
This paper is included in the Proceedings of the
2024 USENIX Annual Technical Conference.

July 10–12, 2024 • Santa Clara, CA, USA
978-1-939133-41-0

Open access to the Proceedings of the
2024 USENIX Annual Technical Conference

is sponsored by

A Secure, Fast, and Resource-Efficient
Serverless Platform with Function REWIND

Jaehyun Song and Bumsuk Kim, Sungkyunkwan University;
Minwoo Kwak, Yonsei University; Byoungyoung Lee, Seoul National University;

Euiseong Seo, Sungkyunkwan University; Jinkyu Jeong, Yonsei University
https://www.usenix.org/conference/atc24/presentation/song

A Secure, Fast, and Resource-Efficient Serverless Platform with Function
REWIND

Jaehyun Song1, Bumsuk Kim1∗, Minwoo Kwak2, Byoungyoung Lee3, Euiseong Seo1, Jinkyu Jeong2

1Sungkyunkwan University, 2Yonsei University, 3Seoul National University
{jaehyun.song, bumsuk.kim}@csi.skku.edu, {minwoo.kwak, jinkyu}@yonsei.ac.kr,

byoungyoung@snu.ac.kr, euiseong@skku.edu

Abstract
Serverless computing often utilizes the warm container tech-
nique to improve response times. However, this method,
which allows the reuse of function containers across different
function requests of the same type, creates persistent vulner-
abilities in memory and file systems. These vulnerabilities
can lead to security breaches such as data leaks. Traditional
approaches to address these issues often suffer from perfor-
mance drawbacks and high memory requirements due to the
extensive use of user-level snapshots and complex restoration
process.

The paper introduces REWIND, an innovative and efficient
serverless function execution platform designed to address
these security and efficiency concerns. REWIND ensures
that after each function request, the container is reset to an
initial state free of any sensitive data, including a thorough
restoration of the file system to prevent data leakage. It incor-
porates a kernel-level memory snapshot management system,
which significantly lowers memory usage and accelerates the
rewind process. Additionally, REWIND optimizes runtime by
reusing memory regions and leveraging the temporal locality
of function executions, enhancing performance while main-
taining strict data isolation between requests. The prototype of
REWIND is implemented on OpenWhisk and Linux and eval-
uated with serverless benchmark workloads. The evaluation
results have demonstrated that REWIND provides substan-
tial memory savings while providing high function execution
performance. Especially, the low memory usage makes more
warm containers kept alive thereby improving the throughput
as well as the latency of function executions while providing
isolation between function requests.

1 Introduction

Serverless computing, also known as Function-as-a-Service
(FaaS), has significantly gained traction in cloud computing,
evident from its adoption by major cloud vendors. This shift

∗Currently at Samsung Electronics

from traditional virtual machine-based cloud computing or
Infrastructure-as-a-Service (IaaS) offloads system operation
responsibilities like auto-provisioning, auto-scaling, and load-
balancing from the client to the platform itself [26, 36]. This
model frees clients from the complexities of managing the
entire software stack, from operating systems (OSs) to ap-
plications, allowing them to focus more on application or
function development. Driven by the benefits of faster de-
velopment and continuous integration/continuous delivery
(CI/CD) processes [31], serverless computing has become
increasingly crucial.

The FaaS platforms usually process requests for a server-
less function in containers dedicated to that function [39].
This design allows function’s processing capability to dy-
namically scale in or out, responding to changes in request
demand. To support this, function containers must be stateless,
and function’s data should be ephemeral, being maintained
only for the duration of a single request execution. This ar-
chitecture fundamentally provides robust security. The use
of multiple containers offers isolated execution environments
across requests. Consequently, even if one container is com-
promised, its impact does not extend to requests being pro-
cessed in other containers. Additionally, function containers’
ephemeral nature further enhances security, as any residual
memory or file data within a container disappears quickly.

Containers require hundreds of milliseconds to launch [17].
To remove this startup latency of function containers out of the
function execution, serverless platforms typically reuse these
containers for subsequent requests of the same function [6,18,
19, 33, 37, 53, 58]. Unfortunately, this practice of employing
warm containers may create security vulnerabilities, such as
the potential exposure of sensitive data or the risk of malware
attacks from previous requests [4, 13].

One of the most straightforward solutions to address these
security threats is to restore function container’s state to its
initial one before processing the next request. The FaaS plat-
form should checkpoint the initial state of the container as
a snapshot when it is first launched, and restore function
container’s state from this snapshot after the execution of

USENIX Association 2024 USENIX Annual Technical Conference 597

each request when reusing the container. By employing this
checkpoint-restore (C/R) approach, even when executing re-
quests in warm containers, it ensures a secure execution envi-
ronment free from the influence of previous requests [4].

Although effective in mitigating security risks associated
with reusing containers, the C/R approach can lead to sig-
nificant execution delays caused by the restoration process.
Given the prevalent use of FaaS for lightweight microservices,
such delays present a challenge for real-world deployment.
Moreover, the need for additional DRAM to store snapshots,
proportional to function container’s initialized memory size,
limits the number of containers a server can host.

In this paper, we propose REWIND, a fast and secure
serverless platform that enhances the warm container reuse
technique with added isolation between function requests.
REWIND goes beyond just targeting memory and includes
processes and file systems in its system-wide checkpoint of
the initial state. Upon container reuse, REWIND performs a
restore operation from the snapshot, which we call rewind.

REWIND features a novel buddy page table structure in
the OS kernel, efficiently maintaining both snapshot page
mappings and page mappings altered during function execu-
tion. This approach simplifies checkpointing by maintaining
current page mappings without duplicating the entire address
space. This also drastically reduces the memory requirements
for storing the snapshot compared to the C/R approaches. If
new pages are allocated or page mappings change during
execution, the altered mappings will be recorded alongside
the snapshot mappings in the buddy page table. The rewind
operation simply eliminates any new or modified mappings
from the buddy page table, returning the container to its pris-
tine state for the next request. As a result, rewind completes
significantly faster than C/R schemes’ restoration operation.

REWIND’s memory management structure not only en-
hances security but also improves the speed of memory op-
erations during function execution. It records all changes in
the page table. Since serverless functions repetitively perform
the same operations for requests, memory management tasks,
including memory population, tend to be repeated identically
during execution. REWIND reduces memory management
overhead by not releasing but unmapping the pages used for
memory allocation and CoW operations from the previous
execution, sanitizing, and then reusing them in subsequent
executions.

Since REWIND creates a snapshot of process information
at the OS level and uses it for the rewind operation, it can
eliminate threats from malicious processes as well that might
exist due to exploitation like a rootkit [22, 57]. Additionally,
by exploiting the characteristics of overlay file systems [44]
popularly used by containers, REWIND creates a layer for
writes that occur during function execution, and later removes
the layer as a part of the rewind operation. This can prevent
data leakage through the file system with minimal overhead.

We implemented REWIND on the combination of Open-

Whisk [42], an open-source serverless computing platform,
and the Linux kernel [34]. We evaluated a few benchmark
workloads with diverse characteristics [9, 29, 62]. The evalua-
tion results were compared against the state-of-the-art C/R-
based solution in terms of performance and memory overhead.

This paper has the following contributions:
• We propose REWIND, an approach to enforce isolation

of consecutive function requests handled within a shared
function container at a low performance and memory cost.
Different from previous works, REWIND provides isolation
of memory as well as processes and file systems.

• Under the hood, we propose a buddy page table, REWIND’s
core page table structure extended to support capturing and
restoring a snapshot of a virtual memory while keeping
the number of pages and memory copy operations low for
managing a snapshot.

• We demonstrate the performance benefit and memory ef-
ficiency of REWIND with realistic serverless workloads
using a prototype implementation of REWIND. Also, we
demonstrate the temporal isolation of consecutive function
requests handled within a shared function container.
The remainder of this paper is organized as follows. The

following section explains the background and motivation of
this paper. Then, we explain our approach in Section 3. Sec-
tion 4 gives the performance and security evaluation results.
We contrast our work with the related work in Section 5. We
conclude this paper in Section 6.

2 Background and Motivation

2.1 Insecure Sandbox Reuse
Serverless computing has drawn strong attention in cloud
computing since cloud customers (or application developers)
can solely focus on their application development, and server-
related burdens, such as server management, load-balancing,
and auto-scaling can be offloaded to serverless computing
frameworks (e.g., AWS Lambda) [26, 36]. Serverless comput-
ing also offers better pricing since customers are charged for
the actual time spent by their invoked functions [36]. Due to
these benefits, it is reported that many IT companies migrate
their applications to serverless computing [31].

Serverless computing is known to provide strong security
for two reasons. First, sandboxing is applied; a function is
executed inside an isolated execution environment, such as
containers or virtual machines (VMs) [1, 35]. As a result, the
exploitation alone does not grant much security benefit to
the attacker, as its privilege is strictly restricted within the
sandbox. Second, the function execution is ephemeral. This
reduces the attack scope in terms of time [56]. A function in
serverless computing is stateless and can run on any server
hosts in the cloud. An invocation of a function, or a function
instance, is ephemeral; the function code and data are valid
only while the function is being executed. After it completes,

598 2024 USENIX Annual Technical Conference USENIX Association

its state and data do not last but disappear. When applications
need to persist their data, applications are supposed to store
data in cloud storage services. This ephemeral characteristic
allows to eliminate the persistence of function code and data,
which otherwise can be a frequent source of security attacks.
These two characteristics allow strong isolation of a function
from other functions as well as inter-invocation of the same
function. Industry practitioners believe the ephemeral char-
acteristic can significantly reduce the possibility of security
attacks because the life cycle of function instances is fairly
short [13, 56].

