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Abstract
As deep learning model sizes expand and new GPUs are re-
leased every year, the need for distributed training on hetero-
geneous GPUs rises to fully harness under-utilized low-end
GPUs and reduce the cost of purchasing expensive high-end
GPUs. In this paper, we introduce Metis, a system designed
to automatically find efficient parallelism plans for distributed
training on heterogeneous GPUs. Metis holistically optimizes
several key system components, such as profiler, cost esti-
mator, and planner, which were limited to single GPU types,
to now efficiently leverage compute powers and memory ca-
pacities of diverse GPU types. This enables Metis to achieve
fine-grained distribution of training workloads across het-
erogeneous GPUs, improving resource efficiency. However,
the search space designed for automatic parallelism in this
complexity would be prohibitively expensive to navigate.

To address this issue, Metis develops a new search algo-
rithm that efficiently prunes large search spaces and balances
loads with heterogeneity-awareness, while preferring data par-
allelism over tensor parallelism within a pipeline stage to take
advantage of its superior computation and communication
trade-offs. Our evaluation with three large models (GPT-3,
MoE, and Wide-Resnet) on combinations of three types of
GPUs demonstrates that Metis finds better parallelism plans
than traditional methods with 1.05 ∼ 8.43× training speed-up,
while requiring less profiling searching time. Compared to
the oracle planning that delivers the fastest parallel training,
Metis finds near-optimal solutions while reducing profiling
and search overheads by orders of magnitude.

1 Introduction

Training large-scale models, such as GPT-3 [4], on exten-
sive datasets necessitates parallelism across a large number
of GPUs. In such distributed deep learning (DL) training, it
is crucial to choose an appropriate parallelism plan because
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the strategy of distributing the model and data across GPUs
has a significant impact on training efficiency. The choice of
parallelism plan directly influences how hardware resources
are utilized. Inadequate plans often result in severe commu-
nication bottlenecks, highly imbalanced computations, and
potential GPU memory overflow. Any of these issues can
cause a marked slowdown in training speed and increase the
overall cost of training.

Recent advancements in DL systems like Alpa [49] fully
automate distributed training [21, 26, 49] to tackle this prob-
lem. However, their approaches have limited applicability in
many contemporary clusters for DL training, which comprise
various GPU generations and different numbers of GPUs per
node [16, 44]. Over the last decade, GPUs have undergone
consistent improvements, with FLOPs per dollar doubling
every two years [12]. As GPU manufacturers continue to
develop and roll out new lines of GPUs (e.g., NVIDIA Black-
well [2]), we anticipate a more pressing need for efficient
automatic parallelism in clusters with heterogeneity in not
only types of GPUs but also the number of GPUs per node.

Concretely, we aim to address two main challenges over-
looked by existing systems in practice. First, the search space
and methodology of automatic parallelism is currently overly
simplistic, frequently leading to sub-optimal plans, and thus
needs to be comprehensively expanded. The diverse com-
puting capabilities of different GPUs demand a more fine-
grained exploration of model and data partitioning across the
GPUs. Second, more attention should be paid to striking a
right balance between speed and thoroughness while explor-
ing this complex, newly expanded search space. This ability,
which has not been much studied before, is particularly in-
dispensable in shared, non-dedicated clusters where resource
allocation is neither predetermined nor static [5, 30]. In such
scenarios, any promising approach to automatic parallelism
must promptly identify the most effective plan to avoid leav-
ing allocated GPUs idle for a long time.

In this paper, we present Metis, a system designed to auto-
mate distributed training on a variety of GPU types. Our key
design principle in tackling the first challenge is unraveling in-
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trinsic details about these diverse GPUs into core components
to jointly optimize automatic parallelism. Metis maintains
all possible execution scenarios on heterogeneous GPUs, al-
lowing its profiler to precisely profile necessary performance
metrics based on the comprehensive GPU information. Fur-
ther, Metis is equipped to generate all possible combinations
of device groups within a GPU cluster while accommodating
both homogeneous and heterogeneous GPU compositions.
So, Metis can effortlessly determine whether a device group
consists of heterogeneous GPUs or not, which is essential for
its cost estimator and parallelism planner to accurately assess
model partitioning and parallelism strategies across device
groups with various GPU combinations. It is worth noting
that previous methods were only able to represent informa-
tion about a single type of GPUs in device groups that always
consist of the same number of GPUs within a group. Such
methods cannot be suited for our target scenarios.

As the planner explores the hetero-aware search space
larger than the search space on homogeneous GPUs, the sec-
ond challenge emerges due to the high overheads involved in
examining the huge search space and profiling the required
metrics. Metis reduces such overheads by harnessing char-
acteristics of DL models and profiling only the required in-
formation. Metis estimates the execution time and memory
usage of the composition of layers only with profiled metrics
for a few layers of a model (e.g., skipping repetitive layers
and reusing the metric of a single layer for the repetitive ones).
Metis also uses its own memory estimation model to measure
the memory usage for the composition of layers with fewer
profiling overheads. In exploring search space, Metis devel-
ops a new algorithm that efficiently prunes large search spaces
by filtering out similar combinations of device groups while
preferring data parallelism over tensor parallelism within a
stage and balancing data and layers with capacity-aware load
balancing across heterogeneous GPUs.

We have implemented Metis on top of Alpa [49] with 3K+
lines of codes. We evaluate Metis with three DL models by
varying their sizes on diverse sets of heterogeneous GPUs
(V100, P100, and T4 on GCP). Our evaluations show that
Metis improves the training performance by 1.05 ∼ 8.43×
with less profiling and searching overheads compared to the
state-of-the-art work (AMP and Alpa). Moreover, Metis finds
near-optimal solutions while significantly reducing profiling
and searching overheads compared to the oracle search and
full profiling.

We make the following contributions in this paper:

• We investigate existing work for automating distributed
DL training and find that it is not optimized for hetero-
geneous GPU environments.

• We design and implement Metis, that automatically finds
efficient parallelism plans on heterogeneous GPUs, by
optimizing the profiler, cost estimator, and planner alto-
gether.

• We develop a new efficient search algorithm to find near-
optimal plans and a cost model with a significant reduc-
tion of searching and profiling overheads.

• We thoroughly evaluate Metis with diverse sets of het-
erogeneous GPUs and various models and show the ef-
fectiveness of Metis.

2 Distributed Deep Learning Training

Training a deep learning (DL) model involves processing
a minibatch of training data through a sequence of layers
in order during forward pass (FP) and then in reverse order
during backward pass (BP). At the core of this bidirectional
FP and BP is calculating gradients for the model parameters,
which are used to update the model. This process is repeated
until the model reaches convergence.

In distributed training, the layers of the model and their as-
sociated input data are partitioned across multiple GPUs. This
mainly serves two purposes: (1) to alleviate memory pressure
on each GPU, and (2) to accelerate FP-BP operations by pro-
cessing them across GPUs in parallel. The performance of
distributed training can exhibit significant variations based on
strategies taken for parallelism, including parallelism meth-
ods, device grouping, and load balancing. These strategies
represent crucial dimensions in the search space, with specific
configurations defining a parallelism plan for model training.
This section gives a comprehensive overview of these aspects.

