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Abstract
Existing external graph processing systems face challenges

in terms of low I/O efficiency, expensive computation over-
head, and high graph algorithm development costs when run-
ning on emerging NVMe SSDs, due to their reliance on com-
plex loading and computing models that aim to convert numer-
ous random I/Os into a few sequential I/Os. While in-memory
graph systems working with memory-storage cache systems
like OS page cache or TriCache, offer a promising solution
for large graph processing with fine-grained I/Os and easy
algorithm programming, they often overlook the specific char-
acteristics of graph applications, resulting in inefficient graph
processing. To address these challenges, we introduce Chunk-
Graph, an I/O-efficient graph system designed for processing
large-scale graphs on NVMe SSDs. ChunkGraph introduces
a novel chunk-based graph representation model, featuring
classified and hierarchical vertex storage, and efficient chunk
layout optimization. Evaluations show that ChunkGraph can
outperform existing external graph systems, as well as in-
memory graph systems relying on general cache systems,
running several times faster.

1 Introduction

Graph computing has gained attention recently [12]. Various
in-memory graph processing systems, including Ligra [46],
GraphOne [23], and GAP [3, 4], have been proposed for ef-
ficient graph analysis. However, as graphs grow larger, they
often exceed the memory capacity of a single machine, posing
challenges for large-scale graph analysis. Nevertheless, emerg-
ing storage devices like NVMe SSDs offer high-performance
I/O at a low price [10], making them a cost-effective option
for scaling large graph computing.

Several external graph processing systems have emerged
in the past decade [1, 24, 25, 45, 52, 60], with the goal of
improving the performance of large-scale graph analysis on
earlier-generation external storage devices like HDDs and
SATA SSDs. These devices experience performance degrada-
tion due to extensive random accesses [25]. To address this

∗Shuibing He is the corresponding author.

issue, the systems use a subgraph-based iterative model to di-
vide the graph into subgraphs, store them on disk, and process
them sequentially and iteratively. However, this approach re-
sults in high computation overhead and limited I/O utilization
due to synchronization and coarse-grained I/O [54]. While
these trade-offs are acceptable for slower storage devices like
HDDs, they are no longer cost-effective for NVMe SSDs,
which offer higher bandwidth and comparable performance
for both random and sequential access [27]. Recently, various
techniques have been proposed to improve graph process-
ing performance on fast SSDs, including reducing the graph
access granularity to minimize the I/O amount [7, 29] and
scheduling the graph access pattern to maximize IO band-
width utilization [8, 18, 19, 22].

Despite the advancements made in modern external graph
systems, those utilizing the subgraph-based iterative model
still face challenges. One issue is the low I/O utilization, as
visiting a vertex’s neighbors often requires loading an entire
subgraph. For instance, when executing the BFS algorithm on
the YahooWeb graph, the average I/O utilization is observed to
be lower than 2% when using the latest external graph system
Blaze [22]. Another challenge is the additional computational
overhead resulting from synchronization between subgraphs.
Evaluation results show that running the BFS algorithm on
the YahooWeb graph with Blaze necessitates 154 times more
CPU instructions than the popular in-memory graph system,
Ligra [46]. Additionally, utilizing these external graph sys-
tems leads to expensive algorithm development costs, as users
are compelled to reimplement their graph algorithms based
on the subgraph-centric computation model.

From another aspect, combining a concise in-memory
graph system with a memory-storage cache system, such as
the operating system (OS) page cache [38] or TriCache [10],
presents an opportunity to facilitate large-scale graph process-
ing with easy programming. For example, the OS’s page cache
can cache some SSD data in DRAM through swapping [37]
or memory mapping [36] techniques, typically managing user
data in a page-centric caching model with 4 KB page granu-
larity. Users can use an in-memory graph system like Ligra,
to conduct large graph processing by mapping graph data to
SSD files, without any code modification on graph algorithms.
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However, existing memory-storage cache systems are not
tailored to efficiently support external graph processing, fac-
ing issues such as the mismatch between the 4 KB page
granularity and the varying vertex sizes, resulting in low I/O
utilization for small vertices with few neighbors, and addi-
tional metadata management costs for large vertices with
numerous neighbors. Additionally, even for vertices that fit
within a single page, they may still encounter the vertex cut
problem where a vertex is divided across two adjacent pages,
resulting in duplicated I/O costs. These limitations hinder
the efficiency of existing memory-storage cache systems in
supporting external graph processing.

To address the limitations in both the subgraph-based iter-
ative model and the page-centric caching model, and enable
efficient large graph processing on modern storage devices
like NVMe SSDs, we propose a novel chunk-based graph
representation model. Building upon this model, we develop
an I/O efficient and user-friendly graph system named Chunk-
Graph, with the objective of enhancing the I/O efficiency
of graph data without requiring changes to the computation
mode of existing in-memory graph systems. In summary, our
main contributions are as follows.

• We perform a thorough analysis of existing single-
machine large graph processing solutions, encompassing
out-of-core graph systems and in-memory graph sys-
tems working with memory-storage cache subsystems.
We identify and assess their limitations in supporting
large graph processing on modern storage devices.

• We propose a novel chunk-based graph representation
model and devise a classified and hierarchical vertex
storage strategy. This strategy elaborately organizes dif-
ferent vertices into aligned chunks, thereby improving
I/O efficiency for small vertices and reducing redundant
metadata management for large vertices. Simultaneously,
it effectively mitigates the vertex cut problem and elimi-
nates unnecessary chunk I/Os during graph accesses.

• We introduce a chunk layout optimization method, which
utilizes a reordering and combination-based approach
to arrange vertices within each chunk based on the char-
acteristics of the real-world graph structure. This op-
timization aims to enhance graph access locality and
minimize fragment space within each chunk. Addition-
ally, we adopt a differentiated chunk access optimization
to accommodate various graph access patterns.

• We have implemented the prototype of ChunkGraph and
conduct extensive experiments to demonstrate its effi-
ciency. Experimental results show that ChunkGraph can
run several times faster than existing external graph sys-
tems, as well as in-memory graph systems relying on
general cache systems, attributed to the reduced I/O over-
head and computation overhead.

The rest of this paper is organized as follows. In §2, we first
introduce existing out-of-core graph processing systems and
memory-storage cache subsystems used for large-scale graph
processing in external storage, and analyze their limitations
when processing large-scale graphs using modern storage
devices. In §3, we present the design and implementation
details of our proposed system, ChunkGraph. In §4, we show
the evaluation results of ChunkGraph compared with existing
external graph systems and in-memory graph systems relying
on general cache systems. Finally, §5 reviews related work
and §6 concludes.

2 Background and Motivation

In this subsection, we introduce the subgraph-based iterative
model used in existing out-of-core graph processing systems,
and explore its limitations when used with modern storage de-
vices. We also discuss the memory-storage cache subsystems
and their limitations in supporting large graph processing.

2.1 Out-of-Core Graph Processing Systems
Subgraph based iterative model. To reduce random ac-
cesses on older external storage devices like HDDs and SATA
SSDs, many external graph processing systems have adopted
a subgraph-based iterative loading and computing model to
convert numerous random I/O operations into a smaller num-
ber of sequential I/O operations. In this model, all vertices are
divided into disjoint intervals, and each interval is associated
with a subgraph, which stores all edges whose source vertices
fall within this interval. Graph computing is performed in
an iteration-based manner. In each iteration, the subgraphs
are sequentially loaded from disk into memory, and the com-
putations related to the loaded subgraph are executed. This
process continues for multiple rounds until all computation
is completed. As shown in Figure 1(b), the subgraph-based
iterative loading and computing model is exemplified using
the case graph from Figure 1(a). The case graph is divided
into three subgraphs, namely g0, g1, and g2, which are stored
on disk. When the graph application requires accessing the
neighbors of vertices v1 and v3, we load the whole subgraphs
g0 and g1 sequentially into memory for computation.

