
This paper is included in the Proceedings of the
2024 USENIX Annual Technical Conference.

July 10–12, 2024 • Santa Clara, CA, USA
978-1-939133-41-0

Open access to the Proceedings of the
2024 USENIX Annual Technical Conference

is sponsored by

Removing Obstacles before Breaking
Through the Memory Wall:

A Close Look at HBM Errors in the Field
Ronglong Wu, Shuyue Zhou, Jiahao Lu, Zhirong Shen, and Zikang Xu,

Xiamen Key Laboratory of Intelligent Storage and Computing, Xiamen University;
Jiwu Shu, Xiamen Key Laboratory of Intelligent Storage and Computing,

Xiamen University, and Minjiang University; Kunlin Yang and Feilong Lin,
Huawei Technologies Co., Ltd; Yiming Zhang, Xiamen Key Laboratory of Intelligent

Storage and Computing, Xiamen University
https://www.usenix.org/conference/atc24/presentation/wu-ronglong

Removing Obstacles before Breaking Through the Memory Wall:
A Close Look at HBM Errors in the Field

Ronglong Wu1, Shuyue Zhou1, Jiahao Lu1, Zhirong Shen1∗, Zikang Xu1, Jiwu Shu1,3,
Kunlin Yang2, Feilong Lin2, and Yiming Zhang1

1Xiamen Key Laboratory of Intelligent Storage and Computing, Xiamen University
2Huawei Technologies Co., Ltd 3Minjiang University

Abstract
High-bandwidth memory (HBM) is regarded as a promis-
ing technology for fundamentally overcoming the memory
wall. It stacks up multiple DRAM dies vertically to dramati-
cally improve the memory access bandwidth. However, this
architecture also comes with more severe reliability issues,
since HBM not only inherits error patterns of the conventional
DRAM, but also introduces new error causes.

In this paper, we conduct the first systematical study on
HBM errors, which cover over 460 million error events col-
lected from nineteen data centers and span over two years of
deployment under a variety of services. Through error analy-
ses and methodology validations, we confirm that the HBM
exhibits different error patterns from conventional DRAM,
in terms of spatial locality, temporal correlation, and sensor
metrics which make empirical prediction models for DRAM
error prediction ineffective for HBM. We design and imple-
ment Calchas, a hierarchical failure prediction framework for
HBM based on our findings, which integrate spatial, temporal,
and sensor information from various device levels to predict
upcoming failures. The results demonstrate the feasibility of
failure prediction across hierarchical levels.

1 Introduction

The performance gap between the computing power and the
memory bandwidth is continuously widening in modern com-
puting systems (a.k.a., memory wall), which becomes one
of the major obstacles in training ever-larger machine learn-
ing models. Extensive efforts have been made to mitigate
the impact of the memory wall, including leveraging access
locality in data prefetching [16, 18, 46, 67, 73], exploring vec-
torization [38,45], exploiting data compression [10,11,21,70],
and designing new system architectures (e.g., processing-in-
memory architecture [42, 53, 77]).

Recently, high bandwidth memory (HBM) receives tremen-
dous attentions and is considered as a promising technology to

∗Corresponding author: Zhirong Shen (shenzr@xmu.edu.cn)

fundamentally overcome the memory bottleneck. For instance,
the first 8-high 24 GB HBM3 Gen2 memory released by Mi-
cron can achieve the bandwidth greater than 1.2 TB/s [2],
which reduces more than 30% of the training time for large
language models and also the total cost of ownership. The
rationale behind HBM is to stack up multiple planar DRAM
chips vertically through through-silicon vias (TSVs) and mi-
crobumps [53,54,79]. HBM further provides several indepen-
dent interfaces (called pseudo channels) to support parallel
data access to different sets of banks, hence achieving high
aggregated access bandwidth.

While being fast and power-efficient, HBM is more vul-
nerable to unexpected errors due to the following reasons.
First, as HBM is constructed by stacking DRAM dies, it not
only inherits the error characteristics of conventional DRAM,
but also poses new error causes, such as more severe soft
errors under the higher bit density [52] and TSV faults (in-
cluding data TSV faults, command TSV faults, and power
TSV faults [12,55,68]). Second, HBM usually equips weaker
error correction codes than conventional DRAM due to cost
and complexity considerations [60]. Therefore, understand-
ing the error characteristics of HBM beforehand becomes
extremely vital when designing techniques to guarantee the
reliability of the stored data.

Extensive in-depth analyses of DRAM errors have already
been conducted in recent years, which mainly study the error
characteristics [13, 15, 22, 71, 82], identify the root causes of
errors [23, 41, 48, 51, 61], and further attempt to predict the
upcoming failures [14,17,25,29,31,58,87,89]. However, after
careful analyses and validations, we uncover that most of the
findings and implications made from DRAM error analyses
cannot be directly applied to HBM, since HBM has a more
complex 3D-stacked architecture (e.g., system-in-package
fabrication [74] and TSVs [43, 52]) that finally results in new
fault modes and error patterns.

In this paper, we fill this blank by performing an in-depth
data-driven analysis to study the error characteristics of HBM.

USENIX Association 2024 USENIX Annual Technical Conference 851

We look into a large-scale dataset 1 collected from nineteen
data centers over two years, which comprises error logs (e.g.,
correctable errors (CE) and uncorrectable errors (UE)), tem-
perature logs (e.g., the temperature of DSA devices), and
power logs (e.g., the average power). We perform a series of
analysis, in terms of the spatial analysis (e.g., spatial locality
and structure analysis), temporal analysis (e.g., CE storm),
power analysis (e.g., power trends of errors), and tempera-
ture analysis (e.g., temperature distribution analysis), which
deliver nine findings in total. Based on the above analysis,
we perform two unsuccessful attempts, which try to use the
CE rate (defined as the number of CEs occurring within a
monitored time interval) and historical CE information to pre-
dict the upcoming UERs. We finally design Calchas, which
is a hierarchical, comprehensive, and non-intrusive failure
prediction framework for HBM. Based on our analysis re-
sults, Calchas integrate information at different levels while
considering the impact of various errors to predict upcoming
failures.

More specifically, we make the following contributions:

(1) In-depth analyses for HBM errors collected from pro-
duction clusters. We collect over 460 million error events in
total from nineteen data centers with the time duration of over
two years. We also collect auxiliary information, including
temperature logs and power logs, to facilitate the analysis.
We first perform the spatial analysis to study whether the
emerging errors of HBM still follow the spatial locality and
investigate the impact of the 3D-stacked architecture on the
errors (§3.2). We then carry out temporal analysis to study
the intervals between CEs and UEs to seek the possibility
of using historical CEs to predict upcoming UEs (§3.3). We
finally study the impact of temperature and power on the error
occurrence (§3.4).

To the best of our knowledge, this paper is the first effort
that systematically analyzes the error characteristics of HBM.
Moreover, the dataset we study contains over 460 million
error events, which is orders of magnitude more than the
largest datasets of DRAM errors that have been released till
now (e.g., the dataset with 75.1 million CEs collected from
production data centers at Alibaba [22]).

(2) Lessons learned from unsuccessful attempts. We have
tried two unsuccessful attempts to build prediction models
based on empirical approaches in DRAM error prediction
[22, 31]. We learn the following lessons from these attempts.
First, the effectiveness of previous CE rate indicator [29,65] in
predicting UEs is questionable for HBM, as there is no clear
correlation between the CE rate and the occurrence of UERs
(§4.1). Second, the CE-based predictor trained by historical
CEs is also impractical to predict the future occurrence of
UERs, as most UERs tend to coincide with other UERs rather
than with CEs (§4.2).

(3) A hierarchical failure prediction framework for HBM.
1The dataset is published at: https://github.com/wrl297/Calchas.

SID 0

 Die

Buffer Die

Ro
w

 D
ec

od
er

Die 0
CH 0

PS-CH 0

BankGroup

Bank

...

Row buffer

Cell

TSVs

64
I/O

...SID 1

... ...

Bank

Bank

Bank

Bank

64
I/O

ADD
CMD

PS-CH 1 PS-CH 0

64
I/O

64
I/O

ADD
CMD

PS-CH 1
CH 1

Figure 1: The HBM architecture with eight DRAM dies (§2.1).

With the lessons and insights gained from previous unsuccess-
ful attempts, we finally design and implement Calchas, a hi-
erarchical failure prediction framework based on random for-
est [19] for HBM. It is the first prediction model for predicting
failures in HBM. It combines features specific to HBM (e.g.,
stack features) with those used in traditional DRAM (e.g.,
component features) for prediction (§5.1). Moreover, Calchas
employs different prediction timing (i.e., period-based ap-
proach for server-level prediction and event-driven approach
for micro-level prediction) to realize the elastic and adaptive
failure prediction (§5.3).

2 Background

2.1 High Bandwidth Memory
High bandwidth memory (HBM) has a specific 3D-stacked
structure that sets it apart from traditional planar memory
architectures. It offers significantly higher data transfer rates
compared to conventional DRAM. For instance, HBM2 (the
second-generation of HBM) can achieve a bandwidth of
around 256 GB/s per stack [24, 44], which is far larger than
the bandwidth in DDR4 (around 25 GB/s per channel [59]).

HBM can be constructed via either a 4Hi stack (with four
DRAM dies) or an 8Hi stack (with eight DRAM dies). Un-
der the 8Hi configuration, every four dies can be packed to
form an SID. Figure 1 illustrates the architecture of HBM
with an 8Hi stack, which comprises two SIDs with eight dies.
A DRAM die consists a number of channels (CH). In the
pseudo-channel mode, a channel can be further divided into
two pseudo-channels (PS-CH), which is composed of several
bank groups (BG). A BG is consisted of four banks, each of
which comprises multiple rows and columns.

Fundamentally, HBM utilizes through-silicon vias (TSVs)
and microbumps to connect multiple layers of DRAM cells,
which are then combined with a logic layer and a memory
controller. At the bottom of the stack, there is a buffer die
(or logic die) that serves as the control and communication
hub for the entire HBM stack. The communication and data
transfers among the stacked DRAM dies are then realized
by the TSVs, which are vertical electrical connections that
run through the silicon substrate, providing high-speed data
pathways. While providing higher access bandwidth, HBM
is limited in capacity (e.g., 5–10× smaller than DRAM [66])

852 2024 USENIX Annual Technical Conference USENIX Association

https://github.com/wrl297/Calchas

due to cost and power considerations [53, 83].
In our platform, we pack multiple HBM chips within a

single DSA (Domain Specific Architecture) device (e.g., GPU
[4,6,7], TPU [49], and NPU [62]), and multiple DSA devices
finally make up a server.

2.2 Terminology
To facilitate comprehension of the analyses conducted and
approaches proposed in this paper, we provide a list of fre-
quently used terminologies below.

