
This paper is included in the Proceedings of the
2024 USENIX Annual Technical Conference.

July 10–12, 2024 • Santa Clara, CA, USA
978-1-939133-41-0

Open access to the Proceedings of the
2024 USENIX Annual Technical Conference

is sponsored by

Balancing Analysis Time and Bug Detection:
Daily Development-friendly Bug Detection in Linux

Keita Suzuki, Keio University; Kenta Ishiguro, Hosei University;
Kenji Kono, Keio University

https://www.usenix.org/conference/atc24/presentation/suzuki

Balancing Analysis Time and Bug Detection: Daily Development-friendly Bug
Detection in Linux

Keita Suzuki ∗

Keio University
Kenta Ishiguro

Hosei University
Kenji Kono

Keio University

Abstract
Linux, a battle-tested codebase, is known to suffer from many
bugs despite its extensive testing mechanisms. While many of
these bugs require domain-specific knowledge for detection,
a significant portion matches well-known bug patterns. Even
though these bugs can be found with existing tools, our simple
check of Linux kernel patches suggests that these tools are
not used much in the developer’s daily workflow. The lack of
usage is probably due to the well-known trade-off between
analysis time and bug detection capabilities: tools typically
employ complex analysis to effectively and comprehensively
find bugs in return for a long analysis time, or focus on a
short analysis time by only employing elementary analyses
and thus can only find a very limited number of bugs. Ideally,
developers expect the tools to incur short analysis time, while
still finding many bugs to use them in daily development.

This paper explores an approach that balances this trade-
off by focusing on bugs that can be found with less
computationally-complex analysis methods, and limiting the
scope to each source code. To achieve this, we propose a com-
bination of computationally lightweight analyses and demon-
strate our claim by designing FiTx, a framework for gener-
ating daily development-friendly bug checkers that focus on
well-known patterns. Despite its simplicity, FiTx success-
fully identified 47 new bugs in the Linux kernel version 5.15
within 2.5 hours, outperforming Clang Static Analyzer and
CppCheck in both speed and bug detection. It demonstrates
that focusing on less complex bug patterns can still signifi-
cantly contribute to the improvement of codebase health. FiTx
can be embedded into the daily development routine, enabling
early bug detection without sacrificing developers’ time.

1 Introduction

Linux, a popularly used operating system, is one of the most
sophisticated system software with many well-experienced

∗now at Google

developers contributing to the codebase. In 2021, 86,023 com-
mits were made in the year alone (average of more than 200
commits per day), with over 4,500 developers contributing to
the codebase of over 30 million lines of code as of version
5.15. Unfortunately, the Linux kernel contains many bugs, and
there has been much work that reported various bugs [9–14,
17,18,24,25,27,28,30,33,34,38,39,43,49,50,53,54,58,59].

A substantial number of these bugs are known to align with
well-known bug patterns, allowing them to be detected with-
out domain-specific knowledge. These bugs often manifest
themselves repeatedly within the codebase across a wide vari-
ety of projects. For instance, the survey conducted by Bai et
al. [9] found 949 commits in Linux fixing use-after-free in the
years 2016 to 2018, and Li et al. [32] found 365 null-pointer
dereferences in Linux version 5.6. Finding these bugs is im-
portant since even a simple memory bug can cause severe
damage such as a system crash.

Despite extensive efforts by kernel developers to address
well-known bug patterns with diverse methods including
fuzzing, integration testing, or static code analysis, the use of
bug detection tools appears to be less than expected. Tools
such as Kernel Address Sanitizer (KASAN) [5] or Clang
Static Analyzer (CSA) [6] have contributed greatly to the
detection of memory bugs such as double-free or use-after-
free. However, our simple check of Linux kernel bug-fixing
patches shows that only 37.5% (24 out of 64 patches) of the
patches mentioned any use of tools, even though it is strongly
recommended to credit the tools.

The limited integration of bug detection tools into devel-
oper’s daily development workflows is most likely for the
trade-off between analysis time and bug detection capabil-
ities. Tools that find many bugs comprehensively require a
long analysis time. For instance, PATA [32] conducts a path-
sensitive, interprocedural, alias-aware analysis and can find
574 bugs in Linux, but it required 33 hours of analysis time
because of the complex analysis techniques it leverages. Con-
versely, tools prioritizing short analysis time, such as CSA or
CppCheck [19], sacrifice bug detection capabilities and suffer
from many false positives. CppCheck only conducts path-

USENIX Association 2024 USENIX Annual Technical Conference 493

insensitive analysis and does not conduct inter-procedural
analysis on pointer values, hence it only requires 2 hours and
32 minutes of analysis time but does not target many bug
patterns that Linux suffers.

During daily development, developers prioritize rapid feed-
back from bug-detection tools to minimize interference to
their development. This drives them to demand for short anal-
ysis time and use tools such as CSA, which is readily inte-
grated into Linux Makefile. However, the challenge remains
for tools prioritizing short analysis to maximize their bug
detection capabilities while maintaining the analysis time.

In this paper, we aim to explore a balanced approach that
finds bugs while still maintaining developers’ daily develop-
ment throughput, and present one promising combination of
analyses to detect well-known bug patterns. We tackle the
traditional trade-off of analysis time and bug detection ca-
pabilities, and deal with the challenge of short analysis time
while finding bugs by achieving two goals:

Short analysis time. The approach prioritizes short anal-
ysis time by limiting the analysis to less computationally
complex ones, and by focusing on individual source files. Our
prototype only required 0.99 seconds for 90% of the analyzed
source files. This enables seamless integration with develop-
ers’ daily workflow without compromising productivity.

Targeted bug detection. Despite only targeting the bugs
findable with efficient, computationally simple approaches,
our combination of the low-cost analyses can still present pos-
itive and meaningful bug-detection results to the developers.
Our prototype was able to find 47 new bugs in Linux v5.15.

Our contribution is to present a combination of computa-
tionally low-cost analyses that can impactfully find bugs in
Linux. In detail, the leveraged analyses are as follows: (1)
only inspects a single compilation unit (translation unit or
single file in C), (2) deals with static field offsets that do not
require runtime calculation of field offsets, meaning it only
deals with struct fields or hard-coded array indexes. (3) only
conducts lightweight alias analysis involving intra-procedural
and path-insensitive analysis, and (4) does not consider indi-
rect function calls.

We implement the approach as FiTx, a framework to gener-
ate daily development-friendly bug checkers. FiTx leverages
typestate analysis [20, 22, 26, 32, 41, 52, 56] to efficiently ana-
lyze well-known bug patterns, and conduct a path-insensitive
and inter-procedural analysis of the control flow graph 1. The
inter-procedural analysis uses a bottom-up, summary-based
approach to achieve a short analysis time. To achieve greater
accuracy with the summary-based analysis, we introduce a
technique called return-code aware state-propagation. It sum-
marizes the states for each return code of each callee function
and propagates the appropriate state to each path in the callee.

Surprisingly, FiTx has detected 47 new bugs in Linux ker-
nel version 5.15 with 2 hours 33 minutes of analysis time to an-

1Available at https://github.com/sslab-keio/FiTx

Implement

Unit TestingDebug

Daily Development Phase

Fuzzing

Integration
Testing

Review

Project-wide
Static Analysis

FiTxBuild +

Integration Phase

Figure 1: Development cycle with FiTx

alyze the entire Linux. Our tool incurs less than 0.20 seconds
of analysis time for 50% of the source files, and 0.99 seconds
for 90% of the source files. As of the time of writing, 13 of
the bugs are confirmed by the Linux developers [42, 44–48].
This included files such as trace_events_hist.c in the
kernel directory which is one of the core directories with
many developers contributing to the source file.

Figure 1 shows the development flow with FiTx. FiTx
generates compiler extensions to seamlessly integrate into
the development process, acting as an early warning system
for potential bugs. It analyzes source code on each build,
promptly notifying developers of likely issues for immediate
attention. FiTx is not intended to replace “sophisticated” com-
prehensive static analysis tools. Instead, FiTx complements
these tools by addressing early-stage bugs, allowing more
sophisticated tools to focus on intricate issues during later
phases like integration.

FiTx can find more bugs with a short analysis time com-
pared to CSA and CppCheck. Neither tool found the 13
developer-confirmed bugs FiTx found. CSA’s path-sensitive
approach for lower false positive rates necessitates the need
for strong limitations in inter-procedural analysis to shorten
analysis time. This overlooks many bugs. It required 10.74
seconds for 90% of the source files. CppCheck focuses
on finding environment-specific bugs by checking multiple
macro configurations with basic analyses. Although they re-
quire 0.32 seconds for 90% of the source files, it overlooks
many bugs due to the lack of inter-procedural analysis on
pointer values.

FiTx effectively minimizes the effort required for a false
positive filtering, a common challenge in bug detection. While
most tools tackle this issue by lowering the false positive rate,
FiTx deals with it by generating a substantially low number
of warnings, reducing the manual check required by the de-
velopers. Our prototype generated 113 warnings with 66 false
positives. For 99.9% of source files, the developer needed
to check at most three warnings per source file. This is sig-
nificantly fewer than CSA and CppCheck which generated
132,196 and 1,528 warnings respectively on default configura-
tion. In addition, FiTx generates state transition logs to aid the
developers in checking the warnings. On average, it required
less than two minutes per warning for an inexperienced Ph.D.
student without any domain knowledge to determine them.

