
This paper is included in the Proceedings of the
2024 USENIX Annual Technical Conference.

July 10–12, 2024 • Santa Clara, CA, USA
978-1-939133-41-0

Open access to the Proceedings of the
2024 USENIX Annual Technical Conference

is sponsored by

FBMM: Making Memory Management Extensible
With Filesystems

Bijan Tabatabai, James Sorenson and Michael M. Swift,
University of Wisconsin–Madison

https://www.usenix.org/conference/atc24/presentation/tabatabai

FBMM: Making Memory Management Extensible With Filesystems

Bijan Tabatabai
bijan@cs.wisc.edu

James Sorenson
jaso@cs.wisc.edu

Michael M. Swift
swift@cs.wisc.edu

University of Wisconsin-Madison

Abstract
New memory technologies like CXL promise diverse mem-
ory configurations such as tiered memory, far memory, and
processing in memory. Operating systems must be modified
to support these new hardware configurations for applications
to make use of them. While many parts of operating systems
are extensible, memory management remains monolithic in
most systems, making it cumbersome to add support for a
diverse set of new memory policies and mechanisms.

Rather than creating a whole new extensible interface for
memory managers, we propose to instead use the memory
management callbacks provided by the Linux virtual file sys-
tem (VFS) to write memory managers, called memory man-
agement filesystems (MFSs). Memory is allocated by creating
and mapping a file in an MFS’s mount directory and freed
by deleting the file. Use of an MFS is transparent to applica-
tions. We call this system File Based Memory Management
(FBMM).

Using FBMM, we created a diverse set of standalone mem-
ory managers for tiered memory, contiguous allocations, and
memory bandwidth allocation, each comprising 500-1500
lines of code. Unlike current approaches that require custom
kernels, with FBMM, an MFS can be compiled separately
from the kernel and loaded dynamically when needed. We
measure the overhead of using filesystems for memory man-
agement and found the overhead to be less than 8% when
allocating a single page, and less than 0.1% when allocat-
ing as little as 128 pages. MFSs perform competitively with
kernel implementations, and sometimes better due to simpler
implementations.

1 Introduction

For decades, the memory hierarchy of computer systems was
fixed as processor caches, backed by byte addressable and
volatile main memory, which itself may be backed by block
level nonvolatile storage. However, new hardware technolo-
gies, such as huge local memories, nonvolatile byte address-
able memories, and CXL-attached far memory, have emerged

in recent years that change the traditional memory hierar-
chy. These hardware technologies have inspired a myriad of
systems research for memory management (MM) extensions
like contiguous allocation [5], tiered memory [20, 33, 38] and
disaggregated memory [26, 41]. Linux developers have im-
plemented tightly integrated support for the most available
technologies, such as NUMA zones and transparent huge
pages as part of the monolithic kernel MM subsystem.

As the number of new hardware mechanisms grows, and the
set of desirable mechanisms and policies grow, more people
seek to modify the Linux kernel’s MM subsystem to imple-
ment these systems. For example, Meta’s TPP kernel patch
made changes to the NUMA and page reclamation policies to
implement a tiered memory system [33] with changes to 22
kernel files. However, Linux’s MM subsystem makes it more
difficult to add software support for new memory hardware: it
is monolithic, and functionality is distributed across dozens of
files, many of which require modifications for each extension.
In addition to ensuring that their code changes are correct,
engineers must also ensure that their changes do not break ex-
isting MM functionality. Finally, engineers either must work
to get changes upstreamed to the mainline kernel, or take on
maintenance of their own fork for the lifetime of the system. In
comparison, file systems and storage can be extended through
the VFS and block layers, drivers through standardized driver
interfaces, networking through protocols, and there is recent
interest in extensible scheduling [9]. These components can
all be implemented as standalone components without modi-
fying core kernel code. In fact, Linux’s MM subsystem stands
out as one of the few major hardware-management subsys-
tems in the kernel that is not easily extensible.

With an increase in memory system diversity and hetero-
geneity, we believe that operating system memory manage-
ment must be made extensible to cope with the rapid increase
in demand. We have four goals for an extensibility interface
for MM.

1. Expressiveness: an extensibility interface must allow
expression of a wide variety of MM behavior.

USENIX Association 2024 USENIX Annual Technical Conference 785

2. Transparency: unmodified applications should be able
to use MM extensions.

3. Control: advanced applications need to specify memory
behavior for specific regions, a la madvise.

4. Non-invasive: in order to ease adoption, the implementa-
tion should not require extensive changes to the existing
MM code.

Instead of creating a brand new extensibility interface for
MM from scratch, we propose leveraging the extensibility
and MM functionality already provided by the VFS layer.
Developers write MM extensions as file systems, which we
call memory management filesystems (MFSs), and implement
the MM functionality in the callbacks provided by the VFS
layer. Memory is allocated by creating a file in the MFS’s
mount directory and then mapping that file. Memory is freed
by unmapping and deleting the memory file. We call this
system File Based Memory Management (FBMM).

The callback functions provided by the VFS layer allow
MFSs to control how MM events, such as page faults, are han-
dled, providing sufficient expressiveness for a wide variety
of MFSs. For transparency, we add a small shim layer to
the kernel’s memory management system that transparently
translates MM system calls like mmap into file operations by
creating memory-backed files and assigning allocation re-
quests to specific files. Our goal of control is achieved as
a consequence of basing our system on filesystems, which
provide a convenient naming mechanism for different MM
implementations. Applications can manually create and map
files in the mount directory of the MFS that provides the func-
tionality desired for a specific memory region. Most impor-
tantly, because our approach builds on existing VFS callbacks,
it is non-invasive and requires adding only the shim layer to
make the system transparent to applications.

The overhead FBMM adds to an individual MM opera-
tion is 8% in the worst case scenario of single-page sized
allocations and fractions of a percent in the common case
of multi-page sized allocations. We have used FBMM to im-
plement memory managers for tiered memory, bandwidth
expansion, and contiguous allocations. Each of those mem-
ory managers are implemented as standalone kernel modules
without additions to the monolithic kernel MM subsystem.

Our implementation has been uploaded to GitHub1.

2 Motivation and Related Work

Memory has become a dominant factor in system perfor-
mance, which has led to a multitude of hardware approaches
to improve performance that require operating system support.
With larger memory sizes, there has been work on improving
huge pages [25, 29, 35] and NUMA policies [3]. Fast RDMA

1https://github.com/multifacet/fbmm

networks inspired a renewed interest in remote/disaggregated
memory for clusters [15, 32]. Byte-addressable non-volatile
memories and high bandwidth memories spur research into
tiered memory systems where frequently accessed data is
placed in local memory and less frequently accessed memory
is stored in slower memory [4, 11, 20, 38, 40]. CXL’s memory
expansion capabilities also prompt research for tiered memory
systems [33] as well as for systems that pool memory between
machines [26]. Researchers have also proposed hardware that
requires MM changes, such as a TLB that caches contiguous
VA to PA translations of arbitrary sizes [22], or hardware to
support disaggregated memory [16].

Problem. Implementing support for new memory hardware
generally requires extensions to operating system memory
management policies to support new tradeoffs (e.g., near vs.
far memory, small vs. large pages) and mechanisms (migra-
tion for NUMA, compaction for large pages). Such changes
are often difficult to make. They require intimate knowledge
of the MM system to locate all of the places in the code that
need to be changed, in addition to knowledge of complex
data structures and locking patterns. Unlike many parts of
Linux and other OS kernels, the MM subsystem is generally
monolithic and lacks extensibility.

An example of the complicated and tangled MM code in
the Linux kernel is transparent huge pages [2]. The implemen-
tation of transparent huge pages is spread across 18 files in
the Linux MM subsystem. This code touches a wide range of
MM components, such as page fault handling, physical mem-
ory allocation, page table management. Additionally, because
transparent huge page policies are distributed throughout the
MM subsystem, there is an increased likelihood of patholog-
ical long latency behavior [29]. Another example is Meta’s
Transparent Page Placement (TPP [33]), which modifies the
NUMA system to support tiered memory. Despite leveraging
the existing NUMA code to handle complicated operations
like page migration, the authors still modified 22 files in their
implementation [31].

Table 1 lists the breadth of changes a selection of recent
projects to support better memory management made to the
kernel to implement their designs. We organize these changes
into sections that represent the core responsibilities of a mem-
ory management system: virtual memory management, phys-
ical memory management, and translation (e.g., page table
management). Adding support for one of these may not be an
issue; however, with new memory hardware, we expect there
will be many different memory configurations that will need
kernel support. Each addition to the monolithic MM subsys-
tem will add to its complexity, making it harder to maintain
and expand upon in the future. As such, an extensible inter-
face for MM is imperative to sustain the innovation the boom
in new memory hardware promises to bring.