Error and fault: We call an error occurs if finding that the
data read from HBM is inconsistent with the originally stored
data (usually detected by ECC [47]). A fault refers to the
fundamental cause of an error, which is often induced by
hardware faults (e.g., memory wear-out [76]) and external
factors (e.g., cosmic rays [41]). Note that a fault can be active
(causing errors) or dormant (not causing errors) [81]. For
example, writing a bit ‘1’ to a cell with a stuck-at-1 fault (i.e.,
a hardware defect where a bit is permanently set to ‘1’) will
not introduce an error when reading the stored bit from this
cell.

Failure: Failure refers to the inability for HBM chips to sup-
port normal read and write operations, resulting in service
unavailability. For example, DRAM failure is one of the major
causes of server crashes [58].

ECC: Error correcting code (ECC) encodes data to generate
additional parity bits, so that errors can be identified and
corrected. ECCs have been extensively used in DRAM to
resist bit errors, including SEC-DED [61], Chipkill [26], and
SDDC [20]. It is reported that the Intel Stratix 10 HBM2
Controller supports SEC-DED, with 64-bits of data and 8-bits
of ECC code [3].

CE and UE: We classify the errors into correctable errors
(CE) and uncorrectable errors (UE) based on the number of
bit errors and the correction capability offered by ECC. CE
refers to the errors within the correction capability of ECC
and hence they can be successfully restored, while UE refers
to those that exceed the correction capability of ECC. We
then take a step further to categorize UE into another two
branches based on the necessity to take actions for addressing
the appearing errors: (i) UER (Uncorrectable Error action
Required), which implies that the UE occurs during the sys-
tem’s runtime and immediate actions (e.g., replacement of
DRAM DIMM, row remapping, and dynamic page offlining)
must be taken to prevent server crashes and service interrup-
tions; and (ii) UEO (Uncorrectable Error action Optional),
which is usually discovered by the periodic memory scrubbing
over HBM chips and does not affect the system runtime. In
particular, the UEO can be addressed by taking pages offline.

2.3 Data Collection

Dataset description: We collect the error information of
HBM2 chips from nineteen data centers, which comprise over

60,000 HBM2 chips across approximately 15,000 DSA de-
vices. The monitoring duration spans over two years (from
2021-03-22 to 2023-06-21). The data centers run a variety
of workloads, including autonomous driving, structural biol-
ogy analysis, high-performance computing, and public cloud
services. We elaborate on the data collection in details as
follows.

Collection methodologies: The HBM status information is
periodically collected by the baseboard management con-
troller (BMC), which is a specialized processor embedded on
the motherboard of a server and is responsible for recording
the operational statistics of various hardware components [35].
The BMC logs are finally collected by the on-site engineers
once a day.

Two approaches are employed to collect the error infor-
mation with different preferences and hence we have two
error logs, namely ErrLog_Cycle and ErrLog_Occurrence,
respectively. Specifically, each CE entry in ErrLog_Cycle
contains the physical address where the CE occurred, along
with the accumulated times of CE occurrences at this address
within the monitoring cycle. However, ErrLog_Cycle does
not record the explicit timestamp when the CE occurred, but
gives priority to the timestamp to collect the error and the
error count. Hence, even if an address experiences multiple
CEs in the monitoring cycle, it will be recorded as a single
entry in the ErrLog_Cycle. On the other hand, each entry
in ErrLog_Occurrence records a CE event captured by the
BMC, which contains the explicit timestamp when the CE
occurs and the corresponding physical address. For each UE,
both ErrLog_Cycle and ErrLog_Occurrence record the oc-
currence timestamp and the physical address. However, due
to the limited storage capacity of BMC, recording error en-
try in ErrLog_Occurrence may potentially be overwritten
by subsequent errors, yielding error information loss, while
ErrLog_Cycle does not miss any CE occurrences.

Sensor information: In addition to the error logs collected
by BMC, we also collect the following sensor information
to facilitate the identification of error root causes: (i) the
temperature log, which collects the temperature every ten
minutes using the temperature sensors embedded in the DSA
devices; and (ii) the power log, which is collected by the
power sensors embedded in the server and records the power
information of the server every 10 minutes, including the peak
power and the average power over the past ten minutes, as
well as the transient power at the time of collection.

3 Analysis

3.1 Dataset Overview
We first provide an overview about the spatial distributions
of different error types (i.e., CE, UEO, and UER) during the
monitoring period. The results presented in Table 1 deliver
the following implications.

USENIX Association 2024 USENIX Annual Technical Conference 853

Total number of different errors
CE UEO UER

Error Count 466,236,831 49,297 3,334

Number of components with errors
CE UEO UER

HBM 808 64 229
SID 817 66 231

PS-CH 847 69 233
BG 909 76 354

Bank 993 87 555
Column 2,001 258 923

Row 8,279 35,543 2,140
Cell 10,817 37,010 2,192

Table 1: Dataset overview (§3.1). The total number of errors across
different device levels does not equate to the total count of device
levels with errors, as multiple errors may occur within the same
device level.

First, we observe over 460 million CEs in HBM chips
during the two-year monitoring duration, whose number is
several times higher than that reported in existing studies
(e.g., 75.1 million in [22]). Additionally, it is worth noting
that the total number of UEOs (i.e., 49,297) is significantly
higher than that of UERs (i.e., 3,334). The reason is that UEOs
are observed during periodic memory scrubbing. Hence, if a
component has a fault, its error information may be repeatedly
collected for multiple times during the memory scrubbing.

Second, for each device level (e.g., HBM, SID, and PS-CH),
the number of components exhibiting different types of errors
varies. Specifically, the number of components experiencing
CEs is significantly higher than those experiencing UEOs or
UERs. For example, 808 HBM chips have encountered CEs,
while only 64 HBM chips have experienced UEOs and 229
HBM chips have exhibited UERs. However, we observe a
different distribution for row and cell levels. This is due to
column failures (e.g., TSV failures [68]) being prevalent in
HBM (see Finding 5 in §3.2), and when a bank experiences a
column failure, performing memory scrubbing will uncover
numerous cells or rows with UEOs.

3.2 Spatial Analysis
Finding 1. If an error occurs in one cell of a device level,
there is a high probability of experiencing subsequent errors
in another cell.

Spatial locality. We start our analysis by calculating the per-
centage of errors in multiple cells across different device
levels. For each device level, we examine the proportions of
errors that occur across multiple cells and within a single
cell, respectively. Figure 2 illustrates that the majority of de-
vice levels experiencing errors are found across multiple cells.
Specifically, only 12.0% of device levels experience errors
within a single cell on average. We also observe that 86.1%
of errors in a row happen within a single cell, indicating that a
single cell in a row — once emerges an error — will be likely
to repeatedly experience subsequent errors. This observation

DSA HBM SID PS-CH BG Bank Col Row Aver0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

99.2 99.1 99.1 99.0 98.9 98.6 96.3

13.9

88.0

5.29 1.41 3.33
9.18 13.1

50.0
37.2

5.7
15.7

Errors in multiple cells Errors in multiple components

Figure 2: Spatial locality (§3.2). This figure shows percentage of
cells and components across different device levels.

does not hold for other device levels, since we find that only
1.40% of errors in other device levels appear within a single
cell. This analysis indicates that there exists a strong correla-
tion between the error mode and the device levels for HBM,
which can be leveraged to guide the error prediction in §5.

Finding 2. While errors are common across multiple cells
in most device levels, only the bank exhibits errors in multiple
components.

We further investigate whether the errors are correlated
among the components within the same device level. Given
a device level, we measure the percentages of errors occur-
ring in multiple components. For example, consider a DSA
device with four HBM chips, we measure the proportion of
DSA device that experience errors in multiple HBM chips.
Figure 2 also shows that for most levels (e.g., DSA, HBM,
and SID), they usually have only a component containing
errors. This analysis implies that even though the errors are
found in multiple cells, they usually manifest within a single
component rather than spreading across multiple components.
However, we observe a distinctive phenomenon at the bank
level, where 50.0% of banks experience errors in multiple
components (i.e., rows or columns). As a memory cell is or-
ganized into rows and columns, errors occurring in multiple
rows or columns will inherently involve multiple cells. This
is why we observe errors occurring in multiple cells for most
levels, but they are typically confined to a single component.

Hierarchical analysis. For HBM, we are interested in
whether the 3D-stacked structure makes the errors vary across
different components within the same device level. Here, we
analyze the number of components experiencing errors at
various device levels.

Finding 3. The effects of crosstalk in the HBM may result
in data loss, specifically in the 7-th, 15-th, 23-rd, and 31-st
columns of a bank.

Figure 3(a) shows the number of components with errors in
various positions. Two key observations are made. First, for
the columns with errors, those occurring in the 7-th, 15-th, 23-
rd, and 31-st columns (marked in dashed boxes) are 338.4%
higher on average than the errors in other column positions.
After communicating with our device engineers, we suspect
the reason is that crosstalk-induced faults [78] make errors
more prevalent in specific columns. Moreover, we observe
that, for the SIDs whose positions are closer to the buffer die

854 2024 USENIX Annual Technical Conference USENIX Association

0 8 16 24 32
(a) Component positions

0

150

300

450

Nu
m

be
r o

f c
om

po
ne

nt
s

wi
th

 e
rro

rs
DSA
HBM
SID

PCH
BG

Bank
Col

0 40 80 120 160
(b) Number of dies with errors

7
6
5
4

3
2
1
0

Po
sit

io
ns

 o
f d

ie
s

SID 0

SID 1

Figure 3: Impact of HBM structure. (§3.2). The figures depict (a)
the distribution of components with errors across various positions
and (b) the number of dies with errors in different positions.

(i.e., SID1), exhibit a 20.0% higher susceptibility to errors
compared to SID0 (i.e., higher SID). We conjecture that the
observed difference in error occurrence is due to poor heat
dissipation in the lower SID (i.e., SID1).

Finding 4. Lower SIDs (i.e., SID1) exhibit a higher suscep-
tibility to errors.

In Figure 3(b), we count the number of dies with errors in
different positions to further demonstrate the impact of the
3D-stacked structure. When examining two dies located at
the same positions but with distinct SIDs, such as Die0 and
Die4, there is a higher probability of errors occurring in the
die associated with the lower SID compared to the die linked
to the higher SID. For example, errors in Die5 and Die6 are
28.9% and 37.8% more prevalent than those in Die1 and Die2,
respectively. These findings affirm that the lower SIDs in
HBM are more susceptible to error occurrence.

Error modes. Our analysis reveals that multiple errors usually
occur simultaneously within the same bank (see Finding 2).
We further study the error modes at the bank level. We find that
the errors emerged in the 1,430 banks exhibit the following
nine modes. Figure 4 also plots nine typical error modes for
easy comprehension.

• Single-cell mode: Errors only occur in one cell of an
HBM bank (Figure 4(a)).

• Two-cell mode: Errors only occur in two cells of an HBM
bank, where the two cells are neither in the same column
nor the same row (Figure 4(b)).

• Single-row mode: Errors occur in multiple cells within a
single row (Figure 4(c)).

