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Abstract
JBD2, the current physical journaling mechanism in Ext4 is

bulky and resource-hungry. Specifically, in case of metadata-
heavy workloads, fsyncs issued by applications cause JBD2
to write copies of changed metadata blocks, incurring high
byte and IO overhead. When storing data in Ext4 via NFS (a
popular setup), the NFS protocol issues fsyncs for every file
metadata update which further exacerbates the problem. In a
simple multi-threaded mail-server workload, JBD2 consumed
approximately 76% of the disk’s write bandwidth. Higher
byte and IO utilization of JBD2 results in reduced applica-
tion throughput, higher wear-out of flash based media and
increased performance provisioning costs in cloud-based stor-
age services.

We present FASTCOMMIT: a hybrid journaling approach
for Ext4 which performs logical journaling for simple and
frequent file system modifications, while relying on JBD2 for
more complex and rare modifications. Key design elements
of FASTCOMMIT are compact logging, selective flushing and
inline journaling. The first two techniques work together to
ensure that over 80% commits are contained within a single
4KB block and are written to disk without requiring an ex-
pensive cache flush operation. Inline journaling minimizes
context switching delays. With faster and efficient fsyncs,
FASTCOMMIT reduces throughput interference of JBD2 by
over 2× along with throughput improvements of up to 120%.
We implemented FASTCOMMIT in Ext4 and successfully
merged our code to the upstream Linux kernel.

1 Introduction

In this paper, we focus on reducing the application slowdown,
resource-inefficiency and high consumer cloud costs associ-
ated with JBD2, the crash consistency journaling system used
by Ext41. JBD2 is a physical journal, which means that it
stores entire copies of modified file system metadata blocks
such as free block bitmaps, inodes, directory entries, etc. as
part of a JBD2 commit on application issued fsyncs. A phys-
ical journal (including JBD2) is designed to be simple and
efficient during recovery, but incurs a high byte and IO over-
head during commits. For instance, JBD2 stores a minimum
of three blocks (12KB), and on average 6 blocks (24KB) per
commit via two separate IO operations. In a multi-threaded

1Ext4 is the default file system shipped with most Linux distributions.

Figure 1: The breakdown of a mail-server workload write bandwidth
showing what fraction of it is journal vs user data. The top plot shows
the conventional setup of Ext4+JBD2 where journal bandwidth is
over 4× the user bandwidth. The bottom plot shows the same work-
load executed on Ext4+FASTCOMMIT where the journal consumes
approximately 1× user data bandwidth enabling 44% lower peak
throughput provisioning and 33% lower end-to-end runtime.

mail-server workload, JBD2 reduced end-to-end application
throughput by 45%, and increased fsync latency by 280%2.
To compensate for its resource-inefficiency JBD2’s design
implicitly relies on fsyncs being issued rarely by applications
compared to the number of file manipulations. This assump-
tion is flagrantly violated when Ext4+JBD2 (or just JBD2) is
used as a backend for the Network File System (NFS) pro-
tocol [27]. Specifically, NFS by default converts every file
close to close+fsync (async mode), and also supports stricter
semantics (sync mode) where every file update issued by
the client becomes an update+fsync. The same mail-server
workload issues 26× more fsyncs on NFS-async reducing
the end-to-end throughput by 8×. Figure 1 (top) shows that
76% of the write bandwidth is consumed by JBD2 alone in
the NFS-async setup.

Another popular setup is to use JBD2 atop cloud-based
virtualized block storage devices (VBD) such as Google’s
Persistent Disk [12], Amazon Elastic Block Service [2] or
Azure Disk Storage [24] that manage many exabytes of data.

2In this experiment we made JBD2 RAM-resident preventing it from
being the bottleneck.
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Resource-efficiency is paramount in these globally available
services, and in fact modern VBD offerings allow indepen-
dent provisioning and purchasing of capacity, throughput and
IOPS for flexibility. JBD2’s high overheads either result in
throttling, which reduces application performance, or require
the cloud consumer to purchase additional throughput and
IOPS, which is costly.

A natural alternative is to build purely logical journaling in
Ext4 (similar to XFS [3]), where just the operations are jour-
naled rather than journaling bulky copies of changed metadata
blocks. However, this option would require a comprehensive
redesign of the current JBD2 journaling subsystem, including
modifications to the on-disk format and re-instrumentation
of journaling transactions, effectively making adoption im-
practical. Moreover, the implementation of a fully logical
journal would require designing an intricate recovery pro-
cess that would take years of development and refinement to
attain maturity. Additionally, as users migrate their applica-
tions to public clouds, a popular approach is to replicate their
on-premises setup as-is to the virtualized cloud environment.
Expecting users to redesign their application as part of cloud
migration is highly impractical.

We present FASTCOMMIT: a hybrid logical+physical jour-
nal that is resource-efficient and minimizes journal overhead.
By default, a JBD2 physical journal commit is triggered at
every fsync, and at a frequency of every 5 seconds. For fsync-
heavy workloads, or in NFS, JBD2 commits are very frequent.
A cornerstone of FASTCOMMIT’s design is to add logical
journaling between successive JBD2 commits, which logs
the operation that manipulated files and directories on every
fsync rather than storing the entire metadata. This essentially
decouples fsyncs from bulky JBD2 commits, and thus reduces
fsync latency which in turn improves performance.

FASTCOMMIT’s resource-efficiency is attributed to three
fundamental techniques. First, reducing byte overhead via
compact logging (FCLog). In a single FCLog, FASTCOM-
MIT packs numerous file system updates (FCTags), and an
FCLog fits entirely within a single disk block (4KB). Second,
reducing IO overhead via selective flushing. FClogs that fit
in a single block can be written durably to the underlying
storage media using the Forced Unit Access (FUA) IO com-
mand [15]. These commits do not need to issue expensive
cache flush commands [36] (unless there was any data that
needed to be flushed during the transaction commit). Since
JBD2 by design stores at least 3 blocks to the journal on
each commit, it cannot make the commit durable without a
cache flush. Third, reducing context-switching delays via in-
line journaling. JBD2 commits are done using a dedicated
thread. Since FASTCOMMIT commits are tiny and fast, the
scheduling priority of the thread issuing the fsync is temporar-
ily elevated to match that of the JBD2 thread to perform the
commit. This prevents context switching delays and improves
fsync latency. Figure 1 (bottom) shows that the fraction of
application write bandwidth consumed by the journal reduces

by over 44% with FASTCOMMIT. This not only improves
resource-efficiency but also reduces total application runtime
by over 33%. Lastly, FASTCOMMIT is carefully designed to
reuse the same JBD2 hooks and APIs, while providing most
of the performance and cost benefits of purely logical journal-
ing. Thus, migrating from JBD2 to FASTCOMMIT requires
no changes to the application code, or to Ext4’s on-disk for-
mat. In fact, FASTCOMMIT can be enabled on a conventional
Ext4+JBD2 setup even without reformatting. A testament to
FASTCOMMIT’s practical design and implementation is that
majority of its code has already been merged in the Linux
kernel and is part of mainline Ext4 [29].

We evaluate FASTCOMMIT over a variety of microbench-
marks and popular macrobenchmarks. Key design elements
of FASTCOMMIT help reduce fsync latency by approximately
65% compared to JBD2. By decoupling the fsyncs with JBD2
commits, the byte, IO and cache flush overheads incurred
by FASTCOMMIT reduce by up to 63%, 42% and 79% re-
spectively. These overheads are much lower than JBD2, and
in fact even lower than the purely logical journaling done
by XFS. FASTCOMMIT’s resource-efficient journaling mini-
mizes interference in multi-tenant environments resulting in
reducing total runtime by almost 20% while achieving increas-
ing throughput of two simultaneously running workloads by
80% and 23% compared to JBD2.

The rest of the paper is organized as follows:

• In Section 2, we provide a background of journaling and
cloud-based block storage devices.

• Section 3 contrasts FASTCOMMIT with other journaling
optimizations and popular file systems.

• Section 4 motivates the design of FASTCOMMIT via de-
tailed analyses of JBD2 commits and fsyncs.