2.1 Parallelism Methods

Our work focuses on three popular forms of parallelism –
pipeline parallelism (PP), data parallelism (DP) and tensor
parallelism (TP) – although other methods like sequence-
parallelism [23] or ZeRO [34,35,42] do not restrict optimizing
automatic parallelism. Each of these methods allows for a
distinct trade-off between computation, communication, and
memory costs, as follows:

• Pipeline parallelism. PP divides the layers of a model
into multiple stages, each comprising consecutive layers, and
assigns these stages to groups of GPUs, known as device
groups. Thus, during model training in PP, data communi-
cation is predominantly limited to adjacent layers spanning
different stages. Current PP methods optimize GPU utiliza-
tion by feeding data into stages on different device groups in
a pipelined manner [13, 28, 29]. These methods typically split
a minibatch into smaller micro-batches and orchestrate their
execution through the pipeline.

PP proves to be effective for training large DL models with
memory demands that far exceed the capacity of a single GPU.
Nonetheless, the way PP execution is structured introduces a
notable trade-off between memory and communication costs.
In general, increasing the degree of PP elevates system-wide
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communication because it operates more stages, but it simul-
taneously reduces memory pressure on each device group
hosting a smaller individual stage. Note that, at times, the en-
tire model forms a single stage that occupies a single device
group comprising all GPUs.

• Data parallelism. Several parallelism methods exist to
exercise GPUs in a device group, with DP being one of them.
DP allows each GPU to train the same layers in a stage using
a disjoint subset of input data [8,51]. As the training proceeds
with local data on different GPUs within the DP group in
parallel, the gradients obtained upon finishing FP and BP
should be all-reduced to synchronize model parameters.

For DP, there is a trade-off between computation and com-
munication costs. The communication cost increases as the
number of GPUs in the DP group grows. But, this makes the
time required for each GPU to complete FP and BP decrease,
thanks to the efficiency gains from processing data with a
higher degree of data parallelism.

• Tensor parallelism. TP is another complementary way to
effectively utilize GPUs in a device group. Unlike the data-
level partitioning seen in DP, TP partitions the layer weights
and computations of a stage into non-overlapping smaller
chunks called tensors [31, 38]. These tensors are then dis-
tributed across multiple GPUs that constitute the TP group.
Each GPU handles a specific tensor for every split layer and
participates in synchronous communication with other GPUs
in the group. The goal is to merge outputs while collabora-
tively training each split layer in the stage, ensuring consis-
tency throughout the FP and BP. Overall, a higher TP degree
alleviates memory pressure and computation time on each in-
dividual GPU, but it also accompanies higher communication
overhead among the GPUs in the TP group.

2.2 Device Grouping

In a broader context, a device group can vary in size and
consist of either homogeneous or heterogeneous GPUs. For
instance, consider a scenario with two GPU nodes: one with
2×V GPUs and the other with 2×T GPUs, where V and T
represent GPUs with different computing powers. Assuming
the number of GPUs is in powers of 2, this cluster allows for
the formation of six distinct device groups: (V), (T), (V, V), (T,
T), (V, T), and (V, V, T, T), where a PP stage can be executed
on any of these device groups.

Due to the diverse GPU compute capabilities, execution
times for a stage configured with specific DP and TP settings
can exhibit significant differences across device groups, even
when they are of equal size. Furthermore, the range of poten-
tial device groups will expand in practical scenarios where
nodes host widely varying numbers of GPUs or when the
cluster includes many different GPU types. Current systems
do not fully account for such diversity in device groups. We
delve deeper into this topic in § 3.

2.3 Load Balancing

Traditional DL frameworks like Megatron-LM [38] and Deep-
Speed [36] support uniform partitioning of data and layers,
which is tailored for homogeneous GPUs. However, non-
uniform partitioning becomes more valuable when it comes to
heterogeneous GPUs as they differ in computing and memory
capacities. This ability enables the workload to be distributed
across GPUs in a fine-grained manner, thereby minimizing
GPU idle times.

Load balancing that steers this non-uniform partitioning
broadly falls into two categories: layer load balancing, which
manages the layer distribution across PP stages, and data load
balancing, which adjusts local batch sizes across GPUs in a
DP group. Consider the latest NVIDIA H100 GPU [3]; its
superior computing power makes it more apt for handling a
larger quantity of layers or data than older models like the
V100 GPU [1] during stage execution. Importantly, this load
balancing needs to factor in not only the computational power
but also the memory capacity of each GPU type, given diverse
memory specifications – e.g., 80 GBs for H100 vs. 16 or 32
GBs for V100. Therefore, a desirable load balancing strategy
should faithfully accommodate actual resource usage patterns
across all device groups and GPU types.

3 Current Limitations for Auto-Parallelism

Several DL systems, including Alpa [49], AMP [21], and Gal-
vatron [26], have been developed to simplify the complex task
of manually finding efficient distributed training plans. Their
key technique is automating this process through the analyti-
cal comparison of a large number of training plans, using cost
models and profiled metrics that enable a timely estimation
of each plan’s execution time. To achieve this, these systems
must effectively explore a huge search space encompassing
parallelism, device grouping, and load balancing strategies.

The search algorithms proposed so far normally operate
at two nested levels. At the higher level, they evaluate all
possible combinations of PP stages and device groups, which
are derived from how the model’s layers and available GPUs
are partitioned. Once a stage is assigned to a device group,
the search algorithm shifts to the next level, where it seeks the
most effective mix of intra-stage parallelism. This involves
varying DP and TP degrees within the stage, while taking
into account the constraints posed by the device group (e.g.,
number of GPUs, GPU memory capacities).

Despite their effectiveness in simpler hardware settings,
current search algorithms are prone to miss highly preferable
parallelism plans in GPUs with non-identical specifications.
Due to their homogeneous GPU assumption in their system
design, key performance metrics (e.g., execution time and
memory usage for each layer) of heterogeneous GPUs are
profiled but abstracted as homogeneous ones. For instance,
Alpa [49] and AMP [21] simply take an average of the com-
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Figure 1: The normalized execution time of a minibatch of
models on various GPUs.

puting power across GPUs and operate on the premise that all
GPUs have this averaged compute capacity *.

This approach, while simplifying the system design, hin-
ders systems to explore parallelism plans with diverse device
groups and load balancing strategies and introduces the fol-
lowing limitations:

1) Limited search space in device groups. Previous search
algorithms often encounter challenges in effectively explor-
ing device groups, frequently resulting in the generation of
sub-optimal parallelism plans. This issue arises mainly be-
cause the optimal plan for nodes equipped with heterogeneous
GPUs may not be within the search space designed to ex-
plore. For instance, in the scenario described in § 2.2 with
two GPU nodes, conventional methods consider only three
device groups (as opposed to six originally appeared in § 2.2):
(R), (R, R), (R, R, R, R), where R denotes an averaged abstract
GPU representing both V and T. If V and T have dramatically
different computing powers, the overall performance is likely
to vary significantly depending on which stage is assigned
to which GPU type. To illustrate, we measure the average
time required to process a single minibatch for three different
DL models, using the largest minibatch size that fits into the
GPU memory of single-GPU device groups. The results in
Fig. 1 show that all models exhibit considerable variability in
execution times across the three types of GPUs we examined.
Nonetheless, previous methods do not account for such alter-
nate device placements and ordering in the exploration scope
due to their dependence on the abstracted GPU model R.