• Two-row mode: Errors occur in two rows, each of which
contains multiple cells with errors (Figure 4(d)).

• Single-column mode: Errors are found in multiple cells
within a single column (Figure 4(e)).

• Two-column mode: Errors are concentrated in two
columns, each of which has multiple cells with errors
(Figure 4(f)).

• Row-dominant mode: Errors manifest across various
rows, with over 80% concentrated in specific ones (Fig-
ure 4(g)).

• Column-dominant mode: It is the dual mode of the row-
dominant mode. In this mode, errors are identified across

Column

Ro
w

Column

Ro
w

Column

Ro
w

(a) Single-cell mode (b) Two-cell mode (c) Single-row mode

Column

Ro
w

Column

Ro
w

Column

Ro
w

(d) Two-row mode (e) Single-column mode (f) Two-column mode

Column

Ro
w

Column

Ro
w

Column

Ro
w

(g) Row-dominant mode (h) Column-dominant mode (i) Irregular mode

Figure 4: Examples of error modes (§3.2). The figures show
(a) single-cell, (b) two-cell, (c) single-row, (d) two-row, (e) single-
column, (f) two-column, (g) row-dominant, (h) column-dominant,
and (i) irregular error modes. Markers in orange (light) represent
the occurrence of CEs, while the markers in red (dark) denote the
occurrence of UEs.

several columns, with over 80% of them concentrated in
specific columns (Figure 4(h)).

• Irregular mode: It contains the modes that deviate from
the aforementioned eight categories (Figure 4(i)).

Table 2 further gives the percentages of the nine error
modes under different combinations of HBM errors, which
delivers the following finding.

Finding 5. Column-related error modes are more com-
monly observed in HBM, as opposed to the prevalent row-
dominated error modes in conventional DRAM [15, 81].

We find that 50.0% of faulty banks have errors in just one
cell. Furthermore, 29.2% of faulty banks show the column-
related modes (including the single-column, two-column, and
column-dominant modes), while only 4.97% exhibit the
row-related modes (including single-row, two-row, and row-
dominant modes), implying that column-related error modes
occur more frequently than row-related ones, deviating from
the observations reported in prior analyses of DRAM er-
rors [15, 81]. We suspect the root cause is TSV failures in
HBM, which may manifest as column failures [68]. In addi-
tion, the sense amplifier failure may also exhibit the symptom
of three error modes that closely relate to the column failures.

Besides, we also observe that the distribution of error
modes is different when considering a single error type and
combinations of error types. In particular, when considering
a single error type within a bank, we find that column-related

USENIX Association 2024 USENIX Annual Technical Conference 855

Error Mode
Error Types

All of the Error Types Single Error Type Combinations of Error Types
CE UER UEO CE&UER UEO&UER CE&UEO&UER

Single-cell mode 50.0% 55.9% 47.6% 8.05% 0% 2.27% 0%
Two-cell mode 4.69% 3.62% 11.3% 2.30% 9.38% 2.27% 0%

Single-row mode 0.629% 0.504% 0.180% 0% 2.50% 4.55% 0%
Two-row mode 2.94% 2.72% 0.721% 4.60% 20.6% 25.0% 50.0%

Single-column mode 23.7% 27.2% 16.2% 29.9% 10.0% 18.2% 12.5%
Two-column mode 2.65% 0.201% 1.80% 25.3% 4.38% 15.9% 3.13%

Row-dominant mode 1.40% 1.71% 0.721% 8.05% 10.0% 22.7% 21.9%
Column-dominant mode 2.87% 1.61% 3.96% 14.9% 6.88% 6.82% 9.38%

Irregular mode 11.1% 6.55% 17.5% 6.90% 36.3% 2.27% 3.13%

Table 2: Percentage of different error modes. (§3.2). The table displays the percentage of the nine error modes across various error types. All
of the Error Types gives the percentage of nine error modes for all banks experiencing errors (falling into one of the three error types).

error modes (40.4% on average) appear more frequently than
the row-related error modes (averaging 6.34%). However, if
we analyze the banks with a combination of error types, we
notice that the row-related fault modes exhibit a 23.3% higher
probability. Motivated by this observation, we perform predic-
tions for upcoming UERs at various micro-level components
(e.g., rows and columns) in §5.

3.3 Temporal Analysis
Although the CE dominates the errors that are captured in
most component levels (see Table 1), the UER is the root
cause to trigger HBM failures. In this analysis, we pay close
attention to the properties of UERs. We first study the tempo-
ral correlation among UERs at the bank level. Our objective
is to leverage the temporal correlation to guide the prediction
designs (see §5), such that memory systems can take timely
actions to cope with the upcoming UERs once receiving a
UER alert. After that, we also investigate the temporal corre-
lation among UERs and CEs, which is expected to figure out a
way for the prediction of UERs based on historical CEs/UEs.

Bank with UERs: We first provide a statistical overview of
the banks used in the analysis. Out of the 1,430 banks experi-
encing errors in total, about 91.0% (1,302 banks) have valid
error events for analysis 2, where 525 banks have ever encoun-
tered UER(s). Among the 525 banks, we further identify that
219 banks only experience a single UER throughout the mon-
itored time interval and hence are unqualified for the analysis.
As a result, we conduct the correlation analysis over the re-
maining 306 banks, with 202 banks that contain UER(s) only
and another 104 banks that emerge combinations of UER(s)
and other error types.

Time between errors: After picking out the banks quali-
fied for analysis, we start with the analysis on the time be-
tween failures. Recall that there are three error types (i.e., CE,
UEO, and UER), where the occurrence time of the UEO is
not accurately recorded, since it is captured by the periodic
memory scrubbing over HBM chips (i.e., its occurrence time

2We exclude some error events because their timestamps fall outside the
monitoring period.

UERCE No errorFirst CE

TimeTime
UER Next

UER
UER

Last CE

∆��������→���

∆�������→���

∆����→�������

Figure 5: Example of time between errors (§3.3). The figure
illustrates the three intervals, including the time between the first/last
CE and its subsequent UERs (i.e.,△TCEfirst→UER and △TCElast→UER),
as well as the period between two successive UERs(i.e., △TUER →
TUERnext).

[0, 1 h) [1 h, 1 d) [1 d, 30 d) [30 d, 365 d) [365 d, inf)
Time intervals

0

25

50

75

100

Pe
rc

en
ta

ge
 o

f
ea

ch
 in

te
rv

al
 (%

)

TCEfirst UER
TCElast UER
TUER UERnext

0

25

50

75

100

Cu
m

ul
at

iv
e

pr
ob

ab
ilit

y
(%

)

Figure 6: Time between errors (§3.3). The figure illustrates
the distribution and cumulative probability for each interval. The
bars represent the distribution of △TCEfirst→UER, △TCElast→UER, and
△TUER → TUERnext , while the lines depict their cumulative probabil-
ity.

should be earlier than the recorded time). Hence, our analyses
abandon the UEO information and aims to find the answers
for the following questions: (i) how soon will the first CE 3

evolve to the first UER within a bank (i.e., △TCEfirst→UER in
Figure 5); (ii) how much time remains for the system adminis-
trator to prevent system crashes when the last CE occurs (i.e.,
△TCElast→UER in Figure 5)? and (iii) how long will the next
UER occur once encountering a UER (i.e., △TUER→UERnext

in Figure 5)?
Finding 6. There is a significant probability that two suc-

cessive UERs occur within one hour.
Figure 6 answers the above three questions by plotting

the cumulative probability of different time intervals (i.e.,
△TCEfirst→UER, △TCElast→UER, and △TUER→UERnext) between
errors. We make the following observations.

3Our analysis treats the first CE appeared in our dataset as the real first
CE, but the real first CE may occur prior to the collection of the dataset.

856 2024 USENIX Annual Technical Conference USENIX Association

Threshold Servers with CE
storms

Servers with no CE
storm

10 26.47% 15.85%
20 21.73% 16.49%
30 37.50% 18.18%

Table 3: Impact of CE storm (§3.3). The table displays the per-
centage of servers experiencing UERs for those with CE storms
compared to the servers without CE storms. The threshold values for
identifying the occurrence of a CE storm are set between 10 and 30.

First, two successive UERs within a bank may appear in
one hour with a high probability (i.e., 83.3%). This obser-
vation indicates that once a UER is detected, the prediction
algorithm should be frequently launched (e.g., performing the
prediction within an hour) to infer the newly emerging UERs
at the micro-level components (e.g., banks). Additionally, a
remapping method (e.g., row-mapping [87]) is necessary to
offline the page when a UER is observed and replicate data to
a new page.

Second, we find that 16.1% of △TCEfirst→UER and 86.6% of
△TCElast→UER are shorter than one hour. Besides, over 44.0%
of △TCEfirst→UER range from 30 days to 365 days. This phe-
nomenon indicates that banks with both CEs and UERs may
have encountered CEs as early as a long time ago (e.g., 365
days), and these banks may continue to experience CEs un-
til the time approaches (e.g., one hour) the UER occurrence.
Therefore, predicting UERs based on historical CEs seems
like a promising approach. We make this attempt in §4.

Finding 7. Servers that have experienced CE storms may
increase the probability of encountering UERs.

Impact of CE storm. The CE storm refers to the phenomenon
that numerous CEs on a server occur within a short period
(typically one minute [29,89]). In this analysis, we try to infer
if the CE storm has an impact on the occurrence of UERs.
We first classify the servers into two categories based on the
occurrence of CE storms: (i) the servers with CE storms; and
(ii) the servers with no CE storm. We then calculate the ratio
of the servers that encounter at least an UER for the two cate-
gories. We vary the threshold value (defined as the number
of CEs suddenly occurred in one minute) to identify the oc-
currence of a CE storm from 10 to 30 [9, 28, 29], and show
the results in Table 3. We can discover that the servers with
CE storms have a higher probability (11.7% on average) to
produce UERs than the servers with no CE storm, indicating
that the occurrence of CE storms can be leveraged for UER
prediction.

In addition, we also find that configuring the threshold value
to 30 can help identify the servers with UERs with the largest
probability (37.50%), yet there is still a challenge to balance
the trade-off between the accuracy (in predicting the upcom-
ing UERs) and the sample size (i.e., the number of servers
with CE storms) when selecting a threshold value to identify
the CE storm. The rationale is that a larger threshold value
will reduce the sample size, making the prediction accuracy

1 week 5 days 3 days 1 day
(a) Time approaches to UER occurrences

1400

1500

1600

1700

1800

1900

2000

Po
we

r (
W

)

UER

UER average power
Average power of server

UER peak power
Peak power of server

1 month 3 weeks 2 weeks 1 week
(b) Time approaches to CE occurrences

1400

1600

1800

2000

2200

2400

Po
we

r (
W

)

CE

CE average power
Average power of server
CE peak power
Peak power of server

Figure 7: Impact of power (§3.4). The figures show both peak
power and average power as the time approaches (a) the occurrence
of UERs and (b) the occurrence of CEs for the servers.

more sensible to the variation of positive samples (i.e., the
servers whose CE storms finally translate to UERs). For ex-
ample, in our dataset, setting the threshold value to 30 makes
the sample size smaller than 10; in this case, any change
in the number of positive samples will introduce more than
10% of change to the ratio of the positive samples. Finally,
in the dataset, we suggest configuring the threshold value to
10, which can achieve a considerable ratio (i.e., 26.47% in
Table 3) with the most sample size.