• Section 5 describes the design and implementation of FAST-
COMMIT– a hybrid logical+physical journaling approach
to minimize journal interference and maximize user work-
load in various popular setups.

• Section 6 provides a detailed evaluation of FASTCOMMIT
showing resource-efficiency, improved performance and
reduced interference, cost using a variety of microbench-
marks and macrobenchmarks.

2 Background

In this section we give a brief overview of file system journal-
ing and cloud storage offerings.

Logical vs Physical journaling. The two most common
journaling approaches in file systems are logical journaling
and physical journaling. A logical journal logs the file / direc-
tory manipulation operation. A physical journal maintains a
copy of the changed metadata blocks such as inode bitmaps,
block bitmaps, directory entries and so on, which are then
re-written to their correct on-disk locations during a jour-
nal checkpointing operation or during crash recovery. Ma-
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jority file systems use physical journaling since it is easy to
use, is file system format independent, and easy to maintain.
XFS [30] is a file system that performs logical journaling. As
expected, logical journals are small in size, and journaling
happens quickly, but crash recovery is often complex and
slow since every operation that is logged needs to replayed.
Physical journals on the other hand tend to be bulky, but also
have a simple design and an efficient crash recovery protocol
since the journal contains modified copies that need to be
replayed.

The JBD2 journal. The Journaling Block Device v2
(JBD2) [32] is a robust, simple and popular physical journal
used by multiple file systems in the Linux kernel, including
the file system shipped with most Linux distributions – Ext4.
JBD2 uses transactions to perform multi-block updates atom-
ically. It is usually stored on the same block device as the
data (can be stored on another device as well), and has a fixed
on-disk size and format. At a later time based on multiple
triggers, JBD2 performs checkpointing which synchronously
writes the latest state of the metadata blocks stored in the
journal to their actual on-disk locations. The write-pointer of
JBD2 is then reset and JBD2 is ready to accept new commits.

NFS protocol and semantics. Network File System (NFS)
is a distributed file sharing protocol. It allows sharing a local
file system running on NFS server machine with clients on
the network. NFS provides close-to-open cache consistency
(CTO) by default (also called async mode). Typically, an NFS
client opens a file, writes content to the file and then closes
it. NFS guarantees that when the file is closed, it written to
durable storage by issuing fsync on close. NFS also provides
a stronger consistency model (sync mode) where it issues
an fsync after each file system metadata update. This mode
can have cause serious performance degradation, and thus is
not recommended for performance sensitive applications [10].
Thus, we only use NFS async mode for all our performance
evaluations.

Cloud storage block devices. Virtualized storage block
devices (VBD) such as Google PD, Amazon EBS or Azure
Disk Storage are three major storage offerings by large public
cloud infrastructures3. These VBDs are designed to mimic
physical storage devices (PBD) such as a hard-disk drive
(HDD) or solid-state disk (SSD) albeit with different charac-
teristics (see Section 4). Modern VBDs can charge separately
for capacity, throughput (MB/s) and IOPS, thereby allowing
users to remain flexible on all three dimensions.

3 Related work

Journaling has been a commonly used crash consistency
mechanism in both file systems and databases for decades.
Popularly used production journaling local file systems in-

3The other two are object storage such as Google GCS, Amazon S3 and
file storage such as Google FileStore, Amazon EFS.

clude Ext3 [5] (the predecessor of Ext4), XFS [3], Microsoft’s
NTFS [28] and IBM’s JFS [4]. NTFS and JFS are proprietary.
XFS does purely logical journaling, and therefore is one of
the file systems with which we compare FASTCOMMIT’s
hybrid journaling approach. ReiserFS [22] and OCFS [9]
are in-kernel file systems but are seldom used in production.
OCFS also uses JBD2 for journaling. All other file systems
use their own journaling mechanisms. There have been sev-
eral research journaling file systems such as SplitFS [18],
WineFS [17], BarrierFS [34], SpanFS [19], iJournaling [26]
and CJFS [25]. SplitFS and WineFS use variants of JBD2 but
they are designed for use on byte-addressable persistent mem-
ory. BarrierFS, SpanFS are both designed for faster storage
devices, i.e. SSDs or low-latency storage media.

CJFS [25], iJournaling [26] and Fine-Grained Journal-
ing [6] are the closest to FASTCOMMIT. FASTCOMMIT’s
design is loosely inspired from iJournaling, as it also main-
tains a hybrid journal with a focus on reducing fsync latency.
However, iJournaling writes at least 3 blocks using 2 cache
flushes for each commit resulting in high IO and byte over-
heads. More fundamentally, iJournaling changes Ext4’s fsync
behavior to commit only the blocks of the file issuing the
fsync. Although this technically does not break the fsync
contract, it breaks Hyrum’s Law [16], since in practice users
heavily rely on fsync committing all outstanding unsync’d
files. These reasons make iJournaling impractical to use. CJFS
focuses on scalability and trades off resource efficiency, thus
resulting in high byte and IO overheads. It relies on an order-
enabled IO stack [35], essentially requiring certain IOs to get
written to disk before others, which is not implemented in
Linux today, and therefore is also impractical to use. Fine-
Grained Journaling [6] is byte-level journaling designed for
byte-addressable storage media such as persistent memory.
Moreover, Fine-Grained Journaling’s logical journal for Ext4
requires a complete restructuring its journaling subsystem.

4 Motivation

Tiny and frequent commits expose JBD2’s inefficiencies.
A JBD2 commit (issued every 5 seconds, and on each fsync)
has a high byte and IO overhead. Each JBD2 commit stores
a minimum of 3 blocks (4KB) – a descriptor block (meta-
data about other blocks in the commit), at least one changed
metadata block, and a commit marker block indicating end
of the commit. Each JBD2 commit requires at least two write
IOs – one to write the descriptor block alongwith changed
metadata blocks to disk, and one to write the commit marker
block. If there are data changes, the data needs to be made
durable before the metadata for correctness. Using a simple
microbenchmark that creates a file, appends 4KB data, and
closes it, we measure the number of bytes written by JBD2,
the IOs it performs and the cache flushes it requires. We vary
the frequency of fsync to happen once every n operations,
where n ranges from 1024 to 1 in powers of 2. Figure 2 and
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Figure 2: JBD2, CJFS have identical journal byte overheads for tiny
and frequent fsyncs. XFS’s logical journal has the lowest overhead.

Figure 3 shows the byte and IO overhead of JBD2 on 3 file
systems – Ext4, CJFS and XFS4. The X axis ranges from
one fsync performed every 1024 file operations (extreme left)
to one fsync per file operation (extreme right). Since JBD2
performs one commit per fsync, its overhead increases steeply
as the fsync frequency increases. CJFS [25]’s state-of-the-art
optimization to JBD2 for scalability in fact has the same byte
overhead as JBD2, but requires 50% more IOs than JBD2.
XFS’s byte and IO-efficient purely logical journal is unsurpris-
ingly best in both byte and IO overheads. Hence, applications
making tiny and frequent commits incur huge JBD2 overhead.
Figure 4 shows the number of cache flushes needed by each
file system. CJFS’s compound flushing technique reduces the
number of flushes compared to JBD2, but only when it is
multi-threaded. While XFS is best in byte and IO overheads,
it is the worst in cache flushes. Thus, there is no file system
that is best at byte overhead, IO overhead and flush overhead.

NFS is a pathological case for JBD2. We conduct an ex-
periment to calculate the JBD2 byte and IO overhead for
the same microbenchmark, with the only difference being
that the benchmark itself does not issue any fsyncs. NFS’s
async mode semantics converts each create+append+close
to create+append+close+fsync. Thus, for JBD2, default NFS
converts large infrequent commits to fsync-on-close. If NFS
with sync mode is used, the above operations get converted to
create+fsync, append+fsync, close+fsync, which is by defini-
tion its pathological case, and in fact has an overhead similar
to fsync frequency of 1 in Figure 2 and Figure 3.

