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Abstract
Approximate nearest neighbor search (ANNS) in high-

dimensional vector spaces has become increasingly crucial

in database and machine learning applications. Most pre-

vious ANNS algorithms require TB-scale memory to store

indices of billion-scale datasets, making their deployment ex-

tremely expensive for high-performance search. The emerg-

ing SmartSSD technology offers an opportunity to achieve

scalable ANNS via near data processing (NDP). However,

there remain challenges to directly adopt existing ANNS al-

gorithms on multiple SmartSSDs.

In this paper, we present SmartANNS, a SmartSSD-

empowered billion-scale ANNS solution based on a hierarchi-

cal indexing methodology. We propose several novel designs

to achieve near-linear scaling with multiple SmartSSDs. First,

we propose a “host CPUs + SmartSSDs” cooperative architec-

ture incorporated with hierarchical indices to significantly re-

duce data accesses and computations on SmartSSDs. Second,

we propose dynamic task scheduling based on optimized data

layout to achieve both load balancing and data reusing for mul-

tiple SmartSSDs. Third, we further propose a learning-based

shard pruning algorithm to eliminate unnecessary computa-

tions on SmartSSDs. We implement SmartANNS using Sam-

sung’s commercial SmartSSDs. Experimental results show

that SmartANNS can improve query per second (QPS) by

up to 10.7× compared with the state-of-the-art SmartSSD-

based ANNS solution–CSDANNS. Moreover, SmartANNS

can achieve near-linear performance scalability for large-scale

datasets using multiple SmartSSDs.

1 Introduction

Approximate nearest neighbor search (ANNS) in high-

dimensional spaces refers to the process of searching objects

that are most similar to a given vector. It is a fundamental

problem in algorithms research, and has a broad range of ap-

plications in many fields such as data mining [1], information
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Figure 1: Retrieval augmented generation for LLMs

retrieval [2], and AI-powered recommendation systems [3, 4].

Particularly, driven by the recent research boom in large lan-
guage models (LLMs) [5–8], ANNS services backed with

vector databases have become a fundamental building block

of modern AI infrastructure. As shown in Figure 1, the do-

main knowledge in various data formats (such as documents,

images, and speeches) are embedded into high-dimensional

vector spaces, and are stored in a vector database in the form

of feature vectors. Upon a user query from the chatbot, the

ANNS engine finds similar objects based on the query’s se-

mantics, and delivers the most relevant and context-aware

results to the LLM for further processing.

There have been numerous algorithms designed for the

ANNS problem, such as graph-based [9–11], hash-based [12,

13], tree-based [14], and quantization-based [15–17], mainly

focusing on the methodologies of indexing. Most ANNS algo-

rithms rely on in-memory indices to support fast and accurate

search, but significantly increase the memory resource re-

quirement. For example, many commercial recommendation

systems such as Alibaba [18] usually require TB-scale mem-

ory space to accommodate billion-scale vectors. However, the

huge resource requirement significantly increases the total
cost of ownership (TCO) (including purchasing and operat-

ing costs), making the ANNS service impractical to scale to

large-scale datasets with hundreds of billions vectors. The

scalability of these algorithms is mainly limited by the large

amount of indices maintained in main memory.

To reduce the cost of ANNS services, a practical approach

is to store the majority of vector indices on SSDs while us-

ing a moderately-sized DRAM as working memory [19, 20].

However, recent studies [21] have demonstrated that I/O op-
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erations can account for about 70% of total execution time

in SSD-based ANNS approaches. The performance of batch

queries also can not scale due to limited PCIe bandwidth be-

tween SSDs and host memory. Moreover, ANNS engines are

often integrated with other software to provide collaborative

services, such as ANNS supported recommendation systems,

ANNS empowered retrieval augmented generation (RAG) for

LLMs. These scenarios may aggravate the PCIe bandwidth

contention between ANNS engines and other programs, and

thus significantly degrade the application performance.

The emergence of SmartSSDs [22] (i.e., computational

storage devices) offers vast optimization opportunities to bal-

ance the performance and cost for ANNS services. Unlike

traditional SSD-based approaches which often incur frequent

data movement between host memory and SSDs [21, 23,

24], SmartSSDs leverage the near data processing (NDP)

paradigm to process data locally with their on-board DRAM

and Field Programmable Gate Arrays (FPGAs). In this so-

lution, the host can offload ANNS queries to SmartSSDs for

near data processing. SmartSSDs perform ANNS queries on

SSD-resident indices locally, and then return partial results

to the host for aggregation. More importantly, since each

SmartSSD uses its internal PCIe bus for local data transfer,

multiple SmartSSDs can achieve near-linear acceleration for

ANNS queries. This approach also significantly reduces band-

width contention of host PCIe bus and host CPU/memory

resource consumption.

Recently, a proof-of-concept study CSDANNS [23] has

explored SmartSSDs to offload large-scale ANNS for batch

queries. CSDANNS implements a classic graph-based ANNS

algorithm—Hierarchical Navigable Small World (HNSW) [9]

with FPGA in each SmartSSD. It splits the dataset sequen-

tially to ensure that the HNSW indices of each segment can

be fully accommodated by the on-board DRAM. However,

this simple approach has to scan all indices for each query on

all SmartSSDs, and thus results in significant computational

overhead on resource-limited SmartSSDs. Furthermore, since

CSDANNS offloads all ANNS queries to SmartSSDs entirely,

it only achieves sub-optimal performance. Hierarchical index-

ing, such as SPANN [20], is a promising way to reduce the

search space of ANNS without compromising accuracy. It

partitions the billion-scale dataset into a number of shards

based on a clustering algorithm. Upon a query, the centroids

of all shards are first consulted to find shards that most likely

contain the nearest neighbors. This approach can significantly

reduce unnecessary data accesses and computations, and thus

is applicable to SmartSSDs for ANNS offloading.

However, there still remain several challenges to directly ap-

ply the hierarchical indexing approach to multiple SmartSSDs.