To improve graph processing performance on faster SSDs,
semi-external graph systems such as FlashGraph [7] and
Graphene [29] keep vertex states in memory and only store
edge data on SSDs, which reduces frequent disk accesses
for querying vertex states. They also optimize I/O efficiency
by employing fine-grained disk I/Os, such as loading graph
data in a series of 2 MB blocks, to minimize the total I/O
amount. Additionally, systems like GraFBoost [19], VPart [8],
Blaze [22], and RealGraph+ [18] schedule the graph access
pattern to maximize IO bandwidth utilization, through tech-
niques such as vertex sorting, graph partitioning, value prop-
agation using in-memory concurrent bins, and workload al-
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(a) Case graph (b) Subgraph based iterative model (c) Page-centric memory caching model

Figure 1: Graph accessing in existing out-of-core graph processing systems and memory-storage cache systems.

location. RealGraph+ also emphasizes increasing IO band-
width by implementing SPDK-based optimization strategies
to reduce the time costs of issuing IO requests, idle state wait-
ing, and block processing. Note that these out-of-core graph
systems still utilize the subgraph-based iterative model for
external graph analysis.

Limitations when using modern storage devices. The
subgraph-based iterative loading and computing model effec-
tively reduces random disk I/Os but comes with drawbacks
such as low I/O efficiency, expensive computation overhead
and high development cost. While these costs are justified for
slow external memory devices like HDDs that suffer from sig-
nificant performance degradation due to random accesses [25],
they become performance bottlenecks on emerging storage
devices like NVMe SSDs, which have similar performance
for random and sequential access [27].

Firstly, the subgraph-based iterative model suffers from
low I/O efficiency. It requires loading entire subgraphs, even
if only a small portion is needed, such as when visiting neigh-
bors of a single vertex. To demonstrate this, we conducted ex-
periments using Graphene [29] and Blaze [22] on the Friend-
ster [11] and YahooWeb [58] datasets. We measure the I/O
utilization during each BFS level, and show the results in
Figure 2. In the initial levels of BFS, where more vertices
are accessed, the I/O utilization is relatively higher. However,
in subsequent iterations, the I/O utilization is very low, as
few vertices are actually in need. On the Friendster graph,
the average I/O utilization is only 6.32% for Graphene and
12.41% for Blaze, respectively. On the YahooWeb graph, the
average I/O utilization is even lower, below 2%, for both sys-
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Figure 2: I/O utilization during each BFS computation level.

tems. RealGraph+ [18] attempts to improve I/O efficiency by
emphasizing data locality within subgraphs, thereby reducing
the number of subgraphs accessed. However, it overlooks the
intra-page fragments, leading to excessive read amplification
for specific vertices. Additionally, RealGraph+ predominantly
optimizes out-graph considerations, neglecting in-graph ac-
cess for directed graph algorithms like betweenness centrality
and PageRank, which leads to read amplification issues aris-
ing from random in-graph access.

Secondly, the subgraph-based iterative model also intro-
duces extra computing overhead due to synchronization be-
tween subgraphs. To demonstrate this, we execute BFS algo-
rithm on the YahooWeb graph using Blaze and Ligra-mmap,
i.e., in-memory graph system Ligra working with OS’s page
cache by mapping graph data to SSD files. Ligra-mmap com-
pleted the computation in just 5.33 seconds, whereas Blaze
took 46.18 seconds. We further counted the number of CPU
instructions during these executions and found that Blaze re-
quired 154 times more CPU instructions than Ligra-mmap.
Similar results were also observed for other graphs and algo-
rithms (see §4.2). This high computing overhead significantly
contributed to the poor performance of Blaze.

Furthermore, using these external graph systems incurs ex-
pensive algorithm development costs. User applications are
required to implement their graph algorithms based on the
subgraph-centric model and are responsible for managing
data interaction between computation and I/O. Even experi-
enced programmers need to invest significant effort in writing
new algorithms after understanding the working model and
interface of the respective systems. For example, implement-
ing the BFS algorithm in the in-memory system Ligra only
requires 34 lines of C++ code, while Blaze requires 75 lines,
and Graphene even necessitates a total of 763 lines. This sig-
nificantly increases the cost for user to utilize these systems,
and similar situations arise for other graph algorithms.

2.2 Memory-Storage Cache Subsystems
Page-centric memory caching scheme. Page cache [38]
is a cache mechanism in the Linux operating system that
caches pages read from storage devices into memory. It is
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implemented in system kernels and transparent to user ap-
plications through the swapping [37] or memory mapping
techniques. With page cache, we can leverage a concise in-
memory graph system like Ligra to perform out-of-core graph
processing without any code modification. During the compu-
tation process, page cache loads the corresponding adjacency
list into DRAM when accessing a vertex, and caches recently
accessed graph data in DRAM using the LRU cache replace-
ment strategy [35], typically at the granularity of 4 KB pages.
Figure 1(c) shows this page-centric memory caching model
for the graph in Figure 1(a). We store the vertex metadata,
including vertex degree and adjacency list pointer, in memory,
while maintain all adjacency lists in disk through file mmap.
Then, the page cache will be utilized to facilitate the transfer
of adjacency list data between memory and disk. Considering
the same example of accessing the neighbors of v1 and v3, we
totally need to load three pages into memory for computation.

TriCache [10] is a recently introduced cache mechanism
that operates as a user-space block cache utilizing a virtual
memory interface and constructed on SPDK. One of its key
benefits is the reduction of substantial kernel overhead as-
sociated with cache misses. TriCache also implements the
page-centric memory caching model to effectively handle user
data. Through the integration of TriCache with in-memory
graph systems, it becomes feasible to conduct out-of-core
processing of large graphs without algorithm code rewriting.

Limitations for large graph processing. The page-centric
memory caching scheme used in existing memory-storage
cache systems is not well-suited for graph processing, since
it overlooks the unique characteristics of graphs. Graph algo-
rithms typically access graph data at the vertex level, whose
sizes vary greatly for different vertices in real world power
law graphs [6, 13, 53]. These vertex accesses do not align
well with the management granularity of 4KB pages. This
mismatch results in issues such as low I/O utilization for
small vertices with few neighbors and redundant metadata
management costs for large vertices with massive neighbors.
For example, when profiling the real-world graph Yahoo [58],
it was found that 51.17% of non-sink vertices have only one
or two in-neighbors, occupying a small amount of storage
space (4 or 8 bytes). However, accessing these small vertices
requires reading a full 4KB page from SSD, resulting in low
I/O utilization. On the other hand, a small percentage (0.09%)
of non-sink vertices have over 1024 in-neighbors, account-
ing for 58.44% of the total graph edges. The largest vertex
even has over seven million in-neighbors, occupying 7459
4KB-pages that are consistently accessed together, but may
be loaded or evicted separately by page cache, resulting in
complex and redundant metadata management.

Besides, even for vertices whose sizes fit in pages, they may
also suffer the vertex cut problem, in which a vertex smaller
than a page is placed across two adjacent pages, such as the
v3 and v5 shown in Figure 1(c). It also incurs twice the I/O
cost for these cut vertices. We further profile the YahooWeb

graph and find that among the vertices with in-degree in the
range of [3,1024], 9.73% of them are cut and placed across
two pages, and these cut vertices are present in 74.69% of
the total pages. This vertex cut problem further reduces I/O
efficiency and graph processing performance.

Summary. The elaboration provided above clearly demon-
strate that existing solutions do not fully leverage the capabil-
ities of modern NVMe SSDs to facilitate efficient and easy-
to-use large-scale processing. This motivates us to design a
new large graph processing model, aiming at enhancing the
graph I/O and computation efficiency without changing the
computation mode of existing in-memory graph systems.

3 Design of ChunkGraph

In this section, we begin with the main idea of our proposed
chunk based graph representation model, and provide an
overview of ChunkGraph. Subsequently, we delve into the
details of its key design techniques, including classified and
hierarchical vertex storage and chunk layout optimization.
Lastly, we introduce the prototype system implementation.