Pricing model in cloud does not favor JBD2. To ease
cloud adoption, all major public clouds enable users to trans-
fer their on-premises setups without any change, and indeed
this is a very common case. However, there are fundamental
differences between on-premises performance and cost ex-
pectations compared to the cloud. When expanding capacity
in on-premises setups by purchasing PBDs, automatically ex-
pands the cluster’s throughput and IOPS as well. Moreover,
these resources are wasted if utilization is low. On the other
hand, modern VBDs allow provisioning throughput, IOPS
and capacity independently for higher flexibility. Thus, users
wanting to minimize cost are incentivized to minimize journal
byte and IO overheads.

4We could not compare with iJournaling since the code was not available.

Figure 3: XFS also has the lowest journal IO overhead. CJFS has
the highest IO overhead requiring 50% more IOs than JBD2.

Figure 4: XFS requires the most number of cache flushes, with
CJFS and JBD2 requiring the same. CJFS reduces flushes in multi-
threaded workloads.

Poor resource-efficiency hurts performance and costs
money. PBDs and VBDs are both designed to support a fixed
bandwidth (MB/s) and IOPS. When a resource-hungry journal
such as JBD2 consumes a lot of bandwidth and IOPS, it leaves
less available for processing application data. Moreover, mod-
ern VBDs allow independent provisioning and purchasing of
capacity, bandwidth and IOPS [11]. Thus, a resource-hungry
journal can result in a high cloud provisioning cost. Finally,
there is a direct impact of higher byte and IO overheads with
reduced device lifetime in limited write-endurance storage
devices like SSD [21].

Designing practically useful optimizations. We empha-
size on two aspects of practicality: system maturity and back-
ward compatibility of cloud migrants. Firstly, it is a well-
known fact that storage systems take approximately a decade
to mature. Ext4 and JBD2 are both mature, decades old soft-
ware artifacts used by millions of users. While it is academi-
cally fulfilling to completely redesign a file system or its jour-
nal, it is often the case that optimizations that keep the user
API unchanged and work within the framework of existing
mature systems are the ones that see practical impact. Sec-
ondly, cloud migrants – users who migrate to cloud from on-
premises systems – are used to certain systems. Ext4+JBD2
has a huge user base as it is the default file system shipped
with majority of the Linux distributions. We thus designed
FASTCOMMIT with the view of merging it with the upstream
Linux kernel, and therefore choose to operate within the con-
straints and assumptions made by users of Ext4+JBD2.
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5 FASTCOMMIT design and implementation

Overview. FASTCOMMIT is designed with the goals of min-
imizing journal byte and IO overheads to improve end user
performance and reduce cost. FASTCOMMIT introduces a
hybrid approach to file system journaling. In this approach
JBD2 still commits every 5 seconds, but within those 5 sec-
onds, FASTCOMMIT attempts to logically journal the file
system updates and falls back to conventional JBD2 (hence-
forth called slow commits) when unable to perform logical
journaling (mostly in case of complex and rare operations
such as file system resize). Doing so, effectively decouples
JBD2 commit from fsync.

Techniques. FASTCOMMIT employs three techniques to
improve the efficiency of file system journaling. (a) Compact
logging reduces journal byte overhead by packing multiple
updates in a single FASTCOMMIT log (FCLog); see Sec-
tion 5.2. (b) Selective flushing reduces journal IO overhead
by minimizing the number of flushes needed to perform com-
mits (Section 5.3). (c) Inline journaling reuses the thread
issuing fsync as an opportunistic journal thread instead of
waking up the JBD2 thread avoiding an expensive context
switch (Section 5.4). We start by explaining the design of the
hybrid journal (Section 5.1) followed by the details of the var-
ious techniques, and finally discuss the crash recovery using
FASTCOMMIT (Section 5.5). We discuss the salient features
of our implementation that make FASTCOMMIT practical to
use such as no changes to APIs (Section 5.6) and backward
compatibility (Section 5.7).

5.1 Hybrid journaling

Hybrid journaling refers to the combination of logi-
cal+physical journaling performed by FASTCOMMIT.

Simultaneously supporting file-level and block-level
journaling. A physical journal such as JBD2 is designed to
provide journaling at the block level. On the other hand, a log-
ical journal logs file and directory manipulations, which are at
the inode level, and not the block level. Therefore, FASTCOM-
MIT’s hybrid journal needs to support journaling and recovery
at both levels without causing layering violations. The imple-
mentation details of simultaneously supporting file-level and
block-level journaling are discussed in Section 5.6.

Logical journaling area. Conventionally, JBD2 reserves
on-disk space for maintaining the physical journal. FAST-
COMMIT marks a small fraction of that space (by default
1.5%) for its logical journal, which is called the FC area.
As will be explained later, FASTCOMMIT’s updates are very
space-efficient, allowing even a 1.5% JBD2 space reservation
to suffice for logging its updates. Therefore, no additional
space is necessary for FASTCOMMIT, which means that the
JBD2 on-disk area as seen by conventional Ext4 remains
unchanged. Such design features enhance practicality as ex-
plained in Sections 5.6, 5.7.

Figure 5: The different operations done in the CPU, RAM, disk
during a FASTCOMMIT commit.

The FASTCOMMIT commit. Logical operations in FAST-
COMMIT are only performed between successive slow com-
mits. Recall that by default slow commits happen every 5
seconds. Let us walk through a FASTCOMMIT commit using
an example shown in Figure 5. Between two slow commits,
FASTCOMMIT maintains an in-memory lists of updates. LD
represents the directory entry updates list and LI represents
changed inodes list. Suppose thread T1 creates a file F1. Ext4
creates an inode for the newly created file, and inserts it in LI
along with a new directory entry update in LD. At a later time,
thread T2 appends data to F1, say one block. At this point,
conventional JBD2 would have explicitly recorded copies of
all the metadata blocks that were changed by this operation.
Instead, FASTCOMMIT simply logs the logical offsets in the
inode that were affected by this allocation, which is shown
as updated i1 to i′1 in LI . T2 then creates file F2 which results
in entries i2 and d2 in LI and LD respectively. At a later time
T1 issues fsync on F1. FASTCOMMIT performs the commit
operation in the context of the user thread T1 by traversing
LD and LI , packing all the updates in an FCLog and storing
it in the FC area. In most commit operations, FCLog fits in
a single disk block (4KB). Once the FCLog is written and
acknowledged by the device, the commit operation is marked
complete.

5.2 Reducing byte amplification via compact
logging (FCLogs)

FASTCOMMIT’s compact FCLogs significantly help in reduc-
ing byte overhead by tightly packing metadata updates in a
single 4KB block. We first discuss FASTCOMMIT’s commit
format followed by an example of how FCLogs are created.

The FASTCOMMIT format. A FASTCOMMIT commit
consists of a series of tiny updates (called FCTags) to multiple
files. FCTags are designed to be as small as possible. More-
over, they are designed to be idempotent, which greatly sim-
plifies recovery as discussed in Section 5.5. Figure 6 shows
FCTags being part of a single FCLog. Although most FCLogs
are 1 block in size, some FCLogs can occupy multiple blocks.

Each FCTag has three fields – (1) type: 2 bytes (2) length
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Figure 6: Several FCTags are part of a single FCLog. Multiple
FCLogs are written to FASTCOMMIT area, which is next to the
JBD2 area on disk.

(short int): 2 bytes and (3) value: variable length. An FCLog
always starts with a head tag and ends with a tail tag, which
both occupy 12 bytes. The head tag marks the start of a FAST-
COMMIT commit, and contains the commit ID of the previous
slow commit after which this FCLog should be replayed in
case of recovery. The tail tag marks the end of an FCLog
(similar to the commit block in a conventional JBD2 commit).
It contains the checksum of the entire FCLog. Most of the
usual file manipulations can be captured using a small set of
only 8 FCTags:

1. HEAD: marking the start of an FCLog
2. ADD_RANGE: adding data to a file
3. DEL_RANGE: deleting data from a file
4. CREAT: creating a file
5. LINK: symlink or renaming a file
6. UNLINK: deleting a file
7. INODE: storing an inode
8. TAIL: end and checksum of an FCLog

We describe what gets committed in an FCTag for each of
these tags. A set of 8 straightforward FCTags with a fall
back to conventional JBD2 allows FASTCOMMIT to extract
most of the benefits of purely logical journaling. In contrast
XFS has a list of around 40 tags, many of which are very
complicated [14]. This is why completely revamping Ext4 to
adopt purely logical journaling is impractical. We describe
the most common file operations and what FASTCOMMIT
would write in their respective FCLogs below.