Another major problem is that most automatic parallelism
approaches are tailored to support sets of GPUs configured in
a two-dimensional M×N grid, where M is the number of GPU
nodes and N is the number of GPUs per node. This design
inherently limits their adaptability to GPU sets that deviate
from this two-dimensional structure, such as those with an
uneven number of GPUs per node. Such heterogeneity is quite
common in modern GPU clusters where a fraction of GPUs
within a node are being used, with a preference for high-end
GPUs than low-end GPUs, which results in different numbers
of available GPUs per node and GPU type. Addressing all

*Alpa can average the computing power of heterogeneous GPUs by turn-
ing off the use_hlo_cost_model option [41] with high profiling overheads.

2:10 4:8 6:6 8:4 10:2

Layer Partitioning Ratio

0.4

0.6

0.8

1.0

N
o
rm

a
li
z
e
d

E
p
o
c
h
 T

im
e

Alpa's choice

(a) GPT

4:12 6:10 8:8 10:6 12:4

Layer Partitioning Ratio

0.4

0.6

0.8

1.0

Alpa's choice

(b) WideResNet

Homogeneous (V100:V100) Heterogeneous  (V100:T4)

Figure 2: The normalized epoch time in various layer load
balancing on two GPUs (homogeneous: two V100 GPUs,
heterogeneous: one V100 and one T4). Regardless of homo-
geneous or heterogeneous GPUs, Alpa chooses the same layer
load balancing strategy due to its homogeneous GPU abstrac-
tion (uniform layer balancing across GPUs).

these limitations is crucial for automatic parallelism to be
prevalently applied to the diverse GPU environments of today.

2) Limited load balancing. Treating all GPU resources as ho-
mogeneous also makes it difficult to properly balance compu-
tational loads across GPUs. This issue is highlighted in Fig. 2,
which presents a simple layer partitioning scenario in PP.
Given V100 and T4 GPUs, an optimal strategy would be to
allocate more layers to the V100, considering its superior com-
puting power compared to the T4. Existing load balancing
approaches, however, cannot accomplish this level of specific
layer allocation because they are unable to differentiate quali-
tatively between these two types of GPUs. Moving forward,
there is a need to automatically find the most efficient load
balancing strategy while expanding the exploration space to
include all parallelism methods, i.e., PP, DP, and TP.

3) Time-consuming search algorithm. A larger search
space increases the chances of discovering better parallelism
plans, yet it also requires longer exploration times. Given
the complexities introduced by resource heterogeneity, which
broadens the scope of device groups and load balancing fac-
tors, we put our emphasis on spending short time in navi-
gating a search space of a large size. Such a strategy makes
the search tractable, especially in shared GPU clusters where
resources are dynamically allocated from a server pool and
require timely utilization for high cluster efficiency. To realize
this goal, the focus should be on including potential plans that
critically impact performance, while omitting those with little
to no impact.

Table 1 provides a comparative analysis of search space pa-
rameters for two popular systems, AMP [21] and Alpa [49], in
the first and the second columns, respectively. Key challenges
in current search strategies are to explore extensive combi-
nations of stage-device group pairs, intra-stage parallelism
(including data load balancing) within a stage, and layer load
balancing across stages. For instance, all possible combina-
tions of assigning stages to the device groups are SΠG (S: the
number of stages, G: the number of possible device groups),
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Figure 3: An overview of how Metis automates parallelism plans on heterogeneous GPUs.

which extremely increases when the number of heterogeneous
GPUs and layers is large. Moreover, each stage can have
diverse plans of intra-stage parallelisms and layer load bal-
ancing. As an example, Alpa examines detailed parallelism
plans for each stage using an integer linear programming (ILP)
solver that optimizes fine-grained operator-level partitioning *.
This approach creates a substantial search space and consid-
erable search overheads. In addition, a common technique for
layer partitioning evaluates all layer distribution possibilities
across stages through dynamic programming [21, 49], with
time complexity reaching around O(L3), where L is the layer
count. Based on our empirical findings (§ 5.4), search and
profiling times can easily exceed tens of hours for a cluster
comprising just 16 GPUs.

4 Metis Design

Metis is designed to address the above limitations to find bet-
ter parallelism plans for distributed training on heterogeneous
GPUs. Specifically, Metis is aware of the characteristics and
the performance behavior of DL training on heterogeneous
GPUs to optimize various components such as the search
space, searching algorithm, and profiler with cost model.

In this section, we first illustrate how Metis expands the
existing search space to find better plans (§ 4.1). Next, we
present a Metis’s efficient search algorithm that reduces huge
search overheads on the expanded search space (§ 4.2) and
also show an efficient profiling and cost estimation (§ 4.3).
The overview of Metis design is illustrated in Fig. 3.

4.1 Hetero-Aware Search Space
Metis strategically prevents the overall search space from
exploding by deliberately simplifying the exploration of intra-
stage parallelism, while expanding the search scope for device
groups and load balancing. This decision is reasonable con-
sidering the performance impact of heterogeneous devices

*Alpa groups a set of operators as a layer.

Params/System AMP Alpa Metis

# of stages (pp) O(
√

D) O(L) O(L)
Device group O(1) O(N+log(M)) O(N*

(N+log(M)))
Intra-stage paral-
lelism (dp, tp)

O(
√

D) O(L*N*M
*(N+log(M)))

O(D/L)

Load balancing
(data)

No No O(
√

gbs)

Load balancing
(layer)

O(L3) O(L3) O(L3)

Number of micro-
batches

O(
√

gbs) Manual O(
√

gbs)

Table 1: Comparison of full search space for auto-parallelism.
L is the number of layers, gbs is the global batch size, D is
the total number of GPUs, N is the number of nodes, and
M is the number of GPUs per node. The existing system
supposes D =N ×M, whereas Metis supports heterogeneous
GPU clusters with different numbers of available GPUs per
node. In Alpa, L is determined by grouping operators, and
L is also configurable in Alpa. Metis develops an efficient
search algorithm (§ 4.2) to avoid the full search of the huge
search space.

with different device groups and load balancing strategies as
shown in § 2.2. For intra-stage parallelism, Metis takes the
middle-ground between AMP and Alpa, allowing different
intra-stage parallelism across stages like Alpa but exploring
the possible degrees of DP and TP for each stage, with their
product (i.e., the two degrees multiplied) compatible with the
GPU count of the device group running the stage.

Expanding device groups. Metis can create all possible com-
binations of device groups in heterogeneous GPUs by select-
ing k number of GPUs for each node (0 ≤ k ≤ K, K is the
number of available GPUs of each node). Picking several
GPUs from each GPU node to compose a device group may
generate non-unique combinations of device groups that have
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the same computing, memory, and network configuration.
To generate unique combinations of device groups that can

differ in the execution time of a stage, Metis compares the
following three factors: 1) the number of GPUs (the size of a
device group), 2) the types of GPUs, and 3) the node of GPUs
in the device groups. The number of GPUs and their types
as well as the node of GPUs can distinguish the different
computing and memory capacity and network configuration.
First, two device groups are inherently different if they have
different numbers of GPUs because each device group will
have different computing and memory capacity. When the
size of device groups is equal, Metis compares the number of
each type of GPU between device groups. If these are also
the same, Metis then finally compares the node of each type
of GPU to distinguish network configurations. According to
the above rules, various device groups are generated. For
instance, even if there is one V GPU in a node and three T
GPUs in another node that breaks the two-dimensional cluster
assumption of the existing work, Metis can compose a device
group with (V, T, T, T).
Load balancing. For layer load balancing, Metis reduces the
search time by exploiting the characteristics of DL models
and modeling the execution time in our cost model, which
is further illustrated in § 4.2. For data load balancing, Metis
differentiates the size of micro-batches across heterogeneous
GPUs. For instance, when the micro-batch size is bs, and
there are N heterogeneous GPUs within a device group, Metis
explores diverse sizes of micro-batches:∑N