786 2024 USENIX Annual Technical Conference USENIX Association

https://github.com/multifacet/fbmm

System Target Hardware Virtual MM Physical MM Translation

TPP [33] Tiered Memory N/A Memory placement decisions.
Page migration

Page table updates after mi-
gration

Leap [32] Disaggregated
Memory

N/A Prefetch swapped out pages N/A

Mitosis [3] NUMA N/A N/A
Replicate and migrate page
tables

Range Trans-
lations [22]

Range TLB N/A Physically contiguous allocation
Manage range based transla-
tion table

DVM [18] Direct Mapping Make virtual
addresses = physical

Physically contiguous allocation
Identity mapping between
VA and PA

ASAP [30]
Prefetched Address
Translation

N/A N/A
Page table allocated contigu-
ously

Table 1: Research projects that extend the MM system, and how they extend virtual MM, physical MM, and translation.

Prior work. The interest in extensible MM is not new. In
the late 90s, several systems explored this problem [7, 24,
37, 39]. However, the mechanisms for extensibility in these
systems focus on application-specific paging policies, rather
than extensibility for other MM responsibilities. Likewise,
microkernel systems [19, 23, 27, 37] and Exokernels [13, 17]
move much or all of memory management out of the kernel
to user-mode where it can be extended or replaced. However,
these strategies are maximally invasive, as they require whole
new kernel designs that make adoption difficult.

More recent work, like HeMem, extend MM by implement-
ing a user library that overloads MM functions like mmap
using LD_PRELOAD [38]. This approach allows extensions to
be self contained inside of a library and transparent to the
target application, but it lacks the control and information
available to a kernel solution, and does not support policies
that span multiple applications.

Inspiration. To guide our design of an extensible MM sys-
tem, we looked at other extensible subsystems. In particular,
with the VFS layer, a developer can create a new filesystem
by implementing callback functions provided by the VFS
layer to perform generic filesystem operations such as open,
read, write, etc. Implementations that do not need to modify
standard behavior rely on general helper functions, such as
generic_file_open and generic_get_unmapped_area
and can implement only a subset of the interface. This greatly
simplifies the engineering effort of creating a new filesystem
because an engineer only needs to focus on their implemen-
tation without having to implement or modify more general
filesystem code. As a result, Linux has around 50 filesystem
implementations in-tree thanks to the VFS layer. In contrast,
Windows has a much lower-level extension interface for file
systems [10] and many fewer file system options.

Many filesystems support memory mapping files to an ap-
plication’s memory space, and the VFS layer has callbacks
for MM operations, such as page faults, to support this. Linux
kernel developers have taken advantage of this in the past for

memory management. When support for huge pages was first
being discussed, a requirement was that adding support could
not overly complicate the existing MM code [28]. This re-
quirement motivated the design of HugeTLBFS, a filesystem-
based memory allocator that allows applications to manually
allocate huge pages. Because HugeTLBFS is written as a
filesystem using VFS, the core of its code is kept in a small set
of standalone files. Only a small amount of changes needed to
be made to Linux’s core MM code, which is what allowed it to
be added to the Linux kernel several years before transparent
huge pages were supported.

The idea of implementing HugeTLBFS as a filesystem is
treated as a one-off solution, and to our knowledge has not
been considered again for other systems. It is also not a com-
pletely standalone solution. Minor changes have been made to
the monolithic MM code to support its use. However, the suc-
cess of HugeTLBFS as a deployable huge-page mechanism
points to a potential solution to extensibility: use the power of
the VFS as an extension mechanism to support richer mem-
ory management mechanisms and policies and more varied
memory configurations.

In order to make VFS a viable extension mechanism for
MM, we need to add a layer between the MM syscalls Linux
provides and the filesystems that provide the hardware- and
policy-specific implementations of those operations for trans-
parency.

3 Design and Implementation

We have the following goals for an extension interface for
MM:

1. Expressiveness: The extension interface must be able to
express a wide variety of MM behavior needed to support
modern hardware, such as physical memory allocation,
virtual address allocation, and translation management.

2. Transparency: A user can change the MM behavior of
an application from the default without modifying the

USENIX Association 2024 USENIX Annual Technical Conference 787

application’s source.

3. Control: Sophisticated applications can select different
MM behavior on different data structures at the same
time by explicitly choosing a memory manager for an
allocation.

4. Non-invasive: The implementation of the extension in-
terface must not overly complicate the existing MM code.
Given the existing complexity of OS kernels, we prefer a
non-invasive design over a maximally expressive design,
so not all extensions may be implementable.

We designed an MM extension interface called file based
memory management (FBMM) that meets these goals by
leveraging the MM capabilities that already exist in the
VFS layer. In this design, memory managers are written as
filesystems called memory management filesystems (MFS)
that implement VFS callback related to MM behavior (e.g.
page_fault). Mounting an MFS onto the system enables it
for use. An MFS can be mounted anywhere on the file path,
and our practice is to have one global mount directory ac-
cessible by all users for each MFS. Memory is allocated by
creating and mapping files in the mount directory of an MFS.
We create the FBMM shim that transparently replaces an
application’s dynamic anonymous memory allocations with
allocations using a default MFS. After mapping, applications
access data with ordinary load/store operations. Applications
can also choose which memory manager to use by selecting
the mount directory in which to create a files. This enables
them to choose the MFS for specific data structures, similar
to the use of HugeTLBFS.

3.1 FBMM Overview

Figure 1 FBMM is composed of the FBMM shim (described
in Section 3.2) and one or more MFSs. The user assigns each
process a default MFS (or none) to use on process startup.

In FBMM, the process’s syscall interface to MM operations,
like the mmap and munmap system calls remain unchanged.
However, with FBMM, whenever a process allocates memory
by calling mmap with the MAP_ANON flag or brk, or unmaps
memory by calling munmap, the MM operation is forwarded
to the FBMM shim transparently to the process 1A . Then,
the FBMM shim assigns the allocation to a file in the mount
directory of the process’s default MFS when mapping mem-
ory or deletes memory in the file(s) mapped to the memory
range when unmapping memory 1B . We call these files MFS
files. From there, the VFS Layer invokes the process’s default
MFS, which does whatever processing it needs to do to han-
dle the allocation 1C . Finally, the MFS either allocates the
physical memory for the request if mmap was called with the
MAP_POPULATE flag, or frees the physical memory associated
with the deleted files if munmap was called 1D .

App

FBMM
Shim

MFS

2A

2B

DRAM Remote
DRAM

Page
Tables

1D

2C

3B

3A

1C

1B

1A

Persistent
Memory Swap ...

VFS

Figure 1: The overall architecture of FBMM.

After a call to mmap, the process can read and write to the
mapped memory region as it normally would. If the physical
memory for the region has not already been populated, the first
access will trigger a page fault. Because the faulted memory
region is associated with a file, the kernel’s page fault handler
forwards the fault to the VFS 2A . The VFS, in turn, invokes
the page fault handler of the MFS the faulted memory region
belongs to 2B . Finally, the MFS allocates physical memory

to handle the fault 2C .
MFS operation is not limited to synchronous invocations

by the VFS layer. As a part of the kernel, MFSs can spawn
kernel threads to perform asynchronous work. For example,
a tiered memory system can monitor the hotness of pages
by periodically sampling page table access bits inside of an
asynchronous thread 3A . With that information, the MFS
thread migrates pages itself, without the prodding of the VFS
layer or user applications 3B .

The transparency provided by the FBMM shim is important
for the ease of use of FBMM; however, some applications
may want more control over the MM behavior of specific
memory regions. For example, a latency-sensitive application
running on a tiered memory system may want a critical data
structure to always remain in local memory, regardless of the
default MM policy used for the rest of the address space. The
application can control allocation by creating and mapping a
file in the mount directory of the MFS that provides the de-
sired functionality for the special region. When doing this, the

788 2024 USENIX Annual Technical Conference USENIX Association

/TieredMM

/TieredMM/ContigMM

Proc2

VA Start: 0x10
VA End: 0x110

Proc1

VA Start: 0x10
VA End: 0x110

Proc3

VA Start: 0x120
VA End: 0x220

VA Start: 0x20
VA End: 0x120

VA Start: 0x220
VA End: 0x320

/ContigMM

/TieredMM

Figure 2: Example of MFS file trees inside of FBMM shim.

application takes on the responsibilities of the FBMM shim
for the region. For example, it must create temporary files so
they are automatically deleted on process termination, and
also set the logical size of the file to at least the desired size
of the memory area before mapping, using the ftruncate
system call. This only sets the logical size of the file, and does
not allocate physical memory.