File creation / deletion. Creating a file creates an FCLog
with two FCTags. A CREAT FCTag indicates that a new inode
has been allocated, and added to a parent directory based on
the file path. The INODE FCTag maintains a copy of the
newly allocated inode.

Appending to a file. Similarly, let us consider an example
of an append operation to a file named "foo" which adds 4KB
at the end of the file. This operation would generate following
FCTags:

1. HEAD FCTag (12 bytes).
2. ADD_RANGE FCTag (20 bytes) indicating that a new

extent with logical block address 1, physical block ad-
dress 1000, and size 1 block was added to the file.

3. INODE FCTag (136 bytes): the most recent copy of the
file’s inode.

4. TAIL FCTag (12 bytes).

Thus the entire FASTCOMMIT commit in this case consumes

only 168 bytes. JBD2 requires 6 blocks making every append
cost 24KB.

Deleting data from a file. Similarly, when certain blocks
are removed from the file (such as using ftruncate or fallocate
punch hole operations), FASTCOMMIT only stores the extents
that were removed from the file using the DEL_RANGE tag.
When blocks are removed, FASTCOMMIT does not need to
store the physical block addresses of the blocks that were
removed, since they can be inferred from the inode.

Renaming a file. The rename operation involves storing
more than one FCTag, which is explained using an example.
Suppose a file "/foo" is to be renamed to "/bar". Let us assume
that the directory entry "/foo" was associated with inode i10
on disk. The rename operation would generate following
FCTags:

1. HEAD FCTag (12 bytes).
2. LINK FCTag that records the association of "bar" with

i10 (16 bytes).
3. UNLINK FCTag that records the disassociation of the

directory entry "foo" from i10 (16 bytes).
4. INODE FCTag that records the most recent copy of inode

i10 (136 bytes).
5. TAIL FCTag (12 bytes).

Thus, the entire FASTCOMMIT commit for rename is cap-
tured in 192 bytes. In JBD2, a rename operation requires
storing 7 blocks of size 4KB each amounting to 28KB.

5.3 Better IO efficiency via selective flushing
Cache flush command forces the disk to completely write-
out data written in volatile disk cache to non-volatile media.
Flushing is widely used by file systems to ensure consistency
of data. However, if a journaling subsystem is not careful
in deciding when to flush, it might flush data to disk which
could have safely resided in the disk cache for longer (for
example, data written in parallel to inodes after a commit has
started, data written to a different partition on the same disk).
This deprives the data in the disk cache from being coalesced
with future writes in order to be more efficient, and perform
fewer disk IOs [36]. Thus, preventing unnecessary flushes not
only improves IO efficiency of future IOs, but also results in
making the currently issued commit faster.

JBD2 cannot avoid at least one flush per commit. In or-
dered mode5, first, the data is written to the disk. Next, all the
updated metadata blocks along with JBD2 descriptor block
are written to the journal area. JBD2 then issues a flush to en-
sure that data blocks and journaled metadata blocks are made
durable on the disk. Finally, JBD2 writes a commit block
indicating the end of a commit. The commit block is written
using Force Unit Access (FUA) [15] and thus is written all
the way to the nonvolatile storage skipping past disk’s write

5The default journaling mode for Ext4 is ordered mode where data needs
to be made durable before metadata.
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cache. Note that FUA can only be issued for 1 block writes,
and does not constitute a full cache flush. In this way, JBD2
can avoid issuing a second flush after the JBD2 commit block.
However, the first flush is simply unavoidable irrespective of
FUA. In a heavily contended system, this unavoidable flush
can result in flushing data from the volatile disk cache that is
completely unrelated to the current commit operation. How-
ever, flushing unrelated data prematurely does not affect the
safety or ordering guarantees of the flushed data in any way.

FASTCOMMIT reduces flushes required on fsync. We
have seen that a flush command is needed during commits
for two reasons: 1) persist user data on disk 2) persist blocks
written as part of journal commit. In case of frequent com-
mit operations (such as in case NFS), many fsyncs are called
before writing user data. Also, in case of FASTCOMMIT ma-
jority of the FCLogs fit within a single 4KB block, and thus
can be completed without a cache flush. Thus, FASTCOMMIT
avoids sending an expensive cache flush operation when there
are no data writes and FCLog is contained within 4KB.

5.4 Reducing context switches using inline
journaling

As shown in Figure 7a, there are two context switches that
happen during a JBD2 commit. The first is when the file
system fsync function wakes up the dedicated JBD2 journal
thread in order to perform the commit. The journal thread
then sleeps intermittently waiting for disk IO between the
successive writes of data, metadata and the commit block
(work in JBD2 shown as W). Finally, the journal thread wakes
up the user thread that is sleeping for the JBD2 commit to
complete. JBD2’s journal thread is initialized with a high
IO scheduling priority, which instructs the Linux block layer
to quickly finish the IO issued by JBD2. This priority also
allows for a smaller delay in scheduling the JBD2 thread for
the commit (shown as S j). In contrast, when the JBD2 thread
wakes up the user thread, the delay is much longer (S f ) since
the user thread has a lower priority.

Using inline journaling technique, in FASTCOMMIT the
thread issuing fsync performs journal commits by itself with-
out involving the JBD2 journal thread. FASTCOMMIT tem-
porarily lifts the user thread’s scheduling and IO priority to
match that of the JBD2 journal thread. This helps us ensure
that while the commit operation is ongoing, kernel schedulers
continue to treat fsync operations and IO with higher prior-
ity. As soon as the disk write for the FASTCOMMIT commit
is completed, but before acknowledging the completion of
the commit operation to the user, FASTCOMMIT reverts the
priority of the user thread to its original value. This ensures
that the temporary lift in priority is invisible to the file system
and applications, and is also done safely within the protection
rings of the kernel. Figure 7b shows no context switches in
the case of FASTCOMMIT since the heavy JBD2 thread is
not involved in FASTCOMMIT commit path unless there is

Figure 7: (a) shows fsync latency in conventional JBD2, (b) shows
fsync latency in FASTCOMMIT. FASTCOMMIT’s compact FCLog,
selective flushing using FUA and inline journaling results in 2×
faster fsyncs.

a fallback to slow commits in the case of rare and complex
operations.

5.5 Crash Recovery
With FASTCOMMIT, the JBD2 journal area now consists of
both JBD2 transactions and FCLogs. Since the FC area only
holds the FCLogs since the last slow commit, during recov-
ery, all the FASTCOMMIT commits should only be replayed
after the recovery of the last slow commit from the JBD2
area. Within each FCLog there are several FCTags which are
successively replayed during recovery.

Instead of defining new recovery logic, FASTCOMMIT
reuses Linux’s virtual file system layer (VFS). During re-
covery, FASTCOMMIT first flags the file system to be in a
recovery state. It then traverses the FASTCOMMIT area, and
for each FCTag, invokes one of the VFS APIs [1] to replay
the logged operation.

Replay Idempotency. The FASTCOMMIT replay proce-
dure is designed to be idempotent. FCTags achieve idempo-
tency by storing results of file system operation rather than
the operations themselves. During recovery, if the stored re-
sult is already applied, it is ignored. For example, consider an
operation of file deletion achieved via "rm /dir/foo" where file
foo is a hard link to inode 10. Assume that inode 10 has hard
links from 2 other directory entries (thereby making inode
10’s reference count 3). Instead of storing the delete operation
in FCTags (delete file "foo" from "/dir"), FCTags store the
series of outcomes: (1) "/dir" does not have file "foo", (2)
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inode 10’s reference count is 2. This guarantees that the same
FCTag can be applied in an idempotent fashion to the file
system. This helps to ensure that if the file system crashes
during recovery itself, the FASTCOMMIT replay procedure
can restart from the beginning, and the file system correctness
will remain unaffected. All FCTags whose HEAD tag does
not contain the commit ID of the last JBD2 slow commit that
was successfully replayed, are discarded.