3.1 Main idea

Our aim is to enhance the I/O efficiency of graph data and en-
able effective and user-friendly large-scale graph processing
on modern storage devices such as NVMe SSDs. To achieve
this objective, we propose adopting a chunk-based graph rep-
resentation model. In contrast to the fixed-size page-centric
model, which uniformly manages different vertex data in 4KB
pages, our chunk-centric model meticulously organizes di-
verse vertex data of varying degrees into aligned chunks of
different sizes. This approach aims to enhance I/O efficiency
for small vertices while minimizing redundant metadata man-
agement costs for large vertices, addressing the mismatch
issues encountered with power-law graphs in the real world.

To further illustrate the above idea and analyze its benefits,
we still consider the example graph in Figure 1(a), and show
the data organization and I/O process of the chunk-centric
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Figure 3: Chunk based graph representation model.
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model in Figure 3. For very small vertices, e.g., v1, v2, we di-
rectly encode them in the metadata which is stored in memory,
thus completely avoiding the I/O overhead of these vertices.
For other vertices with different degrees in different ranges,
e.g., v0, v3, we organize them in different chunks of different
appropriate sizes, and ensure that one vertex does not straddle
two chunks through a whitespace based alignment chunk de-
sign. Take the same example mentioned above which needs to
access v1 and v3, v1 has only one neighbor which can be read
from DRAM vertex metadata, and v3’s neighbors are stored
in chunk 1, which may need to be read from SSD. So we only
need one page I/O in total. While the fixed-size page-centric
model requires three pages to be loaded (refer to Figure 1(b)).

To realize the aforementioned chunk-based graph repre-
sentation model and achieve efficient large-scale out-of-core
graph processing on modern storage devices such as NVMe
SSDs, we have developed ChunkGraph, a system focused on
I/O effectiveness and user-friendliness. ChunkGraph primar-
ily comprises two key components: classified and hierarchical
vertex storage and chunk layout optimization. The overall de-
sign of ChunkGraph is depicted in Figure 4. In the following
subsections, we present its design in detail.

3.2 Classified Hierarchical Vertex Storage
In this subsection, we introduce the classified and hierarchical
storage formats used in ChunkGraph, as shown in Figure 5.
To identify and index the vertex neighbors data for each ver-
tex, we allocate 12 bytes for each vertex to store its metadata
information. This consists of 4 bytes for its degree and 8
bytes for an index into its adjacency list, which aligns with
the approach used in existing graph processing systems [46].
Additionally, we store all vertices’ metadata in memory, as
this metadata is frequently accessed and typically fits in mem-
ory in most scenarios [7, 22, 29]. We classify all vertices into
three categories according to their degrees, namely (1) mini
vertex with degree equals one or two, (2) medium vertex with
degree in the range of [3,dθ], (3) super vertex with degree
larger than dθ, where dθ is set to adjust the size of a medium
vertex. We then utilize different data structures to store dif-

deg nb0 nb1

deg cid coff

deg sv_foff

⋯

⋯

⋯

⋯

Super vertices

Hierarchical chunks

Mini vertex

Medium vertex

Super vertex

𝑐!" 𝑐""

𝑐!! 𝑐"! 𝑐#! 𝑐$! 𝑐%! 𝑐&!

𝑏!'( 𝑏"'(

𝑐""

𝑏!! 𝑏"! 𝑏#! 𝑏$! A chunk

Figure 5: Differentiated data structures for different vertices.

ferent types of vertices. Next, we introduce the data structure
and access flow of each vertex type, respectively.

In-index mini vertex storing. For mini vertices with at
most two neighbors, we directly store them in the 8-byte ver-
tex index. It’s worth noting that this 8-byte vertex index is
stored in memory and is previously used to store the pointer to
the vertex adjacency list in existing works [7,22,29,46]. How-
ever, we utilize these 8-byte vertex metadata fields in different
ways for different vertices in our chunk based graph repre-
sentation model. Specifically for mini-vertices, we use these
8-byte vertex metadata fields to directly store their neighbors.
This simple but effective approach offers several benefits.
First, it allows us to save on the storage cost of these mini
vertices without incurring any additional overhead. Second, it
helps in avoiding the I/O overhead when accessing neighbors
of these mini vertices, as these metadata fields are always kept
in memory. Finally, we can retrieve the neighbor information
of these mini vertices in a single memory access, whereas all
existing graph systems require at least two memory accesses
(one for reading the vertex index pointers and one for looking
up neighbors based on the vertex index pointers), thereby im-
proving CPU cache performance. We also study its impact on
CPU cache load misses in §4.3.

Chunk based medium vertex storing. For medium ver-
tices with degrees limited in the range of [3,dθ], we organize
them into aligned chunks of appropriate sizes. We classify the
storage space into multiple segments, and each segment stores
a series of chunks of the same size, and each chunk consists
of the adjacency lists of multiple vertices. If the remaining
space of current chunk is too small to hold all neighbors of
next vertex, then we will leave this whitespace unused and
store the whole adjacency list of next vertex to next chunk.
In this way, we can ensure each medium vertex to be com-
pletely stored in only one chunk, and avoid extra chunk I/O
caused by the vertex cutting issues. We also study its impact
on number of accessed chunks in §4.3. To find the neighbors
of a medium vertex v, we use the 8-byte vertex index field to
store the 4-byte cid and 4-byte co f f , which denote the ID of
the chunk to which v belongs and the offset within this chunk
where v’s adjacency list resides, respectively.
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Hierarchical chunk implementation. Based on the chunk-
based storing strategy, the key question is how to set the chunk
size. As the smaller chunks can improve the I/O efficiency for
small vertices, while the larger chunks can hold larger vertices
inside a chunk. To accommodate different vertices with differ-
ent sizes, we propose the hierarchical chunk implementation
by putting medium vertices with different degrees to chunks
of different sizes. Figure 6 shows a four-layer hierarchical
chunk implementation, where the chunk sizes of each layer
are 4KB, 32KB, 256KB and 2MB, respectively. We store a
vertex to the lower-level chunk, if its adjacency list size is
smaller than the chunk size. For instance, the vertices with
degrees in the range of [3,1021] would be stored in L0 4KB-
chunks, the vertices with degrees in the range of [1022,7168]
would be stored in L1 32KB-chunks, the vertices with de-
grees in the range of [7169,58365] would be stored in L2
256KB-chunks, and the vertices with degrees in the range of
[58366,465920] would be stored in L3 2MB-chunks. Finally,
when we query a medium vertex v, we can first get its chunk
level according to its degree, then we get the corresponding
chunk according to its cid in that level, next we can get this
v’s adjacency list from its co f f within the chunk.

Threshold parameter settings. We have set a default
threshold of 2 for mini-vertices, considering that each ver-
tex’s metadata reserves 8B for its neighbor pointer on a 64-bit
machine, and each neighbor occupies 4B. If a vertex’s degree
does not exceed two, we store the neighbors within the field
of the 8B-pointer to minimize indirect access and storage
overhead. Regarding the value of dθ, our default setting is
determined by the chunk size and neighbor size. Assume that
the degree range for the l-th layer is denoted as [dl−1

θ
,dl

θ
], we

set the value of dl
θ

as sizeo f (chunkl)
sizeo f (vertex) −(dl−1

θ
+1). By recursively

applying this expression, we can derive the degree threshold
for each layer chunk. In the case of our four-layer chunk im-
plementation with sizes 4KB, 32KB, 256KB, and 2MB, we
compute dl

θ
values accordingly: 4KB/4B−(2+1)= 1021 for

the 4KB layer, 32KB/4B− (1021+1) = 7168 for the 32KB
layer, 256KB/4B− (7168+1) = 58365 for the 256KB layer,
and 2MB/4B−(58365+1) = 465920 for the 2MB layer. Our
empirical testing in §4 has shown stable performance with

(𝑣! indicate the adjacency list of vertex 𝑖)

Page 0 Page 1 Page 2 Page 3

𝑣! 𝑣" 𝑣#𝑣$

Page 4

𝑣% 𝑣&

(a) Naive chunk layout method

Page 0 Page 1 Page 2

𝑣! 𝑣" 𝑣#𝑣$ 𝑣% 𝑣&

(b) Reordering and combination based chunk layout method

Figure 7: Chunk layout optimization.

these default settings, and users have the flexibility to adjust
these parameters for optimal performance.