The core Linux MM system still plays an important role in
FBMM. It still manages the kernel’s private memory and the
page cache. Additionally, memory for the stack and BSS/data
sections of a process are still the responsibility of the core
MM system because having them managed by FBMM would
have significantly increased the invasiveness of the system
since they are not allocated via mmap or brk.

3.2 FBMM Shim
The FBMM shim is the mechanism for transparency in
FBMM. For each process, it maintains a tree of open MFS
files called an MFS file tree. When a process calls mmap with
the MAP_ANON flag or brk, the kernel invokes the FBMM shim.
It calls the get_unmapped_area callback of the application’s
default MFS to get the virtual address range for the allocation.
Then, the kernel asks the FBMM shim for a file in the default
MFS to map and the page offset to map it to. The FBMM shim
searches the process’s file tree for an existing file that can
satisfy the request. If no such file exists, the FBMM shim cre-
ates a new unnamed temporary file and assigns it a compliant
virtual address range.

A process’s file tree is implemented with the kernel’s maple
tree implementation and contains every MFS file used by the
process. An example of MFS file trees inside of the FBMM
shim is shown in Figure 2. Each entry of the file tree contains
a pointer to an MFS file and virtual address range the file can
be mapped to. MFS files are quite large (discussed below) so
many MFS file trees only contain one or two entries, but we
do not limit the number of entries in an MFS file tree. Entries
are indexed by the start address of their virtual address range.

The naive approach to managing the MFS files would be
to have a one-to-one mapping between memory allocations
and MFS files. However, there are several issues with this

approach. First, creating and opening a new file is expensive,
taking about 2-3x the time of a call to mmap for anonymous
memory. Second, if adjacent memory areas are mapped to
different files, the kernel is unable to put those areas in the
same VMA structure. This is costly, as allocating a new VMA
adds overhead to the mmap call, similar to creating and opening
a file, and more VMAs makes it more expensive for the kernel
to traverse the VMA tree in the future. Additionally, if the
process makes many allocations, it is possible to reach the
kernel limit of 216 VMAs per process.

The FBMM shim instead shares MFS files across multi-
ple allocations and organizes the allocations within the file
to increase the likelihood that they can reside in the same
VMA. Other than being in the same file, two memory re-
gions can only be placed in the same VMA if: their permis-
sions are the same, their virtual addresses are contiguous, and
the areas they map in the file are contiguous. The FBMM
shim does not have control over the first two. The permis-
sions are determined by the caller of mmap, and the virtual
addresses are controlled by the MFS, though existing imple-
mentations of get_unmapped_area provided by the kernel,
like generic_get_unmapped_area_topdown, provide vir-
tual contiguity. However, the FBMM shim can control where
allocations reside in a file.

When a new MFS file is created, the FBMM shim sets its
logical size to large value (128GB in our implementation)
so it can fit many allocations while allocating from the top
down. Setting the logical size of a file simply modifies the
file’s directory entry metadata, so setting the logical size of a
file to a large value is no more expensive than setting it to a
smaller value. In order to ensure that allocations maintain the
same relative placement inside the file as they do in virtual
memory, the MFS associates each file with a virtual address
range of equal size to the file. When the FBMM shim is
asked to provide an MFS file for a new allocation, it searches
through the process’s file tree for a file such that the allocation
is wholly within the file’s virtual address range. If such a
file is found, the FBMM shim returns it for the allocation
to map. The FBMM shim assigns the allocation an offset
into the file equal to the allocation’s start address subtracted
by the start of the file’s virtual address range. The FBMM
shim does not need to track which regions of a MFS file
are allocated because get_unmapped_area implementations
cannot allocate overlapping virtual address regions.

If a suitable file is not found, the FBMM shim creates a new
one. The virtual address range of the new file is determined by
the virtual address of the allocation and whether the allocation
is done via brk or mmap. If the allocation was done by brk,
the start of the file’s virtual address range is set to the start
address of the allocation because brk grows the address space
upwards. If the allocation was done by mmap, the end of the
file’s virtual address range is set to the end address of the
allocation because mmap typically grows the address space
downwards.

USENIX Association 2024 USENIX Annual Technical Conference 789

When a process calls munmap, the FBMM shim searches
the process’s MFS file tree and punches a hole into each file
that overlaps with the range of addresses being unmapped by
calling fallocate with the FALLOC_FL_PUNCH_HOLE flag on
the files. Similarly, when a process terminates, the FBMM
shim traverses each entry of the process’s file tree and deletes
each file. These two actions signal to the corresponding MFS
that physical memory should be freed.

We integrate the FBMM shim into the kernel, but an alter-
native implementation would be to create it as a userspace
library that intercepts processes’ calls to MM related glibc
functions via LD_PRELOAD, similar to the implementation of
HeMem [38]. We chose to pursue a kernel solution because
a userspace implementation would incur the overheads of
crossing the kernel boundary for each file operation in ad-
dition to the MM system calls. Additionally, while unlikely,
applications can invoke MM system calls directly rather than
going through the glibc functions, bypassing a userspace solu-
tion. For these reasons, we believe the kernel implementation
is a more robust design, despite the need for modest kernel
changes.

3.3 MFS Design

An MFS can be implemented with only a subset of the call-
backs provided by the VFS layer. A list of particularly im-
portant callbacks are listed in Table 2. With these interfaces,
an MFS is able to control how virtual addresses are allocated
(get_unmapped_area), how physical memory is allocated
(page_fault and fallocate), and how physical memory is
freed (free_inode and fallocate). An MFS can also be
signaled when a file is mapped for the first time (mmap).

In addition to the interfaces from the VFS layer, MFSs
have access to interfaces available to other kernel subsystems
because they themselves are parts of the kernel. They can al-
locate physical pages directly by statically reserving memory
at boot time, or can dynamically allocate and free physical
memory by calling the alloc_pages and put_page kernel
functions. MFSs can also traverse process VMA trees and
modify page tables.

Because the core of their implementation is done as call-
back functions, MFSs can be written as completely standalone
pieces of software, like most filesystems. In fact, an MFS can
be created as an independent kernel module that is compiled
and loaded separately from the main kernel.

3.3.1 Virtual Memory Management

The primary way an MFS controls the virtual addresses of
an allocation is via the get_unmapped_area VFS callback.
The get_unmapped_area callback passes the length of the
allocation, the mmap flags it was called with, and an address
hint provided by the caller to the MFS. Then, the MFS finds
a suitable virtual memory region in the caller’s address space

that satisfies the input parameters as well as the MFS’s de-
sign goals. For example, an MFS implementing devirtualized
memory [18] would have the virtual addresses be equal to the
physical addresses used for the allocation. MFSs could also
use virtual addresses to encode information about the alloca-
tions as in OVC [6]. In order to minimize the overhead of
the FBMM shim, implementations of get_unmapped_area
should allocate virtual addresses contiguously and grow the
address space downward to allow for VMA merging (as de-
tailed in Section 3.2).

MFSs that are not particular about virtual ad-
dresses selection can point the get_unmapped_area
callback to existing helper functions in the kernel,
like generic_get_unmapped_area_topdown and
thp_get_unmapped_area.

3.3.2 Physical Memory Management

There are two ways an MFS is alerted that a process needs
physical memory: the page_fault VFS callback and the
fallocate VFS callback. The kernel invokes page_fault
callback during a page fault and gives the MFS the address
that triggered the fault. The fallocate callback, which is
used to tell filesystems to preallocate disk space for a file, is
invoked by the FBMM shim when mmap is called with the
MAP_POPULATE flag and gives the MFS the memory range to
allocate memory for. In both callbacks, the MFS can make
decisions such as where the physical memory should be allo-
cated from and whether or not to use huge pages.

Similarly, there are two ways an MFS is alerted that
a process’s memory can by freed: the free_inode call-
back and the fallocate callback when it is called with the
FALLOC_FL_PUNCH_HOLE flag. The FBMM shim invokes the
free_inode callback when an FBMM file is deleted, which
occurs after the process using the file terminates, and tells
the MFS to free all of the physical memory belonging to that
file. When a process calls munmap on a region including an
FBMM file, the FBMM shim invokes the fallocate callback
with the FALLOC_FL_PUNCH_HOLE flag, which gives the MFS
a memory range to free.

