2014.

[21] Google. grpc. https://grpc.io/, 2022.

[22] Donghyun Gouk, Sangwon Lee, Miryeong Kwon, and
Myoungsoo Jung. Direct access high-performance mem-
ory disaggregation with directcxl. In 2022 USENIX
Annual Technical Conference (USENIX ATC 22), pages
287–294, 2022.

[23] Bryan Harris and Nihat Altiparmak. When poll is more
energy efficient than interrupt. In Proceedings of the
14th ACM Workshop on Hot Topics in Storage and File
Systems, pages 59–64, 2022.

[24] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan
Firat, Dehao Chen, Mia Chen, HyoukJoong Lee, Jiquan
Ngiam, Quoc V Le, Yonghui Wu, et al. Gpipe: Effi-
cient training of giant neural networks using pipeline
parallelism. Advances in neural information processing
systems, 32, 2019.

[25] IBM. Smc for linux on ibm z and linuxone. https:
//linux-on-z.blogspot.com/p/smc-for-linux
-on-ibm-z.html, 2022.

[26] Intel. Intel agilex® 7 fpga and soc fpga i-series. https:
//www.intel.com/content/www/us/en/products
/details/fpga/agilex/7/i-series.html, 2022.

[27] Sylvain Jeaugey. Nccl 2.0. In GPU Technology Confer-
ence (GTC), volume 2, 2017.

[28] Myoungsoo Jung. Hello bytes, bye blocks: Pcie storage
meets compute express link for memory expansion (cxl-
ssd). In Proceedings of the 14th ACM Workshop on Hot
Topics in Storage and File Systems, pages 45–51, 2022.

[29] Anuj Kalia, Michael Kaminsky, and David G Andersen.
Using rdma efficiently for key-value services. In Pro-
ceedings of the 2014 ACM Conference on SIGCOMM,
pages 295–306, 2014.

[30] Anuj Kalia, Michael Kaminsky, and David G Andersen.
Fasst: Fast, scalable and simple distributed transactions
with two-sided (rdma) datagram rpcs. In OSDI, pages
185–201, 2016.

[31] Kernel. Mtrr (memory type range register) control. ht
tps://docs.kernel.org/arch/x86/mtrr.html,
2022.

[32] Kyungsan Kim, Hyunseok Kim, Jinin So, Wonjae Lee,
Junhyuk Im, Sungjoo Park, Jeonghyeon Cho, and Hoy-
oung Song. Smt: Software-defined memory tiering for
heterogeneous computing systems with cxl memory ex-
pander. IEEE Micro, 43(2):20–29, 2023.

[33] Marios Kogias and Edouard Bugnion. Flow control
for latency-critical rpcs. In Proceedings of the 2018
Afternoon Workshop on Kernel Bypassing Networks,
pages 15–21, 2018.

[34] Seung-seob Lee, Yanpeng Yu, Yupeng Tang, Anurag
Khandelwal, Lin Zhong, and Abhishek Bhattacharjee.
Mind: In-network memory management for disaggre-
gated data centers. In Proceedings of the ACM SIGOPS
28th Symposium on Operating Systems Principles,
SOSP ’21, page 488–504, New York, NY, USA, 2021.
Association for Computing Machinery.

[35] Huaicheng Li, Daniel S Berger, Lisa Hsu, Daniel Ernst,
Pantea Zardoshti, Stanko Novakovic, Monish Shah,
Samir Rajadnya, Scott Lee, Ishwar Agarwal, et al. Pond:
Cxl-based memory pooling systems for cloud platforms.
In Proceedings of the 28th ACM International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems, Volume 2, pages 574–
587, 2023.

[36] libuv. libuv: Cross-platform asynchronous i/o. https:
//github.com/libuv/libuv, 2022.

[37] Teng Ma, Mingxing Zhang, Kang Chen, Zhuo Song,
Yongwei Wu, and Xuehai Qian. Asymnvm: An efficient
framework for implementing persistent data structures
on asymmetric nvm architecture. In Proceedings of the
Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating
Systems, pages 757–773, 2020.

[38] Hasan Al Maruf, Hao Wang, Abhishek Dhanotia, Jo-
hannes Weiner, Niket Agarwal, Pallab Bhattacharya,
Chris Petersen, Mosharaf Chowdhury, Shobhit Kanaujia,
and Prakash Chauhan. Tpp: Transparent page placement
for cxl-enabled tiered-memory. pages 742–755, 2023.