Hierarchical chunk buffer size setting. Based on the four-
layer chunk implementation, we need to manage four chunk
buffers in memory. An important problem is how to set the
chunk buffer sizes. To realize fairness, we adopt a chunk file
size proportional buffer size allocation strategy, which propor-
tionally divides the buffer space into four parts, according to
each layer chunk file size, and use them as the corresponding
chunk buffers. Specifically, suppose we have M bytes memory
for all chunk buffers, and the chunk file size of each layer is
S0, S1, S2 and S3, respectively. Then we allocate Si×M

S0+S1+S2+S3
bytes memory for the chunk buffer of layer Li. By default,
we set the total chunk buffer sizes M to be the total memory
space minus the memory size used to store vertex metadata
and algorithm information.

Huge page based super vertex storing. For super vertices,
their degrees are larger than dθ, which equals 465920 based
on the four-layer chunk implementation mentioned above. We
manage them using the Direct HugePage (DHP) technique
to reduce the TLB miss ratio since the sizes of these super
vertices are close to or larger than 2 MB. We use the 8-byte
vertex indexes to store the pointers to the adjacency lists of
these super vertices for querying them.

3.3 Chunk Layout Optimization

Problems of data locality and chunk fragmentation. Based
on the above-mentioned chunk-based vertex storing strategy,
a naive vertex layout method is to sequentially put each ver-
tex into the current chunk in ascending order of vertex ID.
In this way, vertices with consecutive IDs will fall in same
chunks. When loading a chunk from disk into memory, these
vertices in the same chunk may not be accessed simultane-
ously, leading to low intra-chunk data access locality and low
I/O utilization issues. Besides, in order to avoid the vertex cut
problem, if the remaining space of the current chunk is too
small to hold the entire adjacency list of the current vertex,
then we will leave this whitespace of the current chunk unused
and store the entire adjacency list of the current vertex to the
next chunk. Hence, there may be some whitespace fragments
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at the end of these chunks, as shown in Figure 7(a). Taking
our four-layer chunk implementation on the real-world graph
Yahoo Web [58] as an example, we observe that 95.24% of the
chunks have intra-chunk fragments, and these fragments oc-
cupy 10.06% of the storage space of all chunks. Please refer
to §4.3 for the detailed experiment setup and more experi-
ment results for each level of chunks. These fragments waste
valuable memory space and degrade cache performance.

Reordering based chunk layout optimization. To en-
hance the intra-chunk data access locality during graph pro-
cessing, our goal is to place vertices that are likely to be
accessed simultaneously into the same chunk. In graph al-
gorithms, when we access a vertex v, it is highly probable
that we will also access its neighbors or brother vertices, i.e.,
vertices linked to the same neighbor. Thus, we prioritize plac-
ing a vertex and its neighbors and brother vertices in the
same chunk. Drawing inspiration from [26, 56], we conduct
a reordering-based chunk layout optimization. This involves
reordering vertices and then placing consecutive vertices in
the new order into the same chunk. We store the out-graph
and in-graph separately. For illustration, we will focus on the
out-graph. The specific steps are as follows. (1) Sort all ver-
tices in descending order of their in-degrees to create a list P.
This is done as vertices with higher in-degrees generally have
a higher access probability of their out-neighbors. (2) Select
a vertex from the head of list P and use it as a root to conduct
a two-level BFS. Add the BFS-traversed vertices into another
list Q and meanwhile remove them from P. (3) Check the
total number of vertices in Q. If it is smaller than a predefined
threshold R, repeat step (2) by selecting another root vertex
for BFS traversing. If the total number of vertices in Q is
equal to or larger than R, add list P to the tail of list Q to form
the new order of all vertices. (4) Place consecutive vertices in
the new order into the same chunk. We set R = 95%×|V | by
default to make most vertices reordered.

Vertex-combination based fragment optimization. Mem-
ory fragmentation is a common problem, and there are many
classic system-level memory optimization strategies that can
alleviate the fragmentation problem, such as the buddy sys-
tem [34], slab allocation [39] and knapsack problem based
approach [2, 40], etc. However, in order to deal with various
general situations, these strategies have complex logic and im-
plementation, and the optimization effect in the case of graph
computing is also limited. Fortunately, we can use the char-
acteristics of the graph structure to optimize the intra-chunk
fragmentation problem. Specifically, in real-world power-law
graphs, the number of small vertices is usually much larger
than the number of large vertices [6, 13, 53]. In order to mini-
mize intra-chunk fragments and enhance cache performance,
we propose a reordering and combination-based in-chunk ver-
tex layout strategy, as depicted in Figure 7(b). This strategy
involves reordering all vertices, as previously illustrated, and
then prioritizing the selection of vertices from the head of

list Q to be placed in the current chunk. Additionally, small
vertices picked from P are used to fill the remaining fragment
space in the current chunk, effectively minimizing fragment
space in all chunks.

We point out that this vertex-combination based fragmen-
tation optimization method is very useful in reducing the
number and space occupation of intra-chunk fragments. Be-
cause the intra-chunk fragments generated by large vertices
can always be filled up by small vertices, and we have enough
small vertices to fill these fragments. Also taking the above-
mentioned Yahoo Web graph as an example, by adopting
this vertex-combination based fragmentation optimization
method, only 52.77% of the chunks have intra-chunk frag-
ments, and the space occupation rate of all intra-chunk frag-
ments is reduced to only 6.96%. For the remaining fragments,
if all whitespace fragments always appear at the end of chunks,
these whitespace fragments may always fall in the same cache
line group according to the multi-way set associative map-
ping in the last level cache, resulting in cache line wastes.
Therefore, we interleave the white space in different chunks
to alleviate this problem. Note that this reordering and com-
bination based chunk layout optimization is conducted in
preprocess. This reordering and combination based chunk
layout method can improve graph computing performance by
up to 2.54 times (refer to §4.3).

Differentiated chunk access optimization. Graph algo-
rithms commonly involve top-down and bottom-up access
patterns, corresponding to sparse access and dense access, re-
spectively. In the top-down sparse access pattern, only a small
portion of vertices is accessed. Our chunk-based design is ben-
eficial for grouping these accessed vertices in a small portion
of chunks, greatly improving graph processing performance,
such as BFS performance. However, in the bottom-up dense
access pattern, where most vertices are accessed in each itera-
tion, the access order generally follows the vertex ID order.
With our reordering and combination-based chunk layout de-
sign, vertices with consecutive IDs are distributed to different
chunks, leading to decreased performance in these situations.
To address this issue, we implement a differentiated chunk
access optimization. During preprocessing, for each vertex,
we generate a key-value pair < idx,vid >, indicating that the
idx position in the chunk is associated with the neighbors of
vertex vid. For bottom-up dense access pattern situations, we
traverse all vertices according to the vertex idx order, and then
look up the corresponding vid based on the above key-value
pair and use vid for graph algorithm computing. This align-
ment ensures that data access is in line with the chunk order,
improving I/O efficiency during graph computing.

3.4 Prototype System
Preprocessing. In preprocess, we create both the out-graph
and in-graph of a directed graph. Specifically, we first con-
vert the graph data from the original edge-list format to CSR
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format, as in existing graph systems. Next, we generate chun-
ked data from the CSR as described above. We then create
metadata for each vertex and store them in memory. The
preprocessing cost is also evaluated in §4.5.

Runtime vertex accessing. During the runtime of graph
computing algorithms, when we need to access the adjacency
list of a vertex v, we first get its degree d(v) from the ver-
tex metadata, and then perform different reading processes
according to its vertex type: (1) If d(v)≤ 2, i.e., v is a mini
vertex, then we directly read its neighbors from its index. (2)
If 3 < d(v)≤ dθ, i.e., v is a medium vertex stored in a chunk,
then we further get the chunk level according to d(v), and get
the cid and co f f from its index. Next, we get the chunk data
from the corresponding chunk buffer and read its neighbors
from the chunk, and meanwhile update the chunk hotness. (3)
If d(v)> dθ, i.e., v is a super vertex, then we read its neighbors
from the pointer stored its index.