Allocating and freeing physical memory is not limited to
these callbacks. For example, for a tiered memory MFS to
migrate a page from the local node to the remote node in a
kernel thread, it would need to both allocate a page in the
remote node and free a page in the local node. Additionally,
some MFSs, such as those used to implement RMM [22] and
DVM [18], may want to always preallocate physical memory
for a region whether or not the region was created with the
MAP_POPULATE flag. This can be accomplished by allocating
physical memory at the same time virtual memory is allocated
in the get_unmapped_area callback.

MFSs need to know what parts of MFS files are backed
by physical memory and what pages they are backed by so
those pages can be freed later. Traditional filesystems solve

790 2024 USENIX Annual Technical Conference USENIX Association

Interface Defined in Called by Purpose
mmap (callback, not
syscall)

struct file_operations mmap syscall Provide VFS a set of functions (struct
vm_operations_struct) to manage a map-
ping

get_unmapped_area struct file_operations mmap syscall Allocate virtual address range
fallocate struct file_operations mmap syscall with

MAP_POPULATE flag /
munmap syscall

Signal need to allocate / free physical memory

fault struct vm_operations_struct Page fault handler Control the paging behavior of a process
free_inode struct super_operations File deletion code Signal need to free physical memory

Table 2: Interfaces used by MFSs.

a similar problem by managing indexing structures that map
file offsets to disk blocks. Such a structure is not generally
needed in an MFS because they can walk the page tables of
the processes that map their files to get this information.

An MFS needs access to physical pages in order to assign
them to processes. This access can be granted statically by
reserving a chunk of memory at boot time or immediately
when the MFS is mounted. An MFS can also allocate phys-
ical pages dynamically using standard kernel functions like
alloc_pages. Both strategies have their benefits.

Reserving physical pages statically guarantees that a certain
amount memory will be available to an MFS without having
to worry about the memory usage of the rest of the system. It
gives the MFS more control over the memory. For example, a
problem that some systems experience is interference from
internal memory fragmentation [29]. By statically reserving a
block of pages, an MFS can guarantee that specific contigu-
ity requirements are met. The control of a static reservation
can also help simplify physical page allocation, leading to
performance improvements. With statically allocated pages,
an MFS can use data structures other than the kernel’s buddy
heap, such as a simple free list of base pages for speed, or a
tree of free segments for contiguous allocation.

Dynamically reserved pages have the benefits of flexibility.
When an MFS reserves pages dynamically from the kernel, it
eliminates concerns of overprovisioning physical pages, tak-
ing away resources from the rest of the machine needlessly,
or underprovisioning and not having enough pages to satisfy
the requests of the applications using it. MFSs can also re-
spond to kernel memory pressure by registering a "shrinker"
callback with the kernel. Shrinkers are typically used by the
kernel to tell drivers to free memory by clearing their caches,
but MFSs can use it as a signal that it needs to start returning
physical memory to the kernel [8]. Additionally, by using
built in kernel functions to allocate pages, the MFS does not
have to implement its own page allocator.

Regardless of whether an MFS reserves physical pages
statically or dynamically, MFSs will still generally manage
physical pages via the kernel page and folio structures.

3.3.3 Virtual to Physical Translation

MFSs handle virtual to physical translation by modifying
the page tables of the process’s using them. Translation in
MFSs are primarily created in the page_fault VFS call-
back. In most cases, this involves simply populating PTEs
in the page table, but the page_fault callback is also the
natural place to implement alternative page tables designs,
like those proposed in RMM [22] and Mitosis [3]. Exist-
ing kernel helper functions, such as mk_pte, which creates
a PTE entry from a physical page and access permissions,
and walk_page_range, which walks a process’s page table
invoking callbacks provided by the caller for each entry, help
MFSs accomplish these translation tasks. While most trans-
lation work occurs in the page_fault callback, an MFS can
traverse and edit a process’s table at any time. This is useful,
for example, to periodically monitor page table access and
dirty bits in a kernel thread.

3.4 Discussion
This design satisfies our four goals for an MM extension in-
terface. The VFS layer’s support of memory mapped files for
traditional filesystems along with MM helper functions avail-
able in the kernel provide an expressive interface that allow
engineers to express a wide variety of MM behaviors (see
Section 5). The FBMM shim allows processes to use FBMM
transparently by translating standard MM functions to file
operations in the default MFS’s mount directory. Furthermore,
the default MFS is chosen on process start without any change
necessary to application code. If an application wants control
over the MM behavior of specific memory regions, it can man-
ually create and map files in the mount directory of the MFS
that provides the desired behavior. Finally, piggybacking off
of the kernel’s longstanding ability to memory map files into
a process’s address space allows FBMM to be non-invasive
to the existing MM code - only modest changes were needed
to invoke the FBMM shim (see Section 3.5).

Impact on kernel MM With FBMM, we envision that most
MM policy decisions will be moved inside MFSs. As such,
we believe the role of the core kernel MM subsystem should

USENIX Association 2024 USENIX Annual Technical Conference 791

be providing a sound foundation for the MFSs to build upon.
This includes things it already does well, such as forwarding
MM events to MFSs and doing bookkeeping needed for most
MM implementations, such as maintaining the VMA list and
creating default page tables. A solid foundation also involves
providing useful helper functions to MFSs for common MM
operations, acting as a software library to more easily create
MFSs. Some useful helper functions, like alloc_pages for
allocating physical memory and walk_page_range for walk-
ing the page table, are already available to MFSs. We have
also created helper functions to help MFSs handle swapping
and copy-on-write. As more MFSs are written, we believe
it will become clear what other helper functions would be
useful. Finally, a simple memory manager should remain in
the core MM code for the kernel to use, to manage stack and
data/BSS segment memory, and to bootstrap the system on
startup.

Limitations There are some limitations to the design of
FBMM. The first is the MFSs are not composable. If, for ex-
ample, one had an MFS for huge pages and another for tiered
memory, they cannot be "stacked" together to make an MFS
for tiered memory using huge pages. A second limitation is
there is no easy way for multiple MFSs to coordinate with
each other. For example, such functionality could be useful
to decide which MFS should be chosen as a victim to swap
out pages under memory pressure. Additionally, previous re-
search has shown benefits in extending the MM behavior of
kernel processes [21]. Sadly, using FBMM on the kernel is
not supported as the kernel cannot memory map files. For the
same reason, FBMM cannot be used to manage page cache
memory. Similarly, FBMM does not apply to memory in the
stack or data/BSS segments because these regions are not
allocated with mmap or brk. However, these memory sections
are often much smaller than dynamically allocated regions,
so we believe they do not require as much specialized behav-
ior. Furthermore, an MFS may not support all the features of
Linux anonymous memory, such as the handling of copy-on-
write after a process is forked, so allocations or operations
may fail for applications that use these. Finally, an MFS im-
plementation must fit inside the framework provided by the
VFS layer. For example, Mitosis [3] replicates a process’s
page table on each NUMA node and modifies the context
switch code to decide which page table to use. This is not
possible to do inside of an MFS alone as the VFS does not
have any callbacks for context switches. However, it would
still be beneficial to implement the page table replication in an
MFS after the other changes are made directly to the kernel.

3.5 Implementation
We implemented FBMM in Linux kernel version 6.2. The
FBMM shim was implemented in about 600 lines of code.
Changes to the rest of the kernel MM code were minimal;

only about 50 lines of code were added to interface with the
FBMM shim where appropriate.

In our implementation, a process’s default MFS is set
by writing its mount directory to /proc/<pid>/FBMM
_mount_dir. For our experiments, we use a wrapper applica-
tion that sets the default MFS and then calls execv to run the
desired application.

In addition to the kernel changes to support FBMM, we
have also implemented four different MFSs to demonstrate
FBMM’s extension capability. These include a bare-bones
MFS that simply allocates base pages, and MFSs for tiered
memory, bandwidth expansion, and contiguous memory allo-
cation. They are described in more detail in Section 5.

4 Performance Evaluation

FBMM, like any other abstraction layer, comes with some
level of overhead. The main source of this overhead is in the
creation and management of files in the FBMM shim.

Applications only invoke FBMM shim when a memory
region is mapped/unmapped; subsequent callbacks go directly
to the VFS layer. Therefore, to stress the FBMM shim, we
created a microbenchmark that calls the mmap system call
multiple times in quick succession in one or more threads.
We also instrumented the FBMM shim to measure the time
spent managing files when mapping/unmapping a region.