[39] Philipp Moritz, Robert Nishihara, Stephanie Wang,
Alexey Tumanov, Richard Liaw, Eric Liang, Melih Eli-
bol, Zongheng Yang, William Paul, Michael I. Jordan,
and Ion Stoica. Ray: A distributed framework for emerg-
ing ai applications. In OSDI, page 561–577. USENIX,
2018.

394 2024 USENIX Annual Technical Conference USENIX Association

https://grpc.io/
https://linux-on-z.blogspot.com/p/smc-for-linux-on-ibm-z.html
https://linux-on-z.blogspot.com/p/smc-for-linux-on-ibm-z.html
https://linux-on-z.blogspot.com/p/smc-for-linux-on-ibm-z.html
https://www.intel.com/content/www/us/en/products/details/fpga/agilex/7/i-series.html
https://www.intel.com/content/www/us/en/products/details/fpga/agilex/7/i-series.html
https://www.intel.com/content/www/us/en/products/details/fpga/agilex/7/i-series.html
https://docs.kernel.org/arch/x86/mtrr.html
https://docs.kernel.org/arch/x86/mtrr.html
https://github.com/libuv/libuv
https://github.com/libuv/libuv

[40] Mark Slee, Aditya Agarwal, and Marc Kwiatkowski.
Thrift: Scalable cross-language services implementation.
Facebook white paper, 5(8):127, 2007.

[41] Maomeng Su, Mingxing Zhang, Kang Chen, Zhenyu
Guo, and Yongwei Wu. Rfp: When rpc is faster than
server-bypass with rdma. In Proceedings of the Twelfth
European Conference on Computer Systems, pages 1–15.
ACM, 2017.

[42] Yan Sun, Yifan Yuan, Zeduo Yu, Reese Kuper, Chihun
Song, Jinghan Huang, Houxiang Ji, Siddharth Agarwal,
Jiaqi Lou, Ipoom Jeong, et al. Demystifying cxl memory
with genuine cxl-ready systems and devices. pages 105–
121, 2023.

[43] Yupeng Tang, Ping Zhou, Wenhui Zhang, Henry Hu,
Qirui Yang, Hao Xiang, Tongping Liu, Jiaxin Shan,
Ruoyun Huang, Cheng Zhao, et al. Exploring perfor-
mance and cost optimization with asic-based cxl mem-
ory. In Proceedings of the Nineteenth European Confer-
ence on Computer Systems, pages 818–833, 2024.

[44] Qing Wang, Youyou Lu, Erci Xu, Junru Li, Youmin
Chen, and Jiwu Shu. Concordia: Distributed shared
memory with {In-Network} cache coherence. In 19th
USENIX Conference on File and Storage Technologies
(FAST 21), pages 277–292, 2021.

[45] Zhonghua Wang, Yixing Guo, Kai Lu, Jiguang Wan,
Daohui Wang, Ting Yao, and Huatao Wu. Rcmp: Recon-
structing rdma-based memory disaggregation via cxl.
ACM Transactions on Architecture and Code Optimiza-
tion, 21(1):1–26, 2024.

[46] Yongwei Wu, Teng Ma, Maomeng Su, Mingxing Zhang,
CHEN Kang, and Zhenyu Guo. Rf-rpc: Remote fetching
rpc paradigm for rdma-enabled network. IEEE Transac-
tions on Parallel and Distributed Systems, 30(7):1657–
1671, 2019.

[47] Jisoo Yang, Dave B Minturn, and Frank Hady. When
poll is better than interrupt. In FAST, volume 12, pages
3–3, 2012.

[48] Mingxing Zhang, Teng Ma, Jinqi Hua, Zheng Liu, Kang
Chen, Ning Ding, Fan Du, Jinlei Jiang, Tao Ma, and
Yongwei Wu. Partial failure resilient memory manage-
ment system for (cxl-based) distributed shared memory.
In Proceedings of the 29th Symposium on Operating
Systems Principles, pages 658–674, 2023.

USENIX Association 2024 USENIX Annual Technical Conference 395

	Introduction
	Background
	Challenges of State-of-the-art RPC
	Real CXL Platform
	Design of HydraRPC
	Architecture Overall
	Non-cachable sharing
	Notification
	Memory Management
	Sliding Window

	Demonstrations and Evaluations
	Performance
	Efficiency
	End-to-end Application

	Related Works
	Conclusion

