
This paper is included in the Proceedings of the
2024 USENIX Annual Technical Conference.

July 10–12, 2024 • Santa Clara, CA, USA
978-1-939133-41-0

Open access to the Proceedings of the
2024 USENIX Annual Technical Conference

is sponsored by

Diagnosing Application-network Anomalies
for Millions of IPs in Production Clouds

Zhe Wang, Shanghai Jiao Tong University; Huanwu Hu, Alibaba Cloud; Linghe Kong,
Shanghai Jiao Tong University; Xinlei Kang and Teng Ma, Alibaba Cloud; Qiao Xiang,

Xiamen University; Jingxuan Li and Yang Lu, Alibaba Cloud; Zhuo Song, Shanghai Jiao
Tong University and Alibaba Cloud; Peihao Yang, Alibaba Cloud; Jiejian Wu, Shanghai
Jiao Tong University; Yong Yang and Tao Ma, Alibaba Cloud; Zheng Liu, Alibaba Cloud

and Zhejiang University; Xianlong Zeng and Dennis Cai, Alibaba Cloud;
Guihai Chen, Shanghai Jiao Tong University

https://www.usenix.org/conference/atc24/presentation/wang-zhe

Diagnosing Application-network Anomalies for Millions of IPs in Production Clouds

Zhe Wang1, Huanwu Hu2, Linghe Kong1, Xinlei Kang2, Teng Ma2, Qiao Xiang3, Jingxuan Li2, Yang Lu2

Zhuo Song1,2, Peihao Yang2, Jiejian Wu1,Yong Yang2, Tao Ma2, Zheng Liu2,4

Xianlong Zeng2, Dennis Cai2, Guihai Chen1

1Shanghai Jiao Tong University, 2Alibaba Cloud, 3Xiamen University, 4Zhejiang University

Abstract
Timely detection and diagnosis of application-network anoma-

lies is a key challenge of operating large-scale production

clouds. We reveal three practical issues in a cloud-native era.

First, impact assessment of anomalies at a (micro)service

level is absent in currently deployed monitoring systems.

Ping systems are oblivious to the “actual weights” of appli-

cation traffic, e.g., traffic volume and the number of connec-

tions/instances. Failures of critical (micro)services with large

weights can be easily overlooked by probing systems under

prevalent network jitters. Second, the efficiency of anomaly

routing (to a blamed application/network team) is still low

with multiple attribution teams involved. Third, collecting

fine-grained metrics at a (micro)service level incurs consider-

able computational/storage overheads, however, is indispens-

able for accurate impact assessment and anomaly routing.

We introduce the application-network diagnosing (AND)

system in Alibaba cloud. AND exploits the single metric

of TCP retransmission (retx) to capture anomalies at (mi-

cro)service levels and correlates applications with networks

end-to-end. To resolve deployment challenges, AND further

proposes three core designs: (1) a collecting tool to perform

filtering/statistics on massive retxs at the (micro)service level,

(2) a real-time detection procedure to extract anomalies from

‘noisy’ retxs with millions of time series, (3) an anomaly

routing model to delimit anomalies among multiple target

teams/scenarios. AND has been deployed in Alibaba cloud

for over three years and enables minute-level anomaly detec-

tion/routing and fast failure recovery.

1 Introduction

Cloud regions host the core business systems of Alibaba and

serve billions of customers worldwide [21, 32]. The key chal-

lenge of operating Alibaba cloud is timely detection and di-

agnosis of application-network anomalies, to ensure service

level agreements (SLAs) and avoid customer, reputation, and

revenue losses caused by SLA violations [56].

Generally, we define application-network anomalies at

three levels according to their severity. Firstly, applications

exhibit performance jitters while the expected SLAs of cus-

tomers are satisfied. Secondly, applications experience severe

Infrastructure Teams

Platform Teams

Application Teams

Virtual & Physical
Network Teams

Infrastructure
(as a Service)

Platform
(as a Service)

Software
(as a Service)

Applications

Networking

Servers

Virtualization

Guest OS
Container

Applications

Networking

Servers

Virtualization

Guest OS
Container

Applications

Networking

Servers

Virtualization

Guest OS
Container

pppp

Network Teams

Platform Teams

Figure 1: Cloud service model and attribution teams.

performance declines in throughput, latency, job completion

time, etc., and the SLAs of customers are violated. Thirdly,

services are unavailable and anomalies upgrade to failures.

In the following discussion, we focus on severe application-

network anomalies of levels 2 and 3. Our clouds provide a

multi-layer service model including software, platform and in-

frastructure layers (Figure 1). Anomalies may happen at each

layer in the end-to-end path (Figure 2). To ensure the stable op-

eration of each layered component, each attribution team has

built abundant monitoring systems at end hosts [10,23,49], vir-

tual networks [15,38,57], physical networks [11,22,44,47,56]

and correlate connections with physical links/paths [9,39,43].

We observe that currently deployed monitoring systems

still face issues of impact assessment, anomaly routing and

large operation overheads in a cloud-native era. Next, we

elaborate on these practical issues in production.

Impact Assessment at (Micro)services Level. The clouds de-

ploy (micro)services of various applications densely at shared

hosts. We still lack a monitoring system for accurate impact

assessment of anomalies at a (micro)service granularity. For

example, currently deployed network probing systems may

achieve a full-mesh probing at the host level [22, 57]. As

shown in Figure 3, they probe each node/link equivalently

and cannot capture actual weights for nodes/links of criti-

cal (micro)services, e.g., in-memory database [8], proxy and

load balancing [51]. As a result, probing results can be eas-

ily covered by noises of prevalent network jitters in produc-

tion environments. We observe many cases where failures on

nodes/links of critical services are overlooked by probings.

Other monitors at the platform or infrastructure layer face a

similar issue — they cannot tell whether or how many (mi-

cro)services are affected even though anomalies are detected.

USENIX Association 2024 USENIX Annual Technical Conference 885

GuestOS
Container

AND: End-to-End Application-Network Anomaly Monitoring

ToR Agg Core (CEN)

vSwitchSoftware

NC NIC
GuestOS
Container
Software

NC

(SLB)Cloud Gateway

Core Agg

(ACL)

Virtual Network Monitors

Physical Network Monitors

(NAT)

End Host End Host
Figure 2: AND monitors application-network anomalies in

the end-to-end path.

Hosts
Figure 3: Probing systems (left) regard each node/link as

equivalent, while partial nodes/links carrying traffic loads of

critical (micro)services should have larger weight (right).

Anomaly Routing to Attribution Teams. The root cause

of application anomalies is usually attributed to dependent

(micro)services or shared infrastructure with a (micro)service-

based architecture [17, 18]. Currently, the efficiency of

anomaly routing to a blamed layer is still low, with multi-

ple attribution teams and complex traffic scenarios involved

(Figures 1 and 4). First, each application team reports its

failure and inquires about other related teams respectively,

leading to high communication costs. Second, correlating ap-

plication metrics with problematic (micro)services or network

events is non-trivial due to the inconsistent data format and

semantics [20, 50]. The essential issue lies in that operation

teams and specific monitoring tools focus on their problem

domains (software, operating systems, networks). The clouds

lack a unified diagnostic mechanism to correlate layered com-

ponents and route anomalies to attribution teams.

Full Coverage with Low Overheads. Collecting connection-

level metrics [39, 43] is indispensable for accurate impact

assessment and anomaly routing, however, it incurs large cap-

ital/operating expenses (CapEx/OpEx) as an always-on ser-

vice. Considering million-level (micro)service instances and

billion-level connections, the monitoring system brings con-

siderable computational/storage overheads (Figures 5 and 6).

To tackle the above issues, we introduce the experi-

ence in designing and deploying the Application-Network

Diagnosing (AND) system in Alibaba cloud. AND exploits

TCP retransmissions (retxs) to extract anomalies with low

overheads, capture problems at a (micro)service level, and

correlate applications with platform/infrastructure layers end-

to-end. Existing works [9, 10] also collect TCP retxs and

statistics at end hosts for anomaly detection and diagnosis.

We observe several deployment challenges that hinder the

direct usage of these systems in a cloud-native environment.

Deployment Challenges. Firstly, applications exhibit mas-

sive connections and retxs at (micro)service/container level

(10 ∼ 105/min) in production clouds. As shown in Figure 6,

collecting all connection-level metrics incurs unacceptable

CPU/storage overheads. Collecting and analyzing network

Node Controller

SLBNAT

Clients

Physical Networksi l N

Core
Switches

Agg.
Switches

End Hosts

Microservices

Containers
VM-Guest Kernel

NIC

vSwitch

netdev

t k VMs

Cloud
Gateways

IDCs
ISP 1

IDIIInternet

ISP 2

ACL

1

2

3

CEN

Region B

4

5

5

CCCCCC

Racks

Region A

ISP 3

Virtual Networks

Figure 4: Overview of cloud traffic.

paths of all retxs like 007 [9] is also infeasible in our cloud re-

gions. Secondly, raw retxs are too ‘noisy’ to reflect anomalies.

Massive applications exhibit distinct patterns and sensitivities

concerning retxs, due to the different QoS levels, resource

quotas and load variations. Internet access is also unstable

compared with intranet access. Thirdly, anomaly routing is

still challenging with at least five attribution teams (Figure 1)

and traffic scenarios (Figure 4) involved.

To resolve the deployment challenges in a cloud-native era,

AND substantially goes beyond currently deployed systems

with three new designs of anomaly collecting, detecting and

diagnosing using the single metric of retx.