However, the security of serverless computing in practice
is sometimes compromised for better performance. So called
warm containers or warm functions are the technique to im-
prove the function invocation performance. Since the cost of
initializing a container for function invocation is high, server-
less platforms adopt to reuse function containers for the invo-
cation of forth-coming function requests. Figure 1(a) shows
the pseudo code of a function process that repeats handling
function requests while the container is kept alive. This warm
container technique can improve the performance of function
invocation since the time to initialize the function instance is
avoided. Unfortunately, the container reuse technique fails to
provide strong isolation between different function requests
and can open up attack opportunities [4, 13, 27].

Once a function container is reused, the data of the pre-
vious function invocation can persist in memory and/or in a
temporary file system (e.g., (/tmp)). This quasi-persistence of
data can open up new security attack opportunities, turning an
unexploitable vulnerability in a function into an exploitable
one [4, 13, 27]. For example, attackers can exploit the vul-
nerability of function codes and leave rootkits in a function
container. The successive function requests can be attacked by
these rootkits. In addition, privacy-sensitive data left mistak-
enly can be exfiltrated by attacker’s function request. These
new attack opportunities are caused by sharing a function
container for different function requests and failing to enforce
isolation between them.

2.2 Threat Model

This work focuses on the security problem of serverless appli-
cations running on commercial public cloud platforms, such
as AWS Lambda. We assume serverless functions handle the
privacy-sensitive data of clients. A function container services
a request of a client at a time, but the container hosting func-
tion execution can be reused to service function requests of
other end users, hence a warm container. A container has room
for persistence, such as the temporary file system, writable
memory where function code is running, and functions can
leave unencrypted privacy-sensitive data in such persistent
storage. Our scheme does not assume each function code is
malicious.

We further assume that an implementation of a function

from code import func
do
args = recv(proxy)
result = func(args)
send(proxy, result)

while keepalive == True:

(a) function process in warm container

from code import func
do
args = recv(proxy)
if (child = fork()) == 0:
result = func(args)
exit(result)

else:
wait(child, &result)

send(proxy, result)
while keepalive == True:

(b) Request isolation using fork

from code import func
do
/* checkpoint/restore point */
args = recv(proxy)
result = func(args)
send(proxy, result)

while keepalive == True:

(c) Request isolation using checkpoint/restore

Figure 1: The pusedo code of a function handler: (a) warm
container, using (b) fork and (c) checkpoint/restore.

has a vulnerability. Exploiting this vulnerability, the attacker
attempts to leak the privacy-sensitive data left in the function.
Specifically, the attacker can exploit the vulnerability and leak
leftover data inside the warm container’s persistent points.

Our scheme does not assume any side-channel attacks to
leak data. We assume the cloud provider, the serverless plat-
form, and the computing infrastructure are trusted. Any privi-
leged components, such as the operating system kernel and
hypervisor, are also trusted and do not collude with attackers.

2.3 Existing Solutions and Their Limitations
An intuitive but effective solution to providing strong security
to serverless applications is eliminating the quasi-persistence
of data during function invocation. At the same time, the solu-
tion needs to be performant, hence invoking a new container
for every function request is not acceptable due to its high per-
formance overhead. We can identify two possible solutions to
this problem and illustrate the limitations of them.
Isolating virtual memory using fork. The simplest ap-
proach to eliminating the memory quasi-persistence is the
use of the fork() system call. With the warm container tech-
nique, a function process in the function container runs a
while loop and the loop body serves the function request as
shown in Figure 1(a). In this approach, however, before in-
voking the function code, the function process forks and the
child process actually serves the function request as shown in
Figure 1(b). By doing so, the memory residue left by the exe-

USENIX Association 2024 USENIX Annual Technical Conference 599

cution of a function is removed after the child process exits.
A consecutive function request is also served on a new child’s
virtual memory which contains no data left by the previous
function invocation.
Limitations of fork. However, this simple fork-based ap-
proach has limitations. First, fork incurs copy-on-write han-
dling overheads. When a child process modifies pages shared
with the function process (the parent), the kernel page fault
handler is invoked to perform copy-on-write. The page fault
handling overhead can be exacerbated when a forked process
contains file pages or zero pages as the current fork implemen-
tation does not copy page tables for such memory pages [10],
which accompanies additional page faults. In addition, fre-
quent handling of page faults can incur hidden performance
overheads caused by architectural resource pollution [23, 54].
Even worse, this CoW overhead repeats on every function
invocation. Second, the current implementation of fork (e.g.,
in Linux) does not support the fork of a multi-thread pro-
cess. Function codes are implemented in multi-threads for
high performance [4, 61]. Lastly, fork cannot eliminate quasi-
persistence of files [13]. Function containers provide a tem-
porary directory to store temporary files of function codes.
Hence, the quasi-persistence of files needs to be supported
but fork provides only the memory isolation. Consequently,
the fork-based approach is incomplete in providing isolation
between function requests.
Checkpoint and Restore (C/R). C/R is a viable approach to
providing isolation between function requests. A snapshot of
a function process is taken and is used every time to serve
a function request. Accordingly, C/R can enforce isolation
between function requests. CRIU [11] is a representative
implementation of C/R in Linux systems. By using CRIU,
memory and file quasi-persistence can be removed. However,
CRIU is a general implementation and hence incurs high over-
head of (de)serializing snapshot of a process [4, 60]. Ground-
hog [4] is a light-weight implementation of C/R specialized
to serverless computing framework. Specifically, Groundhog
takes memory snapshot of a function process. Then, it uses
the Linux’s soft-dirty feature [55] to track dirty pages during
function request serving [4, 11]. After a function process han-
dles a function request, its memory state is restored from the
snapshot; the original values in the snapshot are dumped to
dirty pages. Therefore, any privacy-sensitive data in memory
can be removed.
Limitations of C/R. However, the C/R-based approaches
has the following four limitations. First, C/R doubles mem-
ory consumption for managing the snapshot of a function
process. Since the C/R-based approaches are performed at
user-level, the memory snapshot captures the entire virtual
memory. When restoring memory from the snapshot, all the
original data of the entire virtual memory should be nec-
essary. The read-only mappings cannot be trusted at user
level since attackers can change the mapping permission
(e.g., mprotect()) to writable, plant any attackable data, and

restore the original read-only permission. Second, the C/R-
based approaches incur high overheads during checkpointing
and restoring. Since the snapshot is managed at user-level,
it incurs extra overheads of syncing the kernel page table
with another one that is managed at user-level for a snap-
shot. During checkpointing, all the page table entries (PTEs)
are copied to the user-level to take the snapshot of the vir-
tual memory state. During restoring, all the PTEs are copied
again to inspect dirtied or modified PTEs, which will fol-
low the restoration of the original data by comparing them
to those taken during checkpointing. Third, tracking dirty
pages incurs runtime overheads of exception handling. The
soft-dirty feature makes use of the page fault handler of the
kernel [55], which frequently interrupts user code execution
with kernel code interventions [23, 54]. Last, taking a mem-
ory snapshot in user space requires administrator capability
(e.g., CAP_SYS_ADMIN in docker) since it needs to access
special files (e.g., /proc/pid/mem, /proc/pid/pagemap,
etc.) [4, 21]. Assigning the administrator capability to a con-
tainer can be dangerous since once the container is compro-
mised, the entire system can be exposed to attackers.

2.4 Challenges

Performance overheads. Providing isolation between func-
tion requests, thereby eliminating the quasi-persistence is
crucial for building secure serverless platforms. The method-
ology of providing isolation also needs to be performant con-
sidering short function execution times. For example, typical
serverless functions take 50 milliseconds of execution time
and if the C/R-based approach adds up 10 milliseconds of
extra latency, the function throughput can be degraded by
20%, which is not negligible. Additionally, the runtime over-
heads, such as frequent page faults caused by copy-on-write
protection, may exacerbate the function execution perfor-
mance. Hence, it is necessary to minimize such performance
inhibitors.
Memory consumption. The resource consumption also
needs to be minimized. The C/R-based approaches need to
capture the entire virtual memory of a function process. This
amplifies the memory cost of providing the protection. The
reason to capture the entire virtual memory is that the system
does not know which pages will be modified. Since the mem-
ory snapshot is managed at user-level, it is safe to keep the
original values of the entire virtual memory. Even read-only
pages can be modified by altering the protection of page map-
pings to writable. The fork-based approaches can minimize
the memory consumption since they can precisely capture
page modification (i.e., page faults). However, the page fault
overhead is high. The exception handling overhead is not
negligible due to architectural resource pollution by kernel
code execution [23, 54] as well as the cost of architectural
vulnerability mitigation features [24, 50] (e.g., kernel page
table isolation [30]). High memory consumption can also af-

600 2024 USENIX Annual Technical Conference USENIX Association

fect the overall function serving performance of serverless
clusters. Warm containers can be replaced due to memory
shortage [19, 53]. Then, the high-overhead cold start of func-
tion containers may affect the function execution performance.
Since the number of warm containers is largely dependent
on the memory consumption, it is necessary to keep memory
consumption low.
Missing Persistence Points. Memory is not the only persis-
tence point in serverless function containers. A temporary
file system (/tmp) is provided in a function container and
any privacy-sensitive data can remain in that storage. The
temporary file system is generally a RAM file system hence
volatile but is persistent while the function container is alive.
Any data left in the file system can be attack targets. Similarly,
processes or threads can also be a persistence point and can
be exploited. Attackers can plant a rootkit or malware process
in a function container to attack other function requests. Since
the aforementioned approaches only sanitize memory, this
type of attack cannot be prevented properly. Therefore, files
and processes/threads also need to be carefully addressed to
eliminate quasi-persistence in warm containers.

3 REWIND

3.1 Overview
This paper proposes REWIND, a secure and fast function
execution platform. REWIND provides temporal isolation
between function requests served on the same warm function
container. This is achieved by (1) taking a snapshot of the
container without any private data and then (2) rolling back
the container state to the snapshot state at the end of each
function serving.