3.4 Analysis of Sensor Information
In addition to the error logs, we also collect auxiliary infor-
mation from sensors that report the power and temperature
information every ten minutes. Prior studies have revealed that
sensor information (e.g., temperature [50] and voltage [51])
has an impact on HBM errors and can be a benefit for failure
prediction [37], we also analyze the impacts of both tempera-
ture and power on the error occurrence.

Impact of power: We first assess the impact of the power on
the emergence of UERs. Each entry of the power log contains
two pieces of information: (i) the average and the peak power
in the last ten minutes; and (ii) the transient power at the time
of the collection. Since the latter only reflects the power at a
certain time point, we use the average and the peak power in
the following analysis.

Finding 8. The average and peak power of a server both
exhibit a rapid increase when approaching the error occur-
rence.

To learn the impact of the power, we first pick out the
servers that have ever experienced either CEs or UERs. For
each error event, we examine a specific time interval—seven
days for the UER and thirty days for the CE— preceding the
occurrence of the error. As we collect power information every
ten minutes, we roughly depict the trends of peak power and
average power for both CE events and UE events in Figure 7.

USENIX Association 2024 USENIX Annual Technical Conference 857

<25 [25,30)[30,35)[35,40)[40,45)[45,50)[50,55] >55
Range of temperature (°C)

0

10

20

30

40

Pe
rc

en
ta

ge
 (%

) CE
UER

<25 [25,30)[30,35)[35,40)[40,45)[45,50)[50,55] >55
Range of temperature (°C)

0

10

20

30

40
CE
UER

(a) Average temperature (b) Maximum temperature

Figure 8: Impact of temperature (§3.4). The figures illustrate the
distribution of (a) average temperature and (b) maximum temper-
ature within one day preceding the occurrence of CEs and UERs,
respectively.

Figure 7(a) shows the power trends of servers encountering
UERs. Both peak power and average power exhibit a notice-
able increase as time approaches the occurrence of UERs.
More specifically, we observe that the power starts to rise
around the average power of the server 31 hours prior to the
UER events and surpasses the average power of the server 15
hours ahead of the occurrence of UERs. As the power may
increase as the time approaches the occurrence of UERs, we
can utilize this as a feature to predict potential UERs.

We also analyze the power trends of servers experiencing
CEs in Figure 7(b). The power exhibits a more significant in-
crease as time approaches the occurrence of CEs compared to
UERs. We attribute this to the fact that CEs are typically trig-
gered by soft errors resulting from memory-intensive access
(e.g., RowHammer [48, 69]). In contrast, UERs are usually
caused by hardware errors (e.g., TSV failures [68]). Given that
memory-intensive access tends to increase server power [88],
the average power of servers increases as time approaches the
occurrence of CEs.

Finding 9. The temperature distribution of CEs and UERs
exhibits significant differences before their occurrence.

Impact of temperature. We then analyze the influence of
temperature on the occurrence of CEs and UERs. We exam-
ine the temperature distribution within one day preceding the
error events for the DSA devices that have experienced errors.
For each DSA device, we calculate both the average tempera-
ture and the maximum temperature one day before the occur-
rence of CEs or UERs. Figure 8 illustrates the temperature
distributions for the DSA devices with errors. We observe that
the average temperature for DSA devices with CEs is higher
than that in DSA devices with UERs. Specifically, 60.57%
of the DSA devices with CEs have an average temperature
(refer to Figure 8(a)) exceeding 40°C one day before the CE
events, while the average temperature of DSA devices with
UERs is more prevalent (70.76%) within the range of 30°C
to 40°C. Furthermore, DSA devices with CE events are more
likely (58.92% higher) to experience a maximum temperature
exceeding 40°C compared to the DSA devices with UERs.
We speculate that the reason is that higher temperatures in-
crease charge leakage [76], which may lead to data loss but
can be restored by the ECC (i.e., recorded as a CE). Hence,
we observe a higher temperature as the time approaches the

> 500 > 10000

10

20

30

Pe
rc

en
ta

ge
 (%

) (a)

RF GBDT0

10

20

30
(b)

Precision Recall F1-score

Figure 9: Unsuccessful attempts. (§4). The figures show the preci-
sion, recall, and F1-score for (a) CE rate indicator and (b) CE-based
predictor, respectively. We evaluate the CE rate indicator using two
thresholds (i.e., 500 and 1000) and implement the CE-based predic-
tor with RF and GBDT models.

occurrence of CEs.

Summary: We observe that both temperature and power cor-
relate with the occurrence of errors, though their contributions
to HBM errors vary. Specifically, frequent access to HBM
can lead to increased power consumption, potentially rais-
ing the probability of errors. However, power itself does not
directly contribute to error occurrence. In contrast, temper-
ature increases directly correlate with error occurrence, as
higher temperatures can lead to increased charge leakage [76],
potentially resulting in errors.

4 Unsuccessful Attempts

In prior studies [22, 31], historical CEs have been utilized to
predict future UERs. Our analysis in §3.3 also indicates the
promise of using CEs for predicting potential UERs. As our
objective is to precisely predict potential UERs, we employ
two methods based on historical CEs in this section.

4.1 Attempt 1: CE Rate Indicator
We first employ a CE rate indicator (also utilized in previous
studies [29, 30, 56, 65, 89]), which utilizes the CE rate to
indicate whether a UER occurs in the near future. Specifically,
the CE rate indicator monitors the number of CEs (denoted
as NCE) within the past one day. If NCE exceeds a predefined
threshold (e.g., 500 [31]), we consider that a UER may occur
in the future. Given that errors are common across multiple
components within a bank (Finding 2 in §3.2), we focus the
prediction at the bank level.

Limitation. Although we try our best effort to adjust the
threshold of the CE rate indicator, its performance is still un-
satisfactory (e.g., averaging 20.5% in Figure 9(a)). We suspect
that the limited correlation between the CE rate and UERs
is the underlying reason, given the significant gap between
the total number of CEs (more than 460 million) and the total
number of UERs (only 3,334). Therefore, utilizing the CE
rate to predict subsequent UERs proves ineffective.

4.2 Attempt 2: CE-based Predictor
The limitation of our first attempt lies in solely considering
the number of CEs. To address this, we employ a CE-based

858 2024 USENIX Annual Technical Conference USENIX Association

Raw Data ①① Feature
Generation

②② Hierarchical
Prediction

Component
Features

Row-fault
Predictor

③③ Prediction
Timing

Period-based
Approach

Event-driven
Approach

Stack
Features
Sensor

Features

Column-fault
Predictor

Bank-fault
Predictor

Server-fault
Predictor

ErrLog
Occurence

ErrLog
Cycle

Sensor
Log

Figure 10: The overview of Calchas (§5). Calchas extracts features
from raw data (1⃝) and feeds them into hierarchical predictors (2⃝).
Finally, Calchas employs different prediction timings at different
levels (3⃝).

predictor that leverages component features related to CEs (in-
cluding numbers of components with CEs at different device
levels) for predicting upcoming UERs. We utilize machine
learning algorithms for the CE-based predictor, which is also
applied in previous studies [17, 22, 27, 84]. The prediction is
made at the bank level. For the predictor, we utilize the all
features related to CEs to predict the upcoming UERs. Fig-
ure 9(b) presents the results of the CE-based predictor when
employing Random Forest (RF) [19] and Gradient Boosting
Decision Tree (GBDT) [36] models. On average, the preci-
sion, recall, and F1-score of the CE-based predictor are 22.2%,
15.4%, and 18.0%, respectively.

Limitation. The performance of CE-based predictors is dis-
appointing in our dataset, even when considering different
models (e.g., RF and GBDT) and various configurations (e.g.,
prediction windows). The reasons for this are twofold. First,
we observe that only a small fraction of banks (11.2%) ex-
hibit a combination of UERs and CEs. Second, the banks
experiencing both CEs and UERs are commonly distributed
across single or multiple rows. As a result, the CE-based pre-
dictor frequently mislabels normal banks. This suggests that
we need to leverage additional information (e.g., UERs and
UEOs) that has been recorded and consider row-level predic-
tors for banks with multiple errors for failure predictions.

5 Calchas Design

With the insights obtained from previous analyses and at-
tempts, we propose Calchas, a hierarchical, comprehensive,
and non-intrusive failure prediction framework for HBM.
Calchas can use the row-level, column-level, and bank-level
predictors to identify the upcoming UERs for micro-level
components in time. It also employs the server-level predictor
to periodically predict the potential server-level failures.

Overview of Calchas. Figure 10 illustrates the workflow
of Calchas, which includes three successive steps. We first
collect the raw error logs from the data centers and generate
a sample of features (e.g., the number of cells with UERs) to
perform prediction (§5.1). Next, we use the generated features
to train four hierarchical predictors (i.e., row-level, column-
level, bank-level, and server-level predictors §5.2). We finally
select a suitable approach to trigger prediction (§5.3).

5.1 Feature Generation
Before applying prediction models, we first generate repre-
sentative features for model training. Recall that the collected
logs contain the following information: (i) the addresses of
errors, (ii) the time of error occurrence, (iii) the error types,
and (iv) the sensor logs (see §3.1). Here, we generate 43 fea-
tures in total from the raw logs and classify them into three
categories.

• Component features: We first count the number of com-
ponents experiencing errors (falling into one of three
error types) across nine device levels (i.e., cell, row, col-
umn, bank, BG, PS-CH, SID, HBM, and DSA). Since
different error types within a component may exhibit
distinct error modes (Finding 5 in §3.2), we then present
statistics for the number of components with CEs, UEOs,
and UERs, respectively. We finally assess whether the
servers have encountered a CE storm in the past. In total,
we consider 37 component features.

• Stack features: We have confirmed that the 3D-stacked
structure of HBM has an impact on the error emergence,
where the SID near the buffer die is more likely to appear
errors (Finding 4 in §3.2). Hence, we convert the posi-
tions of SIDs into features using one-hot encoding [8]
and generate two stack features.

• Sensor features: We obtain four sensor features based
on the values of maximum temperature, average tem-
perature, peak power, and average power. Given the sig-
nificant differences in temperature and power before
error occurrences (Findings 8 and 9 in Section 3.4), we
generate two features from the temperature sensors and
another two features from the power sensors.

We generate a collection of features when performing pre-
dictions for various predictors. Specifically, we choose com-
ponent features and sensor features to predict potential UERs
at the server level. Furthermore, we turn to use component
features, sensor features, and stack features to predict errors at
the micro-level components (e.g., rows, columns, and banks).