i=1 mbsi = bs where
mbsi is the size of a micro-batch of i-th GPU (1 ≤mbsi). The
i-th GPU then processes mbsi number of input data during
forward and backward computations, which requires different
amounts of computations with different sizes of mbs.
Number of micro-batches. Metis also explores different
numbers of micro-batches because a micro-batch size * is an
important factor for GPU utilization and amount of memory
used in the GPU. As modifying a global batch size may affect
convergence, we keep the global batch size while exploring
the micro-batch sizes. Large micro-batch size can improve
the GPU utilization and FLOPs, but it may cause an out-of-
memory (OOM) exception in a GPU. Such OOM exceptions
can be exacerbated in heterogeneous GPUs where each GPU
has different memory capacity.

4.2 Hetero-Aware Cost and Search

Although Metis judiciously defines the hetero-aware search
space by reducing the size of intra-stage parallelism and con-
sidering the expanded device groups and load balancing, the
number of possible candidate plans to explore is still large,
which prevents a fast decision of automatic distributed train-
ing. This quick decision is important in dynamic resource

*A micro-batch size is calculated by dividing a mini-batch size by the
number of micro-batches.

environments where resource configurations may dynami-
cally change for efficient cluster resource scheduling [22], or
crucial for cluster-level schedulers to find resource-efficient
GPU configurations before running a job on heterogeneous
GPUs [15, 45].

4.2.1 Cost Model

To compare costs across plans, Metis finds a solution that
minimizes the following cost (T∗) based on the 1F1B sched-
uler [28] and existing work [21, 49]:

T∗ =min{
S

∑
i=1

ti+(B−1) ⋅ max
1≤ j≤S

t j +DPall} (1)

where S is the number of stages, B is the number of micro-
batches, and DPall is the communication overhead of DP
all-reduce. ti is the latency of executing i-th stage, and the
time includes both forward and backward computations as
well as communication overheads across stages (for PP) and
layers (for TP).

Metis calculates the PP and DP communication cost using
a cost model that considers network bandwidth heterogene-
ity. The PP cost is derived by dividing the activation size
by the inter-stage network bandwidth, while the DP cost is
determined by dividing the total size of the model synchro-
nization parameters by the slowest network bandwidth within
the DP group. In contrast, Metis profiles the TP communi-
cation cost because the frequent and fine-grained TP com-
munications—occurring between operators compared to PP’s
inter-stage and DP’s post-batch timing—might lead to less
precise cost estimations. Since TP typically occurs within
a single node to mitigate high communication costs, hetero-
geneities in network bandwidth between nodes do not impact
TP communication costs within a node.

All stages fully use the entire GPUs in the heterogeneous
GPU cluster, so summing up all GPUs of executing stages
will lead to the same shape of the GPU cluster.

4.2.2 Search Algorithm

Algorithm 1 illustrates Metis’s hetero-aware search algorithm
to minimize T∗ in Equation 1. The search algorithm con-
sists of three parts: 1) pruning combinations of stage-device
mapping, 2) navigating efficient intra-stage plans with OOM
detection based on the trade-off of computing and memory
between DP and TP, and 3) balancing layers across stages and
data within the stage with capacity-aware allocation. Once
possible plans are generated from the search, Metis calculates
the estimated time (cost) of each plan and finds the best plan
that leads to the minimum estimated cost (Lines 16—19).
1) Pruning combinations of stage-device group mapping.
Metis iterates all possible number of stages as well as the
number of micro-batches B, but due to a huge search space
(§ 3), Metis filters out combinations of stage-device group
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Algorithm 1: Hetero-Aware Search Algorithm

1 Input: GBS: Global batch size, CE: CostEstimator
2 Output: The best plan (BestPlan) that minimizes T∗

3 T∗ ←∞, BestPlan← None
4 for B, Stages, DeviceGroups in EnumerateWithPruning do
5 IntraPlan = {}, MbsPlan = {}, LayerPlan = {}

/* Initialize intra-stage plans */
6 for i from 0 to len(Stages) - 1 do
7 S= Stages[i], Dg = DeviceGroups[i]
8 DP = Dg.GetSize()
9 IntraPlan[S] = (DP, 1)

10 MbsPlan[S] = [GBS / B / DP] * DP
11 if Dg.IsHetero() then
12 MbsPlan[S] = DataLB(S,MbsPlan)

13 StagePlan = [IntraPlan, MbsPlan, LayerPlan]
14 LayerLB(B,Stages,StagePlan)

/* DFS Search */
15 Plans = (DFS(0,StagePlan,[]))
16 for Plan ∈ Plans do

/* Check valid plans */
17 if len(Plan) == len(Stages) then
18 if T∗ > CE(Plan) then
19 T∗ ←CE(Plan), BestPlan← Plan

20 Function DFS(i, StagePlan, Plan)
21 Plans = [], S← Stages[i]
22 if i >= len(Stages) or InvalidIntraPlan(i, StagePlan) then
23 Return [Plan]

24 IntraPlan, MbsPlan, LayerPlan← StagePlan
25 if DetectOOM(S, StagePlan) then
26 CheckpointCurrPlans()

/* Increase TP */
27 IntraPlan[S]← (IntraPlan[S][0]-1, IntraPlan[S][1]+1)
28 MbsPlan[S]← DataLB(S,MbsPlan)
29 LayerPlan[S]← LayerLB(S,LayerPlan)
30 Plan[i] = [(IntraPlan[S], MbsPlan[S], LayerPlan[S])]
31 Plans.Extend(DFS(i, StagePlan, Plan))

/* Restore and adjust layers */
32 RestoreCheckpointedPlans()
33 LayerPlan[S]← LayerLB(S,LayerPlan)
34 if DetectOOM(S, StagePlan) then
35 Return []

36 P = [(IntraPlan[S], MbsPlan[S], LayerPlan[S])]
37 Plans.Extend(DFS(i+1, Plan + P))
38 Return Plans

pairs based on the following key observations with constraints.
Such constraints are knobs that reduce the overhead of search-
ing, when the number of stages and GPUs is large.

First, the variance of size of each stage is not significantly
large in optimal solutions. For instance, it is not practical to
compose two stages with one GPU and 128 GPUs, respec-
tively (high variance of stage sizes) for optimal performance.

Therefore, Metis limits the exploration of device groups with
a lower bound of the size of device groups. To vary the lower
bound in terms of number of stages, Metis explores device
groups with sizes only larger than NGPUs

S ∗(1−var) where var
is a parameter to limit the exploration of high variant size of
device groups.