The rest of this paper is organized as follows: Section 2
motivates our work by characterizing bug detection tools in
Linux, and Section 3 explains the goal of this paper. Sec-

494 2024 USENIX Annual Technical Conference USENIX Association

https://github.com/sslab-keio/FiTx

tions 4 and 5 show the design and implementation. Section 6
gives an evaluation of our approach, and Section 7 discusses
the limitations. Section 8 relates our work with others and
Section 9 concludes this paper.

2 Bug Detection Tools in Linux Kernel

The Linux kernel, despite employing a rigorous code-
checking process including code review, integration testing,
or static/dynamic analysis, is known to still suffer from many
bugs. Although many of these bugs require domain-specific
knowledge to find them, a substantial amount of bugs fulfill
well-known bug patterns, and static bug detection tools have
been contributed greatly to finding many of these bugs in
Linux [9–14, 17, 18, 24, 25, 27, 28, 30, 33, 34, 38, 39, 43, 49,
50, 53, 54, 58, 59]. For instance, PATA [32] found 454 new
bugs in the Linux kernel for bug patterns such as null-pointer
dereference, uninitialized variable access, and memory leaks.

Despite being effective, these bug detection tools often
remain absent in the daily development of the developers. Ac-
cording to a simple check of Linux kernel bug-fixing patches,
only 24 out of 64 patches (37.5%) mentioned the use of bug
detection tools (Details in Section 3.1.2). It is customary for
developers to credit the bug detection tools in their patch mes-
sage, so the lack of appearance suggests that these bugs are
found with alternative methods, including manual discovery
by the developer without the help of these tools.

The underutilization of static bug detection tools in the
developers’ daily workflows is possibly due to the well-known
trade-off between analysis time and bug detection capabilities.
Tools emphasizing detailed analysis can find many bugs, but
at the cost of lengthy execution times due to their complex
analysis methods. These tools are fit for the later phase of
development such as integration, where developers take time
to evaluate their code. Contrary, tools prioritizing speed often
miss numerous bugs common in Linux due to their limited
analysis methods. Developers ideally want to identify many
impactful bugs while minimizing development delays, hence
value these tools with short analysis time in daily workflows.
However, the lack of bug-detection capabilities of these tools
makes them less attractive to developers for practical use.

Table 1 shows the leveraged analysis methods and the anal-
ysis time of well-known tools when analyzing Linux ker-
nel (v5.6 for PATA, v5.15 for the others) configured with
allyesconfig. The static bug detection tools are Clang
Static Analyzer (CSA, v10.0.1) [6], Cppcheck (v1.90) [19],
Coccinelle (v1.1.1) [36], Saber (v2.1) [57], and PATA [32].
For CSA, CppCheck, and Saber we run the tools with the
default settings, or the settings already provided in the Linux
for use. For Coccinelle, we use the semantic patch for NULL
pointer dereference provided in the Linux kernel. Since PATA
is not publicly available, we use the results reported in their
paper [32]. The analysis is run on the setup shown in Table 7.

PATA and Saber are both standalone tools that conduct

comprehensive and complex analyses such as path-sensitive
data flow analysis or interprocedural alias analysis. PATA
requires more than 33 hours to finish the analysis. Saber
cannot finish the analysis due to a lack of memory (32 GB).

CSA conducts complex analysis (path-sensitive data flow
analysis with alias analysis). Although CSA is configured to
analyze a single compilation unit, it requires 10.75 seconds
for 90% of the source files. CSA is readily integrated into
Linux Makefile. However, due to its strong limitations with
interprocedural analysis (limits to 1 call depth) and the num-
ber of paths to explore, it misses many bugs. CSA can run
during compilation when using the Clang compiler [1].

Unlike previous tools, CppCheck and Coccinelle leverage
fairly simple analysis on a single compilation unit. Both tools
run independently from the build process. CppCheck conducts
path-insensitive dataflow analysis without alias information,
and does not conduct interprocedural analysis of pointer vari-
ables. CppCheck requires 0.32 seconds for 90% of the source
files. Coccinelle transforms the given code using developer-
defined transformation rules (semantic patches), but can also
be used to find certain violations of code patterns. However,
it does not conduct interprocedural dataflow analysis [36, 40].
It requires 0.81 seconds for 90% of the source files.

3 Goal and Key Observation

In this paper, we address the challenge of effectively find-
ing bugs while minimizing interruptions to developers’ daily
workflows, and propose one promising combination of anal-
ysis techniques that can be leveraged to tackle the trade-off
between analysis time and bug detection capabilities. Our ap-
proach leverages a carefully chosen combination of less com-
putationally complex analyses with focused analysis scopes,
and targets well-known bug patterns findable with these anal-
yses. It allows to achieve short analysis time by avoiding
complex analysis, allowing for seamless integration into de-
velopers’ daily workflows without sacrificing bug detection
capabilities.

In detail, the proposed combination of analysis is as follows:
the analysis scope is a single compilation unit; the dataflow
analysis is inter-procedural, path-insensitive, and field-based
with intra-procedural alias information and no consideration
of indirect function calls. We refer to these static analyses as
finger traceable analysis techniques (FiT analysis).

To demonstrate the usefulness of our approach, we de-
signed and implemented FiTx, a framework for generating
developer-friendly bug checkers that seamlessly integrate as
compiler extensions. FiTx’s primary purpose is to scan code-
bases efficiently and proactively notify developers of potential
bug candidates during early development stages, complement-
ing existing state-of-the-art tools like PATA [32], which excel
at detecting complex bugs requiring path-sensitive, interpro-
cedural alias analysis in later development phases.

USENIX Association 2024 USENIX Annual Technical Conference 495

Tools CSA CppCheck Coccinelle Saber

PATA
(Data taken

from original
paper [32])

FiTx
(Our

approach)

Characteristic

Scope Unit(Partial) Unit Function Project Project Unit
Path Sensitivity Sensitive(Partial) Insensitive - Sensitive Sensitive Insensitive
Alias Analysis Inter(Partial) None - Inter Inter Intra

Field Offset Partial Partial - Yes Yes Yes
Indirect Calls None None - Yes None None

Analysis time
per file
(sec)

Total 27hr 1min 2hr 32min 4hr 20min OOM 33 hour 1min 2hr 33min
50%tile 3.33 0.03 0.48 - N/A 0.20
90%tile 10.75 0.32 0.81 - N/A 0.99
99%tile 32.85 3.00 2.46 - N/A 3.79

Table 1: Characteristics of State of the art tools

Bug Type Keywords

Use Before Initialization
use before, use-before,

uninitialized
Double Free double free, double-free

Out of Bounds
out-of-bounds, OOB,

out of bounds

Integer Overflow
integer overflow,
integer-overflow

Null Pointer Dereference
null pointer, null ptr,

nullptr
Reference Counting Error ref, kref, ref count

Table 2: Sampled bug types and the keywords

3.1 Observation: Impact of Leveraging FiT
analysis in Linux

To demonstrate the effectiveness of the FiT analysis to iden-
tify existing bugs, we first conduct a simple check of recent
bugs in Linux. We check well-known Linux bug patterns by
sampling the bug-fixing patches from version 5.9 (released
September 2020) to version 5.11 (released February 2021).
We use keyword-based patch collection [9, 43] and sample
105 bug-fixing patches that contain keywords such as double
free, out-of-bounds, or integer overflow, which are related to
6 well-known bug patterns: Use Before Initialization (UBI),
Double Free (DF), Out of Bounds Access (OoB), Integer Over-
flow (INT), Null Pointer Dereference (NULL) and Reference
Counting Error (REF). The full list of keywords is shown in
Table 2.

We check the characteristics of each bug-fixing patch from
the perspective of static data flow analysis, and determine the
level of analysis required to spot the bug. We check each bug
under the following static analysis criteria:

1. The analysis scope required to find the bug. We focus on
3 levels of scopes. Function, which only requires anal-
ysis of a single function, Unit, which requires analysis
of a single compilation unit, and Project, which requires
analysis of the entire software.

Category # of patches
Sampled patches 105

Target analysis scope
(Function + Unit)

72
(21 + 51)

Detailed
Investigation
(72 patches)

Field
Offset

None∗ 36
Compile∗ 29
Runtime 7

Alias
None∗ 56
Intra∗ 15
Inter 1

Control flow
Direct∗ 65
Indirect 7

FiT analysis findable bugs (FiT bugs) 64

Table 3: Investigation results. FiT bugs are an intersection of
patches with ∗ characteristics.

2. Field offset calculation required to find the bug. Our sur-
vey focuses on two types of offset-based values: Com-
pile, whose offset is determined statically, and Runtime,
whose offset is determined dynamically. If the bug does
not involve any field calculation, we indicate it as None.

3. Level of alias information required to find the bug. We
focus on 3 levels of alias information: None which does
not require alias information, Intra which requires in-
traprocedural alias information, and Inter which requires
interprocedural alias information.

4. If the bug can be found by traversing direct control flows.
Direct control flow means it does not involve indirect
function calls.

Table 3 shows the summary of characteristics for the
checked patches. Out of all the 105 sampled patches, 72 of the
bugs can be found with the analysis of a single compilation
unit. Within these cases, 21 of the bugs require an intrapro-
cedural analysis only. According to the above criteria, we
further investigate the bugs that can be found by examining a
single compilation unit.