5.2 Hierarchical Prediction
After generating the features, we start the model training for
prediction. Recall that the correlations between the features
and the errors may vary at different levels. For example, we
observe that errors are common across multiple components
within a bank (Finding 2 in §3.2), whereas the CE storms
may increase the likelihood of the emergence of UERs in a
server (Finding 7 in §3.3). Hence, we establish hierarchical
predictors to forecast the upcoming UERs as follows:

• Row-level predictor: Given that the row-related error
modes are prevalent (52.4%) when multiple error types
are observed within the same bank (§3.2), we build a
row-level predictor to forecast UERs within a row.

• Column-level predictor: We have pointed out that the
column-related error mode is more prevalent than the

USENIX Association 2024 USENIX Annual Technical Conference 859

(b) Event-driven approach

Last prediction
time

UERCE No error

Time
Observation
window ��

Prediction
window ��

Last prediction
time

Time
Prediction
window ��

Observation
window ��

(a) Period-based approach

Figure 11: The methods used to trigger predictions (§5.3).

row-related error mode (Finding 5 in §3.2). Hence, we
establish the column-level predictor to capture the poten-
tial UERs within a column.

• Bank-level predictor: We also build a bank-level pre-
dictor based on the observation that a bank, which has
ever experienced an error before, is more likely to appear
errors in the future (Finding 6 in §3.3). This bank-level
predictor can work cooperatively with the row-level and
column-level predictors to help uncover two-cell and
irregular error modes of banks.

• Server-level predictor: We finally establish a server-level
predictor that leverages the impact of the CE storms
(Finding 7 in §3.3) and auxiliary sensor information
(Finding 8 and Finding 9 in §3.4), with the aim of cap-
turing the symptom of server failure.

Specifically, if we detect a UER within a prediction window
(i.e., the time interval for which a prediction is made) at a spe-
cific device level, we label the sample as positive; otherwise,
it is considered as negative. For each predictor, we initiate
the process by generating a set of features and subsequently
training a model for prediction.

5.3 Prediction Timing

While hierarchical predictors can be employed to predict
potential UERs, a challenge arises: when is the appropriate
time to make these predictions? To answer this question, we
explore two approaches for triggering predictions as follows.

• Period-based approach [22, 87]: It refers to performing
prediction periodically. Figure 11(a) shows the period-
based approach, which comprises two windows: an ob-
servation window (represented by △To), which denotes
the duration of the past period under observation for
prediction, while a prediction window (represented by
△Tp), which represents the time interval during which
a failure can be predicted. To monitor each time inter-
val until a UER alarm, we set the period of performing
prediction the same as the prediction window.

• Event-driven approach [86, 87]: It refers to the predic-
tion triggered by error events. As shown in Figure 11(b),
the event-driven approach also utilizes the same two win-
dows as the period-based method. Given the potential for
frequent errors in HBM (such as CE storms in §3.3), we
constrain the minimum interval between two predictions
to alleviate the overhead of prediction.

The period-based approach relies on fixed intervals for

Hierarchical predictors0

20

40

60

80

100

Pr
ec

isi
on

 (%
)

(a)

Hierarchical predictors0

20

40

60

80

100

Re
ca

ll
(%

)

(b)

Hierarchical predictors0

20

40

60

80

100

F1
-s

co
re

 (%
)

(c)

Row-level predictor
Column-level predictor

Bank-level predictor
Server-level predictor

Figure 12: Exp#1 (Performance of Calchas). The figures show the
(a) precision, (b) recall, and (c) F1-score of Calchas.

feature generation and failure prediction, which benefits the
capture of abnormal sensor metrics but lacks flexibility in
handling irregular events [86]. Conversely, the event-based
approach provides a rapid response to errors once they oc-
cur. However, it is ineffective when employed for a long-term
prediction (e.g., a 16-hour observation window in [86]). We
utilize the advantages of both approaches in Calchas. Specifi-
cally, we adopt the period-based approach for server-level pre-
dictor to monitor the fluctuation of sensor metrics. Meanwhile,
we employ the event-driven approach to predict micro-level
component failures for leveraging error events in time.

6 Evaluation

6.1 Experimental Setup
To assess effectiveness of Calchas, we split the dataset into
a proportion of 7:3, with 70% used for training the model
and the remaining 30% for testing [39, 85]. We assess the
following metrics.

• Precision: The ratio of correctly predicted UER events
to the total number of events predicted as UERs.

• Recall: The ratio of correctly predicted UER events to
the total number of actual UER events.

• F1-score: The harmonic mean of precision and recall
[34], providing a balanced measure of both metrics.

We first study the performance for hierarchical predictors of
Calchas (Exp#1, Figure 12). We then evaluate three machine
learning algorithms (Exp#2, Figure 13), including Random
Forest (RF) [19], Support Vector Machine (SVM) [64] and
Gradient Boosting Decision Tree (GBDT) [36], and even-
tually choose RF as our default model. These models are
implemented in Python (v3.6.8) using the scikit-learn library
(v0.24.2) [72].

We employ a one-day observation window and a one-hour
prediction window for predicting the potential UERs in micro-
level components to leverage the finding that two successive
UERs may occur within a short-term period (Finding 6 in
§3.3). As error events trigger the micro-level prediction (§5.3),
we set a minimum interval to perform prediction as five min-
utes [22, 87]. For server-level prediction, the observation win-
dow and prediction window are set to thirty days and one day,
respectively, aiming to better capture the long-term impact of
power and temperature (§3.4). Additionally, we explore the

860 2024 USENIX Annual Technical Conference USENIX Association

SVM GBDT RF0

20

40

60

80

100
Pr

ec
isi

on
 (%

)
(a)

SVM GBDT RF0

20

40

60

80

100

Re
ca

ll
(%

)

(b)

SVM GBDT RF0

20

40

60

80

100

F1
-s

co
re

 (%
)

(c)
Row-level predictor Column-level predictor Bank-level predictor Server-level predictor

Figure 13: Exp#2 (Impact of prediction models). The figures show the (a) precision, (b) recall, and (c) F1-score of four predictors when
using the SVM, GBDT, and RF, respectively.

impact of various sizes (ranging from one hour to thirty days)
for observation windows in Exp#3 (Figure 14) and prediction
windows in Exp#4 (Figure 15), respectively.

6.2 Evaluation Results

Exp#1 (Performance of Calchas). We first evaluate the per-
formance (including precision, recall, and F1-score) of the
four hierarchical predictors of Calchas. Figure 12 illustrates
the precision, recall, and F1-score of predictors across differ-
ent device levels. Specifically, we achieve an average preci-
sion of 58.0%, recall of 74.6%, and F1-score of 64.7% across
various predictors. In Figure 12(a) and (c), we observe that
the column-level predictor (i.e., the second bar) outperforms
the other three predictors in the precision (70.8%) and F1-
score (76.0%). These high precision and F1-score indicate
that column-level predictors rarely mislabel normal columns
as failures. The reason is that column-related faults are more
prevalent in HBM banks (Finding 5 in §3.2). We can identify
the column-related modes by counting the number of cells
within the column (a piece of component features) to improve
the prediction. Moreover, we notice that the row-level pre-
dictor (i.e., the first bar) provides a high recall (82.4%) in
Figure 12(b). Given the prevalent use of row isolation meth-
ods in deployment systems [5,87], the high recall can facilitate
the advanced isolation of the faulty row.

Exp#2 (Impact of prediction models). We then examine the
impact of prediction models by implementing three classical
machine learning algorithms, including RF [19], SVM [64],
and GBDT [36]. Figure 13 shows the results of utilizing differ-
ent prediction models for each of the four hierarchical predic-
tors. Our observations are as follows. First, while predictors
based on SVM achieve high recalls (69.8% on average), their
precision falls below 31.1%. Hence, the predictors based on
SVM may bring a considerable probability of mislabeling
the normal components and servers as failures. Second, the
tree-based prediction models (i.e., RF and GBDT) achieve a
25.3% higher F1-score for predicting the upcoming UREs in
the micro-level components (i.e., rows, columns, and banks)
compared with the SVM. Moreover, we also observe that
RF achieves a high precision, recall, and F1-score. These re-
sults are aligned with the existing studies in predicting failure
in traditional DRAM [17, 22]. Therefore, we select it as the
default model for each predictor.

Exp#3 (Impact of the observation window). We further

1h 1d 30d0

20

40

60

80

Pr
ec

isi
on

 (%
) (a)

Observation window
1h 1d 30d0

20

40

60

80

Re
ca

ll
(%

)

(b)

Observation window
1h 1d 30d0

20

40

60

80

F1
-s

co
re

 (%
) (c)

Observation window

Row-level predictor
Column-level predictor

Bank-level predictor
Server-level predictor

Figure 14: Exp#3 (Impact of the observation window). The figures
show the performance of different predictors when the observation
window is set to one hour (1h), one day(1d), and thirty days (30d).

1h 1d 30d0

20

40

60

80
Pr

ec
isi

on
 (%

) (a)

Prediction window
1h 1d 30d0

20

40

60

80

Re
ca

ll
(%

)

(b)

Prediction window
1h 1d 30d0

20

40

60

80

F1
-s

co
re

 (%
) (c)

Prediction window

Row-level predictor
Column-level predictor

Bank-level predictor
Server-level predictor

Figure 15: Exp#4 (Impact of the prediction window). The figures
show the (a) precision, (b) recall, and (c) F1-score when setting the
prediction window to one hour (1h), one day(1d), and thirty days
(30d) across different predictors.

study the impact of the observation window by varying its
interval from one hour to thirty days. Figure 14 depicts preci-
sion, recall, and F1-score for different observation windows
across various predictors. We make the following observa-
tions. First, our results reveal that the three micro-level predic-
tors (i.e., row, column, and bank) exhibit the highest F1-score
when the observation window is set to one day. We employ
an observation window interval of one day to achieve a better
trade-off between precision and recall. Second, we observe
that the performance of the server-level predictor significantly
varies with the change of prediction windows. We suspect
the reason is that the prediction at a server level requires a
long-term monitor to capture the variation of sensor metrics.

Exp#4 (Impact of the prediction window). We finally assess
the impact of the prediction window. We vary it from one hour
to thirty days for the four predictors. Figure 15 illustrates the
performance of hierarchical predictors with different predic-
tion windows. A notable observation is that the performance
of both the row-level and column-level predictors deteriorate
when the prediction window is set to one day. We suspect
the reasons are twofold. First, there is a slight probability
(5.53%) of the occurrence of two successive UERs within

USENIX Association 2024 USENIX Annual Technical Conference 861

the time interval ranging from one hour to one day. Second,
the time intervals between CEs and their subsequent UERs
are observed to be more prevalent within one hour (51.3%)
and more than one day (44.0%). Therefore, compared to a
one-day prediction window, the performance improves when
adopting a prediction window of one hour or thirty days.