5.6 Hybrid journaling without API changes
Since our goal was to get FASTCOMMIT merged into the up-
stream Linux kernel, we pay close attention to its practicality.
In FASTCOMMIT, the notion of atomic updates changes from
atomically modify one or more blocks to atomically modify
one or more inodes. Being a physical journaling system, JBD2
provides block based journaling APIs. However, since most of
the file system functions that need to perform atomic updates
to the file system are implementations of virtual file system
(VFS) interface, Ext4 already masks JBD2 block mutating
journal APIs behind a shim layer of inode mutating routines.
FASTCOMMIT leverages these inode mutating routines to in-
form the construction of the FCTags. Thus, FASTCOMMIT
introduces no changes to the journaling APIs of Ext4.

5.7 Ensuring backward compatibility
FASTCOMMIT is designed to support backward compatibility
with disks formatted with conventional Ext4 in the follow-
ing ways: (1) An old Ext4 partition should be FASTCOM-
MIT-compatible when mounted using a new FASTCOMMIT-
enabled kernel, (2) A new FASTCOMMIT-compatible Ext4
partition should be able to function correctly when mounted
using an old kernel without FASTCOMMIT provided the jour-
nal area is empty, and (3) if in the previous case, the journal
is not empty (i.e. contains FASTCOMMIT commits), then the
old kernel should reject mounting of FASTCOMMIT-enabled
Ext4 partition. Since FASTCOMMIT will be rolled out to all
Linux users in the world, these aforementioned backward
compatibility criteria ensure that migration of existing Ext4
users onto FASTCOMMIT happens without any problems.

FASTCOMMIT introduces two file system feature flags to
handle this: 1) FASTCOMMIT enabled (Backward compatible)
2) FASTCOMMIT present (Backward incompatible). FAST-
COMMIT enabled flag is set, as the name suggests, when
FASTCOMMIT is enabled on the file system. This backward-
compatible flag implies that old kernels can mount the file
system even if they don’t have FASTCOMMIT code. The FAST-
COMMIT present flag is set on first FASTCOMMIT commit
after a JBD2 slow commit. This backward-incompatible flag
implies that old kernels cannot mount the file system if they
don’t have FASTCOMMIT code. After a JBD2 slow commit,
this flag is cleared as the FC area is now empty implying that
the old kernel can mount new Ext4 without any problems.

5.8 Testing for Upstream Readiness

We worked closely with upstream kernel developers from
early design days of FASTCOMMIT to ensure that its design
is practical. We ensured upstream readiness of FASTCOM-
MIT code by closely following the upstream submissions
process [8]. We then ran tests in XFSTests [7] FS testsuite
on FASTCOMMIT. XFSTests is widely used by upstream file
system maintainers to ensure quality of the upstream sub-
missions. FASTCOMMIT passes all the tests in auto and log
groups. Tests in auto group ensure overall file system cor-
rectness, while tests in log group ensure crash consistency.
Moreover, as a part of regular upstream maintenance process,
FASTCOMMIT undergoes continuous testing on a daily basis
using XFSTestsbld [31]. This ensures that new kernel patches
that get merged into the Linux kernel continue to work with
FASTCOMMIT.

6 Evaluation

Experimental setup. We use virtual machines (VM) setup
on the Google Compute Engine (GCE) for all our evaluations.
We run our experiments on a n2-standard-32 [13] VM which
has 32 vCPUs, 128GB RAM and 32Gbps of egress network
bandwidth. Debian 11 distribution with Linux Kernel Version
5.19 is the OS used.

File systems. We compare Ext4+FASTCOMMIT (called
FC) with 4 other file systems. The obvious comparison is
with Ext4+JBD2 (or just JBD2). Next, we choose Ext4 with
asynchronous journal commits (called Async) – a JBD2 opti-
mization that performs commits asynchronously. CJFS [25]
is the state-of-the-art JBD2 optimization which is aimed at
improving its scalability. We could not compare with iJournal-
ing [26] since its code is not open-sourced. We also compare
with XFS [3] as it is other extreme in fine-grained journaling
since it uses a purely logical journal.

Scenarios. There are three main scenarios in our evalu-
ation: a) SSD – where the local SSD (375GiB) in the VM
is formatted with the test file system (100GB partition), b)
NFS+SSD – where there is a client VM that access the local
SSD formatted with the test file system via NFS protocol, c)
NFS+VBD– this setup is similar to the previous NFS+SSD ex-
cept that instead of SSD, VBD is used. We use Google Cloud
Hyperdisk [11] as our VBD. Hyperdisk allows independent
provisioning of IOPS, bandwidth (MB/s) and capacity. Our
VBD is a virtualized HDD for which we provision 150MB/s
bandwidth, 15000 IOPS and 2TB capacity.

Microbenchmarks. In order to measure the latency break-
down of fsync, we run a controlled experiment of a single
create file, followed by append, and then fsync. To measure
the impact of frequent fsyncs, this same create+append+fsync
workload is executed 1024 times with varying frequency of
fsyncs, as described in Section 4.

Marcobenchmarks. We use four popularly used mac-
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Figure 8: FASTCOMMIT has the lowest byte overhead wrt other FS.

robenchmark workloads. Varmail and Fileserver belong to the
Filebench testsuite [23], and as per their name emulate mail-
server and file-server workloads respectively. Postmark [20]
is a benchmark from NetApp that simulates NFS workloads.
Finally, FSMark [33] is a metadata-heavy benchmark where
the write pattern performs lots of synchronous IO operations
across multiple directories.

We answer the following questions in our evaluation:

• How much do the design elements of FASTCOMMIT help
in speeding up fsyncs? (Section 6.1)

• How is FASTCOMMIT’s byte and IO overhead compared
to other file systems? (Section 6.2)

• What are the performance improvements achieved by FAST-
COMMIT? (Section 6.3)

• How much does goodput of workload improve due to FAST-
COMMIT’s optimizations? (Section 6.3.2)

• Is FASTCOMMIT scalable? (Section 6.3.1)
• Can cloud provisioning cost be reduced using FASTCOM-

MIT? (Section 6.4)

6.1 Evaluating fsync performance, overheads

FASTCOMMIT’s design elements make fsync up to 2.8×
faster. We begin the evaluation by measuring the effect of var-
ious design elements of FASTCOMMIT in reducing the fsync
latency using the two microbenchmarks mentioned above.
Table 1 shows the comparison between JBD2 and FASTCOM-
MIT in the different phases of fsync in a controlled one-file
microbenchmark described above. Using selective flushing
technique (section 5.3), FASTCOMMIT avoids unnecessary
cache flushes and uses FUA writes for single block commits.
Thus, FASTCOMMIT only spends 144µs doing commit related
disk IO. JBD2, on the other hand, needs to first write commit
descriptor and changed metadata blocks to the journal (182µs)
and then issue a flush along with a FUA write of the commit
marker block (99µs). FASTCOMMIT is thus ≈ 2× faster in
completing commits than JBD2. The context switch + misc
delays capture the effect of FASTCOMMIT avoiding context
switch via inline journaling. This reduces FASTCOMMIT’s
misc delays to 10% of JBD2. Thus, the overall fsync latency
of FASTCOMMIT in this controlled experiment is 2.8× lower
than JBD2.

Figure 9: FASTCOMMIT has the lowest IO overhead wrt other FS.

Figure 10: FASTCOMMIT has the least flushes versus other FS.