Field offset. Out of the 72 patches that are contained
within a single compilation unit, our investigation shows that

496 2024 USENIX Annual Technical Conference USENIX Association

int create_ttc_table(struct ttc_table *ttc) {
 err = create_ttc_table_groups(ttc);
 if (err)
 destroy_flow_table(&ttc->ft);
}
int create_ttc_table_groups(struct ttc_table *ttc) {
 struct flow_table *ft = &ttc->ft;
 ft->g = kcalloc(...);
 if (err) {
 kfree(ft->g);
+ ft->g = NULL;
 return -ENOMEM;
 }
}
void destroy_flow_table(struct flow_table *ft) {
 kfree(ft->g);
}

drivers/net/ethernet/mellanox/mlx5/core/en_fs.c

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

(a) Double free bug in driver (7a6eb072a954)

int dn_route_output_slow(...) {
 struct net_device *dev_out = dev_get_by_index(..);
 ...
 dev_hold(dev_out); // Inc refcount
 fld.saddr = ...;
 if (!fld.daddr) {
+ dev_put(dev_out); // Dec recount.
 return err;
 }
}

net/decnet/dn_route.c

1
2
3
4
5
6
7
8
9
10

(b) Refcount bug in net (3f96d6449768)

Figure 2: Motivating examples of FiT analysis findable bug
in Linux

only 7 of the bugs require dynamic calculation of field offsets.
The remaining 65 patches are either struct-related or access
to the array element with a constant index.

Alias Information. Our examination reveals that only
one patch requires interprocedural alias analysis. The remain-
ing patches can be found with either intraprocedural alias
information (15 patches), or no alias information (56 bugs).

Control Flow. Our examination reveals that only 7 of
the patches involve indirect function calls. The remaining 65
bugs can be found by traversing direct control flows.

Out of the sampled 105 patches, our results show that 64
of the bugs can be found with FiT analyses we leverage. This
suggests that leveraging only such elementary analysis meth-
ods can still have a positive impact on improving codebase
health on finding FiT analysis findable bug (FiT bugs) in
Linux.

3.1.1 Motivating Example

Figure 2 shows two simplified examples of FiT bugs. Fig-
ure 2a is a double free bug in drivers code (7a6eb072a954),
which was found manually and took over 1200 days to be
fixed [23]. In line 2, function create_ttc_table_groups
is called to initialize ttc. It aliases ttc->ft to ft in line
7, and allocates ft->g in line 8. If the function encounters
an error (line 9), it frees ft->g and returns an error code.
However, when the caller receives an error (line 3), it calls

Method Tools Total

Static
Compiler 8
Coverity 3

Clang Static Analyzer 1

Dynamic
Syzkaller 11

Abaci fuzz 1
Not specified (Prob. Manual) 40

Total 64

Table 4: Method used to find FiT bugs

destroy_flow_table and frees ft->g again (line 16), re-
sulting in double free. The bug is fixed by storing NULL
to the freed field in line 11. This bug can be found with an
analysis of a single source file, as all of the functions are in
the same source file (lines 1, 6, 15). All the function calls are
direct (lines 2, 4). In addition, it requires only intraprocedural
alias information in line 7, and the field accesses are all struct
fields (lines 4, 8, 10, 16).

Figure 2b is a reference counting bug found in net code
(3f96d6449768) [51]. This bug took over 3600 days (more
than 9 years) to be fixed and found manually by the developers.
In line 4, function dev_hold is called to increment the internal
reference counter in dev_out, which is inline expanded to
the call to this_cpu_inc on a field of dev_out. When the
function encounters an error (line 6), the function returns the
error code to the caller, without decrementing the reference
counter, leading to refcount leak. This bug is fixed by adding
a call to dev_put (line 7) in the error path. This is another
example of FiT bugs. It manifests within a single function
(dn_route_output_slow), involves only struct fields within
the two refcount-related functions, and does not require any
alias information.

3.1.2 State-of-the-art-tools and FiT bugs

Many state-of-the-art tools target FiT bugs because it can be
found with a combination of elementary analyses. However,
as our survey results in Section 3.1 suggest, there are still
many FiT bugs left in Linux.

To understand to what extent bug detection tools are used,
we further examine the sampled bug-fixing patches. Bugs
found with bug detection tools are associated with some level
of credit. For instance, patches generated by Coccinelle [36]
have a line with the “Generated by” tag. We categorize the de-
tection methods into three types: static method (e.g. compiler
warnings, static analyzer), dynamic method (e.g. syzkaller [4],
sanitizer), and not specified (probably manually found by de-
velopers).

Table 4 shows the result. Out of the 64 bugs categorized
to FiT bugs, 12 of the bugs were found using static analysis
methods (8 with compiler warnings, three with Coverity [2],
one with Clang Static Analyzer [6]). On the other hand, 12 of
the bugs were found using dynamic analysis methods, specifi-
cally fuzzers (11 with Syzkaller, one with Abaci Fuzz [55]).

USENIX Association 2024 USENIX Annual Technical Conference 497

Rule Name Hook Inst. Operand Constraint
Fun Arg call arg arg num
Fun Call call return val -

Store ANY store storee -
Store NULL store storee store null
Store NON store storee store non null
Store Const store storee store const value

Use load loadee -

Table 5: Example of Transition Rules

The remaining 40 bugs did not mention any detection meth-
ods, suggesting a reliance on alternative approaches includ-
ing manual code inspection. This highlights a need for more
developer-friendly tools that seamlessly integrate into their
daily workflows.

4 FiTx: A Proof of Concept

FiTx is a framework that generates daily-development-
friendly bug checkers. To allow customizing to find project-
or module-specific bugs, our framework is customizable and
allows the developers to specify the bug they want to look for
with typestate properties. Our framework generates a com-
piler plugin that checks the specified bug and can be used
alongside the compiler.

Our analysis is based on the typestate property analy-
sis [20, 22, 26, 32, 41, 52, 56], which takes a definition of
each bug expressed in the form of typestate property (finite
state machine (FSM)), and traverses the flow graph to check
for buggy states. Our analysis considers the buggy state as
the accepting state of the FSM property.

With a given typestate property, our extension traverses the
Control Flow Graph (CFG). It conducts a path-insensitive, in-
terprocedural, and field-sensitive CFG analysis. To efficiently
conduct interprocedural analysis, we conduct a bottom-up
summary-based analysis. We also conduct basic intraproce-
dural and path-insensitive points-to analysis. As shown in
Section 3, these analysis techniques can find many bugs in
Linux while achieving a short analysis time.

To enhance accuracy within the summary-based analysis,
we introduce return code-aware state propagation. It summa-
rizes function states for each distinct return code, enabling
precise propagation of anticipated states within caller func-
tions by leveraging return code evaluation. This tracking of
state transitions within and across functions contributes to a
more comprehensive and accurate analysis without sacrificing
the analysis time.

4.1 Typestate Property Specification

Our framework takes the specification of each bug in the
form of typestate property, which is a finite state machine
associated with each variable. Like the traditional typestate
analysis, our analysis associates the states with each variable,

kfree(dev);

if (realloc) {
 dev = kmalloc(...);
 ...;
}
...;

 1
 2
 3
 4
 5
 6
 7

init free DF

RuleSource Target
Calls kfreeinit free
Calls kfreefree DF

Stores anythingfree init

Typestate properties of Double Free

init free DF

line 4
line 7

dev
dev

line 1 dev
line #

Collected States

merge states from
line 1 and 4

Figure 3: Basic flow of collecting type states

and transitions the states according to the transition rules. The
developers can specify the transition rules to define project-
or module-specific bugs.

Table 5 shows the list of example transition rules. A tran-
sition rule consists of three components: hook instruction,
operand constraint, and target operand. Hook instruction,
which is specified in the form of LLVM IR [31], triggers
the transition. Operand Constraint is a set of constraints for
the transition to be triggered. Our framework checks if all the
constraints are met, and considers that the transition is trig-
gered if and only if they are satisfied. Target Operand is the
operand of the hook instruction which the state is associated
with.

4.2 CFG-based Typestate Analysis

Using the defined typestate properties, our analysis conducts a
field-sensitive, path-insensitive, and interprocedural analysis
to collect the states of each variable. Our analysis traverses
each basic block in the CFG and determines if the variable
may satisfy the buggy state.

For each basic block, our analysis collects the state of each
variable from the predecessor and determines the current state.
If all the predecessors have the same state, we propagate the
same state as the current state. Otherwise, there is a need to
determine the state to be propagated to the successor.

To determine the state to propagate, we define the priority
of each state and propagate the highest prioritized state to
the successor. By default, our analysis defines the priority of
a state using the distance to the bug state. If the distance is
large (i.e. the state is further away from the bug state), we
consider that the state has greater priority. This is a conserva-
tive strategy to suppress false positives. This strategy can be
customized by the developers when defining the typestates.

After propagating the states, our analysis traverses each
instruction in the basic block and checks if it triggers any
transitions. When detecting a transition rule, we check if the
current state of the target variable matches the source state of
the transition, and update the state according to the provided
rule. Any variable without a state is considered as the init

498 2024 USENIX Annual Technical Conference USENIX Association

 1
 2
 3
 4
 5
 6
 7
 8

struct device* init() {
 struct device* dev = kmalloc(...);
 err = init_fields(dev);
 if (err) {
 kfree(dev->mem);
 }
 ...
}

int init_fields(struct device* dev) {
 dev->mem = kmalloc(...);
 ...;
 if (err) {
 kfree(dev->mem);
 return -ERR;
 }
 return 0;
}

 1
 2
 3
 4
 5
 6
 7
 8
 9

init_fields summary

init free DF
Start State

-ERR (line 6) free DF DFdev->mem

0 (line 8)

...