7 Discussion

7.1 Fault Tolerate
We offer an in-depth analysis of errors in HBM and introduce
Calchas for predicting the upcoming UERs at different device
levels. In this section, we will explore effective strategies to
ensure reliability and availability following prediction.
EC-based operator. To enhance the reliability of micro-level
components predicted to experience future UERs, we suggest
utilizing EC-based operators, which integrate operators with
erasure coding [40, 63]. Specifically, if Calchas predicts an
upcoming UER in a specific memory region, we continuously
monitor this region and employ EC-based operators when
writing data to it. This approach allows us to avoid suspending
the training task and enables data recovery using the parity
of EC when UERs actually occur. We have implemented
EC-based operators on servers with CPUs, observing only
a 3% performance overhead in the CPU. Given that DSA
devices possess stronger parallel computing capabilities [4]
and higher bandwidth for data access [44] than CPUs, the
overhead of EC-based operators may be even lower than that
on CPUs. Therefore, implementing EC-based operators in
DSA devices is feasible and has a negligible performance
degradation.
Transparent migration. The DSA devices in multiple servers
are interconnected using specific techniques (e.g., NVLink
[57]). In the event of a server failure, the loss of parameters
may occur across all servers. Therefore, it is essential to im-
plement a reliability scheme once potential failures in the
servers are predicted. As Calchas achieves a long-term moni-
tor (i.e., thirty days) for prediction at the server level, we have
enough time to deal with the upcoming failures. Therefore,
we suggest adopting an elastic scaling approach, initiating
an upward scale (i.e., increasing the number of servers for
training tasks) upon predicting a potential failure. Following
the scaling operation, we identify and remove servers that
may occur failures. This strategy ensures that the training per-
formance remains unaffected, even in cases where Calchas
mislabels a normal server.

7.2 Limitations

Collection challenges. As a service provider, we face chal-
lenges in obtaining detailed information about the workload,
a factor known to influence failures according to existing
studies [32, 37]. To address this gap, we explore the impact
on power and identify it as a viable metric for assessing the

workload (§3.4). Real-time collection of sensor information
for each error event is impractical due to hardware overhead;
thus, we collect sensor data collection every ten minutes. For-
tunately, our observation (§3.4) reveals that both temperature
and power exhibit long-term (e.g., one day in Finding 9) ef-
fects on UERs. As a result, collecting sensor information
every ten minutes can also be beneficial for predicting upcom-
ing UERs.
Generalizability. The findings are derived from the analysis
of HBM2 in our data centers; therefore, their generalizabil-
ity is limited to HBM standards. Although HBM2 is com-
monly utilized in commercial DSA devices (e.g., NVIDIA
V100 [7], NVIDIA P100 [6], and AMD MI50 [1]), it may
not be applicable in cases where HBM2E is considered [4].
We specifically focus on analyzing the impacts of common
features (3D-stacked structures and sensor metrics) of dif-
ferent HBM standards on failures. Similar findings may be
applicable across various HBM standards.

8 Related Work

HBM failure study. With HBM being extensively employed
in commercial DSA devices, both academia and industry have
focused their attention on exploring the impacting factors of
HBM failures. Several studies [50, 51] pay close attention to
exploring the impact of operating conditions; they find the
rising temperature causes increment of retention errors [50]
and a higher rate of bit flips when reducing the voltage [51].
Researchers [43, 52, 54] from SK Hynix unveil that package
joints may affect the reliability of HBM. Moreover, TSV struc-
ture also brings new faults [12, 55, 68], with potential impacts
on large portions of memory [68]. Similar to DRAM dies,
HBM dies also face severe disturbance issues (e.g., RowHam-
mer [48, 69]) that degrade reliability. Different from existing
work that studies the characteristics of HBM to guide hard-
ware design, our work provides an in-depth analysis to assist
in failure prediction.
DRAM failure analysis. Given the escalating severity of
faults and errors in DRAM, substantial efforts have been
made to analyze the root causes of faults [23,41,60,61]. Mem-
ory faults can be caused by various factors, such as particle
strikes [61], cosmic ray [41], and defects in the memory cir-
cuit [60]. Prior work [15, 65, 75, 76] also analyses the DRAM
errors within production systems to study the characteristics.
These studies share important insights regarding the fault
modes [15, 81], the impacting factors [80–82], and the corre-
lation between error and memory region [33,71]. Our study is
different from theirs as we focus on the analysis of the impact
factors of HBM failures based on the dataset collected from
deployed DSA devices.
DRAM failure prediction. For identifying the potential fail-
ures in advance, some studies [32, 37] reveal that employ-
ing a combination of CE information and server metrics

862 2024 USENIX Annual Technical Conference USENIX Association

(e.g., sensor metrics [37]) can improve prediction perfor-
mance. Zhang et al. [89] and Cheng et al. [22] concentrate
on the correlation between DRAM and server failures.The
researchers [27, 30, 31] from Intel further perform a failure
prediction at the micro-level and propose an ensemble pre-
dictor for adapting to diverse environments [29]. Moreover,
some studies focus on enhancing the effectiveness of predic-
tion by employing a deep learning algorithm [84], leveraging
yet-to-be-consumed uncorrectable errors [87], and adopting
new metrics [17]. Calchas distinguishes from them by com-
bining spatial, temporal, and sensor features for predicting
potential UERs across various device levels of HBM.

9 Conclusions

This paper presents the first in-depth analysis of HBM errors
based on the large-scale dataset, which is collected fromnine-
teen data centers for over two years. We perform the spatial
and temporal analyses to understand the properties of HBM
errors. We then make two attempts that aim to predict immi-
nent UEs based on the CE rate and the historical CEs, which
are proved to be unsuccessful because of the new error causes
introduced by the 3D-stacked architecture of HBM. We fi-
nally present Calchas, an approach that utilizes spatial locality,
temporal correlation, and sensor information to predict up-
coming UERs. Calchas achieves accurate and comprehensive
predictions at various device levels.

Acknowledgement

We would like to thank the reviewers’ thorough and insight-
ful comments on improving our manuscript. This work was
supported by the National Key Research and Development
Program of China under Grant No.2022YFB4500302, the Ma-
jor Research Plan of the National Natural Science Foundation
of China (No. 92373114), the Natural Science Foundation of
China (No. 62072381), and the Natural Science Foundation
of Fujian Province of China (No. 2023J06001). We thank
Huawei for providing the HBM error dataset used in this
work.

References

[1] Amd radeon instinct™ mi50. https:
//www.amd.com/system/files/documents/
radeon-instinct-mi50-datasheet.pdf.

[2] Hbm3 gen2. https://investors.micron.com/
node/45591/pdf.

[3] Intel® stratix® 10. https://www.
intel.com/content/www/us/en/docs/
programmable/683189/21-3-19-6-1/
hbm2-in-intel-stratix-10-devices.html.

[4] Nvidia a100 tensor core gpu. https://www.
nvidia.com/content/dam/en-zz/Solutions/
Data-Center/a100/pdf/a100-80gb-datasheet-\
update-nvidia-us-1521051-r2-web.pdf.

[5] Nvidia gpu memory error management. https://docs.
nvidia.com/deploy/a100-gpu-mem-error-mgmt/
index.html.

[6] Nvidia tesla p100. https://images.nvidia.
com/content/pdf/tesla/whitepaper/
pascal-architecture-whitepaper.pdf.

[7] Nvidia tesla v100 gpu architectureu. https://images.
nvidia.com/content/volta-architecture/pdf/
volta-architecture-whitepaper.pdf.

[8] Python one-hot encoder. https://scikit-learn.
org/stable/modules/generated/sklearn.
preprocessing.OneHotEncoder.html.

[9] Xfusion. https://www.xfusion.com/cn/service/
fusioncare-basic-service.

[10] Alaa R Alameldeen and David A Wood. Adap-
tive cache compression for high-performance proces-
sors. ACM SIGARCH Computer Architecture News,
32(2):212, 2004.

[11] Alexandra Angerd, Angelos Arelakis, Vasilis Spiliopou-
los, Erik Sintorn, and Per Stenström. Gbdi: Going be-
yond base-delta-immediate compression with global
bases.

[12] Kwanho Bae and Jongsun Park. Efficient tsv fault detec-
tion scheme for high bandwidth memory using pattern
analysis. In Proceeding of the 2020 International SoC
Design Conference (ISOCC), 2020.

[13] Elisabeth Baseman, Nathan DeBardeleben, Kurt Fer-
reira, Scott Levy, Steven Raasch, Vilas Sridharan, Taniya
Siddiqua, and Qiang Guan. Improving dram fault char-
acterization through machine learning. In Proceedings
of 2016 46th Annual IEEE/IFIP International Confer-
ence on Dependable Systems and Networks Workshop
(DSN-W), 2016.

[14] Elisabeth Baseman, Nathan Debardeleben, Kurt Ferreira,
Vilas Sridharan, Taniya Siddiqua, and Olena Tkachenko.
Automating dram fault mitigation by learning from expe-
rience. In Proceedings of 2017 47th Annual IEEE/IFIP
International Conference on Dependable Systems and
Networks Workshops (DSN-W), 2017.

[15] Majed Valad Beigi, Yi Cao, Sudhanva Gurumurthi,
Charles Recchia, Andrew Walton, and Vilas Sridharan.
A systematic study of ddr4 dram faults in the field. In
Proceedings of 2023 IEEE International Symposium
on High-Performance Computer Architecture (HPCA),
2023.

[16] Rahul Bera, Anant V Nori, Onur Mutlu, and Sreenivas
Subramoney. Dspatch: Dual spatial pattern prefetcher.

USENIX Association 2024 USENIX Annual Technical Conference 863

https://www.amd.com/system/files/documents/radeon-instinct- mi50-datasheet.pdf
https://www.amd.com/system/files/documents/radeon-instinct- mi50-datasheet.pdf
https://www.amd.com/system/files/documents/radeon-instinct- mi50-datasheet.pdf
https://investors.micron.com/node/45591/pdf
https://investors.micron.com/node/45591/pdf
https://www.intel.com/content/www/us/en/docs/programmable/683189/21-3-19-6-1/hbm2-in-intel-stratix-10-devices.html
https://www.intel.com/content/www/us/en/docs/programmable/683189/21-3-19-6-1/hbm2-in-intel-stratix-10-devices.html
https://www.intel.com/content/www/us/en/docs/programmable/683189/21-3-19-6-1/hbm2-in-intel-stratix-10-devices.html
https://www.intel.com/content/www/us/en/docs/programmable/683189/21-3-19-6-1/hbm2-in-intel-stratix-10-devices.html
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/a100-80gb-datasheet-\update-nvidia-us-1521051-r2-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/a100-80gb-datasheet-\update-nvidia-us-1521051-r2-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/a100-80gb-datasheet-\update-nvidia-us-1521051-r2-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/a100-80gb-datasheet-\update-nvidia-us-1521051-r2-web.pdf
https://docs.nvidia.com/deploy/a100-gpu-mem-error-mgmt/index.html
https://docs.nvidia.com/deploy/a100-gpu-mem-error-mgmt/index.html
https://docs.nvidia.com/deploy/a100-gpu-mem-error-mgmt/index.html
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture- whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture- whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture- whitepaper.pdf
https://scikit-learn.org/stable/modules/ generated/sklearn.preprocessing.OneHotEncoder.html.
https://scikit-learn.org/stable/modules/ generated/sklearn.preprocessing.OneHotEncoder.html.
https://scikit-learn.org/stable/modules/ generated/sklearn.preprocessing.OneHotEncoder.html.
https://www.xfusion.com/cn/service/fusioncare-basic-service
https://www.xfusion.com/cn/service/fusioncare-basic-service

In Proceedings of the 52nd Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO),
2019.