FASTCOMMIT decouples fsync from JBD2 commit re-
sulting in lower byte and IO overheads. Figure 8 shows the
KBs written to journal with increasing fsync frequency. As ex-
plained in Section 4, JBD2 and CJFS perform one JBD2 com-
mit per fsync. In contrast, FASTCOMMIT’s efficient FCLogs
effectively decouple JBD2’s expensive commits from the
fsync frequency. Thus, the journal byte overhead in FAST-
COMMIT is lowest compared to other file systems, includ-
ing XFS. This is surprising since XFS is a purely logical
journal, and so is expected to incur the least byte overhead.
There are multiple reasons for this result. First, FASTCOM-
MIT very efficiently packs updates in FCLogs, which delays
JBD2 checkpointing that performs expensive random on-disk
updates. Second, certain metadata operations are logged in
FASTCOMMIT whereas they are directly written to disk in
case of XFS. For example, creating directory entries, a very
common operation, requires XFS to perform non-journal disk
IOs, whereas FASTCOMMIT simply writes the directory en-
tries to FCLogs. Figure 9 shows the number of journal IOs
incurred. CJFS issues 3 IOs per fsync, which is in fact even
more expensive than conventional JBD2. On the other hand,
XFS and FASTCOMMIT issue almost identical number of jour-
nal IOs, which is 1 per fsync. Finally, Figure 10 shows the
number of cache flushes issued by all file systems. This is

Category JBD2 (µs) FC (µs)

Descriptor + Metadata 182 144 (FCLog + FUA)
Commit Marker 99 (flush + FUA) -

Cxt switch + Misc delays 177 18

Total 458 162

Table 1: Breakdown of fsync latency in JBD2 vs FASTCOMMIT.
JBD2 fsync latency is 2.8× higher than FASTCOMMIT.
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Figure 12: FASTCOMMIT fsyncs have much lower latency com-
pared to JBD2. p99 FASTCOMMIT latency > p99 JBD2 latency.

where FASTCOMMIT outperforms other file systems signifi-
cantly. By using selective flushing and FUA, FASTCOMMIT
performs only a handful of flushes even when thousands of
fsyncs are being done. This improves cache retention of data
and minimizes interference of fsyncs in a multi-tenant, multi-
threaded setting.

FASTCOMMIT makes fsync latency more predictable.
Figure 12 shows the latency distribution of fysnc in FAST-
COMMIT versus JBD2 when running 1 million file operations
in Varmail benchmark when running over NFS. The fsync
latency distribution is closer to the origin compared to that of
JBD2. The plateau of tiny fsync latencies in FASTCOMMIT
from 0 through 60µs can be attributed to threads intending to
perform fsync, but actually not doing any real work. Recall
from Section 5.4 that an ongoing FASTCOMMIT commit will
opportunistically perform outstanding commits as well. In
particular, the mean fsync latency of JBD2 in this experiment
is 2.3× higher than FC, whereas the 99th percentile latency
is 3× lower. FASTCOMMIT fsync latencies can have a long
tail because they occasionally need to fallback to performing
slow JBD2 commits (approximately once every 5 seconds).
When performing these slow commits, they can end up being
larger than the average JBD2 commit. Overall, the latency
distribution for FASTCOMMIT is much tighter in comparison
to the large spread observed in JBD2, indicating that aver-
age fsync latency in FASTCOMMIT is much more predictable
(except the tail). Lower FASTCOMMIT tail latency can be
traded for increased mean latency in two ways: a) Reducing

Figure 13: Median latency of fsync in FASTCOMMIT is approxi-
mately 3× as fast as JBD2 across multiple benchmarks.

FASTCOMMIT journal area: A smaller FC area will cause
more frequent fallbacks to slow commits, thus making each
slow commit less expensive. b) Forcing frequent JBD2 com-
mits: JBD2 can be configured at mount time to make more
frequent, and therefore smaller and less expensive commits.
These optimizations can help curtail the expensive tail latency
of FASTCOMMIT.

Figure 13 captures the fsync latency spread (sans the long
tail) in the 4 multi-threaded macrobenchmarks shown above.
In all cases the FASTCOMMIT’s median fsync latency is >
2.5× lower than JBD2 with a tighter distribution.

6.2 FASTCOMMIT improves resource effi-
ciency

We now evaluate the resource efficiency of various file sys-
tems by calculating the overall bytes written and IOs per-
formed for the four multi-threaded macrobenchmarks men-
tioned above in multiple scenarios: local SSD, NFS+SSD and
NFS+VBD.

FASTCOMMIT has lowest byte overhead. Figure 11
shows the byte overhead compared to JBD2. In local SSD
(Figure 11a) we only look at Varmail and FSMark since
those are the only two workloads explicitly performing fsync,
whereas in Figure 11b, Figure 11c we evaluate all four bench-
marks since NFS issues fsyncs even when applications explic-
itly do not, as explained in Section 4. FASTCOMMIT is the
most byte-efficient file system in all benchmarks and all sce-

Figure 11: FASTCOMMIT achieves least byte overhead compared to all other file systems.
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Figure 14: FASTCOMMIT and XFS have the lowest IO overhead compared to all other file systems.

Figure 15: FASTCOMMIT has low IO amplification compared to other file systems due to fewer coalesced journal writes, due to faster fsyncs.

narios, and writes almost 2× lesser data than JBD2 in every
workload except Fileserver (because Fileserver has larger and
fewer files, so fewer metadata operations). Compact FCLogs
significantly reduce the byte footprint of FASTCOMMIT. A
lower byte overhead also has advantages other than perfor-
mance, such as a longer device life time in case of SSD,
reduced bandwidth provisioning costs for VBDs (see Sec-
tion 6.4), and reduced bandwidth interference because of the
journal implies an increase in bandwidth available for useful
work (see section 6.3.2).

FASTCOMMIT and XFS have the lowest IO overhead.
Figure 14 shows the total number of IOs performed when
running the same macrobenchmarks. CJFS’s multi-version
shadow paging design aims to reduce wait-time for an fsync,
but consequently performs more IOs. While XFS performs
more IO locally, over NFS, there are workloads where XFS
has a marginally lower IO overhead than FASTCOMMIT. In
NFS+SSD and NFS+VBD, very frequent and tiny commits
result in 100% of the FCLogs being 1 block in size. In lo-
cal SSD, because fsyncs are few and far between, there can
be multi-block FCLogs. Nevertheless, even locally, 81% of
total commits were single-block commits that allowed FAST-
COMMIT to perform a single IO to write both metadata and
commit marker to disk. Moreover, 98.5% fsync calls result in
a FASTCOMMIT commit whereas only 1.5% (includes JBD2
commits that happen every 5 seconds) fsync calls result in
slow commits.

We observe that Async performs very similar to JBD2.
This is because akin to JBD2, Async requires two disk IO
commands. It writes the descriptor, changed metadata blocks
and the commit block as part of first write request. It then

issues a cache flush to ensure all of the blocks written as
part of the previous write request are durably stored on the
disk. Nevertheless, for completeness we continue to show
Async in our evaluation since it is the closest representation
of FASTCOMMIT, wherein the entire commit is performed
using only 1 write operation.

6.3 FASTCOMMIT achieves high performance

FASTCOMMIT improves end-to-end application through-
put in most cases. Figure 15 shows the throughput using the
application reported ops/s, files/s or transactions/s (all abbre-
viated to app ops) on the Y axis. The throughput is reported
relative to JBD2. In Figure 15a, we observe FASTCOMMIT’s
throughput is highest compared to all other file systems, and
between 1.75–2× that of JBD2. Since the benchmarks are IO-
intensive, they are bottlenecked on fsync. With FASTCOMMIT
fsync latency being the lowest, it provides the best throughput.
In Figure 15b and Figure 15c, every NFS client operation now
contains a fixed network round-trip time in addition to the
remote fsync. Since NFS has converted fsyncs from being
large and rare into tiny and frequent, the latency observed
by JBD2 over NFS+SSD is not very different from that ob-
served by FASTCOMMIT. Thus, the improvements are modest
in the case of NFS+SSD. For NFS+VBD, the VBD is much
slower than the SSD. Therefore, FASTCOMMIT shines, since
it reduces the number of disk flushes, and essentially, makes
fewer costly disk accesses.
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Figure 17: FASTCOMMIT scales between 1–40 threads. At 40 FAST-
COMMIT provides 2× Varmail throughput versus other FS.

6.3.1 Scalability

Next, we look at scalability of FASTCOMMIT. Figure 17
shows the reported ops/s for the Varmail workload running on
local SSD for 60 seconds with increasing number of threads in
each run (shown on the X axis) – 1, 5, 10, 20, 40. While all file
systems scale to some degree, the scaling of FASTCOMMIT is
more pronounced. As the number of threads increase so does
the gap between FASTCOMMIT and other file systems, and it
is over 2× at 40 threads.