All experiments in this paper are run on bare metal Cloud-
lab [12] c220g1 machines with two Intel E5-2630 v3 8-
core CPUs and 128GB of ECC DDR4 RAM spread across
two NUMA nodes. We set the CPU scaling governor to
performance, fixing the clock frequency to 3.2GHz. Due
to the lack of CXL hardware, we approximate remote mem-
ory as memory accesses to the remote NUMA node.

BasicMFS We implemented a simple bare bones MFS we
call BasicMFS to measure the minimum cost of an MFS.
When it is first mounted, BasicMFS pre-reserves the pages it
will use for its operation from the kernel and places them in
a linked list of free pages. It defers to the kernel to allocate
virtual address space. When memory is requested via the
page_fault or fallocate VFS callbacks, it allocates a 4KB
base page by popping one from the free list to satisfy the
request. When memory is freed, such as via the free_inode
callback, BasicMFS places the freed pages back onto the free
list. BasicMFS is implemented in about 550 lines of code.
This simple design, while not useful in practice, is helpful for
measuring the minimum cost of a MFS and for understanding
the minimal implementation of a MFS.

FBMM shim Latency. We first measure how the latency
overhead of FBMM scales with the size of the allocation
compared to base Linux. We configure the microbenchmark
to measure the latency of mmap with the MAP_ANON flag and

792 2024 USENIX Annual Technical Conference USENIX Association

without the MAP_POPULATE flag 100,000 times with allocation
sizes ranging from 1 to 128 pages, and measure the latency of
calling munmap on those regions. We use BasicMFS for these
experiments. Table 3 shows the results.

These results show that time it takes to call mmap/munmap
is near constant as the allocation size varies when using both
base Linux and FBMM, which is expected because the opera-
tion only reserves virtual address space but does not allocate
and zero memory. However, calling mmap is about 15-20%
slower with FBMM than with base Linux. Similarly, calling
munmap is between 30-40% slower than Linux. This overhead
comes from the FBMM shim’s work to manage the file tree
and locate a file for the allocation. With the MAP_POPULATE
flag, the time spent in the FBMM shim when allocating a sin-
gle page is equal to 8% of the time base Linux takes to allocate
a page. This overhead decreases proportionally with the allo-
cation size, down to 0.1% of the cost of allocating 128 pages.
When allocation is included, the overhead introduced by the
FBMM shim is overshadowed by the cost of allocating and
zeroing free pages. In fact, as shown in the columns marked
"Populate" in Table 3, FBMM with BasicMFS is between
4-8% faster than Linux at mmap with the MAP_POPULATE be-
cause of its simpler page allocation path. Likewise, BasicMFS
is up to 45% faster than Linux at munmap when the memory
region is populated because of the simple page freeing path.
Results where the microbenchmark touches pages to trigger
allocation during a fault, rather than with MAP_POPULATE, be-
have similarly.

We also measure how FBMM scales with an increasing
number of threads allocating memory at once. We use the
same configuration as above, with 1-page allocations while
varying the number of threads calling mmap from 1 to 32. This
stresses the FBMM shim code walking the process file tree.
The overhead of FBMM remains between 15-20%, similar to
the last experiment, regardless of the number of threads used.
This makes sense because the mmap system call serializes
these requests with the mmap_lock.

Extrapolation to applications. Our microbenchmark
stresses the performance of the FBMM shim, but is not rep-
resentative of how applications use memory, as user-mode
heaps typically allocate large chunks of memory infrequently
and then satisfy small memory requests from these chunks. To
understand real-world behavior, we measured the frequency
of mmap and brk calls made by various applications. These
results are listed in Table 4. Calls to mmap and brk are rela-
tively infrequent, typically less than twice a second, which
makes the overhead of FBMM shim negligible. Furthermore,
each call to mmap/brk typically allocates several thousand
pages, amortizing overheads further. The exception to both of
these is canneal, which on average makes an allocation of 54
pages twenty times a second for an overhead of a 0.23% (a
few microseconds delay per second). Additionally, the cost
of allocating tens of physical pages is still enough to further

Linux Linux Split TieredMFS
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Th
ro

ug
hp

ut
 (k

O
ps

/s
)

Comparison of Throughput of Memcached

Figure 3: Stem-and-whiskers plot of the average throughput
over 50 executions of Memcached driven by YCSB in a read
only workload in the Linux, Linux Split, and TieredMFS
configurations.

hide overheads.
Once FBMM allocates a physical page and maps it into a

process page table, the cost of load and store instructions in
those regions will be the same as loads and stores to regions
managed by the kernel’s default memory manager, as there
is no software overhead. Differences in performance at this
point occur due to policies and mechanisms of the specific
MFS, such as manipulations of the page table (e.g., clearing
access and dirty bits, TLB flushes) or page migration.

5 Case Studies

In addition to the BasicMFS, we implemented three MFSs
inspired by previous works on memory management to show
the power of FBMM. Unlike their original implementations,
each MFS is a standalone kernel module built and loaded
separately from the main kernel.

5.1 Tiered Memory
We have built a tiered memory MFS based on the design of
TPP [33] called TieredMFS. The goal of TieredMFS is to
place a process’s frequently accessed (hot) data in faster local
memory, while placing less frequently accessed (cold) data
in slower remote memory. It is implemented in about 1500
lines of C code, about a third of which is for debugging and
boilerplate for defining a filesystem.

The memory available to TieredMFS is segregated into
local and remote memory pools. These memory pools are re-
served statically at boot time for simplicity. Each pool keeps
a list of hot pages and a list of cold pages allocated from
that pool. Periodically, a kernel thread samples the page table
accessed bits of allocated pages and adjusts the hot and cold
lists accordingly. Similarly, a kernel thread will periodically
monitor the amount of memory available in the local pool. If

USENIX Association 2024 USENIX Annual Technical Conference 793

System 1 page 2 pages 8 pages 32 pages 128 pages
Linux 0.78 / 1.50 0.70 / 1.53 0.71 / 1.54 0.69 / 1.49 0.70 / 1.50
FBMM 0.94 / 2.05 0.83 / 1.96 0.83 / 1.99 0.82 / 2.02 0.84 / 2.01
Linux - Populate 2.17 / 2.36 3.16 / 2.55 9.56 / 4.01 35.18 / 9.34 136.99 / 22.50
FBMM- Populate 2.08 / 2.50 2.97 / 2.62 8.73 / 3.74 31.52 / 7.28 125.21 / 14.88

Table 3: Average time spent to mmap/munmap in microseconds.

Application mmap calls brk calls Average Size (Pages) Allocation Frequency (Hz)
xz 538 6 22,000 1.2
mcf 47 7 45,000 0.06
cactuBSSN 195 11 8500 0.5
canneal 9 4,691 54 20
Memcached 930 3 17,000 1.8

Table 4: Breakdown of mmap and brk calls made by applications.

the available memory is below an administrator defined recla-
mation threshold, pages from the bottom of the local pool’s
cold list will be migrated to the remote pool and placed on the
top of the remote pool’s cold list. If the available memory is
above an administrator defined allocation threshold, which is
lower than the reclamation threshold, pages from the remote
pool’s hot list will be migrated to the local pool and placed
on top of the local pool’s hot list.

When a process using TieredMFS requests a physical page,
it is placed in the local pool if the available memory is above
the allocation threshold. Otherwise, it is placed in the remote
pool. In both cases, the page is placed on the hot list of the
pool it is allocated to. This logic is implemented inside of
the VFS page_fault callback. TieredMFS supports map-
ping 2MB huge pages as well as 4KB base pages. However,
we have found that the smaller base pages are more useful
for determining hot regions, so we use base pages for our
experiments.

We evaluated TieredMFS with a modified version of the
GUPS microbenchmark where 90% of accesses go to a hot
region of memory, and the addresses that make up the hot
region change partway through execution (originally used
with HeMem [38]). We run GUPS with 32GB of data and
a hot region size of 8GB, and configure TieredMFS with
8GB of local memory and 64GB of remote memory, and
compare against standard Linux’s default NUMA policy with
the same local/remote allocation (Linux Split), and standard
Linux where all of the workload’s memory fits comfortably in
local memory (Base Linux). Regrettably, we were unable to
get TPP working (and confirmed others experienced similar
problems), so we cannot compare it to the performance of
TieredMFS.