Challenge 1: Due to lack of communication channels among

multiple SmartSSDs, each SmartSSD has to search more

shards to achieve the required level of accuracy, leading to

additional computation overhead. Thus, a global coordina-

tor is required to reduce the search space via consulting the

centroids of all shards. Challenge 2: Using the hierarchical

indexing approach, each ANNS query is delivered to a subset

of shards, resulting in an uneven (skewed) distribution of ac-

cesses across different shards. A batch of queries, if not prop-

erly scheduled, may lead to load imbalance across SmartSSDs,

which eventually harms the system scalability. Challenge 3:
Since the search scope of queries may be significantly differ-

ent, it is usually difficult to determine the minimum number

of shards for each query. A static configuration may result in

either unnecessary computations or accuracy loss.

In this paper, we present SmartANNS, a scalable ANNS

solution using SmartSSDs for billion-scale datasets, based on

the hierarchical indexing methodology [20]. We explore sev-

eral optimization technologies to tackle the above challenges.

1) We propose a “host CPUs + SmartSSDs” cooperative pro-

cessing architecture for ANNS. SmartANNS maintains the

centroid of each shard in host main memory while storing

only HNSW indices of each shard in SmartSSDs. During the

search stage, the host CPU first traverses the in-memory cen-

troids, and then dispatches query tasks to different SmartSSDs

for more fine-gained search. In this way, the host CPU is

used as a global coordinator to reduce the search space in

all SmartSSDs. 2) We propose a dynamic task scheduling

mechanism to balance the load across SmartSSDs and fully

exploit data reuse among queries. We first identify the hot-

ness of each shard via offline sampling, and evenly distribute

hot shards among different SmartSSDs to optimize the data

layout. Then, we schedule query tasks with overlapped shards

by considering both data locality and the load of SmartSSDs.

3) We further exploit a learning-based shard pruning algo-

rithm to avoid unnecessary computations on SmartSSDs. We

first construct the mapping between each query and its search

scope via offline training, and then the host CPU determines

the minimum number of shards required by each query at

runtime. Overall, we make the following contributions:

• For Challenge 1, we propose a “host CPU + SmartSSDs”

cooperative processing architecture for scalable ANNS

services. It exploits hierarchical indices to reduce mas-

sive data accesses and computations on SmartSSDs.

• For Challenge 2, we propose a dynamic task scheduling

mechanism based on the optimized data layout to achieve

both load balancing and data reusing.

• For Challenge 3, we propose a lightweight learning-

based shard pruning algorithm to eliminate unnecessary

computations on SmartSSDs.

• We implement SmartANNS using Samsung’s commer-

cial SmartSSDs, with an optimized implementation of

the HNSW search kernel using on-board FPGAs. Ex-

perimental results show that SmartANNS can improve

query per second (QPS) by up to 10.7× compared with

the state-of-the-art SmartSSD-based ANNS solution–
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CSDANNS [23]. SmartANNS also outperforms the state-

of-the-art SSD-based solution–SPANN [20], and GPU-

based solutions–CUhnsw [25] and GGNN [26]. More

importantly, SmartANNS can achieve near-linear scala-

bility for large-scale datasets using multiple SmartSSDs.

2 Background and Motivation

In this section, we first introduce the fundamental background

for ANNS and SmartSSDs. Then, we present SmartSSD-

empowered optimization opportunities for ANNS, and moti-

vate the design of SmartANNS based on our observations.

2.1 Approximate Nearest Neighbor Search
The nearest neighbor search (NNS) problem refers to finding

the closest point to a given point within a dataset. In this

context, let us consider a dataset D consisting of n points,

where each point is represented by a d-dimensional vector

(x1,x2, ...,xd). Given a query point q represented by a d-

dimensional vector (q1,q2, ...,qd), the goal of NNS is to iden-

tify a point p in the dataset D such that the distance d(p,q) is

minimized. The distance that measures the similarity between

two points, could be Euclidean distance, Hamming distance,

and so on. For a given dataset, the distance metric is often

determined by the embedding model that generates vectors.

In high-dimensional vector spaces, the NNS becomes a

computationally hard problem because it is impossible to re-

trieve the exact neighbors in a large-scale dataset via a linear

scan [27]. This is a phenomenon known as the curse of dimen-

sionality [28]. To circumvent this challenge, many approxi-
mate nearest neighbor search (ANNS) algorithms have been

proposed. The goal is to retrieve a given number of neighbors

which are close to the optimal candidate. These algorithms

can significantly enhance search efficiency by utilizing var-

ious indexing techniques, which effectively prune regions

of the dataset that are unlikely to contain the nearest neigh-

bors. Among numerous ANNS algorithms, graph-based ap-

proaches have gained significant prominence in recent years.

For example, HNSW [9], NSG [10], and FANNG [11] have

demonstrated promising performance and accuracy for ANNS

services. As illustrated in Figure 2, the graph-based approach

constructs a proximity graph. Feature vectors are abstracted

as nodes in the graph, and edges are deemed as the distance

between two nodes. For each query vector, the algorithm nav-

igates the graph from a given node and sequentially traverse

neighboring nodes that are likely candidates of approximate

nearest neighbors.

2.2 Computational Storage
Computational storage device (CSD) [29] follows a design

principle that “computing closer to the data source is more

efficient than transferring data for remote processing.” By

Algorithm1: Graph-based Vector Search
Input: query , result , search list 
Output: nearest neighbor of a query 

1: 
2: while do
3: = first index vertex in C
4:     
5:     for each do
6:          if 
7:
8:          
9:     end for

10:     Sort C in ascending order of 
11:     when 
12: return 

Original dataset

Graph structure

Figure 2: An example for graph-based ANNS

placing computing units within storage devices, CSDs support

near data processing naturally. These devices not only reduce

the amount of data movement between storage device and host

CPUs, but also reduce the usage of host resources. Figure 3

illustrates a traditional computing architecture and a CSD-

empowered NDP architecture. In traditional architectures, all

PCIe devices compete for the PCIe bus, and thus the system

performance is constrained by the bandwidth of the host PCIe

bus. In the CSD-empowered NDP architecture, since each

CSD accesses data locally using its internal PCIe switch, the

system can achieve a near-linear scaling with more CSDs.

Commercial CSDs, such as Samsung’s SmartSSDs, have

been available recently in the marketplace. Figure 3 illus-

trates the inner architecture of the Samsung SmartSSD. The

on-board DRAM serves as a cache for the NAND Flash, and

can be accessed by both the FPGA and the host CPU. The host

CPU can access data via standard I/O interfaces, and can also

offload computational instructions directly to the SmartSSD.