Prototype system. We take the popular in-memory graph
processing system Ligra [46] as the baseline to implement
our prototype system, ChunkGraph. It’s important to note that
we only modify the graph storage and access components of
Ligra, while keeping the computing framework unchanged.
Consequently, the graph algorithms already implemented in
Ligra can directly run in our ChunkGraph without requiring
any code modifications. For the implementation of a new
graph algorithm, it only needs to call Ligra’s graph interface,
making it much more user-friendly than existing out-of-core
graph systems, as mentioned in §2.1. Furthermore, we empha-
size that our design is orthogonal to the computing models
proposed in other graph systems. This implies that we can
also implement our chunk-based graph representation model
to other graph systems to achieve further performance im-
provements or to cater to more general applications.

4 Evaluation

4.1 Experiment Settings

Test bed. All experiments are performed on a server with
two 2.10GHz Intel(R) Xeon(R) Gold 5318Y processors, each
with 24 physical cores with hyper-threading enabled (48 log-
ical cores). For memory, the server equips with 8× 16 GB
(128 GB) DRAM which are interleaved inserted to the mem-
ory slot. For storage, the server features two 4 PCIe-attached
Intel P5520 NVMe SSDs, each with a capacity of 3.84TB and
capable of 1M 4KB-read IOPS and 0.2M 4KB-write IOPS
in total. It also includes two 6TB HDDs for storing graph
datasets. Additionally, the server is equipped with 8 × 128GB
(1 TB) Intel Optane Persistent Memory 200 Series for com-
parison with PMEM-based graph system. The server operates
on Ubuntu 20.04.5 LTS with a Linux kernel of 5.4.0.

Comparison Systems. We choose Blaze [22] and Ligra-
mmap as our primary comparison baselines, as they corre-

spond to the representations of out-of-core graph processing
system and in-memory graph system working with memory-
storage cache subsystem. Blaze is the state-of-the-art, open-
source out-of-core graph system that introduces a pioneering
scatter-gather technique known as online binning. It enables
value propagation among graph vertices without requiring
atomic synchronization, leveraging the high-speed random
access capabilities of modern fast SSDs. It is important to
note that these techniques are orthogonal with our designs
in ChunkGraph. On the other hand, Ligra is a widely used
in-memory graph processing framework designed for shared-
memory architectures. It offers a suite of efficient graph al-
gorithms capable of handling large-scale graphs on a single
machine with multiple cores. Ligra-mmap is a variant of Ligra
that utilizes Linux’s mmap mechanism to map the graph data
files into the virtual memory space of the process, enabling
efficient out-of-core graph processing. These two baselines
were chosen to provide a comprehensive comparison across
existing advanced out-of-core graph processing solutions. Ad-
ditionally, we also compare with other out-of-core graph pro-
cessing solutions, including the semi-external graph system
Graphene [29], the persistent memory (PM)-based graph stor-
age system XPGraph [53], and Ligra working with the latest
user-level transparent memory-storage system TriCache [10].

Note that in our experiments, most graph systems, includ-
ing ChunkGraph, Ligra-swap, Ligra-mmap, Ligra-TriCache,
Blaze, and Graphene, were evaluated on NVMe SSDs. Only
the PM-based system XPGraph utilized Optane PMs. HDDs
were exclusively used for backing up and storing all graph
datasets before preprocessing of these graph systems.

Graph datasets. We use four real-world graphs Twitter [49],
Friendster [11], UKdomain [50] and Yahoo Web [58], as well
as two synthetic Kronecker graphs, i.e., Kron-29 and Kron-
30, which are generated by graph500 generator [15], for our
evaluation. These graphs are all unweighted direct graphs,
and widely used in graph system evaluations. Table 1 lists
the graph information. CSR Size indicates the size of stor-
ing graphs in CSR format for both in-graphs and out-graphs,
and Chunk Size indicates the size of storing graphs in chunk
structure for both in-graphs and out-graphs. Note that, CSR
is the most compact storage format for static graphs. During
graph processing, more memory space is usually required to
store the evolving adjacency lists for all vertices. For exam-
ple, Ligra costs 81.0GB memory space in total to store Yahoo
dataset (only 70.5GB in CSR format), as it costs extra 10.5GB

Table 1: Statistics of datasets.
Dataset |V | |E| CSR Size Chunk Size

Twitter (TT) 61.6M 1.5B 11.9GB 13.5GB
Friendster (FS) 68.3M 2.6B 20.3GB 21.2GB

UKdomain (UK) 101.7M 3.1B 26.2GB 27.5GB
YahooWeb (YW) 1.4B 6.6B 70.5GB 77.8GB

Kron29 (K29) 512M 8B 72GB 78.2GB
Kron30 (K30) 1B 16B 144GB 156.3GB

1246    2024 USENIX Annual Technical Conference USENIX Association



TT
(2.08)

FS
(2.85)

UK
(2.2)

K29
(6.8)

YW
(2.0)

K30
(14.9)

0

1

2

3

4

5
N

or
m

al
iz

ed
 E

xe
cu

tio
n 

T
im

e 23.09

TT
(3.68)

FS
(5.65)

UK
(3.61)

K29
(6.08)

YW
(2.73)

K30
(12.1)

0

1

2

3

4

5 16.79
Blaze
Ligra-mmap
ChunkGraph

TT
(4.14)

FS
(5.27)

UK
(7.34)

K29
(25.3)

YW
(19.0)

K30
(69.9)

0

1

2

3

4

5 5.12

O
O
M

(a) BFS (b) SSSP (c) BC

TT
(3.83)

FS
(6.88)

UK
(9.56)

K29
(16.8)

YW
(779.0)

K30
(37.7)

0

1

2

3

4

5

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
T

im
e 9.94 6.04 33.84 11.15 9.81

TT
(12.6)

FS
(27.8)

UK
(12.5)

K29
(43.4)

YW
(13.6)

K30
(100.0)

0

1

2

3 6.4112.28

TT
(31.8)

FS
(52.1)

UK
(23.6)

K29
(88.9)

YW
(157.0)

K30
(217.0)

0

1

2 2.14

(d) KCores (e) Radii (f) PageRank

Figure 8: Overall graph analytic performance, shown normalized to ChunkGraph, with the absolute execution time (in seconds)
of ChunkGraph in parentheses below each dataset.

memory space to store the metadata. In contrast, ChunkGraph
only costs 77.8GB memory as we store all metadata in the
chunk structure. Additionally, to evaluate performance on
weighted graph algorithm, we randomize the weight of each
edge according to its source and destination vertex ID.

Graph algorithms. We evaluate ChunkGraph and its compar-
ison systems on six commonly used graph computing algo-
rithms: BFS (traverses the connected sub-graphs of random
roots), SSSP (finds the shortest path from a source vertex
to all other vertices in weighted graphs), BC (computes the
betweenness centrality of random roots), KCores (removes
all the vertices that have a degree less than K, with K set to
10), Radii (computes the radius of the graphs), and PageRank
(computes the PageRank value of each vertex, running for ten
iterations using the delta variant algorithm).

4.2 Comparison with Primary Baselines

Overall performance. We first evaluate the overall graph
analytic performance of Blaze, Ligra-mmap and ChunkGraph.
We maintain default parameter settings for all comparison
systems. We utilize all available threads on one socket of
our server, totaling 48 threads, and bind every thread to one
core in the first socket by numactl utility, to avoid the NUMA
effects. We also study the impact of the number of computing
threads in §4.5. Figure 8 depicts the performance of six al-
gorithms. The x-axis represents different graph datasets, and
the y-axis shows the performance normalized to ChunkGraph,
with the absolute execution time (in seconds) of ChunkGraph
shown in parentheses below the x-axis. It is important to note
that Blaze fails to complete BC on Yahoo due to an out-of-
memory (OOM) error. Firstly, we can see that the off-the-
shelf memory-mapped-based Ligra and the storage-optimized

Blaze exhibit respective advantages in specific graph process-
ing scenarios. In scenarios where graph algorithms sparsely
access a limited number of the edges, such as BFS, SSSP, and
BC, memory-mapped-based Ligra excels by loading fewer
data and incurring lower computational overhead. On the
other hand, Blaze requires loading a larger subgraph, result-
ing in increased computational and subgraph synchronization
overheads compared to in-memory graph systems. Conversely,
for densely accessed graph algorithms, particularly those re-
quiring significant edge data access like PageRank, Blaze’s
IO optimizations become crucial, showcasing its superior
performance. For instance, when running the PageRank on
Yahoo, Blaze’s strengths become apparent, demonstrating its
efficiency and outperforming memory-mapped systems.