Efficient Anomaly Collecting via nBPF Tool. AND performs

statistics and filters on raw retxs events via a dedicated nBPF

tool, to lower CPU/storage overheads of collecting massive

retxs. nBPF uses an eBPF-based kernel program to extract

prominent anomalies like retransmission timeouts and fails of

connection establishment. nBPF leverages user-space filters

to record retxs counter for anomaly detection and sample

retxs details (TCP 5-tuples and process info) for anomaly

diagnostic. Last but not least, nBPF proposes statistics of retxs
events per (micro)service/container (source) and per traffic

scenarios (destination) to delimit the scope of anomalies at

the collecting phase. nBPF filters out > 90% retxs events of

‘noises’ and also facilitates anomaly detection and routing.

Minute-level Anomaly Detection. AND designs minute-level

detection procedure for millions of time series (retxs coun-

ters of millions of IPs). AND adopts a multi-level time-series

clustering to distinguish diverse retxs patterns. While partial

time series are ‘stable’ with small ‘noises’ (41.06%), other

time series cannot be processed by simply dropping (low re-

call) or threshold-based filtering (low accuracy). AND designs

lightweight feature engineering, which eliminates ‘noises’ by

prediction and penalizes/scales features of low/high-quality

time series. AND adopts a hybrid implementation of offline

clustering/predication and online detection for low latency

and cost. AND extracts < 1% anomalies from ‘noisy’ retxs
and ensures high detection recall.

886 2024 USENIX Annual Technical Conference USENIX Association

(a) #IPs reporting retxs. (b) #Total count of retxs.

Figure 5: Statistics of retxs from a large-scale region. (a) The

number of container IPs reporting retxs reaches a million level.

(b) For intranet access, short flows burst many SYN retxs dur-

ing connection establishment while retransmission timeouts

(RTOs) are much less with a relatively stable network. For

Internet access, applications usually use long connections and

exhibit many RTOs as the network is not stable.

Multi-problem-domain Anomaly Diagnostic. AND routes

anomaly to multiple attribution teams and traffic scenar-

ios via the single metric of retx. The key insight is that

anomalies of different problem domains (e.g., networks, end

hosts) exhibit distinct distributions of retxs, after correlating

source/destination (SRC/DST) IPs in retxs details with appli-

cation/network attributes. AND builds a supervised routing

model and designs feature sets of anomalies for multiple target

teams and scenarios, according to anomalies/failures observed

from production. The routing model helps locate anomalies

and find root causes by combining with domain-specific mon-

itors and metrics. It also embodies good generalization ability,

e.g., extending from a limited scope to all cloud regions.

AND has been deployed in Alibaba cloud for over three

years. It processes more than one billion retxs events per

hour and reduces data volume by orders of magnitudes (§6.2).

The routing model achieves ∼ 95% recall/accuracy in detect-

ing/routing anomalies to target network teams in the long-

term evaluation (§7.2). AND enables minute-level anomaly

detecting and routing (§9.1). AND also achieves high cov-

erage of anomalies in the end-to-end path, from networks

to end hosts and even abnormal application behaviors, and

complements the fade area of existing systems (§9.2).

The contributions of this paper are summarized as follows:

• We reveal issues of impact assessment and anomaly routing

in operating large-scale production clouds. To tackle these

issues, we introduce AND, a unified application-network

diagnosing system exploiting a single metric of TCP retx.

• We reveal that production clouds exhibit massive and noisy

retxs with complex problem attribution and traffic scenarios.

AND thus designs the effective collecting tool, detection

procedure and diagnostic mechanism to extract, identify

and delimit anomalies step-by-step.

• We iteratively deploy and optimize AND in Alibaba cloud.

Currently, AND covers all of our cloud regions and millions

of (micro)services/containers. We also share experience on

usage/scope of AND and lessons learned about Artificial

Intelligence for IT Operations (AIOps).

(a) Connections vs. retxs. (b) CPU overheads.

Figure 6: Overhead analysis. (a) The distribution of the num-

ber of connections and retxs at (micro)service levels from

a large-scale region. (b) Overheads of collecting metrics:

Netlink [7] and BCC [1] collect TCP info of all connections

via AF_NETLINK and eBPF [2] respectively. nBPF performs

filtering and statistics on raw retxs. We use a typical virtual

machine (VM) instance [3] in public clouds for testing.

2 Background & Motivation

We introduce the background of cloud architecture and

overview of cloud traffic. On this basis, we present the opera-

tional experience and also motivation of AND.

2.1 Overview of Cloud Architecture
Figure 1 shows a multi-layer service model of Alibaba cloud,

where each layered component is usually attributed to a dedi-

cated team. Software services, such as e-commerce [29], big

data [16, 53], databases [13], belong to their respective ap-

plication teams; platform services including containerized

platforms [27, 40], virtual machines (VMs) and their operat-

ing systems [14], are in charge of dedicated platform teams;

infrastructure services including virtualization and host ma-

chines, virtual or physical networking, are handled by the

corresponding infrastructure, virtual or physical networking

teams [22, 32, 52].

Overview of Cloud Traffic. Cloud applications go through

each layer of components in the end-to-end path (Figure 2).

As shown in Figure 4, applications run on containers and

VMs, and communicate via kernel stack and virtualized net-

dev [52]. The traffic is then forwarded via vSwitch [35] and

physical NIC at host machines or node controllers (NCs). The

cloud gateways [32] as the cores of virtual networks perform

stateless and stateful network functions, including forwarding

gateways among virtual private clouds (VPCs), stateful load

balancing (SLB), network address translate (NAT), access

control list (ACL). The physical network consists of multi-

level switches/links, and the cloud enterprise network (CEN,

a dedicated leased line network between cloud regions).

On this basis, we summarize five common scenarios of

cloud traffic (Figure 4): 1© Cloud services actively access

internet data centers (IDCs). 2© User clients request services

hosted by the cloud, which return responses. 3© Cloud ser-

vices access other intranet services via SLB. 4© Cloud ser-

vices access each other directly via forwarding gateways. 5©
Cloud services access each other cross regions.

USENIX Association 2024 USENIX Annual Technical Conference 887

2.2 Operational Experience

The complex layered architecture poses great challenges to

the operation of cloud services — anomalies may happen at

each layer [20,22,57]. The operation teams at each layer have

built abundant monitoring and diagnostic tools including end-

host monitors [9,10,30,39,43,49], virtual network [15,38,57]

or physical network probings/telemetries [11,22,44,47,56],

to quickly detect and locate anomalies. Nevertheless, we still

lack a unified monitoring/diagnostic system that can assess

the impact of anomalies/failures at a (micro)service level,

quickly route anomalies to attribution teams, and cover the

entire cloud with low overheads. Next, we elaborate on key

issues observed from operational experience.

How to estimate the impact of anomalies on real applica-
tion traffic? The networking teams build large-scale probing

systems to monitor virtual/physical networks [22,57]. How-

ever, probing systems cannot tell whether application traffic

is affected by anomalies and even overlook severe failures.

Specifically, they probe each node/link with equal weight,

while partial nodes/links carrying critical (micro)services that

many applications depend on should have larger weights.

Probing results on these critical nodes/links may be covered

by noises of network jitters (Figure 3). We observe many

cases where failures in critical (micro)services are not per-

ceived by probing systems. Real case studies of SLB and

Redis services are presented (Cases A and C in §8). Other

monitors on the platform or infrastructure layer face similar

problems. Even though anomalies are detected, they cannot

tell whether or how many applications are affected.

Whether applications work normally after network alter-
ation or recovery? The network teams often perform network

alterations or execute traffic migration for failure recovery.

They need to know as soon as possible whether applications

work normally. Currently, network teams verify the running

status of applications by contacting each application team,

which takes a long feedback cycle. During several network

alternations, only partial applications’ traffic is migrated suc-

cessfully, resulting in unavailable services and large revenue

losses. Similar issues can be avoided if we can find a way to

verify the applications’ status quickly (Case B in §8).

Experience #1: To conduct impact assessments from appli-

cation perspectives, the diagnostic system needs to monitor

applications’ in-band traffic at granularities of connection and

(micro)service [17, 45].

How to perform fast and accurate anomaly routing to at-
tribution teams? Anomalies are usually caused by the depen-

dent (micro)services or shared network infrastructure with a

(micro)service-based architecture [18]. Specific application

monitor has limited scope and cannot tell reasons for anoma-

lies directly. However, correlating application metrics with

problematic (micro)services and network events is non-trivial,

due to the inconsistent data format and semantics (program

tracing/logging vs. connection-oriented metrics [20, 50]). To

this end, application teams report their failures separately and

contact related teams respectively, resulting in high commu-

nication costs and low efficiency for failure recovery. We

present several cases where a unified diagnostic system facili-

tates anomaly routing and locating (Case D-F in §8).

Experience #2: To improve the efficiency of diagnosing,

clouds need a unified diagnostic system to correlate layered

components and route anomalies to attribution teams.

How to achieve full coverage with low overheads? The

number of container instances or IPs has increased to a mil-

lion level in Alibaba cloud (Figure 5). The connection’s scale

on long-tail instances also reaches a million level (Figure 6a).

The overheads of monitoring end-to-end anomalies for mil-

lions of IPs and billion connections are considerable.

Experience #3: As an always-on service, the monitoring sys-

tem should be carefully optimized for low computational and

storage overheads, and lower the long-term capital/operating

expenses (CapEx/OpEx).

Motivation: We begin to build and deploy the application-

network diagnosing (AND) system since 2019. AND aims to

tackle the above issues in production clouds.