However, data movement between the NAND Flash and the

FPGA’s DRAM is achieved by a peer-to-peer (P2P) mecha-

nism via the internal PCIe switch, as shown in Figure 3. At

present, Samsung SmartSSD’s internal bandwidth between

the NAND Flash and the FPGA is only 3 GB/s.

2.3 Motivations

Advantages of using SmartSSDs for ANNS. Billion-scale

ANNS services usually require TB-scale memory space to

achieve high-performance queries. In the traditional comput-

ing architecture, since SSD-based ANNS algorithms often

incur frequent and costly data movement between disk and

main memory, the ANNS performance is mainly bounded by

the host PCIe bandwidth [21, 23]. We implement the state-

of-the-art SSD-based SPANN [20] and experiments show

that I/O operations account for about 67% of total execution

time. Although faster PCIe 6.0 is beneficial for performance
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improvement, SPANN may still spend more than 20% of

total time in I/O operations. SmartSSDs can relax this con-

straint by using their internal channels for data access. Thus,

SmartSSDs offer several significant benefits for deploying

large-scale ANNS service:

• The large storage capacity of SmartSSDs is sufficient to

accommodate ANNS indexes of billion-scale datasets.

• Benefiting from the near data processing paradigm,

SmartSSDs can significantly reduce data movement be-

tween NAND flash and host main memory. Moreover,

on-board FPGAs are also efficient for massive vector

distance calculations in ANNS algorithms.

• The in-storage computing capability of SmartSSDs of-

fers more opportunities to mitigate host resource con-

tention. When ANNS engines are co-deployed with other

software such as recommendation systems and RAG-

based LLMs, the host can allocate more CPU, memory,

and I/O resources to serve these interactive applications.

• Since each SmartSSD can work as a SoC to process

data individually, multiple SmartSSDs can achieve near-

linear performance scalability if there is not data depen-

dency among different SmartSSDs.

Limitations of an existing CSD-based ANNS solution.
CSDANNS [23] is so far the only proof-of-concept work

that implements a graph-based ANNS algorithm–HNSW [9]

using on-board FPGAs of CSDs. By splitting the original

dataset into multiple shards, CSDANNS constructs graph-

based indices for each shard. These shards and their indices

are evenly stored in multiple SmartSSDs. However, for each

query, CSDANNS has to scan all shards one by one using

on-board FPGA kernels, incurring significant computational

overhead. This magnifies the disadvantage of SmartSSDs in

terms of limited computational capability, and even counter-

acts the benefits of NDP. Additionally, because CSDANNS

completely offloads the graph-based ANNS to SmartSSDs,
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Figure 4: The data access pattern among different queries

it overlooks the possibilities of utilizing host CPU for hard-

ware/software cooperative processing. As a result, CSDANNS

achieves sub-optimal performance. This motivates us to ex-

plore a more sophisticated approach for deploying ANNS

services on SmartSSDs.

Optimization opportunities of hierarchical indexing.
ANNS algorithms using clustering-based hierarchical in-

dexes [20, 30] have been demonstrated as an efficient way

to decrease the computational cost of ANNS without com-

promising accuracy. This approach partitions a dataset into a

number of shards where high-similarity vectors are clustered

together. Then, graph-based indices are constructed for each

shard to accelerate the traversal. Before a search task is dis-

patched to a SmartSSD, we can prune irrelevant shards by

comparing the centroid of each shard with the query vector,

and only traverse a few shards whose centroids have a low

distance with the query vector. Thus, the hierarchical indexing

approach can significantly reduce the computations within

SmartSSDs.

To handle ANNS queries on SmartSSDs more efficiently,

we further explore the data access pattern of hierarchical

indices through two experiments. We exploit a hierarchical
balanced clustering (HBC) algorithm [31] to partition a SIFT

dataset [32] containing 100M vectors into 90 shards of the
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same size, and generate 10K queries to find the most similar

vectors. By default, we configure each query to search top-

10 nearest shards. First, we vary the batch size of queries to

measure the percentage of shards touched by different queries,

as shown in Figure 4a. Second, we configure three probes,

i.e., the top-K nearest shards that should be searched by a

query, and then measure the access frequency of each shard,

as shown in Figure 4b. We have two observations as follows.

Observation 1: A large portion of shards are accessed by
different queries over a period of time, implying a good data
locality. Since different queries may search the same shard,

and some popular shards may be accessed frequently by a

batch of queries. As shown in Figure 4a, when the batch

size exceeds 25, 90% of total shards are accessed more than

once by different queries. This implies that a task schedul-
ing scheme should fully exploit the data locality among
queries to reuse in-memory shards as much as possible.

Observation 2: The access distribution of different shards
are highly skewed. As shown in Figure 4b, all shards are

ordered according to their access frequencies. About 10%

shards are extremely hot, while about 10% shards are in-

frequent accessed. Since most similar vectors are clustered

together and represent a similar degree of hotness, we should
carefully place hot shards on different SmartSSDs to
achieve load balancing.

3 SmartANNS Overview

SmartANNS exploits hierarchical indices to achieve collab-

orative ANNS processing with “host CPUs + SmartSSDs”.

Figure 5 shows an overview of SmartANNS architecture.

Offline processing: Like conventional ANNS algorithms,

SmartANNS also has to construct indices in an offline man-

ner. At first, SmartANNS employs a HBC algorithm [31] to

partition a dataset into multiple equally-sized shards in which

vectors have a high similarity. Then, an HNSW index is con-

structed for each shard independently. The centroids of these

shards are maintained in host main memory while shards are

stored in SmartSSDs. After that, SmartANNS samples a sub-

set of training queries to train gradient boosting decision trees
(GBDT) [33]. This learned model can be used to determine

the minimum search scope for each query at runtime. In addi-

tion, SmartANNS also collects the hotness of each shard to

calibrate the data layout on multiple SmartSSDs.

Online processing: Upon an ANNS query, SmartANNS

calculates the distance between the query vector and the cen-

troid of each shard. With these distances, gradient boosting

decision trees predict the number of shards that should be

searched to find near neighbors. After that, the host distributes

query tasks to different SmartSSDs using a task scheduling

mechanism elaborated in Section 4.3.