Table 5 shows the performance of Linux Split and
TieredMFS relative to the performance of Base Linux.
TieredMFS outperforms Linux Split because it lowers the
number of memory accesses going to remote memory. It does
this by identifying the new hot set when the access pattern
changes and demotes no longer hot pages to remote memory

System Relative Throughput Remote Access %
Linux Split 70% 20%
TieredMFS 88% 6.5%

Table 5: Throughput of GUPS as a percentage of Base Linux
throughput and the percentage of memory reads going to
remote memory. We only measure reads because there is no
perf counter for stores that miss the last level cache.

and migrates the new hot set to local memory. Linux Split
on the other hand is hurt by the fact that NUMA’s ability to
demote memory is limited, leaving no room for the new hot
set to enter local memory [33].

We also evaluated TieredMFS’s performance with Mem-
cached using YCSB with a read-only zipfian workload using
the same configurations as above. Because the throughput
results vary, we ran the experiment fifty times per configura-
tion and report the results in Figure 3. The median through-
put when using TieredMFS is 98% of the median through-
put of Base Linux, while Linux Split achieves only 94% of
Base Linux. Again, the performance gains of TieredMFS over
Linux Split is due to the number of remote memory accesses.
With Linux Split, 57% of memory reads are served by remote
memory, compared to less than 0.5% in TieredMFS.

5.2 Bandwidth Utilization

SK Hynix recently released the HMSDK library and mod-
ified kernel that supports heterogeneous memories [1]. A
key feature is interleaving a process’s memory across the
memory nodes of the machine to maximize the memory band-
width available to the process. We implemented the same
functionality as an MFS called BWMFS. With BWMFS, an
administrator sets the allocation weights for each memory
node via a sysfs interface created when BWMFS is mounted:
a local:remote weight ratio of 3:2 indicates 60% of memory
should be allocated locally and 40% remotely. When a pro-

794 2024 USENIX Annual Technical Conference USENIX Association

Linux 1:1 2:1 3:1 3:2 5:2 1:2 1:3 2:30

10000

20000

30000

40000

Ba
nd

wi
dt

h
(M

B/
s)

Bandwidth Reported By Stream With BWMFS
Copy
Scale
Add
Triad

Figure 4: Memory bandwidth results calculated by the
STREAM benchmarks with Linux and BWMFS with dif-
ferent local:remote allocation ratios. 2:1 means 2 pages are
allocated to local memory for every 1 page allocated to re-
mote memory.

cess requests physical memory, a BWMFS will allocate a
page chosen from one of the available nodes in a round robin
fashion, weighted by the provided allocation weights. This
allocation is done inside of the page_fault and fallocate
callbacks which use the alloc_pages_node kernel function
to allocate physical pages dynamically from the desired node.
BWMFS currently only supports allocating base pages, but
we plan on adding huge page support. Because of the extensi-
bility of FBMM, this prototype bandwidth expanding memory
manager was able to be written in a single afternoon.

We test the functionality of BWMFS by using it as the
default MFS for a version of the STREAM benchmark [34]
running with 8 threads to saturate the bandwidth on the local
node. The original STREAM benchmark exercises memory
bandwidth by accessing global variables, so we modified the
benchmark to allocate those variables via mmap instead. Figure
4 shows the bandwidth results of running STREAM with
Linux and BWMFS with various local:remote node allocation
ratios. BWMFS with allocation ratios of 1:1, 2:1, 3:1, 3:2,
and 2:3 outperform Linux’s MM which only allocates to the
local node because BWMFS is able to utilize more bandwidth
across the two nodes than it can with the local node alone.

We ran the same experiments with HMSDK to see how
BWMFS compares. In all cases, the results from BWMFS are
within ±3% of the results from HMSDK.

5.3 Contiguous Allocation

Redundant Memory Mappings proposes adding a software
"range page table" with a corresponding hardware "range
TLB" to CPU translation hardware that caches virtual to phys-
ical address mappings of arbitrarily sized memory ranges
contiguous in both virtual and physical memory [22]. To in-
crease the effectiveness of the range TLB, the authors modify

% TLB Misses Prevented
mcf 99.78%

cactuBSNN 99.92%
GUPS 99.91%

Table 6: Percentage of an application’s TLB misses prevented
by using ContigMFS as the default MFS, with a 32 entry
range TLB

System Files Changed Lines Changed
TPP [31] 22 471

TieredMFS 3 1567
HMSDK [1] 9 920

BWMFS 2 579
RMM [22] 16 546
ContigMFS 2 479

Table 7: The number of files and lines of code needed to
implement MFSs and the systems they were based on.

the MM code to eagerly allocate physical memory when mmap
is called, rather than lazily allocating physical memory on
the first use of each page. This increases the contiguity of the
physical memory, allowing a larger range to be cached in the
range TLB. We have implemented these extensions to MM
as an MFS called ContigMFS.

To eagerly allocate a memory region’s physical memory,
ContigMFS allocates all of its physical memory inside the
get_unmapped_area VFS callback. ContigMFS allocates
contiguous blocks of physical pages using the folio_alloc
kernel function. This design choice simplifies the implementa-
tion of ContigMFS, allowing it to piggyback off of the kernel’s
existing capability for contiguous allocation rather than creat-
ing its own implementation. Since it has already allocated the
physical memory at this point, ContigMFS also populates the
relevant page table entries, as well as the entries for the range
page table inside of the get_unmapped_area callback. The
ContigMFS is implemented in only 479 lines of code.

Because no available hardware implements RMM, we sim-
ulate it inside of the kernel with a modified version of Bad-
gerTrap [14] that counts the total number of page table walks
that occur in a process along with the number of walks that
would have been prevented by a range TLB, as is done by
the authors of RMM, in order to test the functionality of Con-
tigMFS. Table 6 shows the percentage of TLB misses that
would be prevented in the selected applications when using
ContigMFS with a 32 entry range TLB compared to just using
base pages. ContigMFS’s ability to allocate large regions of
physical memory contiguously and populate the novel range
tree allows applications to reduce the number of TLB misses
they suffer dramatically.

USENIX Association 2024 USENIX Annual Technical Conference 795

5.4 Discussion

Each of the MFSs described in this section are able to express
complex MM behavior and maintain competitive performance
while being implemented as standalone kernel modules. Writ-
ing memory managers as kernel modules with FBMM helps
simplify their implementation. This is shown in Table 7. Sys-
tems like TPP, HMSDK, and RMM must spread their imple-
mentations across many files and require the implementors to
have a good understanding of the complicated code they build
their policies on top of. On the other hand, the implementa-
tions of TieredMFS, BWMFS, and ContigMFS only span a
handful of independent files.

These modular implementations are not always smaller
than monolithic additions. TieredMFS adds 3x more lines
of code than the implementation of TPP (2x if you discount
boilerplate and debug code) because TieredMFS implements
page migration and hotness tracking itself, while TPP inte-
grates itself into the NUMA subsystem to accomplish those
tasks. However, we believe the benefits of writing memory
managers as standalone pieces of software that do not fur-
ther add to the kernel’s technical debt outweigh the costs of
occasionally re-implementing behavior. Furthermore, better
kernel abstractions such as DAMON [36] for hotness tracking
could reduce the implementation size.

Part of the reason the MFS implementations are only hun-
dreds of lines of code is that they do not need to support
every standard MM feature of anonymous memory. An MFS
is not required to support huge pages, and the same goes for
functionally specific MM features like copy-on-write. As a
result, when using an MFS as an application’s default memory
manager, it is important to ensure the MFS supports all of the
features the application requires to run.

6 Conclusion

New MM policies are needed to effectively make use of the
explosion of new memory hardware in recent years, such
as CXL, high bandwidth memories, and persistent memo-
ries. However, the kernel MM subsystem’s monolithic design
makes adding the policies challenging, and those additions
further complicate the monolith. FBMM solves this problem
by leveraging the VFS layer’s MM capability, allowing mem-
ory managers to be written as standalone kernel modules as
filesystems (MFSs). The FBMM shim allows users to choose
the MFS to use for an application transparently to the appli-
cation by intercepting MM syscalls and translating them to
filesystem operations in the MFS. The overhead FBMM adds
to allocating memory ranges between 8% when allocating a
single page, and quickly decreases to near zero as the number
of pages allocated increases.

Acknowledgements

We thank Mark Mansi for his contributions to the early parts
of this project. We thank the anonymous reviewers, Sujay
Yadalam, and Anjali for their time and feedback on our paper.
We thank the anonymous artifact reviewers for their time
testing our artifact.