6.3.2 FASTCOMMIT minimizes journal interference

Figure 18 captures the interference of a heavy journal on slow-
ing down the performance of non-journal-dependent work-
loads. In this experiment, we run the FIO workload for a fixed
number of operations on the NFS+SSD setup. The FIO bench-
mark fallocates one large file and then performs random IO
within that file. Therefore, FIO does not cause any journal
activity during its run except for the first time it fallocates
the large file. In parallel, we execute the FSMark workload
which is metadata intensive and results in a lot of journal
traffic. Figure 18 shows the breakdown of the device’s write
bandwidth (capped at 400 MB/s) among the journal and the
application workload. Figure 18a shows JBD2 consuming
almost 50% of the device bandwidth leaving only half for
the application data. JBD2 requires about 115s for this ex-
periment. CJFS shown in Figure 18b is better, but still its
journal consumes close to 150 MB/s on average. CJFS is
only about 2% faster in total runtime. XFS’s logical journal
significantly reduces journal bandwidth consumed to about
100 MB/s, and is 10.5% faster than JBD2. FASTCOMMIT
only consumes about 60 MB/s bandwidth and finishes almost

Figure 18: Impact of journal on application throughput in a multi-
tenant environment. FASTCOMMIT interferes the least allowing
higher application throughputs and lower runtimes.

19% faster than JBD2. More importantly, both FSMark and
FIO report significantly higher throughput in FASTCOMMIT
showing that reduced journal interference is critical to im-
proved application performance, especially in a multi-tenant
environment. We show only two workloads for brevity, but
we have evaluated the interference in multiple cases and our
results remain consistent in all cases.

6.4 FASTCOMMIT reduces cloud provisioning
cost

Users often purchase cloud resources in order to meet a cer-
tain application performance requirement. For instance, a user
might want their application to service 100K requests/s. In a
world with independent performance provisioning, the user
can estimate the provisioning value by knowing how many
block storage IOs are performed by the file system per sec-
ond (IOPS), along with the number of bytes transferred by
the file system to/from the block storage server per second

Figure 16: Scatter plot of avg. application MB/s vs p95 disk bandwidth. Except Varmail (that too marginally) FASTCOMMIT requires the least
peak bandwidth provisioning. In FSMark, CJFS and XFS report higher files/s but require higher p95 bandwidth provisioning.
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Figure 19: Scatter plot of avg. application ops/s vs p95 disk IOPS. In Varmail XFS requires least p95 IOPS, but FASTCOMMIT achieves much
higher ops/s, whereas in FSMark, JBD2 and Async have marginally lower p95 IOPS but report much lower files/s.

(throughput). This experiment captures IOPS and bandwidth
provisioning requirements of different workloads.

A common resource reservation approach is to provision
the storage device bandwidth close to the peak bandwidth of
the workload. Figure 16 is a scatter plot that captures the p95
device bandwidth needed (Y axis) to achieve the necessary
user application performance (X axis). The best tradeoffs
are achieved in the lower right corner, which has maximum
user throughput for minimum provisioned p95 bandwidth.
We show 3 workloads for brevity, but the trends hold across
all workloads. FASTCOMMIT and XFS consistently achieve
the highest application throughput for the lowest p95 device
bandwidth. Similarly Figure 19 is a scatter plot that shows the
p95 IOPS needed (Y axis) for the application performance (X
axis). Owing to selective flushing, FASTCOMMIT reduces IO
operations that are issued to disk by the file system. In most
cases, FASTCOMMIT achieves higher application throughput
while using lower IOPS. CJFS achieves higher application
throughput in case of postmark and FSMark but at the cost of
2× higher p95 IOPS provisioning cost. By applying publicly
available pricing model of VBDs, FASTCOMMIT incurs the
lowest dollar amount, in particular 22–57% lower per-month
cost compared to JBD2.

7 Conclusion

This paper presents FASTCOMMIT, a hybrid logical+physical
journaling for reducing byte and IO overheads, maximizing
performance and minimizing provisioning cost in cloud-based
block storage offerings. FASTCOMMIT is designed to reduce
byte amplification via space-efficient logical journaling be-
tween successive bulky physical journaling commits, mak-
ing fewer device IOs, reducing the number of cache flushes
per commit, and reducing context switching and scheduling
delays by reusing threads for performing commits. FAST-
COMMIT reduces fsync latency by approximately 2.8× and
improves application throughput by up to 120%. FASTCOM-
MIT reduces journaling interference by 2× and improves
runtime of multiple simultaneously running applications by
upto 84% while reducing the combined runtime by almost
20%. FASTCOMMIT’s design is heavily vetted by experts
in the open-source community, and majority of it has been
merged to the mainline Linux kernel.

8 Acknowledgments

We thank the anonymous reviewers for their valuable feed-
back and suggestions. We extend special thanks to Mustafa
Uysal, Larry Greenfield, Jan Kara, Ritesh Harjani, and numer-
ous other reviewers of the Linux kernel community for their
technical help and critical feedback.

References

[1] Vfs inode operations using struct inode_operations.
https://www.kernel.org/doc/Documentation/
filesystems/vfs.txt, 2005.

[2] Amazon. Elastic Block Store. https://aws.amazon.
com/ebs/, 2023.

[3] Thomas E Anderson, Michael D Dahlin, Jeanna M
Neefe, David A Patterson, Drew S Roselli, and Ran-
dolph Y Wang. Serverless network file systems. In
Proceedings of the fifteenth ACM symposium on Operat-
ing systems principles, pages 109–126, 1995.

[4] Steve Best, David Gordon, and Ibrahim Haddad. Ker-
nel korner: Ibm’s journaled filesystem. Linux Journal,
2003(105):9, 2003.

[5] Mingming Cao, Theodore Y Tso, Badari Pulavarty, Su-
parna Bhattacharya, Andreas Dilger, and Alex Tomas.
State of the art: Where we are with the ext3 filesystem.
In Proceedings of the Ottawa Linux Symposium (OLS).
Citeseer, 2005.

[6] Cheng Chen, Jun Yang, Qingsong Wei, Chundong Wang,
and Mingdi Xue. Fine-grained metadata journaling on
nvm. In IEEE/NASA Goddard Conference on Mass
Storage Systems and Technologies (MSST), 2016.

[7] Jonathan Corbet. Toward better testing, 2014.

[8] Upstream Linux Kernel Developers. Submitting
patches: the essential guide to getting your code into
the kernel. https://docs.kernel.org/process/
submitting-patches.html, 2023.

USENIX Association 2024 USENIX Annual Technical Conference    169

https://www.kernel.org/doc/Documentation/filesystems/vfs.txt
https://www.kernel.org/doc/Documentation/filesystems/vfs.txt
https://aws.amazon.com/ebs/
https://aws.amazon.com/ebs/
https://docs.kernel.org/process/submitting-patches.html
https://docs.kernel.org/process/submitting-patches.html


[9] Mark Fasheh. Ocfs2: The oracle clustered file system,
version 2. In Proceedings of the 2006 Linux Symposium,
volume 1, pages 289–302. Citeseer, 2006.

[10] Google Filestore. Mounting Fileshares.
https://cloud.google.com/filestore/docs/
mounting-fileshares, 2023.

[11] Google. Google Cloud Hyperdisk. https://cloud.
google.com/compute/docs/disks/hyperdisks.

[12] Google. Persistent Disk. https://cloud.google.
com/persistent-disk, 2023.

[13] Google. N2 VM Family. https://cloud.google.
com/compute/docs/general-purpose-machines,
2024.

[14] Silicon Graphics. XFS Algorithms Data Struc-
tures. https://ftp.ntu.edu.tw/linux/utils/fs/
xfs/docs/xfs_filesystem_structure.pdf, 2006.

[15] Christoph Hellwig. Forced Unit Access. https:
//patchwork.kernel.org/project/dm-devel/
patch/20100826095413.GA9750@lst.de/, 2010.