Return Code Variable

init free DFdev->mem
...

init free DF

line 4
line 5
line 7

dev->mem

dev->mem

dev->mem

line 2
line #

Collect Function summary
(argument / return code information)

propagate expected states
(condition in line 4)

Collected States

Figure 4: Example of summary-based interprocedural analysis
with return code aware propagation

state.
Figure 3 shows a simple example of the flow of our analy-

sis. This example defines a simplified typestate property for
double free, and looks for the states in the code fragment.
In line 1, kfree is called with argument dev. This triggers
two transitions: init to free and free to DF. Since dev is
in init state, the state of the variable will be transitioned
to free. This state is propagated directly to the basic block
in line 3, since the block does not have any other predeces-
sors. Then, in line 4, the state of the dev is transitioned again
to init, since the return value of malloc is stored and the
source state is free. The block in line 7 has 2 predecessors:
line 1 and line 3, in which both blocks have different states
for dev. Since the distance from init to the buggy state (DF)
is longer, the init state is propagated to the block.

4.3 Summary-based interprocedural analysis

Our analysis checks for the possible buggy states interproce-
durally. To efficiently collect the states, we conduct a bottom-
up interprocedural analysis using function summaries. When
analyzing each function, we collect the states for each argu-
ment and the return value and summarize the states at the
end of the function. When the function is called, we return
the summarized states to the caller without re-analyzing the
function.

Since the initial state of the argument cannot be concretely
determined without the caller function, our analysis assumes
that the argument may start from any state, and record the
transitions for all the states in the typestate property. When a
function is called, the destination states corresponding to the
arguments’ states are returned to the caller. If the called func-
tion is defined outside of the compilation unit, we consider the
state of the argument as unpredictable, and omit from being
traced afterward.

Return Code Aware State Propagation Some func-
tions have multiple return points, and each point may have a
different set of states. The caller, on the other hand, expects
the callee to return at a certain point. Neglecting these con-
texts results in imprecise analysis and leads to many false

hook name description
IMMEDIATE immediately after transition (default)

VAR_END end of variable lifetime
BLOCK_END end of each basic block
FUNC_END end of each function
MOD_END end of the analysis

Table 6: List of bug-checking hooks

positives. For instance, the caller may have an error handling
path that expects the callee to end in an error state.

To overcome these cases, we take into account the return
code of each function when creating the summary, and attempt
to propagate the states which satisfy the caller’s context. Our
analysis leans on the fact that constant integer return values
are often used to express a returning state of each function,
known as return code. In the Linux coding convention, a
negative constant integer expresses an error code, while a non-
negative, non-constant number expresses a success code [35].

Our analysis collects the possible return codes of each func-
tion. Constant return values are collected since non-constant
values are known to express success codes. If the returned
variable contains any constant value (checked by traversing
the use-def chain), the states of the basic block returning that
constant are collected and are considered the return state for
that code. If multiple blocks return the same value, we merge
the states and consider the merged states the return states.

For each function call, our analysis determines if the caller
expects the callee to return a certain return code. This is
achieved by checking if the return value is used in a branch
condition. If it is, the states of the return code that satisfies the
condition are propagated to the caller. If multiple return codes
satisfy the condition, we merge the states of those return codes
and propagate back the merged states. If the return value is
not checked, we assume that the caller expects the success
state from the callee.

Figure 4 shows an example of summary-based interpro-
cedural analysis with return code consideration. Function
init_fields has one argument, dev, whose field mem is
freed in line 5. We keep track of the transitions for all the
states in the typestate; init transitions to free, free tran-
sitions to DF, while DF makes no transition. Then, we check
the return statement in the function to determine the states
to summarize and collect the error codes. The return state-
ments are placed in line 6 (-ERR) and line 8(0). Both of the
return codes and the corresponding states are included in the
function summary. When init_fields is called in line 3,
we check the usage of return value err, and pass the expected
states. Here, we pass the state of return code -ERR to line 5,
and the state for 0 to line 7.

4.4 Generating Warnings
With the collected states, our analysis generates warnings to
variables that reach buggy states. By default, it is checked after

USENIX Association 2024 USENIX Annual Technical Conference 499

each transition whether any variable is in a buggy state or not.
It is necessary to check for the states in other situations. Our
analysis provides multiple checkpoints as listed in Table 6:
at the end of basic block (BLOCK_END), function (FUNC_END),
or variable lifetime (VAR_END). MOD_END indicates the states
should be checked at the end of the analysis, which is used
for functions that have no callers inside the same compilation
unit. The developers can specify which checkpoint to be used
to check for the bug states.

5 Implementation

Our framework is implemented using the LLVM compiler
framework [31] with Clang C compiler [1]. As mentioned in
Section 4, our framework takes typestate definitions of each
bug. A C++ interface is provided to define the states and the
transition rules. Our framework generates a Clang plugin from
the typestate definitions. For efficiency, our framework takes
multiple typestate definitions and bundles them into a single
plugin. Developers can run the plugin by building their source
files with the plugin-enabled Clang compiler. Object files are
generated by the Clang compiler, and the plugin generates the
warnings. The developers can specify the embedded compiler
with CC and KCFLAGS flags when running the Linux Makefile
without modifying anything.

We have implemented checkers for 6 well-known bug pat-
terns: Double Free (DF), Double Lock / Unlock (DL / DUL),
Memory Leak (ML), Use After Free (UAF) and Ref Count
Error (Ref). Each plugin consists of less than 5 states and
transitions, and requires less than 50 Lines of C++ code. Coc-
cinelle and CSA require 134 and 3,428 LoC respectively to
implement a use-after-free checker.

Supporting domain-specific semantics Our framework
supports supplying the plugin with additional domain-specific
semantics via the C++ interface. Developers can use the inter-
face to embed semantic assertions or conventions that FiTx
can take into account. This allows FiTx to filter out false
positives that are obvious to developers with domain-specific
knowledge, but still require semantic information. In our plu-
gins, we embed generically applicable rules found in a wide
range of components (e.g. functions which contain put in
their name are typically reference count-decrementing func-
tions).

6 Evaluation

Using the implemented checkers, we analyze the Linux Ker-
nel v5.15, the latest version at the time of the writing. We
first determine if FiTx can find bugs in Linux, and introduce
the bug found by our analysis. We then determine the analy-
sis time required per file, as well as the number of warnings
generated per file. We also compare our method with two
well-known state-of-the-art tools used in daily development,

OS Ubuntu 20.04
CPU 16 Core Intel Xeon CPU E5-2620
RAM 96 GB (limited to 32 GB)
LLVM 10.0.1

Target Kernel v5.15
Config allyesconfig

Table 7: Experimental Setup
Bug Type Warnings True Positives

DF 38 21
DL 15 7

DUL 11 5
ML 16 3
UAF 29 9
Ref 4 2

Total 113 47

Table 8: Number of generated warnings

CSA and CppCheck, and determine whether they can also
find the bugs as well as the analysis time required per each
source file.

Table 7 shows the setup for our analysis. To emulate the
environment of daily development, we limit usable memory
to 32GB. For kernel configuration, we use allyesconfig
and manually turn off the components that cannot be com-
piled using Clang. In our environment, we can compile a
total of 20,634 files. We run the build with the debug option
(-g). Because the Linux kernel cannot be compiled with the
optimization disabled, we add a compiler pass to preserve a
non-optimized LLVM-IR.

6.1 Analysis Results
6.1.1 Number of bugs found

To demonstrate that FiTx can find real bugs, we first build the
Linux with FiTx enabled, and check the generated warnings
to determine the true positives.

Table 8 shows the number of warnings generated by the
checkers per bug type. In total, FiTx generated 113 warn-
ings. Our manual inspection revealed that 47 of the warnings
pointed to actual bugs. Out of the found bugs, double free
had the highest number of true positives with 21 cases, fol-
lowed by use after free with 9 cases, double lock with 7 cases,
double unlock with 5 cases, memory leak with 3 cases, and
reference counting bug with 2 cases. We further created bug
fix patches for 16 of the found bugs which could be fixed
easily, and reported to the developers. As of the time of the
writing, 13 bugs have been confirmed and merged [42,44–48].
The remaining patches are still waiting for a response from
the developers.

Figure 5 shows a simplified example of a bug found in a
GPU driver code. This bug was initially found as a double
free bug but later, an investigation revealed that it triggers
multiple types of bugs including memory leak, uninitialized

500 2024 USENIX Annual Technical Conference USENIX Association

int si_dpm_sw_init(void *handle) {
 struct amdgpu_device *adev = (...)handle;
 ret = si_dpm_init(adev);
 if (ret)
 si_dpm_fini(adev);
 ...
}

 drivers/gpu/drm/amd/pm/legacy-dpm/si_dpm.c

int si_dpm_init(struct amdgpu_device *adev) {
 ret = si_parse_power_table(adev);
 if (ret)
 return ret;
 ...
}

int si_parse_power_table(struct amdgpu_device *adev) {
 adev->pm.dpm.ps = kcalloc(num_entries, ...);
 for (int i = 0; i < num_entries; i++) {
 ps = kzalloc(...);
 if (ps == NULL) {
 kfree(aev->pm.dpm.ps);
 return -ENOMEM;
 }
 adev->pm.dpm.ps[i].ps_priv = ps;
 }
 adev->pm.dpm.num_ps = num_entries;
 return 0;
}

void si_dpm_fini(struct amdgpu_device *adev) {
 if (adev->pm.dpm.ps)
 for (int i = 0; i < adev->pm.dpm.num_ps; i++)
 kfree(adev->pm.dpm.ps[i].ps_priv);
 kfree(adev->pm.dpm.ps);
}

1
2
3
4
5
6
7

8
9

10
11
12
13

14
15
16
17
18
19
20
21
22
23
24
25
26

27
28
29
30
31
32

Figure 5: Bug found in si_dpm code. It causes double free
(line 19, 31), memory leak (line 19), uninitialized variable
access (line 29), null pointer dereference, array index out of
bounds, and use after free (line 30)

variable access, null pointer dereference, array index out of
bounds access, and use after free.