To achieve high-performance function execution, our
scheme exploits the temporal locality of function code ex-
ecution in a function container. A warm container serves
consecutive function requests of the same function. In other
words, the runtime behavior of the function process is (al-
most) identical across different runs. For example, memory
buffers allocated in the current run can be allocated again in
the next run. Pages made dirty in the current run may be dirty
in the next run.

To achieve low memory consumption, REWIND has kernel-
level support to manage a memory snapshot. REWIND ex-
ploits CoW-based page sharing to save memory and keep a
snapshot isolated from the current memory of a function pro-
cess. Meanwhile, REWIND leverages the repetitive execution
of functions for performance. When frequent CoW-breaking
is detected, such pages are duplicated. If new memory map-
pings are made repetitively in the middle of function execu-
tion, such memory areas are buffered and used in the next run
to avoid costly page faults and page allocations.

To this end, REWIND proposes two privileged operations
snapshot() and rewind(). A serverless function container

has two processes: a proxy process and a function process.
The proxy process acts as a proxy for the function container,
relaying requests/responses between the serverless framework
and the function container. The two privileged operations are
invoked by the proxy process to handle the function process.
When a function container is initialized and a function process
is created, the function is invoked using a dummy argument
to initialize its relevant codes, data, and potentially soft states,
such as cached data and memorization [4]. Then, the proxy
process takes a snapshot of the function process. After that, the
function process handles regular function requests. Whenever
the function process finishes serving a function request, its
result is forwarded to the proxy process, which then invokes
the rewind operation to roll-back the state of the function
process to its snapshot state.

A function container can have three quasi-persistence
points: memory, file system, and processes. The following
subsections describe how REWIND addresses and eliminates
quasi-persistence in these points.

3.2 Memory

Memory is the most important resource to be carefully han-
dled in REWIND. This is because most user-private data
resides in memory, and its amount is the largest among the
three persistent points, which mostly affect the performance
of private data cleaning. Our approaches are (1) taking a
snapshot of memory, (2) tracking modification of memory,
and (3) leaving necessary information in the snapshot for fast
rewind operation. To facilitate these approaches, we introduce
buddy page table, an extended version of conventional page
table that manages two virtual memories, the original one and
the snapshot. The buddy page table is designed to contain
necessary information for taking a snapshot, rewinding the
virtual memory using the snapshot, tracking written pages,
and accelerating the reuse of dirty pages.

With the buddy page table, the leaf page table size is in-
creased from 4 KB to 8 KB. The lower 4 KB is the original
page table that stores PTEs for the original virtual memory.
The upper 4 KB serves as the buddy page table for the lower
4 KB original page table, storing buddy PTEs that manage
the snapshot of the original virtual memory and related infor-
mation. The memory management unit of the CPU accesses
only the lower 4 KB page tables, while the upper page ta-
bles are managed only by software. The snapshot is carefully
manipulated by the snapshot operation and page population
operations, such as memory mapping (mmap()) and page fault
handling. The simple 8 KB page table structure facilitates
accesses to the regular PTEs and their associated buddy PTEs
during such memory manipulation operations. In REWIND,
only the function process is allowed to have a buddy page
table, and other processes are not.

USENIX Association 2024 USENIX Annual Technical Conference 601

B
u
d
d
y

 P
T

Anon

VMA

Page Table Entry

Writable PFN

- - -

- - -

- - -

- - -

- - -

- - -

- - -

- - -

X 0 0x002

X 1 0x001

Anon

VMA

Page Table Entry

Writable PFN

- - -

- - -

- - -

X 0 0x002

X 0 0x001

- - -

- - -

- - -

X 0 0x002

X 0 0x001

Anon

VMA

Page Table Entry

Writable PFN

1 1(zero) 0x008

0 0 0x004

X 0 0x003

X 0 0x002

X 0 0x001

1 1 0x008

0 1 0x007

X 0 0x003

X 0 0x002

X 1 0x006

Checkpoint Execution

O
ri

g
in

al
 P

T

1

1 2

2

3

5

5

4

3

4

Figure 2: Memory snapshot example. (X indicates don’t care)

3.2.1 Snapshot

The memory snapshot operation takes a snapshot of the cur-
rent process and prepares memory write tracking. Our scheme
makes use of the well-known copy-on-write (CoW) technique
to track memory writes and to preserve the original snapshot
while minimizing memory space overhead.

Basically, the snapshot operation applies to memory re-
gions (or virtual memory areas (VMAs)) mapped already,
say committed VMAs. Hence, any memory regions created
after snapshotting, say uncommitted VMAs, are not consid-
ered to be in the snapshot since they can contain privacy-
sensitive data. For performance optimization, we handle such
new VMAs in a different way; see Section 3.2.3 for details.

Figure 2 shows an example of the memory checkpoint
operation and the state of the page tables. Committed VMAs
have two types of pages, populated (or present) pages and
non-populated (or non-present) pages. For populated pages,
we clone the PTEs of the original page table to the buddy page
table and apply the copy-on-write protection to both PTEs. If
a page is read-only, this approach saves memory space. If a
page is writable, the CoW protection may save memory space
or preserve the original copy of the page even if the page is
written thereafter. In the figure, the two PTEs are present in
memory and are cloned after snapshotting. The cloned PTEs
(or buddy PTEs) have the same page frame number (PFN) of
the original PTEs. The PTE at the bottom was writable before
snapshotting but is now write-disabled (CoW-protected) 1 .
Note that these operations are applied to anonymous VMAs
as well as private file VMAs (e.g., data sections of executable
or shared libraries).

When writes occur on such CoW-protected pages, we ap-
ply the conventional CoW handling to them 2 . Hence, the
original PTE now references a new page and accommodates
memory writes; this may contain privacy-sensitive data. At
the same time, the buddy PTE points to the original copy of
the page to keep the snapshot correct.

For present pages in a shared file mapping, we do not pro-
tect writes on them. Writes onto shared file pages may contain

privacy-sensitive data. Nevertheless, our memory rewind op-
eration reverts file data back to its pristine state by our file
system snapshot-rewind operation, which is explained in Sec-
tion 3.3. The PTEs in a shared file mapping reference page
cache pages. Hence, if the file system rewind completes, the
reverted file data is immediately visible to a process under the
Unix semantics [32]. Therefore, the memory snapshot-rewind
is not concerned with shared file pages.

For non-present pages, their snapshot operation occurs
when those pages are populated (i.e., page faults). For read
faults, the identical CoW protection is applied to pages after
read faults are handled 3 . However, for write faults, we con-
duct two different operations to file-backed private pages 1

and anonymous pages. For file-backed pages, the fault handler
performs the conventional filemap fault and then, our scheme
applies the CoW breakage to the page. Hence, the buddy PTE
points to the original copy of the file page (i.e., page cache
page), and the original PTE points to the private copy of the
file page 4 .

However, for anonymous pages, when their write faults
occur, the pages are not handled under the CoW semantic.
Since we know the original content of each page, which is
zero-filled, we make both PTEs share the same physical page.
Then, we set a special zeroing flag in the buddy PTE to indi-
cate that its original value is zero 5 . This flag is used later
during the rewind operation.

3.2.2 Rewind

Memory rewind restores the memory of the function process
to a pristine state using the snapshot. This operation refers to
the contents of the buddy page table and restores the process’s
original virtual memory as follows.

For committed VMAs, the buddy PTEs reference one of
the following cases: (1) a page shared with the original PTE
with CoW protection (write-disabled), (2) an individual page
not shared with the original PTE (i.e., CoW occurred), (3) a
page shared with the original PTE but containing the special
zeroing flag, (4) a file page in a shared file mapping. Note
that the memory rewind operation covers the former three
cases, and the last one is covered by the file system rewind
(Section 3.3). Figure 3 shows an example of changing the
page table state during memory rewind.

In the first case, the memory rewind operation does nothing
because the original PTE points to an unmodified page whose
contents are identical to the contents of the snapshot 6 . This
is because the virtual page has not been modified since the
snapshot was taken. Both PTEs are still protected by CoW
(i.e., read-only), which means that any writes to the virtual
page may preserve the original data of the snapshot. Therefore,
the memory rewind operation cares nothing in this case.

1The file-backed private pages are created when pages in private file
mapping are modified. Examples are writes onto data sections of executable
or shared libraries.

602 2024 USENIX Annual Technical Conference USENIX Association

B
u

d
d

y
 P

T

Anon

VMA

Page Table Entry

Writable PFN

1 1(zero) 0x004

0 0 0x002

X 0 0x001

1 1 0x004

0 1 0x003

X 0 0x001

Anon

VMA

Page Table Entry

Writable PFN

1 1(zero) 0x004

0 0 0x002

X 0 0x001

1 1 0x004

0 1 0x003

X 0 0x001

Rewind

O
ri

g
in

al
 P

T

6

6

7

7

8

8

memset(0)

memcpy()

8

7

Data Pages

Figure 3: Memory rewind example.

In the second case, we copy data from the buddy PTE’s
page to the original PTE’s page. This happens because the
CoW protection is broken by writes to this virtual page. There-
fore, we need to clean up the writes since the snapshot was
taken. An intuitive approach is to free the original PTE’s page
and make the original PTE reference the buddy PTE’s page
with CoW protection. However, this intuitive approach comes
at the cost of repetitive page faults when the function process
runs again to handle another function request. Our approach
is to preserve both pages of both PTEs and copy the original
content of the page back to the original page 7 . In this way,
the rewind operation correctly restores the original content of
the virtual page. In addition, no further page faults occur on
this type of page. Given the temporal locality of function exe-
cution, this type of page is written repeatedly during function
execution. For example, once a global variable is modified
in a previous function execution, the variable is likely to be
modified again in the next function execution. Consequently,
we reduce page faults by preserving both pages and allowing
write access on the rewind operation.

In the third case, the original PTE is preserved and the
page is cleared to zero. This case occurs when anonymous
memory, such as stack and heap, has grown and pages in
it are modified. Accordingly, we reset the contents of such
pages to the original, which is zero. This case also exploits
the temporal locality of function execution. For example, if
a stack has grown to a certain point in the previous function
execution, the stack is likely to grow to the same point again.
Therefore, we preserve these pages to save time that would
be spent on page allocation and page fault handling.