In most cases, ChunkGraph outperforms Blaze and Ligra-
mmap, particularly for sparsely accessed graph algorithms
such as BFS, SSSP, and BC. Specifically, ChunkGraph
achieves a speedup ranging from 1.62× to 23.09× when
compared with Blaze, and a speedup ranging from 1.08×
to 2.94× compared to Ligra-mmap. However, for densely
accessed graph algorithms like PageRank, our performance
improvement gets smaller, and sometimes even slightly slower
than Ligra-mmap and Blaze. This is because PageRank se-
quentially and iteratively accesses all graph data, with low
memory access locality, and thus receives minimal benefit
from ChunkGraph’s design. Our performance improvement
can be attributed to two key factors. Firstly, both Blaze and
Ligra-mmap exhibit low I/O utilization for graph accessing.
Blaze is required to load an entire large subgraph even if only
a small subset of vertices within it is needed, while Ligra-
mmap encounters issues such as read amplification for small
vertices, the vertex cut problem for medium-sized vertices,
and access amplification due to poor neighborhood locality. In
contrast, ChunkGraph leverages classified storage formats to
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Figure 9: Disk data read amount is shown normalized to
ChunkGraph, with the absolute read amount (in GBs) of
ChunkGraph displayed in parentheses below each dataset.

appropriately allocate vertices of different sizes into chunks,
along with compact chunk layout optimization, resulting in
more efficient I/O of graph data. Secondly, external systems
like Blaze partition all vertices into multiple subgraphs and ex-
ecute graph computing in an iteration-based manner, leading
to significant synchronization overhead between subgraphs
and causing high computation overhead on the CPU side.
On the other hand, ChunkGraph circumvents synchronization
overhead by loading the graph in a unified memory space sim-
ilar to an in-memory graph processing system. This approach
reduces computation overhead and enhances overall perfor-
mance. For future demonstration and analysis, we will also
evaluate the I/O overhead and computation overhead during
graph algorithm execution.

I/O overhead. We measure the I/O overhead by the disk
read data amount. For a specific algorithm and dataset, the
total number of accessed edges is the same for all systems, so
a lower disk read data amount indicates higher I/O utilization.
Figure 9 shows the comparison results on the largest two
tested graph datasets, i.e., YahooWeb and Kron30. Similar
results can also be observed in other test graphs. In most cases,
ChunkGraph brings the least disk read data amount, and for
other test cases, the read amount difference is limited to 12%.
Compared with Blaze, for different graph algorithms, Chunk-
Graph reduces the disk read data amount by 1.06× to 13.83×
on YahooWeb, and 1.16× to 14.14× on Kron30, with 4.68×
on average. This is because Blaze uses the subgraph-based
loading and computing model, causing low I/O utilization (re-
fer to §2.1), while ChunkGraph uses the fine-grained chunk-
based I/O model to reduce the loading of useless graph data.
Compared with Ligra-mmap, ChunkGraph reduces the disk
read data amount by 1.07× to 3.85× for different graph algo-
rithms in two graphs, with 1.98× on average. This is because
the PageCache manages all I/O data in 4KB chunks and does
not consider data access patterns of graph applications (refer
to §2.2). ChunkGraph manages graph data in vertex-centric
chunks and uses chunk layout optimization to make full use
of the loaded data to reduce the read times of the same pages.

Computation overhead. We quantify computation over-
head based on the number of CPU instructions executed dur-
ing graph algorithm execution, as recorded by the Linux perf
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Figure 10: Number of CPU instructions (shown in log scale).

tool. A higher number of CPU instructions typically indi-
cates more complex computation. The comparison results in
Figure 10 show the performance of Blaze, Ligra-mmap, and
ChunkGraph on YahooWeb and Kron30 datasets. Across all
algorithms and datasets, Blaze consistently incurs the high-
est computation cost, requiring up to 185.01× more CPU
instructions than ChunkGraph. This is due to the additional
computation overhead introduced by Blaze’s synchronization
between subgraphs. In contrast, ChunkGraph achieves compa-
rable computation costs to Ligra-mmap, an in-memory graph
system based implementation, with a difference limit of 47%.
This is attributed to ChunkGraph’s focus on optimizing graph
data storing and loading, rather than altering the computation
model of existing in-memory graph systems.

4.3 Discussion of Design Choices

In this subsection, we evaluate the performance enhancements
resulting from each technique introduced in §3. These tech-
niques include in-Index mini vertex storing, Chunk based
hierarchical storing, reorder and combination based chunk
Layout optimization, and differentiated chunk Access opti-
mization, abbreviated as I, C, L, and A, respectively. We use
Ligra-mmap as the baseline implementation and implement
five system versions by progressively adding these techniques:
Baseline (Ligra-mmap), +I, +IC, +ICL, +ICLA (ChunkGraph).
Figure 11 depicts the graph analytic performance of these five
system versions on two large-scale datasets, Kron30 and Ya-
hoo. The results are normalized to the Baseline, with the
absolute execution time (in seconds) of the Baseline provided
in parentheses below each dataset. Overall, these techniques
demonstrate a step-by-step improvement in performance, col-
lectively contributing to the overall benefits. In some rare
cases of densely accessed graph algorithms, the chunk-based
hierarchical vertex storing technique may lead to a perfor-
mance drop due to the additional fragments in chunks, result-
ing in increased I/O overhead. However, these performance
drops can be mitigated by the reorder and combination-based
chunk layout optimization. Next, we will delve into the effec-
tiveness of each individual technique.

Efficiency of in-index mini vertex storing. The in-index
mini vertex storing technique involves encoding the neigh-
bors of mini vertices into the in-memory vertex index, which
was previously used to store the adjacent list pointers. This
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Figure 11: Graph analytic performance for different design
choices, shown normalized to Baseline, with the absolute
execution time (in seconds) of Baseline in parentheses below
each dataset.

approach reduces the number of cache misses and completely
eliminates the I/O cost associated with all mini vertices, since
the neighbor information of these mini vertices can be re-
trieved in just one memory access. To quantify the impact,
we measured the average cache load misses of Baseline and
+I on the Yahoo dataset. Table 2 illustrates that in-index mini
vertex storing reduces the average cache misses up to 93%.
Additionally, we evaluated the number of accessed chunks
in Table 3, which revealed that in-index mini vertex storing
reduces chunk accessing by 9% on average.

Efficiency of chunk based hierarchical storing. The
chunk based hierarchical vertex storing technique organizes
graph data into a series of aligned chunks to mitigate the
vertex cut problem and minimize the number of cross-chunk
vertex accesses. Our measurements indicated that 19.6% of
chunk accesses were due to the vertex-cut problem in +I,
whereas only 0.5% were observed in +IC. Furthermore, Ta-
ble 3 illustrates that the chunk based hierarchical vertex stor-
ing approach reduces the number of chunk accesses by up to
18% when executing the Radii algorithm on the Yahoo dataset.
However, it is important to note that this approach exhibits
lower performance in specific test cases, such as PageRank
on Kron30 and Yahoo. This performance discrepancy is at-
tributed to the additional fragments caused by chunks, which
increase the space required to store the entire graph compared
to the CSR format, ultimately resulting in more chunk ac-
cesses. Fortunately, this performance drop can be mitigated
through subsequent chunk layout optimization.