When a SmartSSD receives a query task, it prioritizes this

task if it can reuse shards that have been loaded into the on-

board DRAM with other tasks. For each task, the SmartSSD

utilizes the internal PCIe switch to transfer indices of the

shard from the SSD to the FPGA’s onboard DRAM. Then, the

ANNS engine within the SmartSSD begins its iterative search

and sends results back to the host. Finally, the host aggregates

all results returned from different SmartSSDs.

4 Design and Implementation

In this section, we present the design of SmartANNS. We elab-

orate the construction of hierarchical indices, the learning-

based shard pruning, and the task scheduling for multiple

SmartSSDs based on optimized data layout. At last, we

present the FPGA implementation of the vector search engine

within SmartSSDs.
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4.1 Hierarchical Indexing
Figure 6 illustrates how those hierarchical indices are con-

structed in both SmartSSDs and the host. To reduce the com-

putational cost of SmartSSDs, SmartANNS exploits the HBC

algorithm [31] to partition a vector dataset into multiple shards

as evenly as possible. We first configure the maximum size

of shards that can be accommodated by the SmartSSD’s on-

board DRAM. Then, the dataset is partitioned iteratively in

a top-down manner till all shards become smaller than the

configured maximum size. To circumvent boundary concerns

during clustering [20], we also adopt a flexible vector assign-

ment strategy. If a vector lies on the boundary of multiple

shards Si, we place this vector according to the following

formula:

v ∈ Si ⇔ Dist(v,Si)≤ (1+ ε)×Dist(v,S1)

where v denotes the vector to be placed, S1 represents the

shard that is nearest to vector v, Si denotes other shards, and

ε determines the distance whether a vector should be simulta-

neously placed to other shards. Each vector can be placed in

two shards at most. After the partitioning phase, we employ

the HNSW algorithm to generate a graph-based index for all

vectors within each shard individually. The proximity graph is

constructed by continuously adding new vectors to an empty

graph. When a vector is added as a new vertex, its top-k (typi-

cally 64) nearest neighbors are searched in the current graph,

and new edges between the newly-added vertex and its nearest

neighbors are constructed. Then, these neighboring vertices

should update their nearest neighbors to keep the maximum

number of edges.

However, it is costly to directly place shards along with

their centroids on different SmartSSDs because this data lay-

out would result in additional computational cost. Due to a

lack of inter-SmartSSD communication channels, a query on

one SmartSSD is not aware of distances between this query

and shards on other SmartSSDs. For a given query, the clos-

est shard within a SmartSSD may be not the closest shard

globally. Therefore, each SmartSSD usually should scan more

shards locally to meet the desired accuracy.

To address this issue, SmartANNS exploits the host CPU

as a central coordinator. Given that all SmartSSDs can be

Table 1: GBDT input features

Features Description

F0: query The query vector

F1: relative_distance The ratio of Dk to D1

F2: num_shard The number of all shards

accessed by the host CPU, SmartANNS retains centroids

of all shards within the host memory. It manages a key-

value pair to record the address of each shard in SmartSSDs.

When a number of shards associated with a query are de-

termined, the host CPU retrieves the corresponding shards

from SmartSSDs according to these key-value pairs. Then,

tasks are assigned to SmartSSDs based on the task schedul-

ing mechanism. With these hierarchical indices, each query

is aware of the most closest shards that should be further

searched on SmartSSDs, and thus can eliminate unnecessary

computations within SmartSSDs.

4.2 Shard Pruning
Because the difficulty of queries may be significantly dif-

ferent, the search scope of each query may change dynam-

ically [34, 35]. Inverted indexing approaches [15–17] often

construct much smaller shards and a large amount of cen-

troids. Thus, the majority of computing overhead stems from

centroid traversal. In contrast, SmartANNS focuses on mini-

mizing the host resource consumption while fully realizing the

potential of SmartSSDs. To this end, SmartANNS constructs

larger shards and correspondingly fewer centroids. The cost

of traversing centroids is relative low, and the most computa-

tional cost lies in searching shards. Thus, it is not reasonable

to configure a fixed number of shards for all queries since

irrelevant shards may be unnecessarily scanned.

To circumvent this issue, we exploit a learning-based

approach to determine the optimal number of shards for

each query. We choose the gradient boosting decision trees
(GBDT) model due to its lightweight and high performance.

GBDT is an ensemble learning algorithm that combines mul-

tiple simple decision trees ( called “weak learners”) to create

a strong predictive model. It trains the learned model itera-

tively by initially predicting the mean, computing residuals,

and fitting weak decision trees to these negative gradients.

During the inference stage, the model generates predictions

by assimilating weighted contributions of all individual weak

models.

The input parameters of this model include the query vec-

tor, its spatial relationship with shards, and the total number

of shards. These input features are illustrated in Table 1. We

use relative distances as features for model training. Let D1

denote the distance between the query and the top-1 nearest

shard, and Dk denote the distance between the query and the

top-k nearest shards, we use the ratio of Dk to D1 as key fea-

tures to train the decision tree. These abstracted features can
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reflect the inherent correlations between queries and data, and

improve the model’s adaptability and robustness. To prepare

training data, we sample one million training vectors from

each billion-scale dataset. For output values, we perform an

exhaustive search for the ground truth nearest neighbors and

then identify the minimum number of shards that cover them.

This process takes less than an hour using an NVIDIA V100

GPU. Then, we set the learning rate to 0.05 and begin train-

ing the GBDT model over 500 iterations, which takes only 3

minutes using a CPU.

The trained model is very lightweight, with a memory foot-

print just about 1 MB, and an inference takes just a few tens

of microseconds. To integrate this model into SmartANNS,

we deploy this model in the host using a CPU core. Upon

each query, we calculate its distance to each shard and then

sort these distances in an ascending order. The model can

determine the ideal number of shards for each query, and then

these shards are scanned by FPGA kernels in SmartSSDs.