3 Design Rationale & Challenges

3.1 Design Rationale
AND takes TCP Retransmissions (retxs) as basic metrics to

build unified anomaly monitoring and diagnosing capability

covering the whole cloud. The key insight is that retxs are

effective signs of anomalies, inherently exist in in-band traffic,

and correlate applications to fundamental platforms and in-

frastructure end-to-end. Figure 7 shows the coverage of AND,

from a bottom-up perspective, including physical and virtual

networks, physical NIC, vSwitch, virtualized netdev, kernel

stack and even abnormal application behaviors.

AND is universal for different applications (Go, Java, etc.)
and has no dependencies on hardware devices (programmable

NICs/switches [20, 47]). AND also easily extends to other

reliable transports like QUIC [25] and Reliable Connection

(RC) of RDMA [24], where retxs and timeouts can be used

to indicate anomalies. Note that the basic idea of collecting

TCP retransmissions and statistics for faulty-link locating and

failure diagnosing [9,10,39,49] has been proposed in existing

works. AND adopts a similar idea to them from this point.

3.2 Challenges
As the deployment of AND in the complex cloud environment,

we still face challenges of anomaly collecting, detecting and

diagnosing using retxs. AND has continued to evolve in iter-

ative deployment, resulting in fundamental differences with

existing works.

First, production clouds unexpectedly exhibit massive

retxs — the number of retxs of single (micro)service instance

888 2024 USENIX Annual Technical Conference USENIX Association

Userspace

Li
nu

x
K

er
ne

l

Application, RPC

TCP/UDP
IP layer

Traffic Control
Device Driver

Microservices

virtio-net front-end
virtio-net back-end

Miccroserrvices

nBPF hooks
Containers

netdev

Host

DPDK vSwitch

tcp_enter_loss
tcp_send_loss_probe
tcp_retransmit_skb

vv
vv

ne
td

ev CPU/mem

Physical&Virtual network Intranet/Internet/Cross-region/C

Guest

HostNode Controller

bond

NIC

Anomaly Locations

VM-Guest

Figure 7: AND’s coverage of anomalies.

Step1: Anomaly Collecting

eBPF programK
er

ne
l S

pa
ce

Types: SYN/RTO
States: established

p

Direction Protocol

Log-service
Counters of retxs

Model Training

Cluster & Prediction

Real-time counters

Feature extraction

Detection

offline

Step2: Anomaly Detection

Details of retxs

Aggregation
IPs

Anomalies

Anomaly Routing

SLBSTypical scenarios

End-host, virtual network
or physical network?

Network attributes

NAT

End-host metrics
Step 3: Anomaly Diagnostic

services
kernel
stack

devices
network

NFsEnd-hosts: VMs/NCs

nBPF agent

SRC IPs

User space

ring buffer

Figure 8: Overview of AND’s architecture.

reaches 10 ∼ 105/min and has a long-tail nature (Figure 6a).

For each retx, 007 [9] tries to find the network link/path that

causes packet drops via Traceroute. In our cloud regions,

collecting and analyzing each retx like 007 easily overloads

CPUs of end hosts and switch’s control plane.

Challenge #1: The clouds require efficient collecting tools

to perform filtering/sampling on raw retxs at (micro)service

granularity while reserving the critical info of anomalies.

Second, the raw retxs are too ‘noisy’ to reflect anomalies

that cause SLA violation. With mixed deployment in pub-

lic clouds, applications apply computing/network resources

according to their QoS requirements and exhibit distinct pat-

terns of retxs. For example, latency-sensitive services [8]

cannot tolerate timeouts and have few retxs, but background

tasks [16, 53] have many retxs in daily operation, so long as

tasks complete on time. These applications also deploy many

(micro)service instances across cloud regions, constituting

large ‘noises’.

Challenge #2: The clouds require real-time anomaly detec-

tion to filter out ‘noises’ and extract anomalies from millions

of time series of retxs.

Last but not least, anomaly routing and locating are non-

trivial with at least five attribution teams (Figure 1) and

five traffic scenarios (Figure 4) involved. The pioneering

Scout [19] targets incident routing for the physical networking

team. NetPoirot [10] adopts failure injection and identifies

failure attribution (client, network, and remote server) using

TCP statistics at one end host. However, the complex layered

dependencies and traffic scenarios hinder the direct usage of

these works in a cloud-native environment.

Challenge #3: The clouds require a new diagnostic mecha-

nism to perform fast and accurate anomaly routing among

multiple target teams and traffic scenarios.

4 Overview

Next, we introduce the design and deployment of AND in

practice to resolve the above challenges. Figure 8 shows the

overall architecture of AND incorporating anomaly collecting,

detection and diagnostic. The process from anomaly collect-

ing to routing takes less than 1 minute.

Anomaly Collecting (Challenge #1). AND monitors retxs
at end hosts via a dedicated tool, namely nBPF (§5). nBPF

designs eBPF-based kernel filters to extract prominent anoma-

lies that impact application performance, i.e., fails of connec-

tion establishment and retransmission timeouts. nBPF also

devises user-space filters to record accurate retxs counters for

anomaly detection and sample retxs details (TCP 5-tuple and

even process info) for anomaly diagnostic. Last but not least,

nBPF proposes statistics of retxs events per (micro)service

(SRC) and per traffic scenarios (DST) to delimit the scope of

anomalies in the collecting phase. nBPF effectively filters out

> 90% of retxs and achieves low overheads in extreme stress

tests with million connections. The filtering rules also ensure

a high coverage rate of anomalies and help anomaly routing

among multiple scenarios.

Anomaly Detection (Challenge #2). AND then performs real-

time anomaly detection on time series of retxs counters (§6).

AND adopts multi-level time-series clustering to distinguish

distinct retxs patterns with respect to frequency, stability, sea-

sonality, etc. According to the clustering results, AND designs

lightweight feature engineering and extracts normalized fea-

tures for anomaly detection. The compute-intensive clustering

and model training are conducted in the offline phase, while

the feature extraction and anomaly detection are executed

in real-time. Finally, AND achieves minute-level detection

for millions of data streams (time series of millions of IPs

× multiple scenarios). AND extracts < 1% abnormal IPs

from ‘noisy’ time series of retxs and guarantees high recall

in anomaly detection.

Anomaly Diagnostic (Challenge #3). The abnormal IPs are

aggregated by application/network attributes and exported to

the diagnostic process (§7). The key insight is that anoma-

lies in multiple scenarios, e.g., intermediate networks, end

hosts, etc., exhibit different distributions of retxs, after corre-

lating retxs details with application/network attributes. AND

builds a supervised anomaly-routing model using single retxs
metrics and designs feature sets of anomalies for multiple

target teams or scenarios. The routing model also expands

USENIX Association 2024 USENIX Annual Technical Conference 889

(a) Percentage of retxs counters. (b) Trend of retxs counters.

Figure 9: The noisy retxs without filtering (collected from

tens of IPs of search service in one day).

the training sets and executes re-trains in a self-iterative way.

In the long-term evaluation in the production cloud, AND

achieves ∼ 95% recall/accuracy in detecting/routing network

anomalies. The routing model helps to locate anomalies in

specific scenarios and embodies generalization ability to more

problem domains.

5 Anomaly Collecting
5.1 Design of nBPF Tool

The nBPF tool consists of a kernel-space eBPF program and

a user-space agent (Figure 8). eBPF [31, 46] is universally

supported in Linux distributions (from Linux kernel 3.15+),

which dominate majority in Alibaba clouds. Note that the

idea of collecting retxs is general while the implementation

may vary according to different OS distributions [9] and even

transports [24, 25]. The core of nBPF designs a configurable

kernel- and user-space filtering framework with the validated

rules to extract prominent anomalies from massive retxs.

Kernel-space filtering on retxs types. The eBPF program

hooks retxs-related kernel functions to monitor retxs from

each (micro)service/container at the same host, as multiple

containers with isolated network namespace actually share

one monolithic kernel stack [58]. nBPF also distinguishes

various types of retxs.

In the initial deployment, AND collects all retxs without

filtering. We observe that applications exhibit massive retxs,

where TLP (Tail Loss Probe) and FAST retxs take the ma-

jority (around 99%) but cannot reflect the real anomalies, as

shown in Figure 9a. Because the end-host/network jitters eas-

ily cause massive TLP or FAST retxs, e.g., in mice flows of

remote process calls (RPCs) between (micro)services [36,55].

nBPF thus filters retxs by types and connection states in the

collecting phase.

First, nBPF monitors SYN retxs during connection estab-

lishment, which indicates that applications cannot establish

service. Second, nBPF only extracts RTO retxs for estab-

lished connections (around 0.1%). As shown in Figure 9b,

RTO retxs are effective signs of application/network anoma-

lies experiencing long timeouts, since kernel stacks adopt

a default timeout of 200ms. The practice demonstrates that

such filtering rules achieve a good trade-off between collect-

ing overheads and coverage rates of anomalies.

(a) The variations of retxs. (b) CPU overheads.

Figure 10: The CPU overheads of nBPF in extreme stress

tests with million connections.

User-space statistics and samplings on retxs details. The re-

ported retxs events by the eBPF program contain the detailed

TCP 5-tuples and even process info. To lower collecting and

processing overheads, the user-space agent further performs

statistics and samplings on raw retxs events/details. On the

one hand, nBPF records counters of retxs in container-level

granularity (SRC) with fixed time intervals for anomaly de-

tection. On the other hand, retxs details are indispensable for

anomaly diagnosis. However, massive retxs events/details in-

cur large overheads for uploading and processing (Figure 6a).

nBPF thus performs samplings on raw retxs events.