3.2.3 Handling Uncommitted VMAs

During function execution, any memory areas (or VMAs) can
be mapped after the snapshot is taken. We call such memory
regions uncommitted VMAs. Since uncommitted VMAs do
not belong to the snapshot, which means that such VMAs
may contain privacy-sensitive data, it is intuitive to discard
them all if they exist on memory rewind. Unfortunately, this
simple approach may give up some performance optimization
opportunities that result from repeatedly running the same
function. For example, during function execution, the func-
tion code requests to open a new memory mapping for its

memory allocation. It is then likely that an identical memory
mapping will be required when the function process rewinds
and executes the same function code again.

Our optimization approach is to reuse such uncommitted
VMAs. During the memory rewind operation, such VMAs
are unmapped but their resources (i.e., pages and page tables)
are not freed, and are instead preserved for reuse. To prevent
private data leakage, pages are cleared to zero. When the func-
tion process rewinds and handles another function request, if
certain conditions are met, the preserved VMAs are reused
to reduce the time spent establishing new memory mappings.
To this end, during the memory rewind operation, anonymous
uncommitted VMAs are detached from the virtual memory.
In other words, the VMA structure is detached but preserved,
along with PTEs and pages. After rewind, when a similar
anonymous memory mapping occurs, the arguments of the
new memory mapping are compared with the preserved ones.
Specifically, a new mmap system call without a designated
base address and with identical mapping flags is considered
for VMA reuse. We use a best-fit algorithm to match and
reuse the preserved VMAs. If the reused VMA is larger than
a requested mmap, the surplus area is preserved for further
reuse. If the reused VMA is smaller than a requested mmap,
remapping is performed to increase the size of the reused
VMA.

Note that we limit the target of this VMA reuse to anony-
mous memory. If the target is expanded to include file-backed
memory, it can be the source of privacy leakage. Or, even if a
file does not contain any privacy-sensitive data, the file infor-
mation, such as the file name, can also be leaked as a method
of side-channel attacks. Therefore, we restrict the VMA reuse
to anonymous memory.

3.3 File System Snapshot-Rewind

File system snapshot is also necessary since serverless plat-
forms allow file writes in an ephemeral sandbox. Hence,
privacy-sensitive data can remain in ephemeral storage and
can be leaked by attackers. Applying the snapshot-rewind
operation to the sandbox file system, however, is not a big
issue since taking a file system snapshot is a well-supported
feature of modern file systems [40, 51] or databases [28]. It
is straightforward to use such file systems for our scheme,
taking a snapshot of the file system during snapshotting and
restoring the snapshot during rewinding.

Nevertheless, the file system used in the serverless platform
we are based on does not support the snapshot feature during
runtime. The file system of the container-based sandbox (e.g.,
docker [16]) is OverlayFS [43], which is a union file system
of multiple file systems. This file system is effective for con-
tainers (e.g., docker) with baseline image [65]. The baseline
image is represented as a lower file system in OverlayFS. Any
modification made during runtime is recorded in a file system
called upper file system. The processes inside a container see

USENIX Association 2024 USENIX Annual Technical Conference 603

C
h
ec
k
p
o
in
t

A B

A Bʹ C

Bʹ

Bʹ

Lower FS

Upper FS

Snapshot

Merged FS

C

Rewind

A B

A Bʺ Cʺ

Bʹ

Bʺ

Lower FS

Upper FS

Snapshot

Merged FS

C

Dʺ

Cʺ Dʺ

A B

A Bʹ C

Bʹ

Bʹ

Lower FS

Upper FS

Snapshot

Merged FS

C

C

Execution

Figure 4: Example of file system snapshot-rewind.

only the merged view of the two file systems (lower + upper).
The lower layer is immutable while the upper layer is volatile.
The union of the two file systems can provide an ephemeral
file system of a baseline container image; hence facilitating
the deployment of a function image to many hosts [52].

We implement the snapshot-rewind operation on Over-
layFS as follows. During the snapshot operation, we take
a snapshot of the upper file system and store them separately,
which is denoted as a snapshot file system. Then, when the
rewind operation is invoked, we restore the content of the
snapshot onto the merged file system. We take this approach
because OverlayFS does not allow direct modification or re-
mount of the upper file system [44]. Figure 4 shows an exam-
ple of our file system checkpoint-rewind operation.

In more detail, during the rewind operation, we perform
the following procedure on all the files in the current upper
file system. For each target file in the upper file system, we
first find the original file of the target file. If the original
one is found either from the snapshot or from the lower file
system, we compare the mtime of both files. If the target file
(B′′ or C′′) is younger than the original one (B′ or C), we
replace the target file with the original one. If the original
one is found from both file systems (target B′′), we select the
original one from the snapshot (B′). If the original one is not
found, we delete the target file (D′′) from the merged view.
Considering that OverlayFS does not allow direct change of
the upper file system, we believe this approach is a reasonable
practice to implement the checkpoint-restore operation on
OverlayFS. Note that our procedure can be inefficient since all
the operations are not done at file system-level but at the user-
level. However, our evaluation results show that the overhead
of file snapshot-rewind is negligible since the data handled
during file system snapshot-rewind is only a few tens of KB.
We left the file system-level implementation of the snapshot-
restore, which can be more efficient than our practice, as the
future work.

3.4 Task Snapshot-Rewind
REWIND rewinds tasks (processes and threads) at every com-
pletion of a function execution. Otherwise, the attacker’s
threads/tasks can remain in a container for malicious behav-

iors, such as rootkits [13]. Hence, we record processes and
threads in a function container when the snapshot operation
is invoked. Recall that the serverless platform and privileged
components (container and the OS kernel) are trusted. Hence
we assume no malicious ones exist while doing the first snap-
shot operation, allowing to take the snapshot of tasks. During
the rewind operation, we kill any tasks that are not in the snap-
shot. Any memory spaces, such as thread stacks and process
virtual address spaces, are also reclaimed during this oper-
ation. We do not explicitly release resources, such as futex,
semaphore, or file lock, that are held by killed tasks. If the
killed components hold such resources, they would have not
worked properly with the original warm sandbox technique.

REWIND protects the function process against malicious
use of the snapshot operation. If the snapshot operation is ex-
ploited by attackers, the snapshot operations would be nested.
However, we assume the first call of the snapshot operation
is trustworthy since the serverless platform and privileged
components are trusted. Hence, the first snapshot operation
is a proper one. During rewind, our scheme trusts only the
snapshot made by the first snapshot operation. Hence, even if
the snapshot is nested the function process can return to its
proper pristine state.

Whenever the rewind system call is invoked, any open files
and open network connections also need to be rewound. Other-
wise, they would incur incorrect execution, e.g., reading a file
from an incorrect position, or using unauthorized communica-
tion channels. Such file descriptors and network connections
are task-private. Hence, we record the open file descriptors
and their current positions during the task snapshot operation.
During the rewind operation, we close any file descriptors
that were opened after the snapshot operation. We also reset
the seek offset of the file descriptors if their back-end is a file.

4 Evaluation

4.1 Evaluation Environment
The memory/task snapshot-rewind operations are imple-
mented as new system calls in Linux kernel version 5.4.0.
The file system snapshot-rewind operations are implemented
as user-level commands. All the snapshot-rewind operations
are invoked by the proxy process of the OpenWhisk server-
less framework [42,45,46]. The snapshot/rewind points of the
function process are identical to those of the C/R approach in
Figure 1(c). We modified 977 lines of Linux kernel code and
363 lines of OpenWhisk code. Experiments were conducted
on a server with an Intel Xeon Gold 5118 processor (2 sockets,
12 cores per socket) and 192 GB of RAM.

We built and used three microbenchmark programs. Mem-
ory examines the performance characteristics of REWIND
and other schemes using simple memory access operations on
memory mapped using mmap(), varying in memory size, type,
and read/write ratio. Hello and PKG only import libraries and

604 2024 USENIX Annual Technical Conference USENIX Association

Microbenchmark

Memory: read/write mmap’ed memory
Hello: Hello world printer
PKG: Package importer

(mypy, numpy, django)
Float Floating point operation

MatMul Two N-dimensional square
matrix multiplication

Linpack Solving linear equations
PyAES AES encoding

ImageProcessing Image transformation
using Python Pillow library

VideoProcessing Video transformation
using Python OpenCV library

Chameleon HTML generation

Machine Learning LR-Training: Review analysis
LR-Serving: Review analysis

Table 1: Workload specification (workload names bold-faced).

do not have a function body. Also, we chose workloads from
the FunctionBench benchmark suite [29]. The workloads used
in our experiments are summarized in Table 1. Although the
tested function workloads are written in Python, REWIND is
not limited to a specific runtime and can be applied to any run-
time or native code. REWIND is compared with the following
alternative schemes:

• Base: This scheme represents the original OpenWhisk uti-
lizing the warm container technique. The function handler
operates as depicted in Figure 1(a).

• Fork: This approach employs the fork() system call for
memory and task isolation, as shown in Figure 1(b).

• Groundhog (GH) [4,21]: This is the state-of-the-art method
for ensuring isolation between function requests. It creates
a snapshot of a function process after handling a dummy
request. Then, before serving a new function request, the
memory state is restored from this snapshot. The function
handler code is as shown in Figure 1(c).

4.2 Memory Microbenchmark

We first demonstrate how REWIND and the compared
schemes perform in various memory access scenarios using
the memory microbenchmark. The microbenchmark program
performs the following operations: (1) allocating a memory
using mmap(), (2) populating all the pages in the memory by
writing one byte on each page, (3) conducting the benchmark
operation by reading or writing the first byte of the pages
sequentially. For REWIND and GH, the snapshot is taken
after operation (2). For Fork, fork() is invoked after opera-
tion (2). After operation (3), REWIND and GH perform their
restore operation. Fork simply terminates a child process. The
performance metrics are function time, which is the execution
time of operation (3) and a restore time which is the time
taken to restore the memory of the benchmark process from
its snapshot.