4.3 Task Scheduling

SmartANNS enables the functionality of NDP using mul-

tiple SmartSSDs in parallel. A straightforward approach is

to exploit task parallelism, i.e., the dataset is replicated to

each SmartSSD and queries are evenly dispatched to all

SmartSSDs. However, this simple approach cannot fully ex-

ploit data locality among queries and may lead to a signifi-

cant waste of storage capacity. In contrast, we address these

issues by fully exploiting data parallelism among multiple

SmartSSDs. In this approach, the dataset is evenly distributed

across all SmartSSDs, and queries are dispatched to appro-

priate SmartSSDs based on the data distribution. However,

this strategy may result in load imbalance among SmartSSDs

because the data hotness of shards may be different, as illus-

trated in Figure 7.

To improve the system scalability with multiple

SmartSSDs, we first optimize the data layout according to

the hotness of shards and their duplicates. Then, we design a

task scheduler based on optimized data layout. When we con-

struct the training data for GBDT, we occasionally record the

hotness of each shard. When we place shards to SmartSSDs,

we sort shards based on the hotness. By iteratively placing

the shard with the highest hotness to the SmartSSD with the
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Figure 8: Optimized data layout of shards for task scheduling

lowest cumulative hotness, we can ultimately achieve approx-

imately the same hotness values for all SmartSSDs. Further-

more, we replicate shards from one SmartSSD to another

SmartSSD once, as shown in Figure 8. This data replication

mechanism offers more flexibility for load balancing by dy-

namically migrating tasks from an overloaded SmartSSD to

another SmartSSD.

The key idea behind the task scheduler is to dynamically

balance the load of SmartSSDs by taking into account data

reuse among queries. Algorithm 1 outlines the pseudo code

of task scheduling. Its input includes the mappings between

SmartSSD devices and shards, and tasks to be assigned. The

output is a two-dimensional array recording tasks assigned

to each SmartSSD. We propose a simple model to estimate

the total load of a task list. The execution of a task includes

loading shards to the FPGA DRAM and vector searching.

Since the size of each shard is almost the same, the searching

latencies for all tasks are similar. Thus, we can estimate the

searching latency of a task, and the latency of shard loading

according to the shard size and the SmartSSD’s internal band-

width. Our model only counts the latency of shard loading

once if duplicated shards are accessed by multiple tasks.

During scheduling, we first identify SmartSSDs that store

the shard corresponding to the task, and deem them as base

devices (line 2). Then, we check whether there are already

assigned tasks on these devices that have the same shard

(line 3). If these base devices either have or do not have such

task (line 4), the additional processing overhead associated

with these devices is the same. Therefore, we select the device

with the least load among these base devices to assign the task

(line 4-line 6). In cases where some base devices have such

task while others do not have (line 8), we need to consider

the case where the additional processing overhead differs

due to data reuse. For this situation, we create a temporary

task list for each base device and insert the given task into

the list. Subsequently, we use the aforementioned model to

estimate the total load for the temporary task list. Finally, we

select the device with the minimum estimated load as the

assignment target (line 8-line 16). We record the load of each

device and update the target device after each task assignment.

Figure 8 shows a simple example. Our approach can fully

leverage data reusing among queries while guaranteeing load

balancing among SmartSSDs.
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Algorithm 1: Task Scheduling

Input: Devices,Tasks(query,shard_id)
Output: Device_to_Tasks[ ][ ]

1 for i = 0; i < Tasks.size(); i++ do
/* Find devices that store task-relevant shards. */

2 Base[ ]← FindBase(Devices,Tasks[i]);
/* Check whether there is data reuse on device for

this task. */

3 Assign[ ]←Check(Device_to_Tasks,Tasks[i]);
4 if (Assign.size = 0)∨ (Assign.size = Base.size)

then
5 Target ← MinWork(DeviceLoad,Base);
6 Device_to_Tasks[Target].insert(Tasks[i]);
7 DeviceLoad.update(Target);
8 else
9 TimeIn f o[ ]← NULL;

10 for j = 0; j < Base.size(); j++ do
11 Temp[ ]← Device_to_Tasks[Base[ j]];
12 Temp.insert(Tasks[i]);
13 TimeIn f o[ j]← Estimate(Temp);
14 end
15 Target ← Min(TimeIn f o);
16 Device_to_Tasks[Target].insert(tasks[i]);
17 DeviceLoad.update(Target);
18 end
19 end
20 return Device_to_Tasks;

4.4 Vector Search Engine

We implement a fully-optimized HLS-based vector search

engine within SmartSSDs based on the HNSW algorithm.

As shown in Figure 9, this engine is composed of two key

modules: task reordering and the search kernel. As illustrated

in Figure 4a, a shard may be repeatedly accessed by different

tasks. To eliminate this redundancy in SmartSSDs, we design

the task reordering module. When SmartSSD receives tasks

from the host, it first rearranges the execution order of tasks

so that tasks associated with the same shard can be handled

sequentially. Then, SmartSSD loads the graph-based index

of the shard from the NAND Flash into the FPGA DRAM

for the subsequent searching. In this way, the data can be

reused among queries, effectively amortizing the cost of data

accesses.

The key components of the search kernel include a layer

monitor, distance calculation modules, sorting modules, and

array updating modules. Upon searching on the loaded graph-

based index, the kernel maintains three distinct lists: the vis-

ited list, the sorted candidate list, and the sorted final list.

When the first vector in the candidate list is traversed at each

layer, the distance calculation module is invoked to calculate

the distance between the neighbor of the vector and the query
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Figure 9: An overview of vector search engine

vector. Subsequently, neighbors with closer distances are in-

serted into both candidate and final lists. This loop continues

till the candidate list is empty or no closer neighbor is found.

To improve the efficiency of FPGA, we design several

optimizations for the search kernel. First, when the kernel

traverses a candidate vector, it reads all neighbors in parallel,

and configures separate interfaces to load the vector data and

the corresponding linklist in parallel. As shown in Figure 9,

we use the m_axi adapter to encapsulate queries and the vec-

tor data in MAXI-A, and encapsulate the linklist and search

results in MAXI-B. Second, to save on-chip memory space,

we replace the boolean array used by the original HNSW

algorithm with bitmaps to implement the visited list. Third, to

update both candidate and final lists efficiently, we implement

the bitonic sort algorithm that is highly optimized for FPGA.