Last but not least, nBPF distinguishes multiple traffic di-

rections and scenarios via configurable filters on DST IPs

(Figure 4), to coarsely delimit the scope of anomalies when

performing statistics of retxs counter. As retxs counters are

lightweight statistics, nBPF supports finer-grained statistics

of retxs with respect to application/network attributes. Fi-

nally, the retxs counters and details are uploaded for further

anomaly detection and diagnosis.

5.2 Deployment & Evaluation

Performance and Stability Consideration. The initial ver-

sion of nBPF is implemented with Go and then reconstructed

with Rust, to process retxs events more efficiently. At last,

nBPF tool is implemented with 5000 lines of Rust code (nBPF

agent) and 1000 lines of C code (eBPF program). nBPF

adopts a time interval of 15s for statistics of retxs counters,

which is fine-grained enough to capture anomalies. nBPF sam-

ples the first 23 retxs for details, which is the 90th percentile

of retxs counters in intranet scenarios.

The CPU/memory usage of nBPF is carefully optimized

to avoid interference with applications [42, 48]. The nBPF

agents read retxs events from kernel space via zero-copy

ring buffer. The CPU quota is limited to 5% of one core

and the memory quota is limited to 30MB via cgroup. For

stability consideration, nBPF tools are automatically deployed

according to the IP list (VMs/NCs) with multi-phase canary

testing. nBPF agent also reports empty retxs counter as the

heartbeat.

Coverage Analysis. AND deploys nBPF at guest OS or bare-

metal servers. The coverage of AND thus depends on how

many VMs/NCs are deployed. The nBPF tool relies on eBPF

890 2024 USENIX Annual Technical Conference USENIX Association

features of Linux kernel, without requiring any other specific

hardware/software. The early-version kernels cannot support

eBPF and only occupy the minority of machines (18.43%).

nBPF adopts kprobes and perf_events to monitor retxs
effectively, which are introduced from kernel 4.9+ [2]. AND

covers 96.91% of the rest of machines with kernel version

supported (81.57%). The rest machines (3.09%) are managed

by another corporation and are thus not covered.

As shown in Figure 5, the number of container IPs report-

ing retxs in one hour reaches an order of 106. AND also meets

our design goal of covering Alibaba proprietary business, in-

cluding computing platform [4,6], database, mobile shopping,

etc. Besides, the kernel version keeps upgrading and the old

kernels/machines will expire gradually. The coverage of AND

thus continues to increase.

Overhead Analysis. AND provides always-on service. Here

we focus on the CPU overheads of nBPF. The long-term

OpEx for data processing is discussed in §6.2.

CPU Overheads. As shown in Figure 6b, we compare the

CPU overheads of nBPF with end-host monitoring tools. Ex-

isting works [39, 43, 49] collect connection-/packet-level met-

rics at end hosts. For example, they adopt Netlink [7] to collect

TCP info from the kernel. The burst loads easily cause a full

occupation of a single CPU core. The BCC [1] tools moni-

tor TCP connections using eBPF and reduce the overheads

compared to Netlink, however, the peak CPU utilization still

exceeds 10%. As a comparison, the CPU overheads of nBPF

keep around or below 1%, because nBPF only collects retxs
events with dedicated optimizations like filtering/sampling,

zero-copy collecting, etc.
Stress Tests. We also deploy nBPF agent at a proxy server

and the connections of the high-frequency trading services

reach a million level in stress tests. As shown in Figure 10,

system loads of both clients and real servers increase slightly

during 0 ∼ 200s and the average CPU utilization of nBPF

keeps around 0.3%. Interestingly, the proxy server bursts

massive SYN retxs to real servers and RTO retxs to clients

(Figure 10a), because clients already build connections with

proxy servers while proxy servers try to access real servers.

The retxs counters also burst after many connections break

when stress tests are finished (around 550s). nBPF limits the

CPU usage in such extreme cases and the CPU loads thus

keep below 5% (Figure 10b).

6 Anomaly Detection
6.1 Design of Detection Procedure

The clouds host massive applications with mixed deployments.

These applications exhibit distinct retxs patterns and sensitiv-

ities to retxs, with different QoS levels, resource quotas and

load variations. Even though AND performs filtering in the

collecting phase (§5), there still exists large ‘noises’ in the

time series of retxs counters from millions of IPs. On the one

Figure 11: Clustering of time series (intranet): (1) Stable time

series with small ‘noise’ take 41.06%; (2) Stable and seasonal

time series with predictable ‘noise’ take 48.09%; (2) Unstable

time series (mean-shift or hybrid) take 10.85%.

hand, dropping ‘noisy’ time series will lose valid data and

lower coverage, while using ‘noisy’ data directly will affect

accuracy. On the other hand, the simple threshold- or rule-

based methods cannot be applied to various retxs patterns.

To this end, the core idea of the detection procedure adopts

a multi-level clustering to distinguish retxs patterns and then

designs lightweight feature engineering to extract effective

features for anomaly detection.

Multi-level Clustering. The algorithm performs a two-level

time-series clustering to capture different ‘noisy’ patterns.

The time series are first clustered according to the occurrence

frequency of retx. Specifically, time series are divided into

four levels from low to high frequency to intuitively reflect

the ‘noise’ level. On this basis, AND further classifies time

series into stable type and unstable type (seasonal/trend, mean-

shift and hybrid types), according to the stability, seasonality

and distribution of windowed means. Figure 11 presents the

distribution of retxs patterns in cloud intranet. Most time

series are stable or seasonal as the network environment of

the intranet is relatively stable. A large portion of time series

still exhibit ‘noisy’ patterns and cannot be filtered simply

using thresholds.

Feature Engineering & Detection. According to clustering

results, the algorithm designs feature engineering for filtering

and denoising. First, the feature values are obtained by differ-

encing real-time counters with prediction values of ‘noises’.

Second, the feature values are penalized and scaled according

to the stability and seasonality of the time series. For exam-

ple, time series that exhibit unstable/unpredictable ‘noise’ can

hardly extract true anomalies and are prone to be penalized.

The extracted features either approximate stable time series or

are penalized to small weights. The featured values are also

normalized and can be applied to detection directly, using a

pre-trained model like isolation forest (IF) [28].

6.2 Deployment & Evaluation

Offline & Online Processing. Real-time is the key require-

ment of the detection algorithm for fast anomaly/failure dis-

covery and recovery. To achieve this goal, AND adopts a

hybrid offline and online processing via the low-cost Max-

Compute [6] and real-time Flink [4] respectively. The offline

stage performs compute-intensive clustering, prediction and

USENIX Association 2024 USENIX Annual Technical Conference 891

(a) Stable time series. (b) Seasonal time series.

Figure 12: Effects of detection procedure.

model training, while the online stage only extracts real-time

features and then detects anomalies.

Offline Clustering. AND uses offline clustering for ‘day+1’

detection. Partial container IPs may occasionally be assigned

to other applications and have different retxs patterns com-

pared with the previous clustering results. The time series of

these IPs will be identified and penalized in feature engineer-

ing. The clustering results will be updated the next day.

Offline Prediction. AND designs dedicated offline predic-

tion for different clustering of time series (Figure 11). On

the one hand, partial time series have an ultra-low frequency

of retxs. AND adopts a simple difference with constants as

features. On the other hand, AND adopts a lightweight pred-

ication to eliminate the ‘noise’ of time series, based on the

expectation and variance of history windows.

Offline Training & Online Detection. For offline training,

AND randomly samples time series from a one-month period

and also includes time series of anomalies/failures to enhance

the robustness. The real-time features adopt simple arithmetic

calculations using prediction values and penalizing/scaling

factors pre-processed offline. Finally, the online detection

takes real-time features as inputs and outputs the abnormal

IPs and timestamps for further aggregation and diagnosis.

Effective Data Filtering. Next, we demonstrate that the de-

tection procedure effectively extracts features of anomalies

and also reduces data volume.

As shown in Figure 12, we intuitively show the effects of

the detection procedure, taking stable and seasonal time series

as examples. The detection procedure eliminates the ‘noise’

of time series by lightweight prediction. The features are also

penalized and scaled via coefficients in cyclic windows and

variance in short-time windows.

Data Volume in Daily Operating. We use data volume to

intuitively reflect the computing/storage overheads in daily

operations. Figure 13 presents the number of collected items

(IPs/retxs/connections per hour) from a large-scale region in

one week. The number of IPs reporting all retxs or SYN/RTO

retxs approach an order of 106. AND further identifies the

true anomalies and reduces the reported IPs to an order of 104

(Figure 13a). The connection-level monitors need to collect

one trillion (1012) connections per hour at the region level.

As a comparison, the number of items in all retxs details

achieves 109. The filtering rules and anomaly-detection al-

gorithms further reduce this number to an order of 107 and

(a) Extracted IPs. (b) Connections vs. retxs.
Figure 13: AND only extracts effective anomalies.

Intranet

Internet

Special scenario

Non-network

SLB, NAT Gatewayoo

Internet Internet Service ProviderActive & Passive

Network

S

End host

Virtual network

Physical network

Cross region

Multi-layer switches/links

Application, kernel, etc.

Stateless & Stateful NFs

Cloud Enterprise Network

Figure 14: Anomaly Diagnostic.

106 respectively (Figure 13b). AND only extracts retxs details

(from MaxCompute) for detected anomalies. Both filtering

rules and detection procedures are effective in reducing com-

puting/storage overheads and identifying true anomalies.

7 Anomaly Diagnostic
7.1 Design of Diagnostic Mechanism
As shown in Figure 14, AND uses a hierarchical diagnostic

mechanism to narrow the scope of problems step-by-step.