In function si_dpm_sw_init(), si_dpm_init() is called
to initialize various fields of variable adev (line 3). This
function calls si_parse_power_table() to allocate array
adev->pm.dpm.ps (line 15) and its elements (lines 16 ~23).
If the allocation of an element fails (line 18), it frees the array
and returns an error code (line 19, 20). However, the array is
freed again in si_dpm_init (line 31) without being NULLed,
which is called when the initialization fails(line 5), resulting
in double free of the array.

In addition, since the array is freed without freeing the
array elements, these elements are leaked, resulting in a mem-
ory leak (line 19). Moreover, si_dpm_fini attempts to free
the array elements in the loops in lines 29 and 30 using
adev->pm.dpm.num_ps in its condition. This struct field is
only initialized if the allocation successfully finishes (line 24),
resulting in the uninitialized variable access in line 29, also
triggering array index out-of-bounds access or NULL pointer
dereference in line 30. On top of that, line 30 accesses an
already freed array, causing use after free of the array. This
bug existed since 2016 and was fixed by us.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Analysis Time [sec]

0

20

40

60

80

100

Pe
rc

en
til

e

0.2

50

0.99

90

3.79

99

(a) CDF of analysis time per file

1 2 3 4 5 6 7 8 9 10
Number of warnings

0

10

20

30

40

50

Nu
m

be
r o

f s
ou

rc
e

fil
es

(b) Histogram of number of warnings generated per file

Figure 6: Analysis results per file

6.1.2 Analysis result per source file

We examine the analysis time required for each compilation
unit to determine the wait time required by the developers.
Figure 6a shows the CDF of analysis time. FiTx only required
0.20 seconds for 50% of the source file, and 0.99 seconds for
90% of the source file. When comparing the longer analysis
time (99%tile value), FiTx finished in 3.79 seconds, which is
around 8.5 times shorter analysis time than CSA (Table 1).

We also examine the number of warnings generated per
file to determine how many warnings developers are required
to check. Figure 6b shows the histogram of the number of
warnings generated per file. 99.9% of the source files only
generated at most three warnings per each source file. For
two source files, FiTx generates 4+ warnings. This is due to a
bug candidate in a function being propagated to many callers.
These warnings are easily spottable since they mention the
involvement of the same function.

6.2 Comparison with Other Methods
6.2.1 Comparison with Framework Variants

We first compare our approach with variants of our frame-
work. These variants differ from our proposed approach by
leveraging more complex/simple approaches. In this work,
we compare with three variants: (a) FiTx-PS: complex vari-
ant which leverages path-sensitive approach for higher preci-
sion (originally path-insensitive), (b) FiTx-NR: simple variant
which does not conduct return-code considered state prop-

USENIX Association 2024 USENIX Annual Technical Conference 501

Variant Proposal Variants
PS NR PSNR

Target (Files) 20,634
Timed out (Files) 0 5,068 0 5,014
Compiled (Files) 20,634 15,566 20,634 15,620

Total Time 2hr 33min 13hr 38min 2hr 9min 13hr 20min
Total Warnings 113 89 82 86
True Positives 47 11 27 10

Table 9: Analysis of Linux Kernel for framework variants.
Variant description: NR: does not conduct return-code aware
state propagation, PS: conducts path-sensitive analysis, PSNR:
conducts path-sensitive analysis and does not conduct return-
code state propagation.

agation (originally conducted), and (c) FiTx-PSNR: cross-
moderate variant which leverages path-sensitive approach
without return-code considered state propagation. We first
conduct the same analysis of the Linux Kernel as the pro-
posed approach to determine if the source files can be an-
alyzed within the time limit and if the bugs can be found.
We then determine the required analysis time for each ana-
lyzed source file to determine the additional compilation time
required for each variant.

We first analyze the entire Linux kernel using the same
method as Section 6.1. We limit the usable memory to 32
GB and set the timeout of each compilation to one minute to
emulate the daily development of developers. Table 9 shows
the results of the analysis. Overall our approach was able to
find the most bugs and analyze the entire Linux kernel within
the time limit. Variants that invoke path-sensitive approach
(PS and PSNR) did not finish the analysis for more than 5,000
source files (5,068 and 5,014 respectively) because of the
time limit, taking more than 13 hours of analysis time for
both cases. The path-insensitive approaches (Proposal and
NR), on the other hand, were able to finish analyzing all
the source codes within the time limit (2hr 33 min and 2hr
9min respectively). Variants which does not invoke return-
code considered state propagation were able to finish the
analysis slightly faster than the variants which leverage the
same path sensitivity (around 20 minutes faster). However,
the non-considered variants could not find some of the bugs
which the considered variants could find (20 and 37 bugs were
not found respectively).

We further determine the required analysis time of each
variant and whether each variant can find the bugs by ana-
lyzing the source files which include developer-confirmed
bugs. For the analysis of each variant, we set the timeout of
each analysis to 12 hours. Columns indicated FiTx variants
in Table 10 show the result of this analysis. Like the analysis
of the entire Linux Kernel, our approach was able to find the
most number of bugs in each source file within the time limit.
Variants that use path-sensitive approaches (PS and PSNR)
required significantly long analysis time for 4 source files and
required more than 4 hours to finish analysis, with 2 source

files timing out (required more than 12 hours). It required 1.5
~103,714 times more analysis time than the proposal. Variants
that did not conduct return-code considered state propagation
(NR and PSNR) could not find some of the bugs (3 and 7 bugs
respectively). Although NR finished analyzing each source
file faster than the proposal (average 1.2 times faster), it did
not find the bugs that the proposal found.

6.2.2 Comparison with Existing Tools

We compare our approach with two of the well-used tools
in daily development: Clang Static Analyzer (CSA, v10.0.1)
and CppCheck (v1.90). We first determine if the bugs can
be found with the tools. We analyze the previously found
bugs (NULL pointer dereference and double free) from Sec-
tion 3.1 and the developer-confirmed true positives from
our analysis. We then determine the required analysis time
for each analyzed source file to determine the additional
compilation time. We run each analyzer with the default
configuration. For CSA, we additionally conduct the anal-
ysis using two different configurations: Unix-specific config
(clang-analyzer-unix.*) which limits the target bugs to
Unix-specific bugs, and Unix-specific memory bug config
(clang-analyzer-unix.Malloc) which further limits the
target bugs to Unix-specific memory bugs.

Number of Detected Bugs We first conduct an analysis
of the known bugs found in Section 3.1. Due to a large number
of patches, we specifically focus on the patches which fix
NULL pointer dereferences and double frees. In total, we
analyze 8 patches. We created a customized extension for
FiTx. For CSA we only run the analysis with the default
configuration because the NULL checker does not exist in the
remaining two Unix-specific configurations. Table 11 shows
the results. Out of the 8 patches, FiTx can find 7 bugs correctly.
The remaining bug (862aecbd9569) could not be found due
to the lack of configuration in our environment. CSA can find
1 bug correctly, and CppCheck does not find any of the bugs.

We further check the analysis results for the source files
which contain developer-confirmed true positives. All of the
bugs are either double free or use-after-free which is the target
of both CSA and CppCheck. Table 10 shows the analysis
results per source file. Unfortunately, both of the tools did not
find any of the bugs.

The reason for the false negatives of state-of-the-art tools is
their analysis limitations. The majority of the false negatives
in CSA are caused by the strong limitation in the interpro-
cedural analysis. As mentioned in Section 3.1.2, CSA only
analyzes 1 function call depth to keep the analysis time short.
However, many bugs involve multiple depths of function calls.
For instance, Figure 5 involves at least 3 function call depths.
This accounts for 5 cases of known bugs and all of the cases
of confirmed bugs. The remaining 2 cases of known bugs are
caused by the lack of domain-specific knowledge where it
did not consider the module-specific allocation function. The

502 2024 USENIX Annual Technical Conference USENIX Association

File Name LoC TP Criteria FiTx Clang Static Analyzer (CSA) CppCheck FiTx Variants
Default Unix Unix.Malloc NR PS PSNR

drivers/platform/
chrome/chromeos_laptop.c 958 2 Detected ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗

Time (sec) 0.14 5.85 4.19 3.82 0.03 0.11 0.21 0.13

drivers/media/dvb-core/dvbdev.c 1,084 1 Detected ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗
Time (sec) 0.14 8.34 5.56 5.53 0.08 0.34 4hr 2min 4hr

kernel/trace/trace_events_hist.c 6,113 6 Detected ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✓
Time (sec) 1.69 43.01 32.56 32.52 7.28 1.39 7hr 47min 7hr 46 min

drivers/gpu/drm/amd/pm/
powerplay/si_dpm.c 7,127 2 Detected ✓ ✗ ✗ ✗ ✗ ✓ - -

Time (sec) 2.18 24.59 16.62 16.53 0.89 1.70 T.O. T.O.

drivers/scsi/qla2xxx/qla_os.c 8,216 2 Detected ✓ ✗ ✗ ✗ ✗ ✓ - -
Time (sec) 2.80 41.57 30.26 29.77 1.50 2.53 T.O. T.O.