Fourth, in the distance calculation module, we exploit loop

unrolling and pipelining optimizations of HLS, facilitating

parallel distance calculations between high-dimensional vec-

tors with multiple processing elements (PE) of FPGA. Fifth,

since each shard can be processed independently, we establish

a data pool in the on-board DRAM and a kernel pool within

the FPGA to improve the task parallelism. Once a shard is

loaded into the data pool, the kernels in the kernel pool can

process tasks associated with this shard in parallel. Also, the

SmartSSD can load a shard to the data pool while another

shard is being searched by kernels. This pooling mechanism

can effectively overlap shard loading and vector searching,

and thus hide the latency of data accesses.

4.5 System Implementation
We implement the prototype of SmartANNS in a heteroge-

neous computing architecture composed of host CPUs and

SmartSSDs. The host side includes the first-tier index search-

ing, shard pruning, and task scheduling modules programmed

with C++. Since these modules are rather lightweight in terms

of computing resource, we use only one CPU core to execute

them, and its average utilization is even lower than 10%. The

SmartSSD side contains HLS-based search kernels deployed

on FPGA. We extend the functionalities of the BBANN [31]

and hnswlib [36] libraries to construct the hierarchical in-
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Table 2: FPGA resource utilization

LUT FF BRAM URAM DSP

Count 323008 471442 895 50 796

Percentage (61.80%) (45.10%) (91.54%) (39.38%) (40.56%)

dex. For the GBDT model, we exploit the LightGBM [37]

framework and follow LAET [34] to configure the model

parameters. The host-SmartSSD communication is achieved

through the Xilinx Run Time (XRT) [38], which manages data

preparation, kernel activation, and the collection of results

from search kernels. We synthesize and implement the ker-

nels using Xilinx Vitis 2021. Due to limited FPGA resource,

we instantiate two kernels within each SmartSSD. Table 2

shows the resource utilization of the search kernels on FPGA.

5 Evaluation

In this section, we evaluate the effectiveness of SmartANNS

with respect to: (i) end-to-end performance improvement in

comparison to a state-of-the-art SmartSSD-based solution–

CSDANNS [23]; (ii) performance scalability using multiple

SmartSSDs; (iii) effectiveness of individual technologies; and

(iv) comparison with SSD-based and GPU-based ANNS solu-

tions. Our experimental results are summarized as follows:

• Compared to CSDANNS, SmartANNS achieves up to a

10.7× improvement in Query Per Second (QPS) under

the same accuracy.

• SmartANNS demonstrates better scalability over a state-

of-the-art SSD-based solution, achieving nearly lin-

ear performance improvement when the number of

SmartSSDs increases.

• SmartANNS achieves higher throughput than SSD-

based and GPU-based solutions.

5.1 Experiment Setup
Our experiments are conducted on a server equipped with

Intel Xeon Gold 5220 2.20GHz 72-core processor and 128

GB DRAM. The server runs Ubuntu 20.04.4 LTS operating

system. We use Samsung’s first-generation SmartSSDs as

computational storage devices, which contain Xilinx’s Ultra-

Scale+ FPGA, 4 GB DDR4, and 4 TB NAND Flash. We use a

number of SmartSSDs to evaluate the performance scalability

for ANNS. We also use a Nvidia Tesla V100 to evaluate GPU-

based ANNS solutions. The detailed hardware configurations

in our experiments are shown in Table 3. We use the s-tui tool

and the Vitis analyzer [39] to monitor the static and dynamic

power consumption of host CPUs and SmartSSDs.

Datasets. In our experiments, we evaluate four billion-scale

datasets using 10 K~100 K queries. All datasets are sourced

Table 3: Hardware platform configurations

SmartSSD CPU-based GPU-based

Compute

Units

Xilinx Kintex

UltraScale+

KU15P FPGA

2 Intel Xeon

Gold 5220 CPUs

Nvidia

Tesla V100

DRAM 4 GB DDR4 128 GB DDR4 32 GB HBM

SSD 4 TB, 4 GB/s 2 TB, 4 GB/s 2 TB, 4 GB/s

Interface PCIe 3.0×4 PCIe 3.0×4 PCIe 3.0×4

Table 4: Datasets (one billion)

Dataset Dimension Base Size Summary Data Type

SIFT1B 128 119 GB 58.51 KB Image

SPACEV1B 100 93 GB 43.76 KB Web Search

DEEP1B 96 358 GB 136.88 KB Image

Turing1B 100 373 GB 134.38 KB Web Search

from the BIGANN benchmark [40], including SIFT1B [32],

SPACEV1B [41], DEEP1B [42] and Turing1B [43]. The de-

tails of these datasets are shown in Table 4.

ANNS solutions for comparison. We first compare Smar-

tANNS with CSDANNS, which is the state-of-the-art solution

for offloading ANNS to SmartSSD. The HNSW search en-

gine of CSDANNS is also implemented with HLS. We adopt

the parameters specified in CXL-ANNS [44] to construct

the HNSW graph-based indices for all experiments. We also

compare SmartANNS with the state-of-the-art SSD-based

solution–SPANN, which searches the graph-based index com-

posed of centroids in host memory, and then load the relevant

data from SSDs. Moreover, we compare CUhnsw [25] and

GGNN [26], both of them are GPU accelerated graph-based

ANNS solutions. In these setups, the CPU is responsible for

data movement, while the GPU handles distance calculations.

Metrics. For a fair comparison, we evaluate the ANNS

performance by measuring QPS at the same level of search

accuracy, which is quantified by the recall rate, i.e., Recall@k.

This metric represents the proportion of queries in which the

top-k nearest neighbors retrieved during the search encom-

passes (at least one of) the ground-truth nearest neighbors.

According to the BIGANN benchmark standard, we present

our experimental results at an accuracy of 90% under Re-

call@10, unless specified otherwise. The search accuracy is

determined by the number of shards searched and the length

of the search queue within each shard. When the shard prun-

ing is enabled, we guarantee the same search accuracy by

increasing the length of the search queue.

5.2 Performance
We evaluate the QPS of SmartANNS and CSDANNS under

the same search accuracy. For these experiments, we use

a single SmartSSD device to demonstrate the efficiency of

SmartANNS against CSDANNS. For different datasets and

different levels of search accuracy, SmartANNS outperforms
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CSDANNS significantly in all cases.