 0

 0.2

 0.4

 0.6

 0.8

 1

B
as

e
Fo

rk
G

H
R

W

B
as

e
Fo

rk
G

H
R

W

B
as

e
Fo

rk
G

H
R

W

B
as

e
Fo

rk
G

H
R

W

128MB 256MB 512MB 1GB

T
im

e
 (

s)

Restore Function

Figure 5: Microbenchmark performance with varying memory
size.

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

B
a
se

F
o
rk

G
H

R
W

B
a
se

F
o
rk

G
H

R
W

B
a
se

F
o
rk

G
H

R
W

B
a
se

F
o
rk

G
H

R
W

B
a
se

F
o
rk

G
H

R
W

B
a
se

F
o
rk

G
H

R
W

0:100 20:80 40:60 60:40 80:20 100:0
r:w r:w r:w r:w r:w r:w

T
im

e
 (

s)

Restore Function

Figure 6: Microbenchmark performance with varying ratios
of read/write operations.

Figure 5 shows the performance of the workload with vary-
ing the size of memory. In this workload, the memory is a
private file mapping, with sizes varying from 128 MB to 1 GB.
The memory operations are reads and writes in a 1:1 ratio.
As shown in the figure, function time increases as memory
size increases. More importantly, GH and Fork show high
function time overheads as they require page fault handling
on every first page modification. Fork shows the highest over-
head as its fault handling requires a page allocation followed
by a page copy. GH shows a moderate overhead as its page
fault handling requires only setting a soft dirty bit. REWIND,
however, shows the lowest overhead in function time because
it does not cause page faults as the write permission of the
memory is enabled. In terms of the restore time, GH shows
higher overhead than REWIND as its restore operation oc-
curs in user space. However, REWIND performs the restore
operation in the kernel, simply performing memory copies
from buddy pages to original pages.

Figure 6 illustrates the performance of the microbenchmark
with varying ratios of read/write operations on a 1 GB mem-
ory. The overheads associated with the function and restore
times can be largely affected by the portion of dirty pages.
This performance characteristic is demonstrated in this exper-
iment as shown in the figure. When the portion of memory
writes decreases, the function time and the restore time de-
crease. Among the three schemes (Fork, GH and REWIND),
REWIND shows the lowest overhead as it shows the shortest

USENIX Association 2024 USENIX Annual Technical Conference 605

 0
 0.02
 0.04
 0.06
 0.08
 0.1

 0.12
 0.14

B
as

e
F

o
rk

G
H

R
W

B
as

e
F

o
rk

G
H

R
W

B
as

e
F

o
rk

G
H

R
W

B
as

e
F

o
rk

G
H

R
W

B
as

e
F

o
rk

G
H

R
W

Float Linpack MatMul PyAES Cham

T
im

e
(s

)
Restore Function

(a) Memory Workloads

 0

 1

 2

 3

 4

 5

 6

B
as

e

F
o
rk

G
H

R
W

B
as

e

F
o
rk

G
H

R
W

B
as

e

F
o
rk

G
H

R
W

B
as

e

F
o
rk

G
H

R
W

ImgProc VidProc LR_Train LR_Serve

X X X X

T
im

e
(s

)

Restore Function

(b) File Workloads

Figure 7: Function latency with restore time. X indicates no
result because GH failed to execute the workloads.

function and restore times.

4.3 Function Latency
To understand the performance impact of REWIND on real
serverless functions, we measure the function latency of the
workloads in FunctionBench. The function latency is the
latency from when the proxy process receives a function
request to when the proxy process obtains the result from the
function handler process. Figure 7 shows the function latency
results of the tested workloads.

First, Figure 7(a) shows the latency of workloads with
fast function execution time around 10s of milliseconds. As
shown in the figure, REWIND shows similar performance to
the baseline despite that REWIND performs the rewind op-
erations. Moreover, REWIND demonstrates shorter function
execution times than the baseline in the Linpack and MatMul
workloads through the benefit of the VMA reuse technique,
ultimately showing 19% and 11% shorter latency than the
baseline, respectively. Meanwhile, GH incurs a larger restore
overhead (11% on average) compared to REWIND, partic-
ularly with the workloads (Linpack, MatMul, Cham) using
a large amount of dirty anonymous pages. GH causes page
faults during its function execution by its soft-dirty feature,
resulting in a 3% increase in function time compared to the
baseline. Fork experiences a 12% increase in function time
compared to the baseline due to its copy-on-write handling

 0
 50

 100
 150
 200
 250
 300
 350

H
el

lo
PK

G

Fl
oa

t
L
in

pa
ck

M
at

M
ul

Py
A

E
S

C
ha

m
Im

gP
ro

c
V

id
Pr

oc
L
R

_T
ra

in
L
R

_S
er

ve

Workloads

x x x x

R
S

S
 (

M
B

)

Base Fork GH Rewind

Figure 8: Peak RSS of function containers.

overhead during execution.
Figure 7(b) indicates that function times of file workloads

are longer than one second. Interestingly, these workloads
manipulate files, and GH has malfunctioned with these work-
loads. Therefore, their results are omitted and marked as ’X’
in the figure. As shown in the figure, the page fault overhead
of fork is hardly noticeable due to long execution times. Only
LR_Serve shows a slightly longer execution time than the
baseline. REWIND also shows marginal performance over-
head compared to the baseline. Note that among the four
schemes, only REWIND enforces the isolation to the three
persistence points (memory, file, and tasks).

4.4 Memory Consumption

Figure 8 illustrates the memory consumption for each of the
four schemes, measuring the peak resident set size (RSS).
The figure shows that the schemes providing isolation, gen-
erally, consume more memory than the baseline due to the
management of duplicated copies of dirty pages. Notably,
the GH scheme exhibits the highest memory usage as it re-
quires snapshotting all the pages of the function process. The
Fork scheme, which duplicates dirty pages during function
execution, shows the second-largest memory consumption.
In contrast, REWIND demonstrates the most efficient mem-
ory usage among the schemes addressing security issues in
warm containers. Its memory overhead is, on average, only
11% higher than the baseline. This efficiency is attributed
to REWIND’s design, where anonymous pages are not du-
plicated between the snapshot and the function process, as
detailed in Section 3. It’s important to note that this approach
does not compromise privacy data security; anonymous pages
are reset to zero during each rewind, ensuring no leakage of
sensitive data.

4.5 Function Throughput

The performance of function handling is influenced not only
by the execution time of the function itself but also by the
memory consumption of the function containers. To evaluate

606 2024 USENIX Annual Technical Conference USENIX Association

 0

 4

 8

 12

 16

 20

8GB 4GB 2GB 1GB
System Memory Configuration

T
h
ro

u
g
h
p
u
t

(r
eq

 /
 s

ec
)

Base Fork GH Rewind

Figure 9: Function throughput

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

C
D

F

Execution Time (s)

Base Fork GH Rewind

Figure 10: CDF of function execution time. System memory
configuration is 4 GB.

function execution performance thoroughly, we set up a func-
tion execution platform and ran a trace of function requests.
This trace was collected using the Microsoft Azure serverless
function trace [63]. From this trace, we extracted a sequence
of function requests over a 20-minute period, mapping each
function ID to our tested workloads. We identified 14 unique
function IDs and mapped two to three functions to each of
our tested workloads. We excluded workloads that use files,
as Fork and GH do not support the elimination of file system
persistence.

Each function container’s memory allocation was config-
ured to accommodate the peak RSS depicted in Figure 8.
The available memory sizes for containers were 32 MB, 64
MB, and 128 MB. For instance, if the peak RSS of MatMul
in REWIND is 60 MB, a container with 64 MB of memory
would be assigned to that workload. A node was set up with
the OpenWhisk platform to run function containers to handle
the function traces. The OpenWhisk platform was configured
to utilize the warm container technique as much as possible,
except in cases of memory shortages. In situations where
memory was insufficient, the least recently used container
would be terminated to free up memory and accommodate
the current function request.

Figure 9 shows the throughput of the function trace with
varying the available memory of the node. As shown in the
figure, when the memory is sufficient (8 GB), all the schemes
show high function execution throughput (around 17 function
requests per second). When the available memory is reduced
to 4 GB, Fork and GH show poor performance due to memory
shortage followed by killing and cold-starting function con-

 0

 40

 80

 120

1st 2nd 3rd 4th 5th 6th 7th 8th 9th
normal small large

Request Sequence

E
x

ec
u

ti
o

n
 T

im
e

(m
s)

Base Fork GH Rewind

(a) Linpack

 0

 40

 80

 120

 160

1st 2nd 3rd 4th 5th 6th 7th 8th 9th
normal small large

Request Sequence

E
x

ec
u

ti
o

n
 T

im
e

(m
s)

Base Fork GH Rewind

(b) Matrix multiplication

Figure 11: Function run-to-run execution time with varying
function arguments.

tainers. However, REWIND shows good performance which
is comparable to the baseline, because of REWIND’s low
memory overhead. When the available memory is reduced to
2 GB or 1 GB, the throughput drops as the memory shortage
incurs frequent killing and cold-starting of function contain-
ers.

Figure 10 presents the cumulative distribution function
(CDF) of the function execution times for the workload. Each
function execution time represents the end-to-end latency
from requesting a function execution to receiving the function
response. This includes the time spent to rewind/restore the
function handler process. As depicted in the figure, with 4
GB of memory, REWIND exhibits a function execution time
similar to that of the baseline. However, Fork and GH show an
increase in function execution time due to the more frequent
occurrence of cold container invocations.