Second, similar combinations of stage-device pairs lead
to similar performance. As an example, when assigning 5
stages (s1 → s2, ..., → s5) into 5 device groups (g1, ..., g5)
where g1, ..., g4 have one same GPU and g5 has two GPUs,
we should permute all possible combinations of stage-device
group pairs, which results in binom(5,1) = 5 combinations*.
However, assigning g5 to s2 or s3 (across neighbor stages)
will not significantly change the performance if the number
of stage is large or model layers are repeated. To reduce
search overheads, Metis then filters out such combinations by
grouping two device groups with smallest size into a pair and
iterating this process until the permutation length is less or
equal to the maximum permutation length. For instance, when
the permutation length of device group is reduced from 5 to
3, Metis groups (g1, g2) into g′1, and (g3, g4) into g′2, creating
G′ =[g′1, g′2, g5]. Metis then permutes the elements of G′,
which results in binom(3,1) = 3 combinations, and assigns
stages to the device groups in order for each combination.
2) Navigating intra-stage plans with DFS-order. For each
combination, Metis efficiently navigates intra-stage paral-
lelisms with an observation that increasing DP (data paral-
lelism) is better than T P (tensor parallelism) within a stage in
terms of reducing the execution time [38, 49] (Lines 20—39).
This is because the communication overhead of T P is usually
larger than that of DP due to the frequent synchronization
of activations. Therefore, Metis first initializes all intra-stage
plans by maximizing the DP degree (Lines 8—9). However,
DP increases the memory pressure of a GPU more than T P,
which may cause an OOM exception. Therefore, Metis must
consider both the execution time and memory pressure to
search near-optimal plans.

Keeping this characteristic in mind, Metis develops a DP-
f irst DFS search algorithm that explores the data-parallelism
option first and searches other options in the DFS order when
there is a possibility of OOM exceptions. Optimistically, if
there is no OOM, Metis just performs DP within a stage
without exploring other plans. However, if the current stage
is estimated to raise an OOM exception based on profiled
metrics, Metis explores other plans to mitigate the OOM
(Lines 25—35). Metis estimates the memory usage of each
layer based on the profiled metrics as described in § 4.3 and
calculates the stage memory by summing up the estimated
memory of layers within the stage. When the estimated stage
memory exceeds its device memory capacity, Metis detects
the stage as OOM.

To reduce the memory pressure of the OOM stage, Metis

*Selecting a pair of (si, g5) and assigning the remaining stages into the
remaining same device groups.
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explores two pathes. The first one is to adjust the intra-stage
plan, by increasing the T P degree while decreasing the DP
degree (Lines 27—31). The second one is to rebalance layers
while retaining the current intra-stage plan (Lines 32—35).
Metis distributes the layers of the OOM stage (si) across
remaining stages proportionally to the computing capability
until OOM does not happen in si.

3) Capacity-aware load balancing. Metis balances layers
across stages based on computing capacity-aware balancing
(Line 10 and 29). For load balancing, Metis estimates 1) the
capacity of each stage running on a device group and 2) the
load of layers. For 1), Metis estimates the throughput of exe-
cuting a model according to the intra-stage plan of its assigned
stage, assuming there is a single stage for executing a model
(e.g., S=1 in Equation (1)). For 2), Metis estimates the execu-
tion time of each layer. Based on 1) and 2), Metis balances
the load of layers across stages proportional to the capacity
of each stage.

This computing capability-based allocation reduces the
search cost of load balancing and finds efficient allocation
strategies without exhaustive search like dynamic program-
ming. During the DFS search, when the intra-stage plan is
adjusted, the capacity has been changed according to the intra-
stage plan. Metis therefore rebalances layers according to the
adjusted capacity of stages to maximize throughput (Line 29)
in the adjusted intra-stage plan. Estimating the throughput of
a device group according to the intra-stage plan is based on
the execution time of layer profiling, which is described in
the following section.

4.3 Cost Estimation with Profiling

To run the search algorithm, Metis must estimate the execution
time and cost (latency) of layers on a stage, the communica-
tion overhead, and the peak GPU memory usage on the stage
to detect OOM exceptions.

There is a trade-off between metric profiling and cost es-
timation in terms of accuracy and profiling overheads. The
more we profile the actual metrics, the more the estimated
cost is accurate. However, it is infeasible to profile all re-
quired metrics for the cost and memory estimation. Naive
profiling requires executing all possible candidates of layer
execution on various stage-device pairs. Therefore, building
a cost model to estimate the execution time and the peak
memory usage with a few profiled metrics is required.

For reducing the profiling overhead of execution time (and
throughput), Metis harnesses two observations: one is that the
execution time of layers can be estimated by summing up the
execution time of individual layers with a negligible error, and
the other one is that the execution time of repetitive layers can
be estimated with profiling a single layer. Therefore, Metis
profiles the execution time of individual layers for each GPU
type with various t p degree and micro-batch sizes (mbs),

Model / # of GPUs 4 8 16 32

GPT-3 1.3B 2.6B 6.7B 15B
MoE 1.3B 2.4B 10B 27B

Wide-ResNet 1B 2B 4B 6.8B

Table 2: The size of model parameters used in our evaluation.

while skipping repetitive layers:

Time(Lt p
mbs(i, j)gpuA) =

j

∑
i

Time(Lt p
mbs(i)gpuA)

where L(i, j) is the composition layers from i-th to j-th layers.
In contrast with layer execution time, the peak memory us-

age of layers cannot be accurately estimated by summing up
the memory usage of individual layers, because the runtime
engine may reuse input/output buffers during the execution of
layers with shared variables [14]. Therefore, it is required to
profile the memory usage of the composition of layers to esti-
mate peak memory use. However, profiling all compositions
of layers for each stage requires O(L2) number of profiling,
which leads to high profiling overheads. Metis reduces the
memory profiling overheads with the following heuristics to
bind the time complexity to O(k⋅L), where k is the maximum
number of composition layers. First, Metis profiles the mem-
ory usage for one GPU type and reuses them for different
types of GPUs, since the required memory of executing layers
is the same regardless of GPU types. Second, Metis profiles
the memory usage of the following layers:

Mem(Lt p
mbs(i, j)) ∀0 ≤ i ≤ L−k and i ≤ j ≤ i+k

With the measured memory, Metis can estimate the memory
usage of layers as follows *:

Mem(L(i, j)) =Mem(L(i, j−1))+Mem(L( j))

Mem(L(m)) =
n=m−1

∑
n=m−k

(Mem(L(n,m))−Mem(L(n,m−1)))
k

In addition to reducing the memory profiling, Metis profiles
representative numbers of t p and mbs, such as t p = 1,2,4,8
and mbs = 1,2,4,8,16... When non-profiled t p or mbs (e.g.,
mbs = 7) is required to estimate the cost and memory while
searching plans in Algorithm 1, Metis estimates the metrics
with the combination of the profiled t p and mbs. As an exam-
ple, for mbs = 7, Metis sums the profiled results of mbs = 1,
mbs = 2, and mbs = 4.

5 Evaluation

We answer the following questions in this evaluation:

*We omit t p and mbs for simplicity.
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Figure 4: Performance results on diverse environments with three different types of GPUs. x-axis is the total number of GPUs
with Table 3 GPU configuration. Asterisk mark (*) illustrates the best GPU combination for each model. OOM errors are denoted
with X marks.

• When and why does Metis improve performance com-
pared to the state-of-the-art (SOTA) work in various
GPU environments and diverse models (§ 5.2)?

• What is the effectiveness of Metis’ load balancing and
searching algorithm compared to the SoTA (§ 5.3)?

• How much does Metis reduce profiling and search over-
heads compared to the oracle and SOTA (§ 5.4)?