[17] Isaac Boixaderas, Darko Zivanovic, Sergi Moré, Javier
Bartolome, David Vicente, Marc Casas, Paul M Carpen-
ter, Petar Radojković, and Eduard Ayguadé. Cost-aware
prediction of uncorrected dram errors in the field. In
Proceedings of the 2020 International Conference for
High Performance Computing, Networking, Storage and
Analysis (SC).

[18] Peter Braun and Heiner Litz. Understanding memory
access patterns for prefetching. In Proceedings of the
2019 International Workshop on AI-assisted Design for
Architecture (AIDArc), 2019.

[19] Leo Breiman. Random forests. Machine learning, 45:5–
32, 2001.

[20] Chin-Long Chen. Error-correcting codes for byte-
organized memory systems. IEEE transactions on in-
formation theory, 32(2):181–185, 1986.

[21] Xi Chen, Lei Yang, Robert P Dick, Li Shang, and Haris
Lekatsas. C-pack: A high-performance microprocessor
cache compression algorithm. IEEE transactions on
very large scale integration systems, 18(8):1196–1208,
2009.

[22] Zhinan Cheng, Shujie Han, Patrick PC Lee, Xin Li,
Jiongzhou Liu, and Zhan Li. An in-depth correlative
study between dram errors and server failures in pro-
duction data centers. In Proceedings of the 2022 41st
International Symposium on Reliable Distributed Sys-
tems (SRDS), 2022.

[23] Hyungmin Cho, Chen-Yong Cher, Thomas Shepherd,
and Subhasish Mitra. Understanding soft errors in un-
core components. In Proceedings of the 52Nd Annual
Design Automation Conference (DAC), 2015.

[24] Young-kyu Choi, Yuze Chi, Jie Wang, Licheng Guo,
and Jason Cong. When hls meets fpga hbm: Bench-
marking and bandwidth optimization. arXiv preprint
arXiv:2010.06075, 2020.

[25] Carlos HA Costa, Yoonho Park, Bryan S Rosenburg,
Chen-Yong Cher, and Kyung Dong Ryu. A system soft-
ware approach to proactive memory-error avoidance. In
Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Anal-
ysis (SC), 2014.

[26] T Dell. A white paper on the benefits of chipkill-correct
ecc for pc server main memory. ibm microelectronics
division. Technical Report, 1997.

[27] Xiaoming Du and Cong Li. Memory failure prediction
using online learning. In Proceedings of the 2018 In-
ternational Symposium on Memory Systems (MEMSYS),
2018.

[28] Xiaoming Du and Cong Li. Combining error statistics
with failure prediction in memory page offlining. In
Proceedings of the International Symposium on Memory
Systems (MEMSYS), 2019.

[29] Xiaoming Du and Cong Li. Predicting uncorrectable
memory errors from the correctable error history: No
free predictors in the field. In Proceedings of the 2021
International Symposium on Memory Systems (MEM-
SYS), 2021.

[30] Xiaoming Du, Cong Li, Shen Zhou, Xian Liu, Xiao-
han Xu, Tianjiao Wang, and Shijian Ge. Fault-aware
prediction-guided page offlining for uncorrectable mem-
ory error prevention. In Proceedings of IEEE 39th In-
ternational Conference on Computer Design (ICCD),
2021.

[31] Xiaoming Du, Cong Li, Shen Zhou, Mao Ye, and Jing Li.
Predicting uncorrectable memory errors for proactive
replacement: An empirical study on large-scale field
data. In Proceedings of 2020 16th European Depend-
able Computing Conference (EDCC), 2020.

[32] Yuyang Du, Hongliang Yu, Yunhong Jiang, Yaozu Dong,
and Weimin Zheng. A rising tide lifts all boats: how
memory error prediction and prevention can help with
virtualized system longevity. In Proceedings of the
Sixth international conference on Hot topics in system
dependability (HotDep), 2010.

[33] Kurt B Ferreira, Scott Levy, Joshua Hemmert, and Kevin
Pedretti. Understanding memory failures on a petas-
cale arm system. In Proceedings of the 31st Interna-
tional Symposium on High-Performance Parallel and
Distributed Computing (HPDC), pages 84–96, 2022.

[34] Peter Flach and Meelis Kull. Precision-recall-gain
curves: Pr analysis done right. Advances in neural in-
formation processing systems, 28, 2015.

[35] Jessie Frazelle. Opening up the baseboard management
controller. Communications of the ACM, 63(2):38–40,
2020.

[36] Jerome H Friedman. Greedy function approximation: a
gradient boosting machine. Annals of statistics, pages
1189–1232, 2001.

[37] Ioana Giurgiu, Jacint Szabo, Dorothea Wiesmann, and
John Bird. Predicting dram reliability in the field
with machine learning. In Proceedings of the 18th
ACM/IFIP/USENIX Middleware Conference: Industrial
Track (Middleware), 2017.

[38] Ameer Haj-Ali, Nesreen K Ahmed, Ted Willke,
Yakun Sophia Shao, Krste Asanovic, and Ion Stoica.
Neurovectorizer: End-to-end vectorization with deep
reinforcement learning. In Proceedings of the 18th
ACM/IEEE International Symposium on Code Genera-
tion and Optimization (CGO), 2020.

864 2024 USENIX Annual Technical Conference USENIX Association

[39] Zhulin Hao, Jianqiang Du, Bin Nie, Fang Yu, Riyue Yu,
and Wangping Xiong. Random forest regression based
on partial least squares connect partial least squares and
random forest. In Proceeding of the 2016 International
Conference on Artificial Intelligence: Technologies and
Applications (ICAITA), 2016.

[40] Yuchong Hu, Liangfeng Cheng, Qiaori Yao, Patrick PC
Lee, Weichun Wang, and Wei Chen. Exploiting com-
bined locality for {Wide-Stripe} erasure coding in dis-
tributed storage. In Proceedings of 19th USENIX Con-
ference on File and Storage Technologies (FAST), 2021.

[41] Andy A Hwang, Ioan A Stefanovici, and Bianca
Schroeder. Cosmic rays don’t strike twice: Understand-
ing the nature of dram errors and the implications for
system design. ACM SIGPLAN Notices, 47(4):111–122,
2012.

[42] Joe Jeddeloh and Brent Keeth. Hybrid memory cube new
dram architecture increases density and performance. In
Proceedings of the 2012 symposium on VLSI technology
(VLSIT), 2012.

[43] Hongshin Jun, Jinhee Cho, Kangseol Lee, Ho-Young
Son, Kwiwook Kim, Hanho Jin, and Keith Kim. Hbm
(high bandwidth memory) dram technology and archi-
tecture. In Proceedings of the 2017 IEEE International
Memory Workshop (IMW), 2017.

[44] Amit Kumar Kabat, Shubhang Pandey, and
Venkatesh Tiruchirai Gopalakrishnan. Perfor-
mance evaluation of high bandwidth memory for hpc
workloads. In Proceedings of the 35th International
System-on-Chip Conference (SOCC), 2022.

[45] Vasileios Karakasis, Georgios Goumas, and Nectarios
Koziris. Exploring the effect of block shapes on the
performance of sparse kernels. In Proceedings of the
2009 IEEE International Symposium on Parallel & Dis-
tributed Processing (IPDPS), 2009.

[46] Jinchun Kim, Seth H Pugsley, Paul V Gratz,
AL Narasimha Reddy, Chris Wilkerson, and Zeshan
Chishti. Path confidence based lookahead prefetching.
In Proceedings of the 49th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO),
2016.

[47] Jungrae Kim, Michael Sullivan, and Mattan Erez. Bam-
boo ecc: Strong, safe, and flexible codes for reliable
computer memory. In 2015 IEEE 21st International
Symposium on High Performance Computer Architec-
ture (HPCA), 2015.

[48] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin,
Ji Hye Lee, Donghyuk Lee, Chris Wilkerson, Konrad
Lai, and Onur Mutlu. Flipping bits in memory with-
out accessing them: an experimental study of dram
disturbance errors. In Proceeding of the 41st annual

international symposium on Computer architecuture
(SIGARCH), 2014.

[49] Haklin Kimm, Incheon Paik, and Hanke Kimm. Perfor-
mance comparision of tpu, gpu, cpu on google colabora-
tory over distributed deep learning. In Proceedings of
2021 IEEE 14th International Symposium on Embedded
Multicore/Many-core Systems-on-Chip (MCSoC), 2021.

[50] Junhyeong Kwon, Shi-Jie Wen, Rita Fung, and
Sanghyeon Baeg. Temperature estimation of hbm2
channels with tail distribution of retention errors in fpga-
hbm2 platform. Electronics, 12(1):32, 2022.

[51] Seyed Saber Nabavi Larimi, Behzad Salami, Osman S
Unsal, Adrián Cristal Kestelman, Hamid Sarbazi-Azad,
and Onur Mutlu. Understanding power consumption
and reliability of high-bandwidth memory with voltage
underscaling. In Proceedings of the 2021 Design, Au-
tomation & Test in Europe Conference & Exhibition
(DATE), 2021.

[52] Chang Yeol Lee, Sungchul Kim, Hongshin Jun,
Kyung Whan Kim, and Sung Joo Hong. Tsv technology
and challenges for 3d stacked dram. In Proceedings
of the 2014 Symposium on VLSI Technology: Digest of
Technical Papers (VLSIT), 2014.

[53] Dong Uk Lee, Kyung Whan Kim, Kwan Weon Kim,
Hongjung Kim, Ju Young Kim, Young Jun Park,
Jae Hwan Kim, Dae Suk Kim, Heat Bit Park, Jin Wook
Shin, et al. 25.2 a 1.2 v 8gb 8-channel 128gb/s high-
bandwidth memory (hbm) stacked dram with effective
microbump i/o test methods using 29nm process and
tsv. In 2014 IEEE International Solid-State Circuits
Conference Digest of Technical Papers (ISSCC). IEEE,
2014.

[54] Dong Uk Lee, Kang Seol Lee, Yongwoo Lee,
Kyung Whan Kim, Jong Ho Kang, Jaejin Lee, and
Jun Hyun Chun. Design considerations of hbm stacked
dram and the memory architecture extension. In Pro-
ceedings of the 2015 IEEE Custom Integrated Circuits
Conference (CICC), 2015.