Performance under different datasets. We compare

SmartANNS with CSDANNS using SIFT1B, SPACEV1B,

DEEP1B, and Turing1B datasets, respectively. Figure 10

shows the QPS at a search accuracy of 90% under Recall@10,

all normalized to CSDANNS. SmartANNS improves the QPS

by 8.5 to 10.7 × compared with CSDANNS, demonstrat-

ing a notably performance improvement for all billion-scale

datasets with different data sizes, types, characteristics, and

application scenarios. This performance improvement mainly

stems from the hierarchical indexing and the promising NDP

function of SmartSSDs. Since SmartANNS can significantly

reduce the search space of shards on SmartSSDs by using the

first-tier indices in the host, it avoids most unnecessary data

movement between the NAND Flush and the FPGA DRAM,

and also eliminates unnecessary distance computations on

the FPGA by using the shard pruning strategy. SmartANNS

shows a slight decrease of performance speedup for Turing1B

dataset. The reason is that the out-of-distribution characteris-

tic of this dataset has a negative effect on the vector clustering.

Thus, SmartANNS should search more shards to achieve the

desired accuracy level.

Performance vs. accuracy. To demonstrate the superi-

ority of SmartANNS over CSDANNS at different accuracy

levels, we change the search accuracy from 88% to 98% us-

ing the SIFT1B dataset. Figure 11 shows the normalized

QPS under different levels of accuracy. SmartANNS achieves

about 5.6-9.8 × performance improvement compared with

CSDANNS. We find that the performance speedup declines
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Figure 13: Performance scalability (using SIFT1B)

when the accuracy level becomes higher. The root cause is

that higher accuracy levels imply a significant expansion of

the search space. SmartANNS should retrieve more shards

to find increasingly-elusive nearest neighbors, losing more

opportunities to stop the search process.

Energy efficiency. To evaluate the energy efficiency of

SmartSSD based ANNS solutions, we measure the dynamic

power consumption of host CPUs and SmartSSDs when

ANNS tasks are being processed. Figure 12 shows the QPS

per watt of SmartANNS, all normalized to CSDANNS. Smar-

tANNS achieves about 8.4-9.4 × higher energy efficiency

than CSDANNS. Since a SmartSSD’s dynamic power con-

sumption remains stable (about 25 watt) when the FPGA

is working, the energy efficiency of SmartANNS over CS-

DANNS mainly stems from the significant performance im-

provement in QPS.

5.3 Scalability

We evaluate the scalability of SmartANNS using multiple

SmartSSDs with the SIFT1B dataset. The standard U.2 form

factor of the SmartSSD allows for simple scaling of devices.

Figure 13 shows the QPS of SmartANNS when the number of

SmartSSDs increases from 1 to 4. When a single SmartSSD is

used, the QPS of SmartANNS is 88. When SmartANNS uses

four SmartSSDs, its QPS increases to 332, achieving 3.76 ×
performance improvement. Thus, SmartANNS achieves near-

linear performance scalability with the increase of SmartSSDs.

Since our task scheduling mechanism can evenly distribute
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Figure 15: The workload distribution in each SmartSSD

tasks across multiple SmartSSDs, and thus minimizes the wait

time caused by overloaded SmartSSDs.

5.4 Effectiveness of Individual Technologies

In this subsection, we validate the effectiveness of individual

technologies in SmartANNS and evaluate their contributions

to the overall performance improvement. Using the SIFT1B

dataset, we first conduct experiments to assess the effect of

hierarchical indexing, task scheduling, and shard pruning sep-

arately, and then we incrementally add these techniques to

evaluate their impacts on the overall performance.

Effectiveness of hierarchical indexing. Figure 14 shows

the normalized numbers of distance calculations that are re-

quired by CSDANNS and SmartANNS. On average, Smar-
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Figure 16: Performance improvement due to different tech-

nologies. HI, SP and TS denote hierarchical indexing, shard

pruning, and task scheduling, respectively.

tANNS necessitates 80% fewer distance calculations com-

pared with CSDANNS. The reason is that SmartANNS ex-

ploits the host CPU as a global coordinator to narrow the

search space based on the hierarchical indexing, thus avoiding

costly global searches. As a result, SmartANNS significantly

reduces the computational load within each SmartSSD.

Effectiveness of task scheduling. We record the number of

touched shards in each SmartSSD when multiple SmartSSDs

are used to serve a batch of queries. Figure 15 shows the dis-

tribution of workload (with a deviation from the average) on

each SmartSSD when we enable and disable the task schedul-

ing mechanism. Without task scheduling, the workload across

SmartSSD exhibits a significant imbalance for all configura-

tions. This unbalanced distribution usually causes overloaded

and underutilized SmartSSDs during parallel processing, and

thus has a negative impact on the performance scalability.

When our task scheduling mechanism is enabled, workloads

are distributed to different SmartSSDs evenly. Thus, multi-

ple SmartSSDs can achieve scalable performance via load

balancing.

Effectiveness of shard pruning. We count the average

number of shards searched per query using our learning-based

shard pruning scheme. For a comparison, we also evaluate

a simple method that searches a fixed number of shards for

each query. Under a constraint of the same level of accuracy,

our learning-based approach and the simple method have to

search 9 and 13 shards from a total of 114 shards on average,

respectively. By searching fewer shards, our shard pruning

scheme substantially reduces the cost of data accessing and

distance calculations, especially for batch queries. Thus, it can

achieve considerable performance improvement, as shown in

Figure 16.

The performance breakdown of individual technologies.
To evaluate the impact of each individual technique on the

overall performance, we adopt these techniques incrementally.

As shown in Figure 16, the hierarchical indexing significantly

improves the QPS by 7.6 × compared with CSDANNS for a

single SmartSSD. However, when the number of SmartSSD
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increases, the performance gains achieved by the hierarchical

indexing tend to decline. Similarly, the shard pruning scheme

exhibits a similar trend of performance improvement. In con-

trast, the task scheduling scheme delivers more performance

gains than other schemes when the number of SmartSSDs

increases, because it can significantly mitigate the load im-

balance among multiple SmartSSDs. This implies the load

balancing has a significant impact on the performance scala-

bility of SmartANNS when a large number of SmartSSDs are

deployed to achieve high throughput for large-scale datasets.