Table 10: # of warnings and analysis time per source file which contains confirmed bugs. Clang Static Analyzer is mea-
sured with three configurations: Default: default configuration used in Linux, Unix: Unix specific bug only configurations
(clang-analyzer-unix.*), Unix.Malloc: Unix specific memory bug only configurations (clang-analyzer-unix.Malloc).

hash dir
Originally
found by FiTx CSA CppCheck

73644143b31c drivers manual ✓ ✗ ✗
b097efba9580 drivers coverity ✓ ✗ ✗
733c15bd3a94 drivers coverity ✓ ✓ ✗
862aecbd9569 drivers manual - - ✗
13384f6125ad mm syzkaller ✓ ✗ ✗
292bff9480c8 drivers coverity ✓ ✗ ✗
7a6eb072a954 drivers manual ✓ ✗ ✗
dad1b1242fd5 fs Abaci fuzz ✓ ✗ ✗

Table 11: Analysis results of NULL pointer dereference and
double free bugs in Table 4. ✓: found. ✗: not found. -: the
patch could not be analyzed in our environment.

false negatives of CppCheck are caused by the fact that it does
not conduct any complex analysis. For instance, CppCheck
does not conduct inter-procedural analysis of pointer value in
certain situations. This leads to many bugs being overlooked.

Analysis Time We compare the analysis time of each
source file for the analysis of found bugs. Table 10 shows the
results. Compared to CSA, FiTx finished the analysis faster.
CSA conducts path-sensitive analysis and the analysis time
grows exponentially when the number of paths grows, typi-
cally dominated by the line of code. It required 5.85 seconds
for the source file with less than 1,000 LoC, which is around
40 times slower than FiTx. CSA required over 40 seconds
(14.9x slower than FiTx) for the source file with 8,200+ LoC
(qla_os.c), and even when limiting the target with config, it
still required 29.77 seconds (10x slower than FiTx).

CppCheck finished the analysis faster than FiTx. It only
required 1.50 seconds in qla_os.c, while FiTx required 2.80
seconds, which is 1.86x faster. This is because CppCheck does
not conduct complex analysis such as tracing the pointer val-
ues interprocedurally. FiTx finished the analysis faster (2.18
sec) than CppCheck (7.28 sec) for one case (trace_events_
hist.c). This is because CppCheck checks all the macro con-
figuration patterns to find the bugs, checking 20 patterns in
this case. Although it generally incurs less analysis time, it
misses all the analyzed bugs.

if (found) {
 found->touched = jiffies;
 if (removing) {
 kfree(fdb);
 }
}
...
if (!found != !removing) {
 kfree(fdb);
}

drivers/net/ethernet/rocker/rocker_ofdpa.c

[ERR] rocker_ofdpa.c:1936:3: Struct ofdpa_fdb_tbl_entry*
 [LOG] rocker_ofdpa.c:1924:4: [Transition] init to free
 [LOG] rocker_ofdpa.c:1936:3: [Transition] free to double free

1921
1922
1923
1924
1925
1926

(a) Source Code

(b) Transition Logs

...
1935
1936
1937

Figure 7: Example of false positive produced by our tool

Bug Type
Path

Sensitivity
Context

Sensitivity Semantical

DF 4 7 6
DL 1 4 3

DUL 0 1 5
ML 2 3 8
UAF 13 4 3
Ref 0 1 1

Total 20 20 26

Table 12: False positive causes of FiTx

7 Discussions

False Positives Static bug detection tools often face the
challenge of false positive filtering, posing a significant hurdle
to developer adoption. The manual effort involved in identify-
ing and discarding false positives can hinder tool integration.
While many tools address them by lowering their rates, FiTx
addresses this by only generating a small number of warnings
in the first place, alleviating the effort required from devel-
opers. It generates 113 warnings, while CSA and CppCheck
generated 132,196 and 1,538 respectively. FiTx generated 66
false positives. As mentioned in Section 6.1.2, the developers
will only need to check at most three warnings per source file
for 99.9% of the cases. Overall it only took less than two min-
utes on average for an inexperienced Ph.D. student to check

USENIX Association 2024 USENIX Annual Technical Conference 503

each warning. In addition, the false positive rate (58.4%) is
smaller compared to the reported rates of CSA and CppCheck
(83.0% and 84.3%) [32].

FiTx also generates transition logs to help the developers
debug more efficiently and determine if the warning is a false
positive or not. Figure 7 shows a false positive and the transi-
tion log generated by FiTx. It detected a possible double free
in line 1936 and the first transition occurs in line 1924 (init to
free state). The developers can trace the state transitions and
spot that this is a false positive since the condition clauses for
the first transition (lines 1921, 1923) and the second transition
contradicts (line 1935).

The false positives can be categorized into three types: (1)
lack of path sensitivity, (2) lack of context sensitivity and (3)
lack of semantic information. Table 12 shows the distribution
of the causes. The majority of the cases were due to the
“text-book level” analysis techniques used in FiTx: lack of
path sensitivity and context sensitivity with 20 cases each.
The former occurs because we do not conduct path-sensitive
analysis (e.g. Figure 7), and the latter is caused by the bottom-
up interprocedural analysis.

The lack of semantic information is another cause of false
positives with 26 cases. FiTx found a bug candidate on the
path which will not occur semantically. For instance, driver
code typically interacts with the device, where the paths
change between multiple device states. In this case, the path
will semantically contradict, but the code path-wise may seem
independent. These cases are easily spottable by the devel-
opers because they are already familiar with these semantics.
In addition, developers can further eliminate these false posi-
tives by embedding this information into FiTx to prevent it
from surfacing. As mentioned in Section 5, FiTx allows to
add project/module-specific rules. Developers typically only
work on a specific sub-module of the Linux kernel (e.g. block
devices, specific driver code) and have specialized knowledge.
Hence, they can add tailored rules for each module, such as
how state transitions within each function, or making an allow
list of functions that reduce false positives.

False Negatives Our analysis also generates many false
negatives. Like the false positives, the reason is due to the
simpleness of the analysis approach, limiting the bugs that
could be uncovered to FiT bugs. To find complicated bugs,
there is a need to conduct a set of more complex analyses, or
expand the scope to the entire software. For instance, indirect
function call analysis should be used to find more bugs within
indirect control flows. As mentioned in Section 3, such anal-
yses are the scope of the sophisticated, state-of-the-art bug
detectors such as PATA, and are not the scope of FiTx where
its focus is short analysis time for daily-development use. By
combining the usage of differently characterized tools, we
believe that many bugs are exposed to the developers.

8 Related Work

Bugs in Linux kernel There has been much work that
studies the characteristics of the bug in Linux [16, 37]. Chou
et al. studied the bugs in versions 1.0 to 2.4.1 using a static
analyzer [16]. Palix et al. also investigated the bugs in Linux
of later versions from 2.6.0 to 2.6.33 [37]. To illustrate how
Linux evolved from previous versions, they investigated the
bugs using the same criteria as Chou et al. and showed that
components other than drivers also suffer from many bugs.

Static Analysis Methods Many research efforts propose
to find bugs in the Linux kernel using static analysis [2,3,6–14,
17,19,24,25,30,33,34,38,43,49,50,53,54,58,59]. Since the
Linux kernel consists of millions of lines of code, these meth-
ods are required to be scalable without losing precision. These
research efforts focus on specific bug patterns (often related
to the Linux semantics), and elaborate conventional methods
so as to be applied to Linux. For instance, DCUAF [9] tar-
gets use-after-free bugs, and DSAC [13] targets inappropriate
sleep in non-blocking contexts.

Coccinelle [36] is a commonly used tool in Linux. It al-
lows the developers to describe “semantic patches” to help
transform the code when modifying an already existing API.
Coccinelle can check for violations of code patterns that lead
to bugs. However, it does not find interprocedural dataflow
bugs [36, 40]. PATA [32] is a bug detection framework tai-
lored to the operating system. Their work achieves scalable
analysis that conducts path-sensitive points-to analysis while
finishing the analysis in around 30 hours for Linux.

There are many bug detection tools publicly available.
Saber [57] targets generic memory leaks independent of the
project semantics. Unfortunately, it is not scalable since it
does not assume software systems of millions of lines of code.
Clang Static Analyzer [6] faces the hurdle of long analysis
time, and CppCheck [19] faces an overwhelming number of
warnings.

The proposed FiTx complements the use of these tools. By
finding FiT bugs before the use of these sophisticated tools,
the number of warnings the tools raise will decrease, and the
effort developers need to make to look through the warnings
will also decrease. This allows them to concentrate on more
complex bugs.

Dynamic Analysis Methods Some tools leverage dy-
namic analysis to find bugs [4, 5, 15, 18, 21, 27–29, 39]. They
attempt to find bugs on demand by directly monitoring run-
time behavior and checking if the Linux Kernel is behaving
correctly. Sanitizers such as Kmemleak [29] or KASAN [5]
are built-in to the Linux kernel. It keeps track of the valid
memory by shadowing the memory operations and tracing
accesses.

Fuzzers are widely used to find bugs in Linux. Syzkaller [4]
conducts coverage-guided fuzzing to automatically generate
a sequence of system calls and attempts to execute target code
paths to uncover as many bugs as possible. While the fuzzers

504 2024 USENIX Annual Technical Conference USENIX Association

can find complicated bugs with low false positive rates, an
extensive amount of analysis time is required and the seeds
of the test cases must be carefully designed to achieve high
coverage.