4.6 Benefits of VMA Reuse

REWIND optimizes function execution by reusing anony-
mous VMAs. To test whether this feature adapts to changes
in function arguments, we measured the performance of Lin-
pack and MatMul; these two workloads benefit from the VMA
reuse feature. Figure 11 shows the execution time for these
two workloads with three different sets of arguments (base,
small, large), each tested in three consecutive runs. Therefore,
each workload undergoes a total of nine consecutive function
invocations. As illustrated in the figure, the baseline, Fork,
and GH show no significant differences across varying func-

USENIX Association 2024 USENIX Annual Technical Conference 607

 0

 10

 20

 30

 40

 50

 60
H

el
lo

PK
G

Fl
oa

t
L
in

pa
ck

M
at

M
ul

Py
A

E
S

C
ha

m
Im

gP
ro

c
V

id
Pr

oc
L
R

_T
ra

in
L
R

_S
er

ve

0
.3

0

0
.4

9

0
.3

0

0
.5

0

0
.5

0

0
.3

2

0
.4

0

x x x x

Workloads

T
im

e
(m

s)
GH Rewind

Figure 12: Snapshot creation time. X indicates no result be-
cause GH failed to execute the workloads.

 0

 2

 4

 6

 8

 10

 12

H
el

lo
PK

G
Fl

oa
t

L
in

pa
ck

M
at

M
ul

Py
A

E
S

C
ha

m
Im

gP
ro

c
V

id
Pr

oc
L
R

_T
ra

in
L
R

_S
er

ve

x x x x

22.00 21.34

Workloads

T
im

e
(m

s)

GH Rewind

Figure 13: Restore time. X indicates no result because GH
failed to execute the workloads.

tion arguments. However, REWIND demonstrates reduced
function execution times when VMAs can be reused from pre-
vious executions. Notably, when the same-size arguments are
used consecutively, REWIND further reduces the execution
time compared to when handling different-size arguments.
For instance, when the argument size changes from small to
large, the performance gain of REWIND diminishes at the
7th run. However, REWIND regains its performance advan-
tage when the same-size argument is used consecutively, as
observed in the 8th run.

4.7 Time Overhead of Snapshot and Rewind

Figure 12 illustrates the time required to take a snapshot
in REWIND and GH. This overhead is a one-time cost and,
as such, has minimal impact on overall function execution
performance. However, it can influence the cold start time
of a function container. Since REWIND involves minimal
operations during its snapshot operation, it outperforms GH in
terms of snapshot creation time. For the memory-only work-
loads (Hello through Cham), REWIND records a maximum
snapshot creation time of only 0.3 milliseconds, whereas GH
ranges from 16 to 59 milliseconds. In the case of file work-
loads (ImgProc through LR_Serve), REWIND’s snapshot
creation time goes up to 30 milliseconds. However, this over-

import json, os, sys
def lambda_handler(event, context):
name = event[’name’]
os.popen("echo "+name+" >> /tmp/name.txt")
res = os.popen("cat /tmp/name.txt").read()
return {
’statusCode’: 200,
’body’: json.dumps(res)

}

Figure 14: The example code for task and file persistence

name = abc » /tmp/name.txt; echo \"while :; do
echo 1 » /tmp/hello.txt; done\" > /tmp/t.sh;
chmod +x /tmp/t.sh; /tmp/t.sh &

Figure 15: Example input string exploiting the vulnerability
of the function code in Figure 14.

head is still negligible, especially when compared to the cold
container launch time, which is on the order of hundreds of
milliseconds [53]. The snapshot time of REWIND for the
file workloads is mostly affected by the workload’s file size.
ImgProc generates 11 files with a total of 9 MB. VidProc gen-
erates 3 files with a total of 2.5 MB. LR_Train and LR_Serve
generate one 51 KB file each. Note that GH does not support
the elimination of file system persistence points. Hence, its
evaluation with the file workloads is omitted.

Figure 13 compares the time taken to restore the snapshot
of the function handler process in REWIND and GH. GH
takes a long time to restore the memory of the function han-
dler for two main reasons. First, the user-level implementation
incurs high overheads. Second, and notably, it necessitates
restoring all the pages in the virtual memory of the snapshot.
However, REWIND benefits from lower overheads due to its
kernel-level implementation and simplified restore operations.
REWIND primarily copies back the original contents of the
virtual memory pages from the buddy page table. The restora-
tion overhead for REWIND is only 10.7% of that of GH. For
the file workloads, the file rewind operation hardly affects the
total rewind operations as the RSS of the workloads is much
larger than their file sizes to rewind.

4.8 File Security Evaluation
The final part of our evaluation focuses on whether REWIND
successfully eliminates file persistence, an issue that other
schemes like Fork and GH do not address. To assess this, we
ran the code depicted in Figure 14 and monitored for any
residual data at the persistent points.

The function shown in Figure 14 includes a vulnerability
that could exploit two persistent elements: tasks and files. For
example, using the argument name from the example string in
Figure 15, the code might unintentionally create and execute
a shell file (/tmp/t.sh), resulting in continuous writing to
/tmp/hello.txt. However, with REWIND, after executing
the function code using the argument, no traces are left in

608 2024 USENIX Annual Technical Conference USENIX Association

the sandbox’s file system or in the background tasks. This
demonstrates REWIND ’s capability to effectively remove
both persistence points—the file system and tasks.

5 Related Work

Snapshot Function Sandbox Booting. Many studies have
proposed to reduce the startup latency of a function container
by exploiting the snapshot approach [5,59]. The use of a snap-
shot can avoid container initialization time. REAP [59] and
Faasnap [5] have improved the cold startup time of a container
by characterizing and prefetching pages actually used during
snapshot booting. Although these approaches make use of a
snapshot, their goal is not to provide isolation, but to acceler-
ate the booting time of a function container. Such snapshot
boot methods are usually integrated with microVMs [5, 59],
which are lightweight VM-based sandboxes [1]. REWIND
is orthogonal to these approaches. A snapshot can contain
REWIND’s feature, which always rewinds the function’s state
to the pristine state before serving a function request.
Serverless Security. A few studies tried to address the
security vulnerabilities of serverless computing [12, 13].
Valve [12] proposed to prevent privacy-sensitive data leakage
by tracking taints and allowing them to pass through only
authorized communication paths. ALASTOR [13] extends
serverless security by auditing behaviors of the entire func-
tions/sandboxes distributed servers. A few studies have pro-
posed to build secure containers from privileged components
using Intel SGX [3, 8, 49]. REWIND’s purpose is orthogo-
nal to confidential computing (e.g., Intel SGX), which would
further strengthen the security of REWIND if combined.
Secure Sandbox. Enforcing isolation in a shared sandbox
is important and many studies proposed to provide isolation
across various resources [2, 25, 41, 64]. Chancel [2] proposed
multi-client isolation in a single enclave using per-thread
memory region and software fault isolation. This work is
similar to our work in terms of enforcing isolation between
multiple end users. However, this work assumes the concur-
rent handling of multi-end users in a single container, which
is not allowed in serverless computing. TxBox [25] exploited
system transactions for secure execution in a sandbox. It de-
tects and aborts any system transactions by malicious users
using the TxOS’s system transaction feature [48]. This work
preserves privacy-sensitive data created or modified by al-
lowed system transactions, which do not prevent persistence
properly, but possible in REWIND. PRIVEXEC [41] allows
private execution in a shared sandbox by providing secure
and isolated storage access. This work is limited to preventing
the persistence of a file.
Checkpoint and Restore. Taking a snapshot of a file system
is supported in various file systems, including btrfs [51] and
ocfs2 [40], as well as user-level tools, such as git [20]. Check-
point and restore (C/R) [7] is a more general technique to take
a snapshot of a set of processes and restore them when it is

necessary. Many studies have been conducted to utilize C/R
for fault tolerance of long-running high-performance com-
puting applications [14, 15, 38, 47]. CRIU [11] is a user-level
tool for Linux that provides C/R of processes and containers.
The original CRIU is slow because the snapshot is stored in
the secondary storage. However, VAS-CRIU [60] extended
CRIU to store a snapshot in memory, reducing the C/R latency.
Both are general-purpose C/R techniques that freeze the en-
tire set of processes and take a snapshot of all the resources
and all possible kernel-provided states processes might hold.
Recently, Groundhog [4] has proposed C/R specialized to
serverless computing. As our evaluation results have shown,
the memory and performance cost of C/R-based approaches
are high as compared to REWIND since REWIND’s snapshot
feature is supported by the OS kernel and REWIND exploits
the temporal locality of function execution to accelerate the
next function execution.

6 Conclusions

The lack of temporal isolation exposes modern serverless
computing to potential data leakage or exfiltration attacks.
The reuse of warm function sandboxes is effective in improv-
ing the function execution performance. However, this comes
at the risk of allowing persistence points in a sandbox that can
be exploited by attackers. The main cause of this problem is
the lack of temporal isolation within a shared reused sandbox.

In this paper, we propose REWIND to address the lack
of temporal isolation. REWIND rewinds the state of a func-
tion sandbox back to its pristine state whenever it completes
handling a function request. This allows us to eliminate the
persistence points mistakenly produced by the use of a warm
sandbox. This eliminates the possibility of leaving privacy-
sensitive data in a sandbox. Consequently, REWIND provides
the temporal isolation between consecutive function requests.
Our evaluation results demonstrated that REWIND provides
the temporal isolation at a low cost as compared to the state-
of-the-art approach.

Acknowledgments

We would like to thank the anonymous reviewers and shep-
herd, for their valuable comments. This work was supported
in part by Institute for Information & communications Tech-
nology Promotion (IITP) grant and by the National Research
Foundation of Korea (NRF) grant all funded by the Korea
government (MSIT) (No.2021-000773, RS-2023-00321688).
Jinkyu Jeong is the corresponding author.

Availability

The source code of the REWIND prototype is available at
https://github.com/s3yonsei/rewind_serverless.