First, AND distinguishes anomalies between intranet and in-

ternet traffic in the collecting phase. AND thus avoids interfer-

ence from the unstable network environments of the internet

in anomaly routing. After that, AND routes anomalies among

networks, non-networks (end hosts, applications, etc.) and

special scenarios like SLB/NAT/Internet. Finally, AND ana-

lyzes the location and root cause of anomalies by correlating

domain-specific metrics and monitors.

Anomaly Routing Model. The routing model exploits the

distribution of retxs, i.e., SRC/DST IPs in retx details aggre-

gating by application/network attributes, as features to classify

network and non-network anomalies. AND adopts a classifi-

cation model based on the gradient boost decision tree and

collects labeled anomalies/failures in practical operations as

training sets. The main challenges lie in determining feature

sets considering various anomalies in multiple scenarios. We

empirically choose and optimize the feature sets according to

observations of anomalies from production environments.

Experience on Feature Sets. AND correlates retx details with

application and network attributes and builds access graphs

from multiple dimensions as feature sets of the routing model.

For end-host attributes, AND considers IP-level conver-

gence and aggregates container IPs by VMs/NCs. The retx
details exhibit IP-level convergence to a small number of

892 2024 USENIX Annual Technical Conference USENIX Association

hosts (VMs/NCs) due to the end-host anomalies, e.g., the top

several hosts take the majority of total retxs.
For application attributes, AND constructs access graphs

among attribution teams of applications. The large proportion

of core applications as source/destination usually reflect their

own problems. Small-scale anomalies between instances of

the single application are pruned and processed separately.

For network attributes, we construct access graphs at the

region and available zone (AZ) levels. We also consider the

multi-layer topology of physical and virtual networks for fur-

ther anomaly routing.

Last but not least, AND directly correlates retx details

with special scenarios like SLB/NAT/Internet, via virtual IPs

(VIPs) or sessions at SLB/NAT gateways. For example, clients

and real servers are aware of VIPs (with SLBs or NCs per-

forming NAT [33]), while internet traffic is served by fixed

SLB/NAT gateway clusters as inlet/outlet at the region level.

Anomaly Locating and Root Cause. AND further provides

guidance for anomaly locations based on the routing results.

End host & Application. For end-host and application

anomalies, AND identifies the problematic SRC/DST IPs

of (micro)services/VMs/NCs. AND further correlates end-

host metrics (CPU/memory utilization, ingress/egress traffic

and packet drops at kernel-stack/netdev/vSwitch/NIC) and

application-specific monitors, to find the root cause (Case D).

Physical & Virtual Network. For network anomalies, AND

determines the scope of anomalies at the region and AZ lev-

els. For example, inter-region anomalies are usually caused

by the unstable CEN (§8.2). AND also correlates retx
details with network topologies/attributes, e.g., multi-layer

ToR/aggregation/core switches in physical networks, and

vSwitches/forwarding-gateways/VPCs in virtual networks.

The abnormal hosts will aggregate to physical- or virtual-

network failures and even tell which tier a faulty device/link

is located in.

SLB & NAT Gateway. AND identifies gateway anomalies

at the instance or cluster level. At the instance level, retx
details converge to VIPs for source/destination NAT, which

are usually related to specific applications. At the cluster

level, retx details are distributed among multiple nodes or

the whole cluster and many applications are affected. AND

further checks loads of applications and SLB/NAT clusters

and other related metrics to find the root cause (Case A).

Internet. Internet traffic experiences both intranet and inter-

net paths, including SLB/NAT clusters, backbone routers, in-

ternet service providers (ISPs), etc. After excluding the cloud

vendors’ problems (SLB/NAT cluster or backbone router),

AND routes anomalies to the internet direction (Case F).

7.2 Deployment & Evaluation

Iterative Model Training. AND iteratively expands training

sets and executes re-train on a daily basis. The routing model

(a) Different orders of severity.

(b) Recall of detecting network anomaly.

(c) Accuracy of routing network anomaly.

Figure 15: Recall & Accuracy of AND in production.

labels each detected anomaly. Initially, the routing model

only ensures correctness for partial scenarios with abundant

cases. The operators need to verify labels that have a low

confidence level. The accuracy of AND gradually improves

with the extended data sets. AND can automatically expand

data sets with no human involvement as a high confidence

level has been achieved.

Evaluation in Production. We evaluate the capability of

AND in anomaly detecting and routing in production deploy-

ment. We conduct a long-term evaluation by comparing de-

tecting/routing results of AND with other diagnostic tools in

daily operations (§8.2).

Methodology. We focus on network anomalies to evaluate

the routing model. On the one hand, the clouds have built

mature probing and telemetry systems for physical and virtual

networks [15, 22, 56, 57], which can be used as baselines for

evaluation. On the other hand, delimiting network anoma-

lies is a challenging task with many application or end-host

anomalies as interference. We also validate other types of

anomalies in daily operations by inspecting domain-specific

monitors.

To capture the sensitivity of AND to anomalies, we define

ten orders of severity according to the scope of anomalies.

We only consider anomalies that exceed a defined severity,

i.e., the number of abnormal IPs detected by AND exceeds

1/1000 (L0) to 1/100 (L9) of the total number of monitored

(micro)services/IPs. Given a specific severity, recall is de-

fined as the percentage of network anomalies routed by AND

among all network anomalies, while accuracy is defined as

the percentage of true network anomalies among network

anomalies routed by AND.

Recall & Accuracy. Figure 15a shows the percentage of

affected (micro)services/containers with different orders of

severity, from 0.1% to 1%. Figure 15 also presents the accu-

USENIX Association 2024 USENIX Annual Technical Conference 893

(a) Case A: SLB overloading. (b) Case B: Normal alternation. (c) Case C: Link failure of Redis. (d) Case D: Kernel-stack contentions.

(e) Case A: SLB traffic. (f) Case B: Failed alternation. (g) Case E: Wrong ACL configurations. (h) Case F: Internet access.

Figure 16: The abnormal IPs and the aggregations of SRC/DST IPs (retxs details) facilitate failure detection and routing.

mulative recall and accuracy since the initial deployment of

the routing model in a one-month period. AND achieves a

relatively stable recall in detecting network anomalies, from

75% to 95.96% as shown in Figure 15b. The accuracy of

routing network anomalies improves gradually with the ex-

panded data sets. In the stable phase, AND achieves 84.61% to

95.83% accuracy in routing network anomalies, considering

different orders of severity (Figure 15c).

Analysis. We then analyze the false positives and false

negatives of AND considering network anomalies. The false

positives are mainly attributed to the wrong routing conclu-

sions. For example, end-host or application anomalies may

be wrongly routed to network anomalies (§9.2). Note that

network failures may not be covered by probing systems in

particular cases (§8). We also consider these cases which are

confirmed as network failures by operation teams.

The false negatives are due to the different design rationales

of AND and probing systems. AND monitors in-band traffic of

applications and reports anomalies only if application traffic

is affected. On the other hand, probing systems adopt probing

traffic and target anomalies from the network perspective.

For example, probing systems are sensitive to network jitters

(slight packet drops of network links), however, application

traffic may not pass the problematic links or applications have

no network I/O when anomalies happen.

In summary, both recall and accuracy of AND gradually

increase with more severe network anomalies. The impacts

on application traffic also increase with the larger scope of

anomalies. While the application may not be affected at L0,

there is a high probability that applications are affected at L9.

8 Case Studies
8.1 Impact Assessment & Coverage Analaysis

Absence of Impact Assessment. The most widely deployed

network probing systems [22,57] lack impact assessment from

application perspectives. They cannot tell whether application

traffic is affected by anomalies and even overlook large-scale

failures.

Case A: SLB overloading. AND reports the number of af-

fected (micro)services (SRC IPs) in anomalies caused by SLB

overloading (Figure 16a), where the retxs details converge

to VIPs served by SLB nodes. As a comparison, the probing

systems [22,57] may detect delays/losses when probing paths

of SLB nodes (DST IPs), however, cannot tell the accurate

scope of impact from the service perspective. After checking

the traffic of SLB nodes, we observe that SLB nodes are over-

loaded and thus drop many packets (Figure 16e). The services

recover to normal after operators extend the quota/capacity

of SLB nodes.

Case B: Failures in gateway alternations. AND tells

whether network alternations affect applications and whether

applications recover to normal after emergency actions. For

example, network teams often perform gateway alterna-

tions/upgrades. Generally, the related IP segments will burst

many retxs due to connection breaks and then recover to

normal (Figure 16b). AND helps detect unexpected gateway-

cluster failures quickly during alternations (Figure 16f). The

operators then execute roll-back actions and applications re-

cover to normal rapidly.

Case C: Link failures accessing Redis. AND detects a large-

scale failure of the instant take-out ordering services (Fig-

ure 16c). The ordering services further rely on the in-memory

cache services (e.g., Redis [8]) in dedicated VPC and appear

many retxs to the target VPC. Because the IP-table (8-bit

index) is overflowed in the forwarding gateway — the default

DST IP (index 0) for return packets is replaced with a wrong

value — all requests to Redis receive no responses (forwarded

to the wrong DST IP). The network monitors [22, 57] may

detect small-scale failures among all network paths but regard

them as not urgent. AND also helps to find the real culprits,

i.e., failing to access the dependent Redis services.

894 2024 USENIX Annual Technical Conference USENIX Association

Limitations in Coverage. The probing systems fall short

in a number of scenarios, e.g., kernel stacks, ACL rules and

internet traffic. We also demonstrate that a unified diagnos-

tic system like AND facilitates anomaly routing and fault

locating.