9 Conclusion

This paper tackles the persistent trade-off between analysis
time and bug detection capabilities of static bug detection
tools, aiming to promote their adoption in daily development
workflows. In daily development, developers prioritize tools
offering short analysis time and high bug-finding efficiency.
Existing tools often prioritize one aspect at the expense of
the other. We propose a combination of less-computationally
complex analyses which can find many bugs while achieving
a short analysis time, and designed and implemented FiTx.
Despite the text-book level analysis, our checker finds 47 bugs
(13 bugs confirmed by developers) in Linux v5.15 with 0.99
seconds of analysis time for 90% of the source files.

Artifact Availability

Our prototype implementation of FiTx is available at https:
//github.com/sslab-keio/FiTx.

Acknowledgments

We thank the anonymous reviews for their valuable and in-
sightful feedback.

References

[1] Clang Compiler. http://clang.llvm.org/.

[2] Coverity. https://scan.coverity.com.

[3] Linux Driver Verification. http://linuxtesting.
org/ldv.

[4] Syzkaller: an unsupervised, coverage-guided kernel
fuzzer. https://github.com/google/syzkaller.

[5] The Kernel Address Sanitizer. https://www.kernel.
org/doc/html/latest/dev-tools/kasan.html.

[6] Clang Static Analyzer. https://clang-analyzer.
llvm.org/, 2022.

[7] Facebook Infer: a tool to detect bugs in Java and
C/C++/Objective-C code. https://fbinfer.com/,
2022.

[8] Smatch: a static bug-finding tool for C. http://
smatch.sourceforge.net/, 2022.

[9] Jia-Ju Bai, Julia Lawall, Qiu-Liang Chen, and Shi-Min
Hu. Effective static analysis of concurrency Use-After-
Free bugs in linux device drivers. In 2019 USENIX
Annual Technical Conference (USENIX ATC 19), pages
255–268, 2019.

[10] Jia-Ju Bai, Julia Lawall, and Shi-Min Hu. Effective
detection of sleep-in-atomic-context bugs in the linux
kernel. ACM Trans. Comput. Syst., 36(4):1–30, April
2020.

[11] Jia-Ju Bai, Julia Lawall, and Shi-Min Hu. Effective
detection of sleep-in-atomic-context bugs in the linux
kernel. ACM Trans. Comput. Syst., 36(4), apr 2020.

[12] Jia-Ju Bai, Tuo Li, and Shi-Min Hu. DLOS: Effective
static detection of deadlocks in OS kernels. In 2022
USENIX Annual Technical Conference (USENIX ATC
22), pages 367–382, 2022.

[13] Jia-Ju Bai, Yu-Ping Wang, Julia Lawall, and Shi-Min
Hu. Dsac: Effective static analysis of Sleep-in-Atomic-
Context bugs in kernel modules. In 2018 USENIX An-
nual Technical Conference (USENIX ATC 18), pages
587–600, 2018.

[14] Thomas Ball, Ella Bounimova, Rahul Kumar, and
Vladimir Levin. SLAM2: Static driver verification with
under 4% false alarms. In Formal Methods in Com-
puter Aided Design, pages 35–42. ieeexplore.ieee.org,
October 2010.

[15] Cristian Cadar, Daniel Dunbar, and Dawson Engler.
Klee: Unassisted and automatic generation of high-
coverage tests for complex systems programs. In Pro-
ceedings of the 8th USENIX Conference on Operating
Systems Design and Implementation, OSDI’08, page
209–224, USA, 2008. USENIX Association.

[16] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth
Hallem, and Dawson Engler. An empirical study of
operating systems errors. In Proceedings of the Eigh-
teenth ACM Symposium on Operating Systems Princi-
ples, SOSP ’01, page 73–88, New York, NY, USA, 2001.
Association for Computing Machinery.

[17] Kai Cong, Fei Xie, and Li Lei. Symbolic execution of
virtual devices. In Proceedings of the 2013 13th Interna-
tional Conference on Quality Software, QSIC ’13, pages
1–10, USA, July 2013. IEEE Computer Society.

[18] Jake Corina, Aravind Machiry, Christopher Salls, Yan
Shoshitaishvili, Shuang Hao, Christopher Kruegel, and
Giovanni Vigna. DIFUZE: Interface aware fuzzing for
kernel drivers. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security,
CCS ’17, pages 2123–2138, New York, NY, USA, Oc-
tober 2017. Association for Computing Machinery.

USENIX Association 2024 USENIX Annual Technical Conference 505

https://github.com/sslab-keio/FiTx
https://github.com/sslab-keio/FiTx
http://clang.llvm.org/
https://scan.coverity.com
http://linuxtesting.org/ldv
http://linuxtesting.org/ldv
https://github.com/google/syzkaller
https://www.kernel.org/doc/html/latest/dev-tools/kasan.html
https://www.kernel.org/doc/html/latest/dev-tools/kasan.html
https://clang-analyzer.llvm.org/
https://clang-analyzer.llvm.org/
https://fbinfer.com/
http://smatch.sourceforge.net/
http://smatch.sourceforge.net/

[19] CPP Check. cloc. https://cppcheck.sourceforge.
io/, 2022.

[20] Manuvir Das, Sorin Lerner, and Mark Seigle. ESP: path-
sensitive program verification in polynomial time. In
Proceedings of the ACM SIGPLAN 2002 conference
on Programming language design and implementation,
PLDI ’02, pages 57–68, New York, NY, USA, May 2002.
Association for Computing Machinery.

[21] P Deligiannis, A F Donaldson, and Z Rakamaric. Fast
and precise symbolic analysis of concurrency bugs in
device drivers (t). In 2015 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE),
pages 166–177, November 2015.

[22] Dinakar Dhurjati, Manuvir Das, and Yue Yang. Path-
Sensitive dataflow analysis with iterative refinement. In
Static Analysis, pages 425–442. Springer Berlin Heidel-
berg, 2006.

[23] Dinghao Liu. net/mlx5e: Fix two double free cases.
https://github.com/torvalds/linux/commit/
7a6eb072a9548492ead086f3e820e9aac71c7138,
2021.

[24] Navid Emamdoost, qiushi wu, kangjie lu, and Stephen
McCamant. Detecting kernel memory leaks in spe-
cialized modules with ownership reasoning. In The
Network and Distributed System Security Symposium
(NDSS) 2021, 02 2021.

[25] G Fan, R Wu, Q Shi, X Xiao, J Zhou, and C Zhang.
SMOKE: Scalable Path-Sensitive memory leak detec-
tion for millions of lines of code. In 2019 IEEE/ACM
41st International Conference on Software Engineering
(ICSE), pages 72–82, May 2019.

[26] Stephen J Fink, Eran Yahav, Nurit Dor, G Ramalingam,
and Emmanuel Geay. Effective typestate verification
in the presence of aliasing. ACM Trans. Softw. Eng.
Methodol., 17(2):1–34, May 2008.

[27] Yang Hu, Wenxi Wang, Casen Hunger, Riley Wood, Sar-
fraz Khurshid, and Mohit Tiwari. ACHyb: a hybrid
analysis approach to detect kernel access control vulner-
abilities. In Proceedings of the 29th ACM Joint Meet-
ing on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering,
ESEC/FSE 2021, pages 316–327, New York, NY, USA,
August 2021. Association for Computing Machinery.

[28] Zu-Ming Jiang, Jia-Ju Bai, Julia Lawall, and Shi-Min
Hu. Fuzzing error handling code in device drivers based
on software fault injection. In 2019 IEEE 30th Interna-
tional Symposium on Software Reliability Engineering
(ISSRE), pages 128–138, October 2019.

[29] Kernel.org. Kernel Memory Leak Detctor(Kmemleak).
https://www.kernel.org/doc/html/v4.17/
dev-tools/kmemleak.html, 2019.

[30] Volodymyr Kuznetsov, Vitaly Chipounov, and George
Candea. Testing closed-source binary device drivers
with ddt. In Proceedings of the 2010 USENIX confer-
ence on USENIX annual technical conference, USENIX-
ATC’10, page 12, USA, June 2010. USENIX Associa-
tion.

[31] Chris Lattner and Vikram Adve. LLVM: A Compilation
Framework for Lifelong Program Analysis & Transfor-
mation. In Proceedings of the 2004 International Sympo-
sium on Code Generation and Optimization (CGO’04),
Palo Alto, California, Mar 2004.

[32] Tuo Li, Jia-Ju Bai, Yulei Sui, and Shi-Min Hu. Path-
sensitive and alias-aware typestate analysis for detecting
os bugs. In Proceedings of the 27th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2022, page
859–872, New York, NY, USA, 2022. Association for
Computing Machinery.

[33] K Lu, A Pakki, and Q Wu. Detecting Missing-Check
bugs via semantic-and Context-Aware criticalness and
constraints inferences. USENIX Security Symposium
(USENIX Security 19), 2019.

[34] Junjie Mao, Yu Chen, Qixue Xiao, and Yuanchun Shi.
Rid: Finding reference count bugs with inconsistent
path pair checking. SIGARCH Comput. Archit. News,
44(2):531–544, March 2016.

[35] Paul D. Marinescu and George Candea. Efficient test-
ing of recovery code using fault injection. ACM Trans.
Comput. Syst., 29(4), December 2011.

[36] Yoann Padioleau, Julia Lawall, René Rydhof Hansen,
and Gilles Muller. Documenting and automating collat-
eral evolutions in linux device drivers. In Proceedings
of the 3rd European Conference on Computer Systems
(EuroSys), April 2008.