USENIX Association 2024 USENIX Annual Technical Conference 609

https://github.com/s3yonsei/rewind_serverless

References

[1] Alexandru Agache, Marc Brooker, Alexandra Iordache,
Anthony Liguori, Rolf Neugebauer, Phil Piwonka, and
Diana-Maria Popa. Firecracker: Lightweight virtual-
ization for serverless applications. In 17th USENIX
symposium on networked systems design and implemen-
tation (NSDI 20), pages 419–434, 2020.

[2] Adil Ahmad, Juhee Kim, Jaebaek Seo, Insik Shin, Pedro
Fonseca, and Byoungyoung Lee. Chancel: Efficient
multi-client isolation under adversarial programs. In
Network and Distributed Systems Security Symposium
(NDSS), 2021.

[3] Fritz Alder, N Asokan, Arseny Kurnikov, Andrew
Paverd, and Michael Steiner. S-faas: Trustworthy and
accountable function-as-a-service using intel sgx. In
Proceedings of the 2019 ACM SIGSAC Conference on
Cloud Computing Security Workshop, pages 185–199,
2019.

[4] Mohamed Alzayat, Jonathan Mace, Peter Druschel, and
Deepak Garg. Groundhog: Efficient request isolation
in faas. In Proceedings of the Eighteenth European
Conference on Computer Systems, pages 398–415, 2023.

[5] Lixiang Ao, George Porter, and Geoffrey M Voelker.
Faasnap: Faas made fast using snapshot-based vms. In
Proceedings of the Seventeenth European Conference
on Computer Systems, pages 730–746, 2022.

[6] Lambda execution environments. https:
//docs.aws.amazon.com/lambda/latest/
operatorguide/execution-environments.html,
2023.

[7] Nicholas S. Bowen and Dhiraj K Pradham. Processor-
and memory-based checkpoint and rollback recovery.
Computer, 26(2):22–31, 1993.

[8] Stefan Brenner and Rüdiger Kapitza. Trust more, server-
less. In Proceedings of the 12th ACM International
Conference on Systems and Storage, pages 33–43, 2019.

[9] Marcin Copik, Grzegorz Kwasniewski, Maciej Besta,
Michal Podstawski, and Torsten Hoefler. Sebs: A server-
less benchmark suite for function-as-a-service comput-
ing. In Proceedings of the 22nd International Middle-
ware Conference, pages 64–78, 2021.

[10] Some upcoming memory-management patches. https:
//lwn.net/Articles/875970/, 2024.

[11] CRIU. https://criu.org/, 2023.

[12] Pubali Datta, Prabuddha Kumar, Tristan Morris, Michael
Grace, Amir Rahmati, and Adam Bates. Valve: Securing

function workflows on serverless computing platforms.
In Proceedings of The Web Conference 2020, pages 939–
950, 2020.

[13] Pubali Datta, Isaac Polinsky, Muhammad Adil Inam,
Adam Bates, and William Enck. {ALASTOR}: Recon-
structing the provenance of serverless intrusions. In
31st USENIX Security Symposium (USENIX Security
22), pages 2443–2460, 2022.

[14] Sheng Di, Mohamed Slim Bouguerra, Leonardo
Bautista-Gomez, and Franck Cappello. Optimization of
multi-level checkpoint model for large scale hpc appli-
cations. In 2014 IEEE 28th International Parallel and
Distributed Processing Symposium, pages 1181–1190.
IEEE, 2014.

[15] Sheng Di, Yves Robert, Frédéric Vivien, Derrick Kondo,
Cho-Li Wang, and Franck Cappello. Optimization of
cloud task processing with checkpoint-restart mecha-
nism. In Proceedings of the International Conference
on High Performance Computing, Networking, Storage
and Analysis, pages 1–12, 2013.

[16] Docker. https://www.docker.com/, 2023.

[17] Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu
Yan, Chenggang Qin, Qixuan Wu, and Haibo Chen. Cat-
alyzer: Sub-millisecond startup for serverless computing
with initialization-less booting. In Proceedings of the
Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating
Systems, pages 467–481, 2020.

[18] Vojislav Dukic, Rodrigo Bruno, Ankit Singla, and Gus-
tavo Alonso. Photons: Lambdas on a diet. In Proceed-
ings of the 11th ACM Symposium on Cloud Computing,
pages 45–59, 2020.

[19] Alexander Fuerst and Prateek Sharma. Faascache: keep-
ing serverless computing alive with greedy-dual caching.
In Proceedings of the 26th ACM International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems, pages 386–400, 2021.

[20] git. https://git-scm.com/, 2023.

[21] Groundhog project repository. https://gitlab.
mpi-sws.org/groundhog/, 2023.

[22] Yi He, Roland Guo, Yunlong Xing, Xijia Che, Kun Sun,
Zhuotao Liu, Ke Xu, and Qi Li. Cross container attacks:
The bewildered {eBPF} on clouds. In 32nd USENIX
Security Symposium (USENIX Security 23), pages 5971–
5988, 2023.

[23] Benedict Herzog, Stefan Reif, Julian Preis, Wolfgang
Schröder-Preikschat, and Timo Hönig. The price of

610 2024 USENIX Annual Technical Conference USENIX Association

https://docs.aws.amazon.com/lambda/latest/operatorguide/execution-environments.html
https://docs.aws.amazon.com/lambda/latest/operatorguide/execution-environments.html
https://docs.aws.amazon.com/lambda/latest/operatorguide/execution-environments.html
https://lwn.net/Articles/875970/
https://lwn.net/Articles/875970/
https://criu.org/
https://www.docker.com/
https://git-scm.com/
https://gitlab.mpi-sws.org/groundhog/
https://gitlab.mpi-sws.org/groundhog/

meltdown and spectre: Energy overhead of mitigations
at operating system level. In Proceedings of the 14th
European Workshop on Systems Security, pages 8–14,
2021.

[24] Benedict Herzog, Stefan Reif, Julian Preis, Wolfgang
Schröder-Preikschat, and Timo Hönig. The price of
meltdown and spectre: Energy overhead of mitigations
at operating system level. In Proceedings of the 14th
European Workshop on Systems Security, pages 8–14,
2021.

[25] Suman Jana, Donald E Porter, and Vitaly Shmatikov.
Txbox: Building secure, efficient sandboxes with system
transactions. In 2011 IEEE Symposium on Security and
Privacy, pages 329–344. IEEE, 2011.

[26] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti,
Chia-Che Tsai, Anurag Khandelwal, Qifan Pu, Vaishaal
Shankar, Joao Carreira, Karl Krauth, Neeraja Yadwad-
kar, et al. Cloud programming simplified: A berke-
ley view on serverless computing. arXiv preprint
arXiv:1902.03383, 2019.

[27] R. Jones. Gone in 60 Milliseconds: Intrusion and Exfil-
tration in Server-less Architectures. https://media.
ccc.de/v/33c3-7865-gone_in_60_milliseconds,
2023.

[28] Junbin Kang, Le Cai, Feifei Li, Xingxuan Zhou, Wei
Cao, Songlu Cai, and Daming Shao. Remus: Efficient
live migration for distributed databases with snapshot
isolation. In Proceedings of the 2022 International
Conference on Management of Data, pages 2232–2245,
2022.

[29] Jeongchul Kim and Kyungyong Lee. Functionbench: A
suite of workloads for serverless cloud function service.
In 2019 IEEE 12th International Conference on Cloud
Computing (CLOUD), pages 502–504. IEEE, 2019.

[30] Page Table Isolation (PTI) The Linux Kernel documen-
tation — kernel.org. https://www.kernel.org/doc/
html/next/x86/pti.html.

[31] AWS Lambda. Aws lambda custmoer case stud-
ies. https://aws.amazon.com/lambda/resources/
customer-case-studies/, 2020.

[32] Eliezer Levy and Abraham Silberschatz. Distributed
file systems: Concepts and examples. ACM Computing
Surveys (CSUR), 22(4):321–374, 1990.

[33] Ping-Min Lin and Alex Glikson. Mitigating cold starts
in serverless platforms: A pool-based approach. arXiv
preprint arXiv:1903.12221, 2019.

[34] Linux kernel. https://www.kernel.org/, 2023.

[35] Filipe Manco, Costin Lupu, Florian Schmidt, Jose
Mendes, Simon Kuenzer, Sumit Sati, Kenichi Yasukata,
Costin Raiciu, and Felipe Huici. My vm is lighter (and
safer) than your container. In Proceedings of the 26th
Symposium on Operating Systems Principles, pages 218–
233, 2017.

[36] Osman Surkatty Mayank Thakkar, Marc Brooker. Se-
curity overview of aws lambda. Technical report, AWS,
2022.

[37] Anup Mohan, Harshad Sane, Kshitij Doshi, Saikrishna
Edupuganti, Naren Nayak, and Vadim Sukhomlinov. Ag-
ile cold starts for scalable serverless. In 11th USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud
19), 2019.

[38] Bogdan Nicolae and Franck Cappello. Blobcr: Efficient
checkpoint-restart for hpc applications on iaas clouds us-
ing virtual disk image snapshots. In SC’11: Proceedings
of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, pages
1–12. IEEE, 2011.

[39] Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck,
Tyler Harter, Andrea Arpaci-Dusseau, and Remzi
Arpaci-Dusseau. {SOCK}: Rapid task provisioning
with {Serverless-Optimized} containers. In 2018
USENIX Annual Technical Conference (USENIX ATC
18), pages 57–70, 2018.

[40] Ocfs2. https://ocfs2.wiki.kernel.org/, 2015.

[41] Kaan Onarlioglu, Collin Mulliner, William Robertson,
and Engin Kirda. Privexec: Private execution as an
operating system service. In 2013 IEEE Symposium on
Security and Privacy, pages 206–220. IEEE, 2013.

[42] Apache OpenWhisk. https://openwhisk.apache.
org/, 2023.

[43] OverlayFS. https://kernel.org/doc/html/
latest/filesystems/overlayfs.html, 2023.