5.1 Environment and Setup
We have implemented Metis on top of Alpa [49]. We use the
Alpa runtime to profile and execute distributed training be-
cause Alpa runtime supports different intra-stage parallelisms
between stages with cross-mesh resharding. We have imple-
mented Metis’s cost model, profiler, and searching algorithm
on Python 3.9 with around 3,000+ lines of code. Although
we execute the plan on the Alpa runtime, Metis’s planner
is agnostic to the runtime and can be easily integrated with
other runtimes if the runtime supports different intra-stage
parallelisms across stages.
Heterogeneous GPU environment. We conduct experi-
ments on the Google Cloud Platform (GCP) and use three
types of GPUs: NVIDIA P100 16GB, T4 16GB, and V100
16GB to emulate heterogeneous GPU clusters and environ-
ments. We vary the number of GPUs per node for each type
of GPU to evaluate Metis on diverse heterogeneous GPU

environments. In the main evaluation, we vary the number
of GPUs per node from 2 to 8. For each node, we set the
CPU and the main memory specification to avoid the CPU
or memory bottleneck. In detail, we allocate x CPU cores
(x = 4∗number_of_gpus) and use n1-standard machines where
the machine memory is proportional to the number of GPUs
(memory size = 7.5 GB * number of CPU cores). The inter-
connect network bandwidth between nodes is 16 Gbps.
Models and baselines. To show that Metis finds effi-
cient plans regardless of model architectures, we use three
large-scale models: GPT-3 [4], GShard Mixture-of-Experts
(MoE) [20], and Wide-ResNet [47] because each model has
different model architectures. We will illustrate how Metis
decides plans according to the different models. The config-
uration of the models used in our evaluation is described in
Table 2. As baselines, we use two state-of-the-art systems for
automating distributed training, AMP [21] and Alpa [49].

5.2 Performance Comparison
This section shows the performance improvement of Metis
compared to AMP and Alpa. To fairly compare parallelism
plans without the difference between execution runtime, we
port the best plan generated from AMP to be executed on the
Alpa runtime.

To show the effectiveness of Metis in diverse heteroge-
neous GPU environments, we compose two types of GPUs:
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Number of GPUs 4 8 16 32

GPU A 1x2 1x4 2x4 4x4
GPU B 1x2 1x4 2x4 4x4

Table 3: The GPU setup of Fig. 4. NxM represents N nodes
with M GPUs for each node. For instance, with 4 numbers of
total GPUs in Fig. 4, each type of GPU has one node with
two GPUs (1x2).

P100 and T4, T4 and V100, and P100 and V100, increasing
the number of each type of GPU from 2 to 8. We have also
evaluated systems on environments consisting of three types
of GPUs (V100, T4, and P100) but omitted the results as we
observed similar behavior to using two types of GPUs.

Here, we set up various environments: uniform GPU com-
position where different nodes have the same number of GPUs
(§ 5.2.1), and non-uniform GPU composition where different
nodes have different numbers of available GPUs (§ 5.2.2). In
addition to the heterogeneous GPUs, we also evaluate systems
on homogeneous GPUs and observe that Metis achieves com-
parable performance compared to the existing work, which
represents that Metis also covers auto-parallelism on homo-
geneous GPUs.

5.2.1 Uniform GPU composition

Fig. 4 shows the performance of each system in the uniform
number of GPUs per node with three models and with var-
ious combinations of GPUs. The configuration of GPUs is
explained in Table 3.

Across all experiments, Metis outperforms AMP and Alpa
on average 2.65× and 2.02×, respectively, finding more ef-
ficient parallelism plans on diverse resource environments.
Overall, Alpa has better performance than AMP because Alpa
explores a more broader search space than AMP as illustrated
in Table 1. The performance behavior shows different patterns
with respect to different combinations of GPUs and model ar-
chitectures. We provide a detailed analysis of the performance
in the following sections.

Different combinations of GPUs. Regardless of the systems,
the performance of distributed training for each model is the
highest in the GPU combinations that have the maximum ag-
gregate computing capacity based on Fig. 1. As an example,
the performance of T4+V100 is the highest in all cases for
GPT-3 and MoE because the combination of T4 and V100
GPUs leads to the maximum aggregate compute capacity for
executing the models, whereas WideResNet has the best per-
formance on P100+V100 combination of GPUs. GPT-3 and
MoE have the similar performance pattern as they have simi-
lar model architectures with a slight difference: they consist of
repeated Transformer layers, but MoE uses sparsely activated
feed forward networks called experts instead of the dense

ones to conditionally leverage a subset of parameters [37].
In GPT-3, the performance on T4+V100 is 3.23× and 3.14×
higher than the performance on P100+T4 and P100+V100,
respectively. This performance enhancement is proportional
to the aggregated computing power of GPUs.

The performance improvement of Metis compared to the
existing work also changes according to the different combi-
nations of GPUs. Specifically, as the compute power gap be-
tween different types of GPUs increases, Metis shows a larger
speedup compared to Alpa because the degree of load imbal-
ance increases as the compute power gap between GPUs in-
creases. For instance, Metis improves the performance 1.66×,
1.69×, and 2.15× compared to Alpa in P100+T4, T4+V100,
and P100+V100 combinations, respectively, where the perfor-
mance gap between P100 and V100 is the highest.
Different model architectures. Depending on model archi-
tectures, we have found that various factors contribute to the
performance gains against other baselines, which shows the
validity of our heterogeneity-aware search space.

For GPT-3, Metis outperforms other baselines 1.89× on
average across all GPU combinations. The major factor for
performance improvement is Metis’s hetero-aware load bal-
ancing. While both AMP and Alpa partition layers across
heterogeneous GPUs as if the GPUs are homogeneous, Metis
assigns more layers to the faster GPUs by being aware of
GPU heterogeneity. In detail, in T4 + V100 16 GPU experi-
ment of GPT-3 (Fig. 4 (a)), Alpa selects a plan that consists of
four stages, each of which contains 6 layers, but Metis parti-
tions layers into four stages where 36% of the total layers are
assigned to two stages mapped to slower T4 device groups.

In MoE, not only the layer load balancing but also other
factors contribute to the performance gap between Metis and
the existing work. For example, in T4 + V100 16 GPU experi-
ments, although Metis and Alpa have the same layer partition-
ing ratio between T4 and V100 (both allocate 75% of layers
to V100), Metis outperforms Alpa by 1.32×. In this case, Alpa
allocates layers into three stages where the first stage consists
of a device group with 4xV100 and 4x T4 GPUs, and its intra-
stage plan is DP-only (DP=8). Within the device group, T4
GPUs become straggler in DP all-reduce due to their uniform
batch split, leading to the idle time of V100 GPUs. On the
other hand, by being aware of heterogeneous GPUs, Metis
avoids stragglers within a device group by partitioning layers
into five stages, each of which is executed on a device group
consisting of a single type of GPU within the same node.
In this way, without the need for additional load balancing
within a stage, the plan of Metis outperforms that of Alpa.

For Wide-ResNet, Metis shows the largest performance
gaps against the baselines compared to GPT-3 and MoE. The
average performance gap is 2.93× on Wide-ResNet, while it
is 1.89× and 2.42× on GPT-3 and MoE, respectively. Unlike
GPT-3 and MoE, both of which are homogeneous models
with repeated Transformer layers, WideResNet is a heteroge-
neous model where each layer has distinct compute demands.
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Figure 5: Performance on non-uniform GPU compositions
where the number of GPUs for each GPU type varies.