[37] Nicolas Palix, Gaël Thomas, Suman Saha, Christophe
Calvès, Julia Lawall, and Gilles Muller. Faults in linux:
Ten years later. In Proceedings of the Sixteenth Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS
XVI, pages 305–318, New York, NY, USA, 2011. ACM.

[38] S Saha, J Lozi, G Thomas, J L Lawall, and G Muller.
Hector: Detecting Resource-Release omission faults in
error-handling code for systems software. In 2013 43rd
Annual IEEE/IFIP International Conference on Depend-
able Systems and Networks (DSN), pages 1–12, June
2013.

506 2024 USENIX Annual Technical Conference USENIX Association

https://cppcheck.sourceforge.io/
https://cppcheck.sourceforge.io/
https://github.com/torvalds/linux/commit/7a6eb072a9548492ead086f3e820e9aac71c7138
https://github.com/torvalds/linux/commit/7a6eb072a9548492ead086f3e820e9aac71c7138
https://www.kernel.org/doc/html/v4.17/dev-tools/kmemleak.html
https://www.kernel.org/doc/html/v4.17/dev-tools/kmemleak.html

[39] S Schumilo, C Aschermann, R Gawlik, and others.
kAFL:Hardware-Assisted feedback fuzzing for OS ker-
nels. 26th USENIX Security, 2017.

[40] Lucas Serrano, Van-Anh Nguyen, Ferdian Thung, Lingx-
iao Jiang, David Lo, Julia Lawall, and Gilles Muller.
SPINFER: Inferring semantic patches for the linux ker-
nel. In 2020 USENIX Annual Technical Conference
(USENIX ATC 20), pages 235–248. USENIX Associa-
tion, July 2020.

[41] Robert E. Strom and Shaula Yemini. Typestate: A pro-
gramming language concept for enhancing software re-
liability. IEEE Transactions on Software Engineering,
SE-12(1):157–171, 1986.

[42] Rustam Subkhankulov. platform/chrome: fix
double-free in chromeos_laptop_prepare(). https:
//lore.kernel.org/lkml/20221019083306.
044452229@linuxfoundation.org/, 2022.

[43] K Suzuki, T Kubota, and K Kono. Detecting struct
member-related memory leaks using error code analysis
in linux kernel. In 2020 IEEE International Sympo-
sium on Software Reliability Engineering Workshops
(ISSREW), pages 329–335, October 2020.

[44] Keita Suzuki. drm/amd/pm: fix dou-
ble free in si_parse_power_table().
https://lore.kernel.org/lkml/20220419103721.4080045-
1-keitasuzuki.park@sslab.ics.keio.ac.jp/, 2022.

[45] Keita Suzuki. media: dvb-core: Fix double free in
dvb_register_device(). https://www.spinics.net/
lists/stable-commits/msg281850.html, 2022.

[46] Keita Suzuki. platform/chrome: chromeos_laptop - fix
potential double free. https://lore.kernel.org/
lkml/20220314030337.777685-1-keitasuzuki.
park@sslab.ics.keio.ac.jp/, 2022.

[47] Keita Suzuki. scsi: qla2xx: Fix double free in
qla2x00_probe_one(). https://lore.kernel.org/
lkml/20220426094031.750135-1-keitasuzuki.
park@sslab.ics.keio.ac.jp/, 2022.

[48] Keita Suzuki. tracing: Fix potential double free in
create_var_ref(). https://lore.kernel.org/lkml/
20220426052921.2088416-1-keitasuzuki.park@
sslab.ics.keio.ac.jp/, 2022.

[49] S M S Talebi, Z Yao, A A Sani, Z Qian, and others. Undo
workarounds for kernel bugs. 30th USENIX Security,
2021.

[50] BB Meshram V Shakti D Shekar and MP Varshapriya.
Device driver fault simulation using KEDR. Interna-
tional Journal of Advanced Research in Computer Engi-
neering and Technology, page 580–584, 2012.

[51] Vadim Fedorenko. net: decnet: fix net-
dev refcount leaking on error path. https:
//github.com/torvalds/linux/commit/
3f96d644976825986a93b7b9fe6a9900a80f2e11,
2021.

[52] Haijun Wang, Xiaofei Xie, Yi Li, Cheng Wen, Yuekang
Li, Yang Liu, Shengchao Qin, Hongxu Chen, and Yulei
Sui. Typestate-guided fuzzer for discovering use-after-
free vulnerabilities. In Proceedings of the ACM/IEEE
42nd International Conference on Software Engineer-
ing, ICSE ’20, pages 999–1010, New York, NY, USA,
October 2020. Association for Computing Machinery.

[53] Xi Wang, Haogang Chen, Zhihao Jia, Nickolai Zel-
dovich, and M. Frans Kaashoek. Improving integer
security for systems with KINT. In 10th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 12), pages 163–177, Hollywood, CA, October
2012. USENIX Association.

[54] Qiushi Wu, Aditya Pakki, Navid Emamdoost, Stephen
Mc Camant, and Kangjie Lu. Understanding and de-
tecting disordered error handling with precise function
pairing. In 30th USENIX Security Symposium, 2021.

[55] Wang X. io_uring: always let
io_iopoll_complete() complete polled io.
https://github.com/torvalds/linux/commit/
dad1b1242fd5717af18ae4ac9d12b9f65849e13a5,
2022.

[56] Xusheng Xiao, Gogul Balakrishnan, Franjo Ivančić,
Naoto Maeda, Aarti Gupta, and Deepak Chhetri.
ARC++: effective typestate and lifetime dependency
analysis. pages 116–126, July 2014.

[57] Yichen Xie and Alex Aiken. Context- and path-sensitive
memory leak detection. In Proceedings of the 10th Eu-
ropean Software Engineering Conference Held Jointly
with 13th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, ESEC/FSE-13,
page 115–125, New York, NY, USA, 2005. Association
for Computing Machinery.

[58] Yizhuo Zhai, Yu Hao, Hang Zhang, Daimeng Wang,
Chengyu Song, Zhiyun Qian, Mohsen Lesani,
Srikanth V Krishnamurthy, and Paul Yu. UBITect:
a precise and scalable method to detect use-before-
initialization bugs in linux kernel. In Proceedings of
the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/FSE 2020,
pages 221–232, New York, NY, USA, November 2020.
Association for Computing Machinery.

USENIX Association 2024 USENIX Annual Technical Conference 507

https://lore.kernel.org/lkml/20221019083306.044452229@linuxfoundation.org/
https://lore.kernel.org/lkml/20221019083306.044452229@linuxfoundation.org/
https://lore.kernel.org/lkml/20221019083306.044452229@linuxfoundation.org/
https://www.spinics.net/lists/stable-commits/msg281850.html
https://www.spinics.net/lists/stable-commits/msg281850.html
https://lore.kernel.org/lkml/20220314030337.777685-1-keitasuzuki.park@sslab.ics.keio.ac.jp/
https://lore.kernel.org/lkml/20220314030337.777685-1-keitasuzuki.park@sslab.ics.keio.ac.jp/
https://lore.kernel.org/lkml/20220314030337.777685-1-keitasuzuki.park@sslab.ics.keio.ac.jp/
https://lore.kernel.org/lkml/20220426094031.750135-1-keitasuzuki.park@sslab.ics.keio.ac.jp/
https://lore.kernel.org/lkml/20220426094031.750135-1-keitasuzuki.park@sslab.ics.keio.ac.jp/
https://lore.kernel.org/lkml/20220426094031.750135-1-keitasuzuki.park@sslab.ics.keio.ac.jp/
https://lore.kernel.org/lkml/20220426052921.2088416-1-keitasuzuki.park@sslab.ics.keio.ac.jp/
https://lore.kernel.org/lkml/20220426052921.2088416-1-keitasuzuki.park@sslab.ics.keio.ac.jp/
https://lore.kernel.org/lkml/20220426052921.2088416-1-keitasuzuki.park@sslab.ics.keio.ac.jp/
https://github.com/torvalds/linux/commit/3f96d644976825986a93b7b9fe6a9900a80f2e11
https://github.com/torvalds/linux/commit/3f96d644976825986a93b7b9fe6a9900a80f2e11
https://github.com/torvalds/linux/commit/3f96d644976825986a93b7b9fe6a9900a80f2e11
https://github.com/torvalds/linux/commit/dad1b1242fd5717af18ae4ac9d12b9f65849e13a5
https://github.com/torvalds/linux/commit/dad1b1242fd5717af18ae4ac9d12b9f65849e13a5

[59] Tong Zhang, Wenbo Shen, Dongyoon Lee, Changhee
Jung, Ahmed M Azab, and Ruowen Wang. Pex: a per-
mission check analysis framework for linux kernel. In
28th USENIX Security Symposium (USENIX Security
19), pages 1205–1220, 2019.

508 2024 USENIX Annual Technical Conference USENIX Association

	Introduction
	Bug Detection Tools in Linux Kernel
	Goal and Key Observation
	Observation: Impact of Leveraging FiT analysis in Linux
	Motivating Example
	State-of-the-art-tools and FiT bugs

	FiTx: A Proof of Concept
	Typestate Property Specification
	CFG-based Typestate Analysis
	Summary-based interprocedural analysis
	Generating Warnings

	Implementation
	Evaluation
	Analysis Results
	Number of bugs found
	Analysis result per source file

	Comparison with Other Methods
	Comparison with Framework Variants
	Comparison with Existing Tools

	Discussions
	Related Work
	Conclusion