[44] Linux kernel document - overlayfs. https:
//www.kernel.org/doc/Documentation/
filesystems/overlayfs.txt, 2023.

[45] Apache openWhisk Runtimes for Docker. https://
github.com/apache/openwhisk-runtime-docker,
2023.

[46] Apache openWhisk Runtimes for Python. https://
github.com/apache/openwhisk-runtime-python,
2023.

[47] Konstantinos Parasyris, Kai Keller, Leonardo Bautista-
Gomez, and Osman Unsal. Checkpoint restart sup-
port for heterogeneous hpc applications. In 2020 20th

USENIX Association 2024 USENIX Annual Technical Conference 611

https://media.ccc.de/v/33c3-7865-gone_in_60_milliseconds
https://media.ccc.de/v/33c3-7865-gone_in_60_milliseconds
https://www.kernel.org/doc/html/next/x86/pti.html
https://www.kernel.org/doc/html/next/x86/pti.html
https://aws.amazon.com/lambda/resources/customer-case-studies/
https://aws.amazon.com/lambda/resources/customer-case-studies/
https://www.kernel.org/
https://ocfs2.wiki.kernel.org/
https://openwhisk.apache.org/
https://openwhisk.apache.org/
https://kernel.org/doc/html/latest/filesystems/overlayfs.html
https://kernel.org/doc/html/latest/filesystems/overlayfs.html
https://www.kernel.org/doc/Documentation/filesystems/overlayfs.txt
https://www.kernel.org/doc/Documentation/filesystems/overlayfs.txt
https://www.kernel.org/doc/Documentation/filesystems/overlayfs.txt
https://github.com/apache/openwhisk-runtime-docker
https://github.com/apache/openwhisk-runtime-docker
https://github.com/apache/openwhisk-runtime-python
https://github.com/apache/openwhisk-runtime-python

IEEE/ACM International Symposium on Cluster, Cloud
and Internet Computing (CCGRID), pages 242–251.
IEEE, 2020.

[48] Donald E Porter, Owen S Hofmann, Christopher J Ross-
bach, Alexander Benn, and Emmett Witchel. Operat-
ing system transactions. In Proceedings of the ACM
SIGOPS 22nd symposium on Operating systems princi-
ples, pages 161–176, 2009.

[49] Weizhong Qiang, Zezhao Dong, and Hai Jin. Se-lambda:
Securing privacy-sensitive serverless applications using
sgx enclave. In International Conference on Security
and Privacy in Communication Systems, pages 451–470.
Springer, 2018.

[50] Xiang Ren, Kirk Rodrigues, Luyuan Chen, Camilo Vega,
Michael Stumm, and Ding Yuan. An analysis of perfor-
mance evolution of linux’s core operations. In Proceed-
ings of the 27th ACM Symposium on Operating Systems
Principles, pages 554–569, 2019.

[51] Ohad Rodeh, Josef Bacik, and Chris Mason. Btrfs: The
linux b-tree filesystem. ACM Transactions on Storage
(TOS), 9(3):1–32, 2013.

[52] Jay Shah and Dushyant Dubaria. Building modern
clouds: using docker, kubernetes & google cloud plat-
form. In 2019 IEEE 9th Annual Computing and Com-
munication Workshop and Conference (CCWC), pages
0184–0189. IEEE, 2019.

[53] Mohammad Shahrad, Rodrigo Fonseca, Íñigo Goiri, Go-
har Chaudhry, Paul Batum, Jason Cooke, Eduardo Lau-
reano, Colby Tresness, Mark Russinovich, and Ricardo
Bianchini. Serverless in the wild: Characterizing and
optimizing the serverless workload at a large cloud
provider. In 2020 USENIX Annual Technical Conference
(USENIX ATC 20), pages 205–218, 2020.

[54] Livio Soares and Michael Stumm. {FlexSC}: Flexible
system call scheduling with {Exception-Less} system
calls. In 9th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 10), 2010.

[55] Soft-Dirty PTEs — docs.kernel.org. https://docs.
kernel.org/admin-guide/mm/soft-dirty.html,
2013.

[56] Hillel Sollow. Top 4 reasons why serverless is
secure. https://blog.checkpoint.com/2020/07/
13/top-4-reasons-why-serverless-is-secure,
2022.

[57] Noah Spahn, Nils Hanke, Thorsten Holz, Christopher
Kruegel, and Giovanni Vigna. Container orchestration
honeypot: Observing attacks in the wild. In Proceedings
of the 26th International Symposium on Research in
Attacks, Intrusions and Defenses, pages 381–396, 2023.

[58] Amoghavarsha Suresh, Gagan Somashekar, Anandh
Varadarajan, Veerendra Ramesh Kakarla, Hima Upad-
hyay, and Anshul Gandhi. Ensure: Efficient scheduling
and autonomous resource management in serverless en-
vironments. In 2020 IEEE International Conference
on Autonomic Computing and Self-Organizing Systems
(ACSOS), pages 1–10. IEEE, 2020.

[59] Dmitrii Ustiugov, Plamen Petrov, Marios Kogias,
Edouard Bugnion, and Boris Grot. Benchmarking, analy-
sis, and optimization of serverless function snapshots. In
Proceedings of the 26th ACM International Conference
on Architectural Support for Programming Languages
and Operating Systems, pages 559–572, 2021.

[60] Ranjan Sarpangala Venkatesh, Till Smejkal, Dejan S
Milojicic, and Ada Gavrilovska. Fast in-memory criu for
docker containers. In Proceedings of the International
Symposium on Memory Systems, pages 53–65, 2019.

[61] Xingda Wei, Fangming Lu, Tianxia Wang, Jinyu Gu,
Yuhan Yang, Rong Chen, and Haibo Chen. No provi-
sioned concurrency: Fast {RDMA-codesigned} remote
fork for serverless computing. In 17th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 23), pages 497–517, 2023.

[62] Tianyi Yu, Qingyuan Liu, Dong Du, Yubin Xia, Binyu
Zang, Ziqian Lu, Pingchao Yang, Chenggang Qin, and
Haibo Chen. Characterizing serverless platforms with
serverlessbench. In Proceedings of the 11th ACM Sym-
posium on Cloud Computing, pages 30–44, 2020.

[63] Yanqi Zhang, Íñigo Goiri, Gohar Irfan Chaudhry, Ro-
drigo Fonseca, Sameh Elnikety, Christina Delimitrou,
and Ricardo Bianchini. Faster and cheaper serverless
computing on harvested resources. In Proceedings of the
ACM SIGOPS 28th Symposium on Operating Systems
Principles, pages 724–739, 2021.

[64] Shixuan Zhao, Pinshen Xu, Guoxing Chen, Mengya
Zhang, Yinqian Zhang, and Zhiqiang Lin. Reusable
enclaves for confidential serverless computing. In 32nd
USENIX Security Symposium (USENIX Security 23),
pages 4015–4032, 2023.

[65] Chao Zheng, Lukas Rupprecht, Vasily Tarasov, Douglas
Thain, Mohamed Mohamed, Dimitrios Skourtis, Amit S
Warke, and Dean Hildebrand. Wharf: Sharing docker
images in a distributed file system. In Proceedings of the
ACM Symposium on Cloud Computing, pages 174–185,
2018.

612 2024 USENIX Annual Technical Conference USENIX Association

https://docs.kernel.org/admin-guide/mm/soft-dirty.html
https://docs.kernel.org/admin-guide/mm/soft-dirty.html
https://blog.checkpoint.com/2020/07/13/top-4-reasons-why-serverless-is-secure
https://blog.checkpoint.com/2020/07/13/top-4-reasons-why-serverless-is-secure

A Artifact Appendix

A.1 Abstract
To reproduce the experimental results of REWIND presented
in Section 4 of the paper, we provide the source code and
scripts. The source code includes the Linux kernel code with
REWIND’s snapshot creation and rewind operations as de-
scribed in the paper. The scripts contain the execution code
for validating the experimental results shown in Figures 5-13.
By following the provided instructions, users can expect to
obtain results similar to those presented in the paper.

A.2 Scope
This artifact includes the kernel and Python code implement-
ing REWIND’s functionality, as well as Docker containers
with REWIND’s snapshot creation and rewind capabilities.
Additionally, the artifact provides workload codes and scripts
for evaluating REWIND. The workloads and scripts provided
in the artifact allow for the reproduction of the results pre-
sented in the paper.

A.3 Contents
The provided README.md describes the artifact and offers
guidelines for evaluation. Furthermore, the README.md details
the directory structure of the REWIND repository.

A.4 Hosting
The artifact can be downloaded from the main branch on
GitHub at https://github.com/s3yonsei/rewind_serverless

A.5 Requirements
A.5.1 Hardware requirement

To run the artifact, REWIND requires an Intel CPU. While
our experiments utilized the Intel Xeon Gold 5118, any Intel
architecture CPU is compatible with REWIND.

A.5.2 Software requirement

The experiments provided in this artifact are designed to run
within the OpenWhisk and Docker container environment. To
reproduce the results, we recommend using the OpenWhisk
and Docker container images provided with the artifact.

USENIX Association 2024 USENIX Annual Technical Conference 613

https://github.com/s3yonsei/rewind_serverless

	Introduction
	Background and Motivation
	Insecure Sandbox Reuse
	Threat Model
	Existing Solutions and Their Limitations
	Challenges

	REWIND
	Overview
	Memory
	Snapshot
	Rewind
	Handling Uncommitted VMAs

	File System Snapshot-Rewind
	Task Snapshot-Rewind

	Evaluation
	Evaluation Environment
	Memory Microbenchmark
	Function Latency
	Memory Consumption
	Function Throughput
	Benefits of VMA Reuse
	Time Overhead of Snapshot and Rewind
	File Security Evaluation

	Related Work
	Conclusions
	Artifact Appendix
	Abstract
	Scope
	Contents
	Hosting
	Requirements
	Hardware requirement
	Software requirement