Case D: Kernel-stack contentions. AND detects a large-

scale failure caused by kernel-stack contentions and helps to

pinpoint the problematic VMs/NCs (Figure 16d). The kernel

plugins are deployed in many hosts to trace the CPU schedul-

ing events of the densely deployed microservices [45]. The

frequency of tracing changes from 5s to 1s in one release, and

causes severe contentions with ksoftirqd of packet process-

ing [5, 12], further resulting in many retxs. The intermittent

probing systems deployed at NCs may not perceive such

kernel-stack anomalies inside VMs (§11).

Case E: ACL problems. The out-band probings may fail to

capture problems experienced by in-band traffic, e.g., ACL

rules will allow probing packets by default. As an implemen-

tation of service-level access control, the sidecar (proxy in

service mesh [34]) injects/verifies identifications as the pay-

loads of SYN packets via TCP fast open (TFO) option. AND

detects a large-scale service failure with many SYN retxs cor-

relating with gateway clusters (Figure 16g). Because sidecars

adopt the wrong ACL configurations for traffic passing NAT

gateways. The gateways drop these TFO packets by default

to avoid denial of service (DoS) attacks. The services recover

to normal after ACL rules are corrected.

Case F: Internet problems. AND detects service anomalies

caused by backbone routers or ISP problems. As shown in

Figure 16h, AND reports massive SYN retxs from region A

to internet direction and many applications are affected (1©
in Figure 4). AND routes anomalies to the internet outlet of

region A (NAT clusters — backbone routers — ISPs). After

correlating with syslogs of devices, we finally pinpoint port-

down problems at the backbone router. AND also detects the

VIP-level anomaly where user clients with common ISP at-

tributes are affected (2© in Figure 4), because the ISP wrongly

blocks VIP of services.

8.2 Distribution of Anomalies
We analyze the distribution of anomalies/failures and the

corresponding root causes, uncovered by AND in a one-month

period, as shown in Figure 17.

Anomaly Locations. Figure 17a shows the distribu-

tions of anomaly locations. For end-host anomalies, the

netdev-frontend includes layers above it (guest OS, kernel

stacks, applications in Figure 7) and has the largest occupation

(14%). For network anomalies, most of the problems happen

at physical networks (37%) and the rest problems are due to

virtual networks (16%).

Root Causes. Figure 17b shows the root causes of the above

anomalies/failures. Most of the end-host anomalies are caused

by burst traffic (16%). For example, the kernel stack fails

(a) Locations of anomalies. (b) Root causes of anomalies.

Figure 17: Distributions of anomalies.

to process packets and causes drops at netdev-frontend.
The VMs/vSwitches may also be overloaded by burst traf-

fic exceeding capacity. The rate limit (13%) works at

netdev-backend and causes packet drops when quotas are

exhausted. The down/migrate/upgrade behaviors (9%) of crit-

ical modules, e.g., services (containers), VMs, vSwitches,

NC, etc., break connections and causes many retxs. The

CPU/memory drain usually happens at VMs and the physi-

cal NIC problems are usually caused by port flips. The CPU

contention at the kernel stack leads to a large-scale failure

(Figure 16d).

Most of the network anomalies are caused by link failures

(34%) or switch failures (3%) of physical networks. The CEN

or leased-line failures (19%) occupy the most of link failures

for cross-region communications. The virtual-network fail-

ures are usually caused by wrong configurations, overloaded

NFs, ACL rules and faulty gateways. Besides, there still exist

4% unknowns anomalies that cannot be well explained. For

example, the container IPs may already be migrated in func-

tion as a service (FaaS) [17] before AND finds the root cause

by correlating with other diagnostics tools.

9 Experience

In this section, we introduce experience about how AND is

used. We also analyze the scope and limitations of AND in

practical deployment.

9.1 Practical Usage

Network Teams. The virtual or physical networking teams

detect network anomalies via active probing [22,57] and in-

network telemetry [56], and often perform network alteration

or traffic migration. They use AND to verify whether appli-

cations are affected and then perform emergency recovery.

For example, applications will burst retxs and then recover to

normal in a successful gateway alteration (Figure 16b). In one

unexpected gateway failure during alternation, AND detects

persistent retxs of the affected applications (Figure 16f). The

operators then perform rollback immediately and applications

recover to normal.

Application Teams. The application teams observe abnor-

mal metrics via their specific monitors. The operators then

query AND to verify retxs details of related (micro)services.

USENIX Association 2024 USENIX Annual Technical Conference 895

If AND reports no anomalies, problems are usually blamed

on application-layer logic. Otherwise, AND provides routing

results to attribution teams. By correlating retxs details with

domain-specific monitors, operation teams quickly determine

the root causes of the anomaly. AND enables minute-level

anomaly detection and routing, and thus improves the effi-

ciency of diagnosing significantly.

Active Alerting. AND also pushes alerts to related teams

actively. PaaS and IaaS teams cross-validate the reported

anomalies from AND and give feedback on root causes. More

importantly, AND complements peculiar anomalies that are

not detected by existing monitoring systems (§8). Application

teams give feedback on whether QoS is affected by retxs
anomalies. For example, Redis [8] are sensitive to timeouts,

while MaxCompute [53] focuses on the expected deadline of

background tasks instead of request-level timeouts.

9.2 Scope & Limitations

Scope & Advantages of AND. AND mainly targets PaaS and

IaaS layers since retxs work below application layer (Fig-

ures 1 and 7) — application-layer anomalies like RPC time-

outs may not necessarily trigger transport-layer retxs — the

kernel stack may return ACKs as usual. Interestingly, AND

also detects many anomalies due to abnormal application be-

haviors including CPU/memory exhausting and unattended

service upgrade/migration (§8.2). Application teams have

built plenty of dedicated tools to monitor application-layer

logic [8, 20, 37, 54]. The key challenge is to correlate appli-

cations to networks and tell whether application anomalies

are blamed on network failures or whether network malfunc-

tions/alterations have severe impacts on applications.

AND has superiorities in coverage and impact assessment,

and thus complements the blind points of currently deployed

monitoring systems. First, AND monitors in-band traffic while

the probing systems [22,57] may not perceive anomalies ex-

perienced by application traffic. Second, AND monitors retxs
at (micro)service and connection level for impact assessment

from the application perspective.

Anomaly Routing and Locating. AND may occasionally

make wrong routing conclusions. For example, end-host

anomalies are routed to network teams — failure caused by

kernel-stack contention affects many applications/IPs and

manifests a similar distribution of retxs as network anomalies

(Case D in §8). Even though AND gives a wrong delimiting

conclusion, it detects the large-scale failure at once and pro-

vides details of the affected (micro)services and SRC/DST

IPs. The operation teams then use this info as input for fast

anomaly diagnosis. Above all, AND identifies the abnormal

SRC/DST IPs and coarsely delimits the scope of anomalies.

After that, the details of anomalies may be routed to dedi-

cated systems [22, 56, 57], to find the exact locations and root

causes.

10 Lessons Learned

In this section, we present lessons learned about unified oper-

ating entrance and exploration of AIOps.

10.1 Unified Diagnostic Platform
Our clouds have built mature monitoring systems with clear la-

bor of division. Existing monitors focus on their target domain,

e.g., PingSys [22] targets physical networks and Zoonet [57]

targets virtual networks. When applications encounter prob-

lems, operators check each system and try to correlate anoma-

lies with network events. With so many systems and metrics,

the whole process is inefficient in finding the root cause. A

unified diagnostic platform facilitates this process, which in-

tegrates multiple scenarios like physical and virtual networks

and performs fast anomaly routing to target teams. AND en-

ables minute-level anomaly detection and routing.

10.2 Roads toward AIOps
Operating large-scale clouds incurs large OpEx, especially

human costs. Introducing AIOps helps to release heavy work-

loads for human beings, however, still face challenges in prac-

tice. There exist huge gaps between available training sets and

complex machine-learning models. To employ more features

as inputs and more complex models, we need sufficient cases

of real anomalies as training sets. AND is a good exploration

of AIOps. AND acquires training sets and extracts features

of anomalies in a limited scope, e.g., sampling from partial

applications and cloud regions. AND then trains the routing

model that can be generalized to the whole cloud. AND also

iteratively expands training sets, by automatically labeling

anomalies with the trained model.

AND combined with AIOps have advantages of scalabil-

ity and versatility, e.g., extending to more cloud regions and

supporting IPv6 protocols, compared with traditional prob-

ing systems. With the deployment of more cloud regions,

the number of containers/VMs increases exponentially. Full-

mesh probing faces telemetry complexity issues and huge

overheads [22, 57]. Probing systems only cover partial virtual

or physical machines with sampling and path pruning. AND

already has full deployment in our clouds and easily extends

to more cloud regions, by monitoring application traffic and

only collecting anomalies with low overheads. In the early

phase, AIOps relies on existing monitoring systems for label

and cross-validation. The routing and diagnosing models are

expected to achieve better generalization ability with iterative

training and optimization.

11 Related Works

Active Probing. Pingmesh [22] targets physical networks in

large data centers. VNET Pingmesh [38] and VTrace [15]

896 2024 USENIX Annual Technical Conference USENIX Association

Diagnostic Tool Category
Coverage: Probing,

Application Traffic

Perspective:

Application, Network
Overhead: End-host,
Switch, Storage

Deployability:

Scope, Limitation

Active Probing: Pingmesh [22],

NetBouncer [44], Zoonet [57]

Probing traffic,

Intranet

Physical & virtual

network Low, Low, Low

Large data centers and

clouds, network only

End-host Monitoring: SNAP [49],

PathDump [43], 007 [9]

Application traffic,

Intranet

Application & physical

network High, Low, High

Large data centers,

high CapEx and OpEx

In-network Telemetry: PINT [11],

NetSeer [56], SpiderMon [47]

Application traffic,

Intranet

Application & physical

network Low, High, Low

Partial deployment,

programmable hardware

AND
Application traffic,

Intranet & internet

Application & physical,

virtual network Low, Low, Low

Million (micro)services,

cloud-native supported

Table 1: Coverage, perspective, overhead and deployment analysis of existing diagnostic tools and AND.

extend the coverage to virtual networks in the clouds.