Specifically, our profiling results show that the rear layers
of the model have higher compute demands: among 50 lay-
ers, the layer execution time (forward + backward) increases
steeply after the 40th layer. Such heterogeneity in the model
architecture complicates the planning in the presence of GPU
heterogeneity, and therefore, existing work does not find effi-
cient parallelism plans.

In the WideResNet experiments with 8 T4+V100 GPUs,
Metis shows 3.66× and 2.66× speedup against AMP and Alpa,
respectively. The best plan of AMP only uses data parallelism,
as the 2B Wide-ResNet model fits in a single GPU for both
T4 (14 GB) and V100 (15 GB). In contrast, Metis partitions
the layers into two stages, assigning compute-intensive rear
layers to faster V100 GPUs. Each stage uses full DP (DP=4)
in this plan. The speedup of 3.66× against AMP indicates
that even for models that fit into a single GPU, DP-only plans
can be suboptimal and leveraging pipeline parallelism with
proper load balancing can be more favorable. Additionally,
we have observed that Alpa leverages the same parallelism
plan it finds as optimal in a homogeneous GPU environment,
which is suboptimal in heterogeneous settings.

5.2.2 Non-uniform GPU composition

We also evaluate Metis on environments where each node has
a different (non-uniform) number of GPUs. We use the GPT-3
model with P100 and V100 GPUs for this evaluation. Fig. 5
shows the experimental results on scenarios where either
weak (P100 in (a) and (c)) or strong (V100 in (b) and (d))
GPUs are dominant in the cluster. Considering the compute
power gap between V100 (≃ 7.9 x P100) and P100, plans
on environments where stronger GPUs (V100) are dominant
show superior performance for all baselines ((a) < (b) and
(c) < (d) in Fig. 5). Throughout the experiments, AMP and
Alpa show far less throughput than Metis (on average 9.1×
and 2.7× speedup, respectively).

One of the main factors that improves the performance on
non-uniform GPU composition is that Metis can compose
diverse device groups in such environments, whereas others
have a M×N node constraint. As a result, Metis can compose
the non-uniform number of GPUs with a smaller number of
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Figure 6: A microbenchmark to evaluate the effect of load
balancing. Metis supports hetero-aware load balancing for
both data and layers, represented as HA-DP and HA-PP in
this graph, respectively (rightmost). Whale [17] only supports
hetero-aware data load balancing (middle).

nodes than AMP and Alpa, which can mitigate the network
bottleneck across nodes during distributed training. For this
evaluation, we use nodes with one GPU, two GPUs, and four
GPUs. Consequently, Metis is able to compose Fig. 5 (a)
and (b) GPU compositions only with three nodes—1x1 A,
1x1 B, and 1x2 B*—whereas AMP and Alpa are inevitable
to compose the Fig. 5 (a) and (b) GPU compositions with
four nodes—1x1 A and 3×1×B, to satisfy the M ×N node
constraint (M is 4 and N is 1). Similarly, Metis uses 4 nodes
to compose Fig. 5 (c) and (d) GPU compositions (using 1x1
A, 1x1 B, 1x2 B, and 1x4 B GPUs), whereas AMP and Alpa
require 8 nodes—1x1 A and 7x1 B GPUs (M is 8 and N is 1).

In this evaluation, regardless of the environment, AMP em-
ploys only one (Fig. 5 (a)) or two stages (Fig. 5 (b) – (d)),
where all two-stage plans have uniformly split layers and all-
DP intra-stage plans. Considering either four or eight nodes
are used in AMP experiments, such device group and stage
configuration could incur huge overheads for inter-node DP
communication through inter-node network bandwidth. Dif-
ferently from AMP, Alpa splits stages in the node boundary
for most cases (e.g., 4 stages in (b) and 7 stages in (d), where
4 and 8 nodes are used, respectively), minimizing inter-node
communication of DP and TP communications. However,
Alpa still partitions layers without consideration of different
heterogeneous GPUs as the planner harnesses the average of
the profiled metrics, limiting its performance. On the other
hand, Metis reduces the number of stages with three nodes
for (a) and (b), and with four nodes for (c) and (d) to fur-
ther minimize PP communication overheads while harnessing
intra-stage parallelism across high intra-node network band-
width. Moreover, Metis flexibly balances loads considering
the compute capacity regardless of whether strong or weak
GPUs are dominant.

5.3 Effectiveness of Load Balancing
We show the effectiveness of our search algorithm in terms
of load balancing of both layers and data with a microbench-
mark. Our microbenchmark consists of two baselines: (1)

*A and B is either V100 or P100
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hetero-unaware load balancing like Alpa [49] that balances
the load across GPUs assuming homogeneous GPUs (left-
most in Fig. 6) and (2) hetero-aware data partitioning like
Whale [17] that leverages memory-constraint load balancing
algorithm (middle in Fig. 6).

To show the effectiveness of both layer and data load bal-
ancing, we create two stages, each of which has heterogeneous
GPUs. The first stage contains 1x1 V100 + 1x1 T4 GPUs,
and the second stage includes 1x1 T4 + 1x1 P100 GPUs. We
use the GPT-3 350M model with a global batch size of 16 for
the microbenchmark, and the model is partitioned into two
stages. In this case, Metis can balance the micro-batch size
within the first stage and layers across the stages based on the
computing capacity of heterogeneous GPUs, the execution
cost of layers, and the peak memory usage.

Fig. 6 shows the effectiveness of both layer and data load
balancing. Compared with Whale’s and Alpa’s approach,
Metis achieves 19% and 22% performance gains, respectively.
In the heterogeneous environment where both intra-stage and
inter-stage device composition can be heterogeneous, load
balancing of both data and layers is required to prevent strag-
glers from slowing down the training. To this end, the load
balancing of Whale [17] for heterogeneous devices is limited.
Their load balancing considering heterogeneous compute and
memory is only confined to load balancing within a single
stage (intra-TaskGraph load balance in their term), which is a
subset of our algorithm. In the meantime, their inter-stage load
balancing (inter-TaskGraph in their term) does not balance
layer allocation but focuses on device placement consider-
ing uneven memory demands of each stage. In contrast, our
layer allocation mechanism generally covers such cases while
guaranteeing balanced load distribution of layers across het-
erogeneous GPUs.