This work was supported in part by PRISM, one of seven
centers in JUMP 2.0, a Semiconductor Research Corporation
(SRC) program sponsored by DARPA, and by NSF grants
CNS 1815656 and CNS 1900758.

References

[1] HMSDK v1.1 Design. https://github.com/
skhynix/hmsdk/wiki/HMSDK-v1.1-Design.

[2] The Linux Kernel User’s and Andministra-
tor’s Guide: Transparent Hugepage Support.
https://www.kernel.org/doc/html/next/
admin-guide/mm/transhuge.html.

[3] Reto Achermann, Ashish Panwar, Abhishek Bhattachar-
jee, Timothy Roscoe, and Jayneel Gandhi. Mitosis:
Transparently Self-Replicating Page-Tables for Large-
Memory Machines. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for
Programming Languages and Operating Systems, ASP-
LOS ’20, 2020.

[4] Neha Agarwal and Thomas F. Wenisch. Thermostat:
Application-Transparent Page Management for Two-
Tiered Main Memory. In Proceedings of the Twenty-
Second International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems, ASPLOS ’17, 2017.

[5] Arkaprava Basu, Jayneel Gandhi, Jichuan Chang,
Mark D. Hill, and Michael M. Swift. Efficient Virtual
Memory for Big Memory Servers. SIGARCH Comput.
Archit. News, 2013.

[6] Arkaprava Basu, Mark D. Hill, and Michael M. Swift.
Reducing Memory Reference Energy with Opportunis-
tic Virtual Caching. SIGARCH Comput. Archit. News,
2012.

[7] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E.
Fiuczynski, D. Becker, C. Chambers, and S. Eggers. Ex-
tensibility Safety and Performance in the SPIN Operat-
ing System. In Proceedings of the 15th ACM Symposium
on Operating Systems Principles, SOSP ’95, 1995.

[8] Jonathan Corbet. Smarter Shrinkers. https://lwn.
net/Articles/550463/, May 2013.

796 2024 USENIX Annual Technical Conference USENIX Association

https://github.com/skhynix/hmsdk/wiki/HMSDK-v1.1-Design
https://github.com/skhynix/hmsdk/wiki/HMSDK-v1.1-Design
https://github.com/skhynix/hmsdk/wiki/HMSDK-v1.1-Design
https://www.kernel.org/doc/html/next/admin-guide/mm/transhuge.html
https://www.kernel.org/doc/html/next/admin-guide/mm/transhuge.html
https://www.kernel.org/doc/html/next/admin-guide/mm/transhuge.html
https://www.kernel.org/doc/html/next/admin-guide/mm/transhuge.html
https://doi.org/10.1145/3373376.3378468
https://doi.org/10.1145/3373376.3378468
https://doi.org/10.1145/3373376.3378468
https://doi.org/10.1145/3037697.3037706
https://doi.org/10.1145/3037697.3037706
https://doi.org/10.1145/3037697.3037706
https://doi.org/10.1145/2508148.2485943
https://doi.org/10.1145/2508148.2485943
https://doi.org/10.1145/2366231.2337194
https://doi.org/10.1145/2366231.2337194
https://doi.org/10.1145/224056.224077
https://doi.org/10.1145/224056.224077
https://doi.org/10.1145/224056.224077
https://lwn.net/Articles/550463/
https://lwn.net/Articles/550463/
https://lwn.net/Articles/550463/

[9] Jonathan Corbet. The Extensible Scheduler Class.
https://lwn.net/Articles/922405/, 2023.

[10] Microsoft corp. File systems and minifil-
ters. https://learn.microsoft.com/en-us/
windows-hardware/drivers/ddi/_ifsk/.

[11] Subramanya R. Dulloor, Amitabha Roy, Zheguang
Zhao, Narayanan Sundaram, Nadathur Satish, Rajesh
Sankaran, Jeff Jackson, and Karsten Schwan. Data Tier-
ing in Heterogeneous Memory Systems. In Proceedings
of the Eleventh European Conference on Computer Sys-
tems, EuroSys ’16, 2016.

[12] Dmitry Duplyakin, Robert Ricci, Aleksander Mar-
icq, Gary Wong, Jonathon Duerig, Eric Eide, Leigh
Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya
Akella, Kuangching Wang, Glenn Ricart, Larry Landwe-
ber, Chip Elliott, Michael Zink, Emmanuel Cecchet,
Snigdhaswin Kar, and Prabodh Mishra. The Design
and Operation of CloudLab. In 2019 USENIX Annual
Technical Conference, USENIX ATC ’19, 2019.

[13] D. R. Engler, M. F. Kaashoek, and J. O’Toole. Exoker-
nel: An Operating System Architecture for Application-
Level Resource Management. In Proceedings of the
Fifteenth ACM Symposium on Operating Systems Prin-
ciples, SOSP ’95, 1995.

[14] Jayneel Gandhi, Arkaprava Basu, Mark D. Hill, and
Michael M. Swift. BadgerTrap: A Tool to Instrument
X86-64 TLB Misses. SIGARCH Comput. Archit. News,
2014.

[15] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf
Chowdhury, and Kang G. Shin. Efficient Memory Dis-
aggregation with Infiniswap. In 14th USENIX Sympo-
sium on Networked Systems Design and Implementation,
NSDI ’17, 2017.

[16] Zhiyuan Guo, Yizhou Shan, Xuhao Luo, Yutong Huang,
and Yiying Zhang. Clio: A Hardware-Software Co-
Designed Disaggregated Memory System. In Proceed-
ings of the 27th ACM International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems, ASPLOS ’22, 2022.

[17] Steven M Hand. Self-Paging in the Nemesis Operating
System. In Proceedings of the 3rd Symposium on Op-
erating Systems Design and Implementation, OSDI ’99,
1999.

[18] Swapnil Haria, Mark D. Hill, and Michael M. Swift. De-
virtualizing Memory in Heterogeneous Systems. In Pro-
ceedings of the Twenty-Third International Conference
on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’18, 2018.

[19] Hermann Härtig, Michael Hohmuth, Jochen Liedtke, Se-
bastian Schönberg, and Jean Wolter. The Performance
of µ-Kernel-Based Systems. In Proceedings of the Six-
teenth ACM Symposium on Operating Systems Princi-
ples, SOSP ’97, 1997.

[20] Taekyung Heo, Yang Wang, Wei Cui, Jaehyuk Huh, and
Lintao Zhang. Adaptive Page Migration Policy With
Huge Pages in Tiered Memory Systems. IEEE Transac-
tions on Computers, 2022.

[21] Sudarsun Kannan, Yujie Ren, and Abhishek Bhattachar-
jee. KLOCs: Kernel-Level Object Contexts for Hetero-
geneous Memory Systems. In Proceedings of the 26th
ACM International Conference on Architectural Support
for Programming Languages and Operating Systems,
ASPLOS ’21, 2021.

[22] Vasileios Karakostas, Jayneel Gandhi, Furkan Ayar,
Adrián Cristal, Mark D. Hill, Kathryn S. McKinley,
Mario Nemirovsky, Michael M. Swift, and Osman Ün-
sal. Redundant Memory Mappings for Fast Access to
Large Memories. In Proceedings of the 42nd Annual In-
ternational Symposium on Computer Architecture, ISCA
’15, 2015.

[23] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June
Andronick, David Cock, Philip Derrin, Dhammika Elka-
duwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish,
Thomas Sewell, Harvey Tuch, and Simon Winwood.
SeL4: Formal Verification of an OS Kernel. In Proceed-
ings of the ACM SIGOPS 22nd Symposium on Operating
Systems Principles, SOSP ’09, 2009.

[24] Keith Krueger, David Loftesness, Amin Vahdat, and
Thomas Anderson. Tools for the Development of
Application-Specific Virtual Memory Management. In
Proceedings of the 8th Annual Conference on Object-
Oriented Programming Systems, Languages, and Appli-
cations, OOPSLA ’93, 1993.

[25] Youngjin Kwon, Hangchen Yu, Simon Peter, Christo-
pher J. Rossbach, and Emmett Witchel. Coordinated and
Efficient Huge Page Management with Ingens. In 12th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), Savannah, GA, November
2016.

[26] Huaicheng Li, Daniel S. Berger, Lisa Hsu, Daniel Ernst,
Pantea Zardoshti, Stanko Novakovic, Monish Shah,
Samir Rajadnya, Scott Lee, Ishwar Agarwal, Mark D.
Hill, Marcus Fontoura, and Ricardo Bianchini. Pond:
CXL-Based Memory Pooling Systems for Cloud Plat-
forms. In Proceedings of the 28th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2, ASPLOS
’23, 2023.