[16] Hyrum. Hyrum’s Law. https://www.hyrumslaw.
com.

[17] Rohan Kadekodi, Saurabh Kadekodi, Soujanya Ponna-
palli, Harshad Shirwadkar, Gregory R Ganger, Aasheesh
Kolli, and Vijay Chidambaram. Winefs: a hugepage-
aware file system for persistent memory that ages grace-
fully. In Proceedings of the ACM SIGOPS 28th Sympo-
sium on Operating Systems Principles, pages 804–818,
2021.

[18] Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap,
Taesoo Kim, Aasheesh Kolli, and Vijay Chidambaram.
Splitfs: Reducing software overhead in file systems for
persistent memory. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles, pages 494–
508, 2019.

[19] Junbin Kang, Benlong Zhang, Tianyu Wo, Weiren Yu,
Lian Du, Shuai Ma, and Jinpeng Huai. SpanFS: A scal-
able file system on fast storage devices. In 2015 USENIX
Annual Technical Conference (USENIX ATC 15), pages
249–261, 2015.

[20] Jeffrey Katcher. Postmark: A new file system bench-
mark. TR3022, 1997.

[21] Youyou Lu, Jiwu Shu, and Weimin Zheng. Extend-
ing the lifetime of flash-based storage through reducing
write amplification from file systems. In 11th USENIX
Conference on File and Storage Technologies (FAST 13),
pages 257–270, 2013.

[22] Chris Mason. Journaling with reisersfs. Linux Journal,
2001, 2001.

[23] Richard McDougall and Jim Mauro. Filebench, 2005.

[24] Microsoft. Azure Disk Storage. https://azure.
microsoft.com/products/storage/disks, 2023.

[25] Joontaek Oh, Seung Won Yoo, Hojin Nam, Changwoo
Min, and Youjip Won. {CJFS}: Concurrent journaling
for better scalability. In 21st USENIX Conference on
File and Storage Technologies (FAST 23), pages 167–
182, 2023.

[26] Daejun Park and Dongkun Shin. {iJournaling}:{Fine-
Grained} journaling for improving the latency of fsync
system call. In 2017 USENIX Annual Technical Confer-
ence (USENIX ATC 17), pages 787–798, 2017.

[27] Brian Pawlowski, Chet Juszczak, Peter Staubach, Carl
Smith, Diane Lebel, and Dave Hitz. Nfs version 3: De-
sign and implementation. In USENIX Summer, pages
137–152. Boston, MA, 1994.

[28] Richard Russon and Yuval Fledel. Ntfs documentation.
Recuperado el, 1, 2004.

[29] Harshad Shirwadkar. FastCommit Linux Kernel
Code. https://git.kernel.org/pub/scm/linux/
kernel/git/torvalds/linux.git/tree/fs/ext4/
fast_commit.c, 2022.

[30] Adam Sweeney, Doug Doucette, Wei Hu, Curtis An-
derson, Mike Nishimoto, and Geoff Peck. Scalability
in the xfs file system. In USENIX Annual Technical
Conference, volume 15, 1996.

[31] Theodore Tso. xfstests-bld. https://github.com/
tytso/xfstests-bld/tree/master, 2023.

[32] Stephen C Tweedie et al. Journaling the linux ext2fs
filesystem. In The Fourth Annual Linux Expo. Durham,
North Carolina, 1998.

[33] Ric Wheeler. Benchmark synchronous/async file cre-
ation. https://github.com/josefbacik/fs_mark,
2003.

[34] Youjip Won, Jaemin Jung, Gyeongyeol Choi, Joontaek
Oh, Seongbae Son, Jooyoung Hwang, and Sangyeun
Cho. Barrier-Enabled IO Stack for Flash Storage. In
16th USENIX Conference on File and Storage Technolo-
gies (FAST 18), pages 211–226, 2018.

[35] Youjip Won, Jaemin Jung, Gyeongyeol Choi, Joontaek
Oh, Seongbae Son, Jooyoung Hwang, and Sangyeun
Cho. Barrier-Enabled IO stack for flash storage. In
USENIX File and Storage Technologies (FAST), 2018.

170    2024 USENIX Annual Technical Conference USENIX Association

https://cloud.google.com/filestore/docs/mounting-fileshares
https://cloud.google.com/filestore/docs/mounting-fileshares
https://cloud.google.com/compute/docs/disks/hyperdisks
https://cloud.google.com/compute/docs/disks/hyperdisks
https://cloud.google.com/persistent-disk
https://cloud.google.com/persistent-disk
https://cloud.google.com/compute/docs/general-purpose-machines
https://cloud.google.com/compute/docs/general-purpose-machines
https://ftp.ntu.edu.tw/linux/utils/fs/xfs/docs/xfs_filesystem_structure.pdf
https://ftp.ntu.edu.tw/linux/utils/fs/xfs/docs/xfs_filesystem_structure.pdf
https://patchwork.kernel.org/project/dm-devel/patch/20100826095413.GA9750@lst.de/
https://patchwork.kernel.org/project/dm-devel/patch/20100826095413.GA9750@lst.de/
https://patchwork.kernel.org/project/dm-devel/patch/20100826095413.GA9750@lst.de/
https://www.hyrumslaw.com
https://www.hyrumslaw.com
https://azure.microsoft.com/products/storage/disks
https://azure.microsoft.com/products/storage/disks
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/fs/ext4/fast_commit.c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/fs/ext4/fast_commit.c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/fs/ext4/fast_commit.c
https://github.com/tytso/xfstests-bld/tree/master
https://github.com/tytso/xfstests-bld/tree/master
https://github.com/josefbacik/fs_mark


[36] Jeseong Yeon, Minseong Jeong, Sungjin Lee, and Eunji
Lee. {RFLUSH}: Rethink the flush. In 16th USENIX
Conference on File and Storage Technologies (FAST 18),
pages 201–210, 2018.

A Artifact Appendix

Abstract
This artifact includes tools and infrastructure that can be used
to validate FASTCOMMIT results described in the paper. Most
of the FASTCOMMIT code is already upstreamed. This ar-
tifact describes how to obtain unmerged fast commit code,
setup Google Cloud backed Virtual Machines and re-run the
evaluation discussed in the paper.

Scope
Using the benchmarks and setup instructions in this artifact,
users are able to verify following claims (details can be found
in Section 6):

• FASTCOMMIT reduce fsync latency.
• FASTCOMMIT reduce byte and IO overhead of journal-

ing.
• FASTCOMMIT minimizes journal interference.
• FASTCOMMIT lower cloud provisioning costs.

Contents
This artifact consists of following items:

• Unmerged FASTCOMMIT patches. Most of the FAST-
COMMIT code has already been merged upstream. This
artifact provides the unmerged patches that can be ap-
plied on top of the kernel source code.
• Benchmarking Scripts. This artifact provides bench-

marking scripts that can be used to run all the experi-
ments discussed in the paper.
• Documentation. This artifact provides documentation

about how to setup Google Cloud VMs to run the above
mentioned benchmarks.

Hosting
Most of the fast commit code is already upstreamed. Here are
2 main files that we contributed to upstream Linux kernel:

• https://git.kernel.org/pub/scm/linux/
kernel/git/torvalds/linux.git/tree/fs/
ext4/fast_commit.c

• https://git.kernel.org/pub/scm/linux/
kernel/git/torvalds/linux.git/tree/fs/
ext4/fast_commit.h

The code that is not merged upstream can be found in
the following GitHub repository: https://github.com/
harshadjs/fc-perf-v2. The benchmarking scripts can be
found in the following Github repository: https://github.
com/harshadjs/fast-commit-atc-2024. The README
file in that repository describes the steps to setup a Google
cloud VM to run the benchmarking. These steps can also be
used to setup any other Linux based machine for benchmark-
ing.

Requirements
Although our evaluation in this paper was based on Google
Cloud based virtual machines, fast commit feature and the
benchmarking environment is capable of running on any
Linux operating system. If users need to exactly reproduce
the results as described in the paper, then they should use a
machine with 32 cores and 128GB of RAM.
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