[55] Jong Chern Lee, Jihwan Kim, Kyung Whan Kim,
Young Jun Ku, Dae Suk Kim, Chunseok Jeong, Tae Sik
Yun, Hongjung Kim, Ho Sung Cho, Sangmuk Oh, et al.
High bandwidth memory (hbm) with tsv technique. In
Proceeding of the 2016 International SoC Design Con-
ference (ISOCC), 2016.

[56] Scott Levy, Kurt B Ferreira, Nathan DeBardeleben,
Taniya Siddiqua, Vilas Sridharan, and Elisabeth Base-
man. Lessons learned from memory errors observed
over the lifetime of cielo. In Proceedings of the 2018
International Conference for High Performance Com-
puting, Networking, Storage and Analysis (SC), 2018.

USENIX Association 2024 USENIX Annual Technical Conference 865

[57] Ang Li, Shuaiwen Leon Song, Jieyang Chen, Jiajia Li,
Xu Liu, Nathan R Tallent, and Kevin J Barker. Eval-
uating modern gpu interconnect: Pcie, nvlink, nv-sli,
nvswitch and gpudirect. IEEE Transactions on Parallel
and Distributed Systems, 31(1):94–110, 2019.

[58] Cong Li, Yu Zhang, Jialei Wang, Hang Chen, Xian Liu,
Tai Huang, Liang Peng, Shen Zhou, Lixin Wang, and
Shijian Ge. From correctable memory errors to uncor-
rectable memory errors: what error bits tell. In Pro-
ceedings of the 2022 International Conference for High
Performance Computing, Networking, Storage and Anal-
ysis (SC), 2022.

[59] Shang Li, Dhiraj Reddy, and Bruce Jacob. A perfor-
mance & power comparison of modern high-speed dram
architectures. In Proceedings of the International Sym-
posium on Memory Systems (MEMSYS), 2018.

[60] Xin Li, Michael C Huang, Kai Shen, and Lingkun Chu.
A realistic evaluation of memory hardware errors and
software system susceptibility. In Proceeding of 2010
USENIX Annual Technical Conference (USENIX ATC),
2010.

[61] Xin Li, Kai Shen, Michael C Huang, and Lingkun Chu.
A memory soft error measurement on production sys-
tems. In Proceedings of the 2007 USENIX Annual Tech-
nical Conference (USENIX ATC), 2007.

[62] Heng Liao, Jiajin Tu, Jing Xia, and Xiping Zhou.
Davinci: A scalable architecture for neural network com-
puting. In Proceedings of 31st Hot Chips Symposium
(HCS), 2019.

[63] Shiyao Lin, Guowen Gong, Zhirong Shen, Patrick PC
Lee, and Jiwu Shu. Boosting {Full-Node} repair in
{Erasure-Coded} storage. In Proceedings of 2021
USENIX Annual Technical Conference (USENIX ATC),
2021.

[64] David Meyer, Friedrich Leisch, and Kurt Hornik. The
support vector machine under test. Neurocomputing,
55(1-2):169–186, 2003.

[65] Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur
Mutlu. Revisiting memory errors in large-scale produc-
tion data centers: Analysis and modeling of new trends
from the field. In Proceeding of 2015 45th Annual
IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), 2015.

[66] Hongyu Miao, Myeongjae Jeon, Gennady Pekhi-
menko, Kathryn S McKinley, and Felix Xiaozhu Lin.
Streambox-hbm: Stream analytics on high bandwidth
hybrid memory. In Proceedings of the Twenty-Fourth
International Conference on Architectural Support for
Programming Languages and Operating Systems (ASP-
LOS), 2019.

[67] Pierre Michaud. Best-offset hardware prefetching. In
Proceedings of the 2016 22nd International Symposium
on High Performance Computer Architecture (HPCA),
2016.

[68] Prashant J Nair, David A Roberts, and Moinuddin K
Qureshi. Citadel: Efficiently protecting stacked memory
from tsv and large granularity failures. ACM Transac-
tions on Architecture and Code Optimization, 12(4):1–
24, 2016.

[69] Ataberk Olgun, Majd Osseiran, A Giray Yağlıkçı,
Yahya Can Tuğrul, Haocong Luo, Steve Rhyner, Behzad
Salami, Juan Gomez Luna, and Onur Mutlu. An ex-
perimental analysis of rowhammer in hbm2 dram chips.
In Proceedings of the 2023 53rd Annual IEEE/IFIP
International Conference on Dependable Systems and
Networks-Supplemental Volume (DSN-S), 2023.

[70] Sungbo Park, Ingab Kang, Yaebin Moon, Jung Ho Ahn,
and G Edward Suh. Bcd deduplication: Effective mem-
ory compression using partial cache-line deduplication.
In Proceedings of the 26th ACM International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), 2021.

[71] Ayush Patwari, Ignacio Laguna, Martin Schulz, and
Saurabh Bagchi. Understanding the spatial characteris-
tics of dram errors in hpc clusters. In Proceedings of the
2017 Workshop on Fault-Tolerance for HPC at Extreme
Scale (FTXS), 2017.

[72] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vin-
cent Dubourg, et al. Scikit-learn: Machine learning in
python. Journal of machine Learning research, 12:2825–
2830, 2011.

[73] Seth H Pugsley, Zeshan Chishti, Chris Wilkerson, Peng-
fei Chuang, Robert L Scott, Aamer Jaleel, Shih-Lien Lu,
Kingsum Chow, and Rajeev Balasubramonian. Sand-
box prefetching: Safe run-time evaluation of aggressive
prefetchers. In Proceedings of the 20th International
Symposium on High Performance Computer Architec-
ture (HPCA), 2014.

[74] Suresh Ramalingam. Hbm package integration: Tech-
nology trends, challenges and applications. In 2016
IEEE Hot Chips 28 Symposium (HCS), 2016.

[75] Bianca Schroeder and Garth A. Gibson. A large-scale
study of failures in high-performance computing sys-
tems. IEEE Transactions on Dependable and Secure
Computing, 7(4):337–350.

[76] Bianca Schroeder, Eduardo Pinheiro, and Wolf-Dietrich
Weber. Dram errors in the wild: a large-scale field study.
ACM SIGMETRICS Performance Evaluation Review,
37(1):193–204, 2009.

866 2024 USENIX Annual Technical Conference USENIX Association

[77] Vivek Seshadri, Donghyuk Lee, Thomas Mullins, Hasan
Hassan, Amirali Boroumand, Jeremie Kim, Michael A
Kozuch, Onur Mutlu, Phillip B Gibbons, and Todd C
Mowry. Ambit: In-memory accelerator for bulk bitwise
operations using commodity dram technology. In Pro-
ceedings of the 50th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2017.

[78] Seyed Mohammad Seyedzadeh, Alex K Jones, and Rami
Melhem. Mitigating wordline crosstalk using adaptive
trees of counters. In Proceedings of 2018 ACM/IEEE
45th Annual International Symposium on Computer Ar-
chitecture (ISCA). IEEE, 2018.

[79] Keeyoung Son, Subin Kim, Hyunwook Park, Seong-
guk Kim, Keunwoo Kim, Shinyoung Park, Boogyo Sim,
Seungtaek Jeong, Gapyeol Park, and Joungho Kim. A
novel through mold plate (tmp) for signal and thermal in-
tegrity improvement of high bandwidth memory (hbm).
In Proceeding of the 2020 IEEE MTT-S International
Conference on Numerical Electromagnetic and Multi-
physics Modeling and Optimization (NEMO), 2020.

[80] Vilas Sridharan, Nathan DeBardeleben, Sean Blanchard,
Kurt B Ferreira, Jon Stearley, John Shalf, and Sudhanva
Gurumurthi. Memory errors in modern systems: The
good, the bad, and the ugly. ACM SIGARCH Computer
Architecture News, 43(1):297–310, 2015.

[81] Vilas Sridharan and Dean Liberty. A study of dram
failures in the field. In Proceedings of the International
Conference on High Performance Computing, Network-
ing, Storage and Analysis (SC), 2012.

[82] Vilas Sridharan, Jon Stearley, Nathan DeBardeleben,
Sean Blanchard, and Sudhanva Gurumurthi. Feng shui
of supercomputer memory: Positional effects in dram
and sram faults. In Proceedings of the International
Conference on High Performance Computing, Network-
ing, Storage and Analysis (SC), 2013.

[83] JEDEC Standard. High bandwidth memory (hbm) dram.
Jesd235, 16, 2013.

[84] Xiaoyi Sun, Krishnendu Chakrabarty, Ruirui Huang, Yi-
quan Chen, Bing Zhao, Hai Cao, Yinhe Han, Xiaoyao
Liang, and Li Jiang. System-level hardware failure pre-
diction using deep learning. In Proceedings of the 56th
Annual Design Automation Conference (DAC), 2019.

[85] Shiyang Xuan, Guanjun Liu, Zhenchuan Li, Lutao
Zheng, Shuo Wang, and Changjun Jiang. Random for-
est for credit card fraud detection. In Proceeding of the
2018 IEEE 15th international conference on networking,
sensing and control (ICNSC), 2018.

[86] Li Yu, Ziming Zheng, Zhiling Lan, and Susan Cogh-
lan. Practical online failure prediction for blue gene/p:
Period-based vs event-driven. In Proceedings of 2011
IEEE/IFIP 41st International Conference on Depend-
able Systems and Networks Workshops (DSN-W), 2011.

[87] Qiao Yu, Wengui Zhang, Paolo Notaro, Soroush Haeri,
Jorge Cardoso, and Odej Kao. Himfp: Hierarchical
intelligent memory failure prediction for cloud service
reliability. In Proceedings of the 2023 53rd Annual
IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), 2023.

[88] Kaiqiang Zhang, Dongyang Ou, Congfeng Jiang,
Yeliang Qiu, and Longchuan Yan. Power and perfor-
mance evaluation of memory-intensive applications. En-
ergies, 14(14):4089, 2021.

[89] Pengcheng Zhang, Yunong Wang, Xuhua Ma, Yaoheng
Xu, Bin Yao, Xudong Zheng, and Linquan Jiang. Pre-
dicting dram-caused node unavailability in hyper-scale
clouds. In Proceedings of the 2022 52nd Annual
IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), 2022.

USENIX Association 2024 USENIX Annual Technical Conference 867

	Introduction
	Background
	High Bandwidth Memory
	Terminology
	Data Collection

	Analysis
	Dataset Overview
	Spatial Analysis
	Temporal Analysis
	Analysis of Sensor Information

	Unsuccessful Attempts
	Attempt 1: CE Rate Indicator
	Attempt 2: CE-based Predictor

	Calchas Design
	Feature Generation
	Hierarchical Prediction
	Prediction Timing

	Evaluation
	Experimental Setup
	Evaluation Results

	Discussion
	Fault Tolerate
	Limitations

	Related Work
	Conclusions