Zoonet [57] further extends the scope to end hosts, which

covers anomalies of vSwitches/NICs and VMs/netdevs via

ARP ping. However, the out-band probing may not cover prob-

lems of actual service traffic. For example, ACL rules allow

probing packets by default and the ARP packets experience

different paths with TCP/IP packets of services at the kernel

stack. They target non-transient network failures (no shorter

than the probing interval [44]) and intranet traffic (internet is

uncontrollable [57]). Last but not least, AND reveals for the

first time that the probing systems fall short in assessing the

impacts of network anomalies on real application traffic in a

cloud-native environment.

End-host Monitoring. To correlate applications with network

paths end-to-end, existing works collect connection-, link-

and even packet-level metrics at end hosts. PathDump [43]

and Facebook [39] propose to correlate connections with

the network paths by marking packets at each hop and then

parsing packets at end hosts. 007 [9] also collects retxs and

queries the network path of each retx via Traceroute. However,

Traceroute incurs too much overheads to the switch’s control

plane with many retxs. NetPoirot [10] identifies root causes

of failures only using TCP statistics at one host, which relies

on artificial failure injections. In all, collecting fine-grained

metrics helps a lot in anomaly diagnostics, however, incurs

considerable overheads in long-term operation and should be

enabled on-demand.

In-network Telemetry. The programmable data plane and

in-network telemetry promote novel monitoring systems

at switches/NICs [26, 41]. PINT [11] and NetSeer [56]

record network-wide statistics and abnormal events at pro-

grammable switches respectively. SpiderMon [47] builds a

closed-loop between monitoring and posterior diagnosis to

achieve low overhead and high coverage. BufScope [20] mon-

itors request-level anomalies of application RPCs by corre-

lating requests at end hosts (SmartNICs) to network paths

(programmable switches). While BufScope [20] has been de-

ployed in Alibaba’s production storage application, these so-

lutions rely on new hardware (e.g., programmable switches).

Table 1 summarizes the comparisons of AND with exist-

ing works. Different from the probing-based systems, AND

monitors the actual application traffic and identifies anoma-

lies from the application perspective. Compared with existing

end-host monitors, AND extracts anomalies via the single met-

ric of retxs, and achieves lower CPU and storage overhead.

AND is also readily deployable in the multi-tenant clouds

without relying on specific hardware. However, AND is not

omnipotent and should be used cooperatively with other tools.

For example, The application- or RPC-level monitors [20,54]

complement AND to detect application-layer anomalies. AND

also resorts to existing diagnostic tools [22, 30, 57] to locate

the exact locations of anomalies.

12 Conclusion

In this paper, we introduce experience in designing, deploy-

ing and operating the application-network diagnosing (AND)

system in Alibaba cloud. AND exploits a single metric of

TCP retxs to build the unified monitoring and diagnosing ca-

pability, which enables minute-level anomaly detection and

facilitates fast failure recovery. According to the operational

experience of over three years, AND demonstrates its supe-

riorities from several aspects, including impact assessment

at (micro)service levels, multiple-problem-domain anomaly

routing, extremely low overheads and generalization ability.

13 Acknowledgment

We sincerely thank the anonymous reviewers for their

insightful comments and feedback. This work was sup-

ported in part by NSFC grant 62141220, 61972253,

U1908212, 72061127001, 62172276, 61972254, the Program

for Professor of Special Appointment (Eastern Scholar) at

Shanghai Institutions of Higher Learning, Alibaba Inno-

vative Research (AIR) Program. Corresponding authors:

Linghe Kong (linghe.kong@sjtu.edu.cn) and Xinlei Kang

(xinlei.kang@alibaba-inc.com).

USENIX Association 2024 USENIX Annual Technical Conference 897

References

[1] BPF Compiler Collection (BCC). https://github.com/iovisor/b

cc, June. 2023.

[2] eBPF Features by Linux Kernel Version. https://github.com/i

ovisor/bcc/blob/master/docs/kernel-versions.md, June. 2023.

[3] Elastic compute service (ecs). https://www.alibabacloud.com

/product/ecs, June. 2023.

[4] Flink - realtime compute for apache flink. https://www.alibab

acloud.com/product/realtime-compute, June. 2023.

[5] ksoftirqd - softirq daemon. https://man.cx/ksoftirqd(9), June.

2023.

[6] Maxcompute - conduct large-scale data warehousing with max-

compute. https://www.alibabacloud.com/product/maxcompute,

June. 2023.

[7] Netlink - socket-based communication between user and kernel

processes. https://man7.org/linux/man-pages/man7/netlink.7.

html, June. 2023.

[8] Redis. https://redis.io/, June. 2023.

[9] Behnaz Arzani, Selim Ciraci, Luiz Chamon, Yibo Zhu,

Hongqiang Harry Liu, Jitu Padhye, Boon Thau Loo, and Ge-

off Outhred. 007: Democratically finding the cause of packet

drops. In USENIX NSDI, 2018.

[10] Behnaz Arzani, Selim Ciraci, Boon Thau Loo, Assaf Schuster,

and Geoff Outhred. Taking the blame game out of data centers

operations with netpoirot. In ACM SIGCOMM, 2016.

[11] Ran Ben Basat, Sivaramakrishnan Ramanathan, Yuliang Li,

Gianni Antichi, Minian Yu, and Michael Mitzenmacher. PINT:

Probabilistic in-band network telemetry. In ACM SIGCOMM,

2020.

[12] Qizhe Cai, Shubham Chaudhary, Midhul Vuppalapati, Jaehyun

Hwang, and Rachit Agarwal. Understanding host network

stack overheads. In ACM SIGCOMM, 2021.

[13] Wei Cao, Yingqiang Zhang, Xinjun Yang, Feifei Li, Sheng

Wang, Qingda Hu, Xuntao Cheng, Zongzhi Chen, Zhenjun Liu,

Jing Fang, et al. Polardb serverless: A cloud native database

for disaggregated data centers. In ACM SIGMOD, 2021.

[14] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russi-

novich, Marcus Fontoura, and Ricardo Bianchini. Resource

central: Understanding and predicting workloads for improved

resource management in large cloud platforms. In SOSP, 2017.

[15] Chongrong Fang, Haoyu Liu, Mao Miao, Jie Ye, Lei Wang,

Wansheng Zhang, Daxiang Kang, Biao Lyv, Peng Cheng, and

Jiming Chen. Vtrace: automatic diagnostic system for per-

sistent packet loss in cloud-scale overlay network. In ACM
SIGCOMM, 2020.

[16] Yihui Feng, Zhi Liu, Yunjian Zhao, Tatiana Jin, Yidi Wu,

Yang Zhang, James Cheng, Chao Li, and Tao Guan. Scal-

ing large production clusters with partitioned synchronization.

In USENIX ATC, 2021.

[17] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal

Rathi, Nayan Katarki, Ariana Bruno, Justin Hu, Brian Ritchken,

Brendon Jackson, et al. An open-source benchmark suite for

microservices and their hardware-software implications for

cloud and edge systems. In ASPLOS, 2019.

[18] Yu Gan, Yanqi Zhang, Kelvin Hu, Dailun Cheng, Yuan He,

Meghna Pancholi, and Christina Delimitrou. Seer: Leveraging

big data to navigate the complexity of performance debugging

in cloud microservices. In ASPLOS, 2019.

[19] Jiaqi Gao, Nofel Yaseen, Robert MacDavid, Felipe Vieira Fru-

jeri, Vincent Liu, Ricardo Bianchini, Ramaswamy Aditya, Xi-

aohang Wang, Henry Lee, David Maltz, et al. Scouts: Improv-

ing the diagnosis process through domain-customized incident

routing. In ACM SIGCOMM, 2020.

[20] Kaihui Gao, Chen Sun, Shuai Wang, Dan Li, Yu Zhou,

Hongqiang Harry Liu, Lingjun Zhu, and Ming Zhang. Buffer-

based end-to-end request event monitoring in the cloud. In

USENIX NSDI, 2022.

[21] Yixiao Gao, Qiang Li, Lingbo Tang, Yongqing Xi, Pengcheng

Zhang, Wenwen Peng, Bo Li, Yaohui Wu, Shaozong Liu, Lei

Yan, et al. When cloud storage meets {RDMA}. In USENIX
NSDI, 2021.

[22] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong Dang,

Ray Huang, Dave Maltz, Zhaoyi Liu, Vin Wang, Bin Pang,

Hua Chen, et al. Pingmesh: A large-scale system for data

center network latency measurement and analysis. In ACM
SIGCOMM, 2015.

[23] Roni Haecki, Radhika Niranjan Mysore, Lalith Suresh, Gerd

Zellweger, Bo Gan, Timothy Merrifield, Sujata Banerjee, and

Timothy Roscoe. How to diagnose nanosecond network laten-

cies in rich end-host stacks. In USENIX NSDI, 2022.

[24] Xinhao Kong, Yibo Zhu, Huaping Zhou, Zhuo Jiang, Jianxi

Ye, Chuanxiong Guo, and Danyang Zhuo. Collie: Finding

performance anomalies in {RDMA} subsystems. In USENIX
NSDI, 2022.

[25] Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio Vi-

cente, Charles Krasic, Dan Zhang, Fan Yang, Fedor Kouranov,

Ian Swett, Janardhan Iyengar, et al. The QUIC transport pro-

tocol: Design and internet-scale deployment. In ACM SIG-
COMM, 2017.