5.5 Comparison with SSD/GPU-based ANNS
We compare SmartANNS with a SSD-based ANNS solution–

SPANN, and two GPU-based ANNS solutions–CUhnsw and

GGNN using the SIFT1B dataset. As shown in Figure 17, the

QPS of SmartANNS using four SmartSSDs is much higher

than that of SPANN, CUhnsw, and GGNN. Moreover, the

QPS of SPANN approaches saturation when the number of

threads increases to 4. The reason is attributed to the inherent

constraint of PCIe bus in the traditional computing architec-

ture, as illustrated in Figure 3. Since the graph-based index

and all I/O requests initiated by queries should traverse the

same PCIe bus, they cause intensive bandwidth contention on

the host PCIe. Thus, the limited PCIe bandwidth becomes a

performance bottleneck, and I/O operations account for about

67% of total execution time in SPANN. In contrast, Smar-

tANNS benefits from the internal PCIe bus of each SmartSSD

and proposed search optimizations, enabling its performance

to scale almost linearly with the number of SmartSSDs. Due

to the limited GPU memory, the billion-scale datasets and

their corresponding graph-based indexes cannot be loaded

into the GPU memory entirely. As a result, the data is parti-

tioned and loaded from SSDs into the GPU sequentially for

queries. This extensive data movement and frequent memory

swapping result in poor performance for these two GPU-based

ANNS solutions.

Certainly, as a new storage device, a SmartSSD (about

$2000) is more expensive than a traditional SSD (about $400).

However, SmartSSDs can eliminate the performance bottle-

neck of the host PCIe, and achieve near-linear scalability by

using their internal PCIe buses. Since ANNS is often cooper-

atively used with recommendation systems and LLMs, which

often incur intensive data movement between host memory

and GPUs through PCIe. To eliminate the PCIe bandwidth

contention, we may have to use more expensive dedicated

servers to deploy the ANNS service. However, its scalability

is still constrained to the host PCIe bandwidth. With the grow-

ing prevalence of SmartSSDs and their anticipated decrease

in cost, ANNS is expected to gain tremendous benefits from

cost-efficiency SmartSSDs in the future.

6 Related Work

We present the most related work in the following categories.

Memory extension for ANNS. For billion-scale datasets,

existing systems often struggle to accommodate these datasets

entirely in memory. A number of SSD-based approaches [19,

20, 30, 31] design different index structures for main mem-

ory and disks to index and query efficiently, and achieve a

good balance between the query latency and the accuracy.

Although these proposals can alleviate the memory resource

requirement, ANNS queries often incur intensive I/O requests

to disks, resulting in extensive data swapping between disks

and main memory. HM-ANN [45] leverages a hybrid memory

system including DRAM and Intel Optane persistent memory

to extend the memory capacity for ANNS. It stores simplified

graphs and detailed graphs in DRAM and Optane memory,

respectively, and thus reduces the number of accesses to Op-

tane memory during the ANNS process. CXL-ANNS [44]

expands host memory based on Compute Express Link (CXL)

and designs caching and prefetching techniques for the CXL

memory, minimizing the impact of CXL memory’s high la-

tency on the system performance. However, these memory

extension approaches substantially increases the hardware
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cost in data centers. In contrast, SmartANNS can significantly

reduce the memory resource requirement by offloading ANNS

queries to SmartSSDs, and achieve near-linear performance

scalability for large-scale datasets using multiple SmartSSDs.

Computation acceleration for ANNS. A few recent stud-

ies [46–49] exploit GPUs and FPGAs to accelerate the vec-

tor search based on the IVF-PQ algorithm [46]. Since this

algorithm often incurs intensive distance calculations, the

high-parallel computing capabilities of GPUs and FPGAs

can be fully exploited to speed up the vector search. More-

over, a few efforts have been made to accelerate graph-based

ANNS algorithms using GPUs [26, 50, 51] and FPGAs [52].

However, most of these approaches can only achieve promis-

ing performance for small-scale datasets, and cannot scale to

large datasets due to limited memory capacity in GPUs and

FPGAs. Unlike these approaches that focus on computation

acceleration using GPUs and high-end FPGAs, SmartANNS

fully exploits the near-data-processing paradigm in a “CPUs

+ SmartSSDs” cooperative architecture to optimize ANNS

services for billion-scale datasets.

In-Storage processing for ANNS. To provide cost-

efficient and energy-efficient ANNS services, a few recent

proposals offload ANNS to computational storage devices

based on the NDP paradigm. Vstore [21] is a graph-based

ANNS accelerator integrated into SSDs. It fully exploits the

SSD’s multiple-channel feature to search the graph-based in-

dex in parallel, and also explores data reuse between queries

to mitigate the cost of data accesses and distance calculations.

Pyramid [53] exploits a near-memory-computing (NMC) ac-

celerator and an in-storage-processing (ISP) accelerator for

ANNS acceleration. However, these proposals are based on

architectural simulations and none of them have considered

the scalability issue when using multiple computational stor-

age devices. In contrast, SmartANNS is implemented on real

commercial SmartSSDs and achieves near-linear performance

scalability by using multiple SmartSSDs.

CSDANNS [23] is so far the first work that demonstrates

the feasibility of offloading ANNS to computational storage

devices. It sequentially splits the dataset and constructs an

HNSW index for each partition. This simple approach necessi-

tates each query to scan all partitions, and thus results in high

computational cost on SmartSSDs. As a result, CSDANNS

achieves sub-optimal performance. SmartANNS reduces the

computational cost on SmartSSDs based on a hierarchical in-

dexing methodology, and addresses the challenges of adopting

this method to SmartSSDs in a software-hardware coopera-

tive manner. Moreover, SmartANNS exploits data reusing,

load balancing, and learning-based shard pruning to achieve

scalable ANNS performance on multiple SmartSSDs.

7 Conclusion

In this work, we present SmartANNS, a hardware/software

co-design architecture using SmartSSDs to support the large-

scale ANNS service. SmartANNS is built on a hierarchical

indexing approach, addressing a series of challenges on the

“host CPU + SmartSSDs” platform through several optimiza-

tions that range from architecture, data layout, and algorithm

levels. Compared with an existing state-of-the-art solution–

CSDANNS, SmartANNS significantly improves the system’s

QPS. Moreover, the performance of SmartANNS increases

almost linearly with the number of SmartSSDs, implying that

SmartANNS can scale well for extremely large datasets.
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