Efficiency of chunk layout optimization. The reorder and
combination-based chunk layout optimization groups vertices

Table 2: Average cache load misses on Yahoo dataset.
BFS SSSP BC KC Radii PR

Baseline 420M 916M 3.68B 19.5B 8.82B 2.67B
+I 307M 818M 3.47B 17.1B 4.57B 2.53B

Table 3: Number of accessed chunks on Yahoo dataset.
BFS SSSP BC KC Radii PR

Baseline 2.94M 3.83M 8.29M 6.28M 3.43M 6.48M
+I 2.75M 3.53M 8.19M 5.47M 2.74M 6.42M

+IC 2.82M 3.52M 7.68M 6.83M 2.91M 6.70M
+ICL 2.78M 3.46M 7.59M 6.33M 2.75M 6.31M
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Figure 12: Disk data read amount, normalized to +IC, and the
numbers in parenthesis below each dataset are the absolute
read amount (in GBs) of +IC.

with a higher probability of being accessed together into the
same chunks and uses small vertices to fill up the fragments
caused by the chunk-based design. This approach effectively
reduces the number of intra-chunk fragments and minimizes
I/O overhead. To quantify the impact, we measured the disk
read data amount of +IC and +ICL on the Kron30 and Yahoo
datasets. Figure 12 demonstrates that chunk layout optimiza-
tion further reduces the disk read data amount by 1.03× to
2.10×. Additionally, Table 3 reveals that chunk layout opti-
mization further reduces the number of chunk accesses by
1.2% to 8.0%.

Efficiency of fragment optimizations. We also count the
number of the intra-chunk fragments on YahooWeb with
naive vertex layout and our reordering and vertex-combination
based fragmentation optimization. We show the results in Ta-
bles 4 and 5, where CS indicates the chunk size of the layer,
CN indicates the number of chunks of the layer, TS indi-
cates the total size of all chunks of the layer, FS indicates
the total size of the fragment in the layer, and FR indicates
the fragment ratio, i.e., the ratio of fragment size to the total
size of the layer. These two tables show that compared to
naive vertex layout, our reordering and vertex-combination
based fragmentation optimization reduces the fragment ratio
of YahooWeb from 11.80% to 6.96%, reducing the number
of chunk accesses and improving I/O efficiency.

Table 4: Fragmentation of Yahoo with naive vertex layout.
Layer L0 L1 L2 L3 Total

CS 4KB 32KB 256KB 2MB -
CN 8943247 218152 25554 2561 -
TS 34.12GB 6.66GB 6.24GB 5.00GB 52.02GB
FS 2.04GB 1.23GB 1.21GB 1.66GB 6.14GB
FR 5.99% 18.47% 19.39% 33.20% 11.80%

Table 5: Fragmentation of Yahoo with reordering and vertex-
combination based fragmentation optimization.

Layer L0 L1 L2 L3 Total
CS 4KB 32KB 256KB 2MB -
CN 8686084 190711 24702 2213 -
TS 33.13GB 5.82GB 6.03GB 4.32GB 49.30GB
FS 1.05GB 0.39GB 1.01GB 0.98GB 3.43GB
FR 3.17% 6.70% 16.75% 22.68% 6.96%
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Figure 13: Comparison with other graph systems (shown in
log scale).

4.4 Comparison with Other Systems

Comparison with other graph systems. We also conducted
a comparison between ChunkGraph and two other graph pro-
cessing systems: Graphene and XPGraph. We specifically
focus on the performance of the BFS and KC algorithms, as
they are implemented in both Graphene and XPGraph. The
results are depicted in Figure 14. In the case of Graphene,
it failed to successfully complete the KC algorithm on YW
due to Out of Memory (OOM) fault. Beyond that, Chunk-
Graph consistently outperformed Graphene across all test
cases. Specifically, ChunkGraph achieved speedups ranging
from 4.25× to 25.45× for BFS, and 15.89× to 32.37× for KC
compared to Graphene. This is because the subgraph based
iterative model used in Graphene leads to significant synchro-
nization overhead between subgraphs and low I/O utilization.
In contrast, ChunkGraph avoids synchronization overhead
and uses classified storage formats for effective I/O. Com-
pared with XPGraph, despite the fact that persistent memory
offers higher performance compared to SSD, ChunkGraph
still demonstrated faster performance compared to XPGraph
in most cases, with speedup up to 31.92×. This is due to
the fact that XPGraph prioritizes optimizing graph update
performance and primarily stores data on persistent memory,
resulting in most graph queries requiring access to persistent
memory. On the other hand, ChunkGraph focuses on optimiz-
ing query performance for static graphs, aiming to reducing
graph access to external storage.

Comparison with other general cache solutions. We also
conducted an evaluation of ChunkGraph against Ligra, work-
ing with two other general cache solutions: Ligra-swap and
Ligra-TriCache, utilizing Linux’s default swap mechanism
and the latest user-level memory-storage cache system Tri-
Cache [10] for memory expansion, respectively. Both solu-
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Figure 14: Comparison with general cache systems (shown
in log scale).
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Figure 15: Impact of memory budgets.

tions keep all graph data in memory and swap out data when
memory is insufficient. In smaller graphs that fit entirely
in memory, Ligra-swap and Ligra-TriCache run faster than
ChunkGraph, as they do not need to read data from disk. How-
ever, as the graphs become larger, ChunkGraph outperforms
Ligra-swap and Ligra-TriCache. For example, when running
BFS on the Kron30 dataset, ChunkGraph achieves a 26.05×
and 7.11× speedup against Ligra-swap and Ligra-TriCache,
respectively. The superior performance of ChunkGraph in
larger graphs is attributed to the increased frequency of data
swapping between memory and disk. While general cache
solutions lack awareness of the graph data access pattern, they
may swap out data that will be imminently accessed and the
metadata for the graph data. This results in dirty data write
back and additional I/O overhead.

4.5 Impact of System Configurations

Impact of memory budgets. ChunkGraph targets to support
large-scale graph processing with limited memory resources.
To evaluate the scalability of ChunkGraph with different mem-
ory budgets, we run ChunkGraph on Kron30 dataset and use
the cgroup mechanism to restrict the available memory size.
Figure 15 shows the performance of BFS and BC algorithms
running on Ligra-mmap and ChunkGraph, with the x-axis rep-
resenting the memory budget in GBs. We can see that Chunk-
Graph consistently outperforms Ligra-mmap under equiva-
lent memory budgets, and exhibits superior scalability as the
memory budget increases. Notably, when the memory bud-
get decreases from 128GB to 64GB for the BC algorithm,
Ligra-mmap’s performance diminishes by 2.11×, whereas
ChunkGraph only drops 1.46×. This is because ChunkGraph
adopts hierarchical storage and chunk layout optimization
techniques to improve the I/O efficiency, thus reducing the
impact of limited memory resources on performance.
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Figure 16: Impact of the number of computing threads.
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Figure 17: Preprocessing performance of various systems,
with the time cost normalized to that of Ligra-mmap. The
absolute processing times (in seconds) of Ligra-mmap for
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Impact of the number of computing threads. The number
of computing threads impacts the efficiency of ChunkGraph.
Figure 16 shows the scalability of BFS and KC algorithms
on Kron30 dataset, with the x-axis representing the num-
ber of computing threads. We can see that the query perfor-
mance of ChunkGraph scales linearly with the thread count.
ChunkGraph gains performance improvement sufficiently as
the thread count increases, particularly when the number of
threads is not too small that the computing resources are not
saturated with I/O resources.

Preprocessing cost. The graph data obtained from web-
sites is typically in the edge list format, requiring conversion
to the corresponding format for graph processing. For exam-
ple, Ligra-mmap converts to the CSR format, while Blaze and
Graphene convert to the partitioned CSR format. ChunkGraph
is responsible for converting to the chunk format. We com-
pared the preprocessing time cost of ChunkGraph, Graphene,
Blaze, and Ligra-mmap, with Figure 17 showing Ligra-mmap
as the fastest. Blaze and Graphene incur extra costs due to
subgraph partitioning, and ChunkGraph incurs additional com-
putation cost for chunk layout optimization. Despite this, the
performance gap is limited to 50%, making the preprocessing
time acceptable as it only needs to be executed once for a
graph dataset to support all graph applications.