USENIX Association 2024 USENIX Annual Technical Conference 797

https://lwn.net/Articles/922405/
https://lwn.net/Articles/922405/
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_ifsk/
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_ifsk/
https://doi.org/10.1145/2901318.2901344
https://doi.org/10.1145/2901318.2901344
https://www.flux.utah.edu/paper/duplyakin-atc19
https://www.flux.utah.edu/paper/duplyakin-atc19
https://doi.org/10.1145/224057.224076
https://doi.org/10.1145/224057.224076
https://doi.org/10.1145/224057.224076
https://doi.org/10.1145/2669594.2669599
https://doi.org/10.1145/2669594.2669599
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/gu
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/gu
https://doi.org/10.1145/3503222.3507762
https://doi.org/10.1145/3503222.3507762
https://www.usenix.org/legacy/events/osdi99/hand.html
https://www.usenix.org/legacy/events/osdi99/hand.html
https://doi.org/10.1145/3173162.3173194
https://doi.org/10.1145/3173162.3173194
https://doi.org/10.1145/268998.266660
https://doi.org/10.1145/268998.266660
https://ieeexplore.ieee.org/abstract/document/9252863
https://ieeexplore.ieee.org/abstract/document/9252863
https://doi.org/10.1145/3445814.3446745
https://doi.org/10.1145/3445814.3446745
https://doi.org/10.1145/2749469.2749471
https://doi.org/10.1145/2749469.2749471
https://doi.org/10.1145/1629575.1629596
https://www.doi.org/10.1145/165854.165867
https://www.doi.org/10.1145/165854.165867
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/kwon
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/kwon
https://doi.org/10.1145/3575693.3578835
https://doi.org/10.1145/3575693.3578835
https://doi.org/10.1145/3575693.3578835

[27] Jochen Liedtke. On Micro-Kernel Construction. In Pro-
ceedings of the Fifteenth ACM Symposium on Operating
Systems Principles, SOSP ’95, 1995.

[28] Adam G Litke. “Turning the Page” on Hugetlb Inter-
faces. In Proceedings of the Linux Symposium, page
277, 2007.

[29] Mark Mansi, Bijan Tabatabai, and Michael M Swift.
CBMM: Financial Advice for Kernel Memory Man-
agers. In 2022 USENIX Annual Technical Conference,
USENIX ATC ’22, 2022.

[30] Artemiy Margaritov, Dmitrii Ustiugov, Edouard
Bugnion, and Boris Grot. Prefetched Address Transla-
tion. In Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO
’52, 2019.

[31] Hasan Al Maruf. [PATCH 0/5] Transparent
Page Placement for Tiered-Memory. https:
//lore.kernel.org/lkml/cover.1637778851.
git.hasanalmaruf@fb.com/.

[32] Hasan Al Maruf and Mosharaf Chowdhury. Effec-
tively Prefetching Remote Memory with Leap. In 2020
USENIX Annual Technical Conference, USENIX ATC
’20, 2020.

[33] Hasan Al Maruf, Hao Wang, Abhishek Dhanotia, Jo-
hannes Weiner, Niket Agarwal, Pallab Bhattacharya,
Chris Petersen, Mosharaf Chowdhury, Shobhit Kanaujia,
and Prakash Chauhan. TPP: Transparent Page Place-
ment for CXL-Enabled Tiered-Memory. In Proceedings
of the 28th ACM International Conference on Architec-
tural Support for Programming Languages and Operat-
ing Systems, Volume 3, ASPLOS ’23, 2023.

[34] John D. McCalpin. Memory Bandwidth and Machine
Balance in Current High Performance Computers. IEEE
Computer Society Technical Committee on Computer
Architecture (TCCA) Newsletter, December 1995.

[35] Ashish Panwar, Sorav Bansal, and K. Gopinath. Hawk-
Eye: Efficient Fine-Grained OS Support for Huge Pages.
In Proceedings of the Twenty-Fourth International Con-
ference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS ’19, 2019.

[36] SeongJae Park, Yunjae Lee, and Heon Y. Yeom. Profil-
ing dynamic data access patterns with controlled over-
head and quality. In Proceedings of the 20th Interna-
tional Middleware Conference Industrial Track, page
1–7, 2019.

[37] Richard Rashid, Avadis Tevanian, Michael Young,
David Golub, Robert Baron, David Black, William
Bolosky, and Jonathan Chew. Machine-Independent
Virtual Memory Management for Paged Uniprocessor
and Multiprocessor Architectures. In Proceedings of
the Second International Conference on Architectual
Support for Programming Languages and Operating
Systems, ASPLOS II, 1987.

[38] Amanda Raybuck, Tim Stamler, Wei Zhang, Mattan
Erez, and Simon Peter. HeMem: Scalable Tiered Mem-
ory Management for Big Data Applications and Real
NVM. In Proceedings of the ACM SIGOPS 28th Sym-
posium on Operating Systems Principles, SOSP ’21,
2021.

[39] Christopher A Small and Margo I Seltzer. Vino: An
Integrated Platform for Operating System and Database
Research. Technical Report TR-30-94, Harvard Univer-
sity, 1994.

[40] Zi Yan, Daniel Lustig, David Nellans, and Abhishek
Bhattacharjee. Nimble Page Management for Tiered
Memory Systems. In Proceedings of the Twenty-Fourth
International Conference on Architectural Support for
Programming Languages and Operating Systems, ASP-
LOS ’19, 2019.

[41] Mingxing Zhang, Teng Ma, Jinqi Hua, Zheng Liu, Kang
Chen, Ning Ding, Fan Du, Jinlei Jiang, Tao Ma, and
Yongwei Wu. Partial Failure Resilient Memory Man-
agement System for (CXL-Based) Distributed Shared
Memory. In Proceedings of the 29th Symposium on
Operating Systems Principles, SOSP ’23, 2023.

798 2024 USENIX Annual Technical Conference USENIX Association

https://doi.org/10.1145/224056.224075
https://www.kernel.org/doc/mirror/ols2007v1.pdf#page=277
https://www.kernel.org/doc/mirror/ols2007v1.pdf#page=277
https://www.usenix.org/conference/atc22/presentation/mansi
https://www.usenix.org/conference/atc22/presentation/mansi
https://doi.org/10.1145/3352460.3358294
https://doi.org/10.1145/3352460.3358294
https://lore.kernel.org/lkml/cover.1637778851.git.hasanalmaruf@fb.com/
https://lore.kernel.org/lkml/cover.1637778851.git.hasanalmaruf@fb.com/
https://lore.kernel.org/lkml/cover.1637778851.git.hasanalmaruf@fb.com/
https://lore.kernel.org/lkml/cover.1637778851.git.hasanalmaruf@fb.com/
https://lore.kernel.org/lkml/cover.1637778851.git.hasanalmaruf@fb.com/
https://www.usenix.org/conference/atc20/presentation/al-maruf
https://www.usenix.org/conference/atc20/presentation/al-maruf
https://doi.org/10.1145/3582016.3582063
https://doi.org/10.1145/3582016.3582063
https://www.cs.virginia.edu/stream/ref.html
https://www.cs.virginia.edu/stream/ref.html
https://doi.org/10.1145/3297858.3304064
https://doi.org/10.1145/3297858.3304064
https://doi.org/10.1145/36206.36181
https://doi.org/10.1145/36206.36181
https://doi.org/10.1145/36206.36181
https://doi.org/10.1145/3477132.3483550
https://doi.org/10.1145/3477132.3483550
https://doi.org/10.1145/3477132.3483550
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=04940fb31a45c0c82cde39eb8c7731284909e4d1
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=04940fb31a45c0c82cde39eb8c7731284909e4d1
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=04940fb31a45c0c82cde39eb8c7731284909e4d1
https://doi.org/10.1145/3297858.3304024
https://doi.org/10.1145/3297858.3304024
https://doi.org/10.1145/3600006.3613135
https://doi.org/10.1145/3600006.3613135
https://doi.org/10.1145/3600006.3613135

	Introduction
	Motivation and Related Work
	Design and Implementation
	FBMM Overview
	FBMM Shim
	MFS Design
	Virtual Memory Management
	Physical Memory Management
	Virtual to Physical Translation

	Discussion
	Implementation

	Performance Evaluation
	Case Studies
	Tiered Memory
	Bandwidth Utilization
	Contiguous Allocation
	Discussion

	Conclusion