5.4 Profiling and Searching Overhead

Due to the huge search space, it is crucial to reduce the over-
head of profiling metrics and searching plans. Table 4 shows
the normalized profiling and searching overheads of Oracle
compared to Metis, where Oracle profiles all possible combi-
nations of layer execution time and memory usage for each
stage and GPU type, while exhaustively searching all possible
plans. Compared to Oracle, Metis significantly reduces these
costs by orders of magnitude. In the evaluation on 4∼64 GPUs,
Metis spends 12.5, 13.3, 15.5, 18.2, and 18.9 minutes for pro-
filing and 0.1, 0.5, 1.7, 58.9, and 600 seconds for searching
in the experimental environment. Since Metis profiles repet-
itive layers only once for each GPU type, the profiling time
does not significantly increase as the number of GPUs and
the model size increases. The search time in Metis compared
to Oracle is also significantly reduced as the number of in-use
GPUs increases: from 17× to 5M×. This effectiveness is pri-
marily because Metis filters out a large number of inefficient
plans. In addition, the profiling and searching costs of Metis

Profiling Search
#GPUs Oracle Oracle Metisα

4 96 17 17
8 228 108 108

16 270 480 327
32 > 3171 > 29K 790
64 > 3294 > 5M 1100

Table 4: The normalized profiling and search overheads of
Oracle and the variant of Metis for GPT-3 with T4+V100
GPUs (normalized by Metis). To break down the effectiveness
of Metis’s searching techniques, we compare the search cost
of Metis without capacity-aware load balancing and DP-first
DFS search (Metisα) by exploring full layer-partitioning plans
and intra-stage parallelism. Metis prunes stage-device group
pairs with 0.5 var and the maximum permutation length 10.

are significantly lower than those of Alpa, while finding better
plans on heterogeneous GPUs. For example, on 32 and 64
GPUs, Alpa spends 105 and 209 minutes on profiling and 141
and 240 minutes on searching, respectively, which requires
5.8× and 11× more profiling time and 143× and 24× more
searching time than Metis.

To validate the efficacy of each core technique in Metis, we
also compare Metis with a search algorithm that applies only
the pruning of stage-device group pairs, which is represented
as Metisα. The effectiveness of stage-device pair pruning is
estimated by comparing Oracle and Metisα. In 4 and 8 GPUs,
Metisα explores all possible stage-device pairs like Oracle.
However, in ≥16 GPUs, Metisα filters out inefficient plans
such as high variance number of GPUs per stage (e.g., stage 1
has one GPU, but stage 2 has 8 GPUs) and similar combina-
tions (e.g., in 16 GPUs with 15 number of stages, permutations
of 14 stages with one GPU and one stage with two GPUs),
which are not selected as the best plan. Similarly, comparing
Metisα with Metis shows the effectiveness of capacity-aware
load balancing and efficient intra-stage planning with DP-first
DFS searching.

Even with this massive reduction in profiling and searching
overheads, Metis is still able to find near-optimal plans. We
compare the performance of plans generated by Metis and Or-
acle in Table 4. For the experiments with 4 and 8 GPUs, Metis
outputs the same parallel plan as Oracle. For the experiment
with 16 GPUs, layer partitioning of the two plans slightly
differs, leading to a marginal performance gap. Specifically,
both systems use four stages where only TP is used for the
intra-stage plans. Due to memory constraints, increasing the
DP degree within each stage causes an OOM exception in this
experiment. Regarding the layer partitioning, the first stage
of Metis contains one more layer than that of Oracle while
having one less layer in the last stage. In 32 and 64 GPUs, we
could not automatically find the optimal plan within tractable
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time because it takes a huge amount of time for profiling and
searching (more than 200 hours). Instead, to check whether
there exist better plans than the one selected by Metis, we
manually adjust the Metis’s plan multiple times by slightly
changing the layer load balancing, the number of stages, stage-
device group pairs, and so on. However, most of them lead
to slower performance than Metis, while only few of them
lead to slightly higher performance than Metis (around 5%).
These results indicate that even if Metis filters out the best
plan, Metis finds near-optimal plans similar to the best one.
Importantly, such difference is immediately overshadowed by
the huge profiling and search overhead of Oracle, and we will
further discuss the difference in § 7.

6 Related Work

DNN training on heterogeneous infrastructure. There are
several works to execute a distributed DL training job on het-
erogeneous infrastructure [6,9,10,17,25,32,46]. Some of the
work has a limited search space, such as exploring only DP
and TP [46,48], only TP [39], or batch-size adjustment [17,50]
on heterogeneous GPUs, without the exploration of PP and
layer partitioning across stages that is the important factor for
distributed training of large-scale models. SDPipe [25] devel-
ops a framework for dynamic heterogeneity where peak GPU
FLOPS are dynamically changed during runtime. HPH [10]
and HetPipe [32] optimize DP and PP on heterogeneous GPUs
(without TP), but they do not explore how to partition layers
across stages and other parameters. Metis is the first system
that fully searches all parameters described in § 4.1 and au-
tomates parallelism plans with an efficient search algorithm
and cost model based on lightweight profiling.

Auto-tuning parallelism on homogeneous GPUs. We al-
ready compare AMP [21] and Alpa [49] in our evaluation.
There are several works to automate tensor or operator-level
parallelisms on homogeneous GPUs [18, 40, 43]. Merak [19]
automates 3D parallelism for giant foundation models, and
Galvatron [26] also automates DP, TP, and PP in homogeneous
GPUs for Transformer-based models. In contrast, Metis’s au-
tomatic decision is agnostic to models and is optimized on
heterogeneous GPUs with a huge search space.

Cluster schedulers on heterogeneous GPUs. To reduce the
waiting time of training jobs in heterogeneous GPU clus-
ters, existing work proposes optimizing cluster-level sched-
ulers [5, 11, 15, 24, 27, 30, 33, 45]. Sia [15] and Hare [7] opti-
mize the scheduling of multi-jobs and as well as optimizing
intra-job parallelisms (e.g., increasing data parallelism) on
heterogeneous GPU clusters. All of these works execute a
single deep learning job on homogeneous GPUs while pack-
ing multiple training jobs as much as possible within the
heterogeneous GPU clusters, which is orthogonal to Metis.

7 Discussion
Dynamic plan adaptation. Metis finds near-optimal paral-
lelism plans within a short time using an efficient search
algorithm, but there is a possibility of missing the best plan
compared to the Oracle approach. Although we have observed
that the plan selected by Metis has negligible differences from
the best plan selected by the Oracle approach in our evaluation,
and the actual training time of one epoch shows negligible
differences, such differences may lead to a large gap in the
total training time when the number of epochs is significantly
large. In the future, we can address this problem with the
dynamic adaptation of plans. To quickly execute distributed
training, Metis can run the efficient search algorithm and find
a near-optimal decision. During the training, Metis can run
the exhaustive search algorithm to find the best plan and ad-
just the near-optimal plan to the best one if they are different.
The dynamic adaptation is orthogonal to Metis, which is an
interesting topic for future work.
Various GPU types and multi-vendor GPUs. Although
this work evaluates Metis on single-vendor (NVIDIA) het-
erogeneous GPUs with three different types (P100, V100,
and T4), we believe that Metis generally finds better paral-
lelism plans than others in various GPU environments be-
cause heterogeneity-aware device grouping and load balanc-
ing based on profiling are generally applicable regardless of
tje types of GPUs. In multi-vendor GPU environments, a ma-
jor limitation of training a model is compatibility. Supporting
compatibility between different vendor GPUs is another inter-
esting and promising research topic, which is orthogonal to
Metis.

8 Conclusion

We design and implement Metis, a complete system for au-
tomating distributed deep learning training by exploring a vast
hetero-aware search space, including the number of stages,
diverse device groups, intra-stage parallelism, load balancing
strategies, and the number of micro-batches. To efficiently
explore the expanded search space, Metis develops a new
efficient search algorithm, which explores diverse resource
trade-offs between parallelism plans with capacity-aware load
balancing and DP-first strategies. Metis further reduces the
profiling overheads by exploiting the characteristics of mod-
els with a cost model for estimating the execution time and
the memory usage of layers. Our evaluation shows that Metis
finds better parallelism plans than state-of-the-art with lower
profiling and searching overheads, improving the training
speed by 1.05 to 8.43×.
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