[26] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu.

FlowRadar: A better NetFlow for data centers. In USENIX
NSDI, 2016.

[27] Zijun Li, Jiagan Cheng, Quan Chen, Eryu Guan, Zizheng Bian,

Yi Tao, Bin Zha, Qiang Wang, Weidong Han, and Minyi Guo.

{RunD}: A lightweight secure container runtime for high-

density deployment and high-concurrency startup in serverless

computing. In USENIX ATC, 2022.

[28] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation

forest. In IEEE ICDM, 2008.

[29] Xusheng Luo, Luxin Liu, Yonghua Yang, Le Bo, Yuanpeng

Cao, Jinghang Wu, Qiang Li, Keping Yang, and Kenny Q Zhu.

Alicoco: Alibaba e-commerce cognitive concept net. In ACM
SIGMOD, 2020.

[30] Jonathan Mace, Ryan Roelke, and Rodrigo Fonseca. Pivot

tracing: Dynamic causal monitoring for distributed systems. In

SOSP, 2015.

[31] Sebastiano Miano, Fulvio Risso, Mauricio Vásquez Bernal,

Matteo Bertrone, and Yunsong Lu. A framework for ebpf-

based network functions in an era of microservices. IEEE

898 2024 USENIX Annual Technical Conference USENIX Association

Transactions on Network and Service Management, 18(1):133–

151, 2021.

[32] Tian Pan, Nianbing Yu, Chenhao Jia, Jianwen Pi, Liang Xu,

Yisong Qiao, Zhiguo Li, Kun Liu, Jie Lu, Jianyuan Lu, et al.

Sailfish: Accelerating cloud-scale multi-tenant multi-service

gateways with programmable switches. In ACM SIGCOMM,

2021.

[33] Parveen Patel, Deepak Bansal, Lihua Yuan, Ashwin Murthy,

Albert Greenberg, David A Maltz, Randy Kern, Hemant Ku-

mar, Marios Zikos, Hongyu Wu, et al. Ananta: Cloud scale

load balancing. ACM SIGCOMM Computer Communication
Review, 43(4):207–218, 2013.

[34] Larry Peterson, Tom Anderson, Sachin Katti, Nick McKeown,

Guru Parulkar, Jennifer Rexford, Mahadev Satyanarayanan,

Oguz Sunay, and Amin Vahdat. Democratizing the network

edge. ACM SIGCOMM Computer Communication Review,

49(2):31–36, 2019.

[35] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan Jackson, Andy

Zhou, Jarno Rajahalme, Jesse Gross, Alex Wang, Joe Stringer,

Pravin Shelar, et al. The design and implementation of open

vSwitch. In USENIX NSDI, 2015.

[36] Mohammad Rajiullah, Per Hurtig, Anna Brunstrom, Andreas

Petlund, and Michael Welzl. An evaluation of tail loss recovery

mechanisms for tcp. ACM SIGCOMM Computer Communica-
tion Review, 45(1):5–11, 2015.

[37] Will Reese. Nginx: the high-performance web server and

reverse proxy. Linux Journal, 2008(173):2, 2008.

[38] Arjun Roy, Deepak Bansal, David Brumley, Harish Kumar

Chandrappa, Parag Sharma, Rishabh Tewari, Behnaz Arzani,

and Alex C Snoeren. Cloud datacenter SDN monitoring: Ex-

periences and challenges. In ACM IMC, 2018.

[39] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, and Alex C Snoeren.

Passive realtime datacenter fault detection and localization. In

USENIX NSDI, 2017.

[40] Zhiming Shen, Zhen Sun, Gur-Eyal Sela, Eugene Bagdasaryan,

Christina Delimitrou, Robbert Van Renesse, and Hakim Weath-

erspoon. X-containers: Breaking down barriers to improve

performance and isolation of cloud-native containers. In ASP-
LOS, 2019.

[41] Robin Sommer and Anja Feldmann. Netflow: Information loss

or win? In Proceedings of the 2nd ACM SIGCOMM Workshop
on Internet measurment, 2002.

[42] Zhuo Song, Jiejian Wu, Teng Ma, Zhe Wang, Linghe Kong,

Zhenzao Wen, Jingxuan Li, Yang Lu, Yong Yang, Tao Ma,

Zheng Liu, and Guihai Chen. Zero+: Monitoring large-scale

cloud-native infrastructure using one-sided rdma. IEEE/ACM
Transactions on Networking, pages 1–16, 2024.

[43] Praveen Tammana, Rachit Agarwal, and Myungjin Lee. Sim-

plifying datacenter network debugging with PathDump. In

USENIX OSDI, 2016.

[44] Cheng Tan, Ze Jin, Chuanxiong Guo, Tianrong Zhang, Haitao

Wu, Karl Deng, Dongming Bi, and Dong Xiang. NetBouncer:

Active device and link failure localization in data center net-

works. In USENIX NSDI, 2019.

[45] Muhammad Tirmazi, Adam Barker, Nan Deng, Md E Haque,

Zhijing Gene Qin, Steven Hand, Mor Harchol-Balter, and John

Wilkes. Borg: the next generation. In EuroSys, 2020.

[46] Marcos AM Vieira, Matheus S Castanho, Racyus DG Pacífico,

Elerson RS Santos, Eduardo PM Câmara Júnior, and Luiz FM

Vieira. Fast packet processing with ebpf and xdp: Concepts,

code, challenges, and applications. ACM Computing Surveys
(CSUR), 53(1):1–36, 2020.

[47] Weitao Wang, Xinyu Crystal Wu, Praveen Tammana, Ang

Chen, and TS Eugene Ng. Closed-loop network performance

monitoring and diagnosis with SpiderMon. In USENIX NSDI,
2022.

[48] Zhe Wang, Teng Ma, Linghe Kong, Zhenzao Wen, Jingxuan Li,

Zhuo Song, Yang Lu, Guihai Chen, and Wei Cao. Zero over-

head monitoring for cloud-native infrastructure using RDMA.

In USENIX ATC, 2022.

[49] Minlan Yu, Albert Greenberg, Dave Maltz, Jennifer Rexford,

Lihua Yuan, Srikanth Kandula, and Changhoon Kim. Profiling

network performance for multi-tier data center applications. In

USENIX NSDI, 2011.

[50] Xiao Yu, Pallavi Joshi, Jianwu Xu, Guoliang Jin, Hui Zhang,

and Guofei Jiang. Cloudseer: Workflow monitoring of cloud

infrastructures via interleaved logs. In ASPLOS, 2016.

[51] Chaoliang Zeng, Layong Luo, Teng Zhang, Zilong Wang,

Luyang Li, Wenchen Han, Nan Chen, Lebing Wan, Lichao Liu,

Zhipeng Ding, et al. Tiara: A scalable and efficient hardware

acceleration architecture for stateful layer-4 load balancing. In

USENIX NSDI, 2022.

[52] Xiantao Zhang, Xiao Zheng, Zhi Wang, Hang Yang, Yibin

Shen, and Xin Long. High-density multi-tenant bare-metal

cloud. In ASPLOS, 2020.

[53] Zhuo Zhang, Chao Li, Yangyu Tao, Renyu Yang, Hong Tang,

and Jie Xu. Fuxi: a fault-tolerant resource management and

job scheduling system at internet scale. In Proceedings of the
VLDB Endowment, volume 7, pages 1393–1404, 2014.

[54] Hao Zhou, Ming Chen, Qian Lin, Yong Wang, Xiaobin She,

Sifan Liu, Rui Gu, Beng Chin Ooi, and Junfeng Yang. Overload

control for scaling wechat microservices. In ACM SoCC, 2018.

[55] Jianer Zhou, Qinghua Wu, Zhenyu Li, Steve Uhlig, Peter

Steenkiste, Jian Chen, and Gaogang Xie. Demystifying and

mitigating tcp stalls at the server side. In ACM CoNEXT, 2015.

[56] Yu Zhou, Chen Sun, Hongqiang Harry Liu, Rui Miao, Shi Bai,

Bo Li, Zhilong Zheng, Lingjun Zhu, Zhen Shen, Yongqing Xi,

et al. Flow event telemetry on programmable data plane. In

ACM SIGCOMM, 2020.

[57] Shunmin Zhu, Jianyuan Lu, Biao Lyu, Tian Pan, Chenhao Jia,

Xin Cheng, Daxiang Kang, Yilong Lv, Fukun Yang, Xiaobo

Xue, et al. Zoonet: a proactive telemetry system for large-scale

cloud networks. In CoNEXT, 2022.

[58] Danyang Zhuo, Kaiyuan Zhang, Yibo Zhu, Hongqiang Harry

Liu, Matthew Rockett, Arvind Krishnamurthy, and Thomas An-

derson. Slim: OS kernel support for a low-overhead container

overlay network. In USENIX NSDI, 2019.

USENIX Association 2024 USENIX Annual Technical Conference 899

	AND__ATC24_Camerca__ 1
	AND__ATC24_Camerca__ 2
	AND__ATC24_Camerca__ 3
	AND__ATC24_Camerca__ 4
	AND__ATC24_Camerca__ 5
	AND__ATC24_Camerca__ 6
	AND__ATC24_Camerca__ 7
	AND__ATC24_Camerca__ 8
	AND__ATC24_Camerca__ 9
	AND__ATC24_Camerca__10
	AND__ATC24_Camerca__11
	AND__ATC24_Camerca__12
	AND__ATC24_Camerca__13
	AND__ATC24_Camerca__14
	AND__ATC24_Camerca__15