5 Related Work

Large-scale graph processing. To support large-scale graphs
that can not reside on a single machine’s memory, distributed
graph processing systems have been proposed to process
graph computation on a cluster of machines [5, 6, 13, 14, 20,
30, 32, 48, 57, 59]. They divide the entire graph into multi-
ple subgraphs and place them into different machines con-
nected by network. However, these systems usually require
efficient graph partitioning and caching strategies, low-cost
inter-machine communication and synchronization mecha-
nisms. Other efforts leverage large shared memory [16,33,46],
persist memory [17, 53], and GPUs [21, 28, 55] to accelerate
large-scale graph processing. In contrast to those systems,
ChunkGraph uses cost-effective NVMe SSDs to efficiently ex-
pand large-scale graph processing, providing a more resource-
friendly alternative.

Out-of-core graph processing systems. Disk-resident single
machine graph processing also receives a lot of attention by
storing graphs on external storage devices. GraphChi [25]
is the pioneering work, which splits all vertices into dis-
joint intervals and associate each interval with a subgraph,
and uses a parallel sliding window (PSW) to perform graph
analysis, by loading the subgraphs into memory for comput-
ing in a round-robin order. Since then, a lot of works has
followed this approach to optimize the performance of the
out-of-core graph processing system from various dimen-
sions [1, 25, 31, 45, 51, 52, 60]. However, they mainly focus
on reducing random I/Os on HDDs or slow SSDs, which is
no longer a severe problem on modern NVMe SSDs. Re-
cent works adopt fine-grained graph loading to minimize I/O
amount [7, 29] or different graph access pattern to maximize
IO bandwidth [8, 18, 19, 22] on modern NVMe SSDs, but
they still suffer from low I/O utilization and expensive compu-
tation overhead due to subgraph-based iterative loading and
computing model. ChunkGraph adopts a chunk-based graph
representation model for efficient and user-friendly large-scale
graph processing on NVMe SSDs.
Memory-storage cache subsystems. Memory-storage cache
systems (e.g., Linux OS’s page cache) are often used to en-
able in-memory programs to process out-of-core datasets [9,
10, 41–44, 47]. However, these general-purpose efforts are
unaware of characteristics of graph access patterns, leading
to a sub-optimal caching performance for graph processing.
Instead, ChunkGraph proposed a novel reordering based data
layout and differentiated access optimization to improve ac-
cess efficiency of graph data.

6 Conclusion

In this paper, we proposed ChunkGraph, which is an I/O effi-
cient external graph system for processing large-scale graphs,
by developing a chunk based graph representation model,
that includes classified and hierarchical vertex storage, and
chunk layout optimization. Our experimental results show
that ChunkGraph can run several times faster than in-memory
graph system that works with existing general-purpose cache
subsystems and existing external graph processing systems.
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A Artifact Appendix

A.1 Abstract
The artifact contains the prototype implementations of Chunk-
Graph, We also provide the implementations of the compari-
son baselines, i.e., Ligra-mmap and Blaze. All implementa-
tions are based on the Ligra framework. This artifact should
enable others to reproduce a subset of our results and conduct
their own studies.

A.2 Artifact check-list (meta-information)
• Program: Linux kernel of 5.4.0, ChunkGraph, Ligra, Blaze.

• Compilation: GCC 10.5.0 with OpenMP.

• Data set: Four real-world graphs Twitter, Friendster, UK-
domain and Yahoo Web, as well as two synthetic Kronecker
graphs, i.e., Kron-29 and Kron-30, which are generated by
graph500 generator.

• Run-time environment: Ubuntu 20.04.6.

• Hardware: A server with two processors each with 24 physi-
cal cores with hyper-threading enabled (48 logical cores), with
8 × 16GB (128 GB) DRAM and two 4 PCIe-attached Intel
P5520 NVMe SSDs.

• Execution: Automated by shell scripts.

• Metrics: Graph analytic performance, I/O and computation
overhead.

• Output: The key results would be recorded to the directory
results/.

• Experiments: Graph analytic performance (Fig.8), I/O over-
head for Yahoo/Kron30 datasets (Fig.9), and computation over-
head for Yahoo/Kron30 datasets (Fig.10).

• How much disk space required (approximately)?: 5 TB.

• How much time is needed to complete experiments (approx-
imately)?: 4 hours.

• Publicly available?: Yes.

• Workflow framework used?: No, but scripts are provided to
automate the measurements.

• Archived: zenodo.org/doi/10.5281/zenodo.11181584

A.3 Description
A.3.1 How to access

The source code and scripts are host on Zenodo, https://
zenodo.org/doi/10.5281/zenodo.11181584.

A.3.2 Hardware dependencies

This artifact runs on a server with two processors, each with
24 physical cores with hyper-threading enabled (48 logical
cores). For memory, it equips with 8 × 16 GB (128 GB)
DRAM. For storage, it equips with two 4 PCIe-attached Intel
P5520 NVMe SSDs.

A.3.3 Software dependencies

This artifact runs on Ubuntu 20.04.6 LTS with Linux kernel of
5.4.0, and we use GCC 10.5.0 with -O3 optimization for eval-
uation. Other dependencies such as NUMA and Zlib libraries
may also be necessary.

A.3.4 Datasets

We use four real-world graphs Twitter, Friendster, UKdomain
and Yahoo Web, as well as two synthetic Kronecker graphs,
i.e., Kron-29 and Kron-30, which are generated by graph500
generator, for our evaluation. Datasets download links:

• Twitter: https://anlab-kaist.github.io/
traces/WWW2010

• Friendster: http://konect.uni-koblenz.de/
networks/friendster

• UKdomain: http://konect.cc/networks/
dimacs10-uk-2007-05

• Yahoo Web: http://webscope.sandbox.yahoo.com

Graph500 generator link and Kronecker graph generation
commands:

• Generator link: https://github.com/rwang067/
graph500-3.0

• Make genetator: cd graph500-3.0/src && make
graph500_reference_bfs

• Generate Kron29: ./graph500_reference_bfs 29 16
kron29.txt

• Generate Kron30: ./graph500_reference_bfs 30 16
kron30.txt

A.4 Installation
Users need to download the source code and scripts from
Zenodo to the server. The following is the directory structure
of the source code, scripts, and instructions:

• README.md: This file contains a detailed step-by-
step "Getting Started Instructions" guide, and "Detailed
Instructions" for running the experiments.

• src/: This directory contains the source code of Chunk-
Graph and Ligra-mmap.

• CSRGraph/: This directory contains the source code of
Chunk Layout Optimization of ChunkGraph.

• apps/: This directory contains contains the graph query
algorithms for ChunkGraph and Ligra-mmap.
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• blaze/: This directory contains the source code of Blaze.

• scripts/: This directory contains the scripts for running
the experiments.

• preprocess/: This directory contains the scripts for con-
verting the input data from text format to csr-based bi-
nary and chunk-format binary.

After downloading the source code and scripts, users need
to compile ChunkGraph and prepare data sets. To evaluate the
performance of comparison systems, users need to compile
Blaze and Ligra-mmap.

A.5 Experiment workflow
The suggested workflow is organized in scripts/, which in-
cludes all the scripts for running the experiments. Users can
run the experiments by ‘bash scripts/run.sh‘. The running
progress and the expected completing time of each experiment
would be printed to the file ‘scripts/progress.txt‘ automatically.
Note that you may have to change some arguments according
to your environment, such as dataset path, taskset-cpu list,
and the number of threads.

A.6 Evaluation and expected results
The evaluation results would be generated to the directory
‘results/‘. Users can reproduce the results in Figure 8, Figure
9, and Figure 10, which should roughly match the respective
figures from the paper.

A.7 Methodology
Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/
artifact-review-badging

• http://cTuning.org/ae/submission-20201122.
html

• http://cTuning.org/ae/reviewing-20201122.
html
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