
This paper is included in the Proceedings of the
2024 USENIX Annual Technical Conference.

July 10–12, 2024 • Santa Clara, CA, USA
978-1-939133-41-0

Open access to the Proceedings of the
2024 USENIX Annual Technical Conference

is sponsored by

Quant-LLM: Accelerating the Serving
of Large Language Models via FP6-Centric

Algorithm-System Co-Design on Modern GPUs
Haojun Xia, University of Sydney; Zhen Zheng and Xiaoxia Wu, Microsoft;

Shiyang Chen, Rutgers University; Zhewei Yao, Stephen Youn, Arash Bakhtiari, and
Michael Wyatt, Microsoft; Donglin Zhuang and Zhongzhu Zhou, University of Sydney;

Olatunji Ruwase, Yuxiong He, and Shuaiwen Leon Song, Microsoft
https://www.usenix.org/conference/atc24/presentation/xia

Quant-LLM: Accelerating the Serving of Large Language Models via FP6-Centric
Algorithm-System Co-Design on Modern GPUs

Haojun Xia
University of Sydney

Zhen Zheng
Microsoft

Xiaoxia Wu
Microsoft

Shiyang Chen
Rutgers University

Zhewei Yao
Microsoft

Stephen Youn
Microsoft

Arash Bakhtiari
Microsoft

Michael Wyatt
Microsoft

Donglin Zhuang
University of Sydney

Zhongzhu Zhou
University of Sydney

Olatunji Ruwase
Microsoft

Yuxiong He
Microsoft

Shuaiwen Leon Song
Microsoft

Abstract
Six-bit quantization (FP6) can effectively reduce the size
of large language models (LLMs) and preserve the model
quality consistently across varied applications. However, ex-
isting systems do not provide Tensor Core support for FP6
quantization and struggle to achieve practical performance
improvements during LLM inference. It is challenging to sup-
port FP6 quantization on GPUs due to (1) unfriendly memory
access of model weights with non-power-of-two bit-width and
(2) high runtime overhead of weight de-quantization. To ad-
dress these problems, we propose TC-FPx, the first full-stack
GPU kernel design scheme with unified Tensor Core support
of 6-bit and arbitrary bit-width quantization (5-bit, etc.). We
integrate TC-FPx kernel into an existing inference system,
providing new end-to-end support (called Quant-LLM) for
quantized LLM inference, where better trade-offs between
inference cost and model quality are achieved with 6-bit quan-
tization. Experiments show that Quant-LLM enables the in-
ference of LLaMA-70b using only a single GPU, achieving
1.69×-2.65× higher normalized inference throughput than
the FP16 baseline. The source code is publicly available at
https://github.com/usyd-fsalab/fp6_llm.

1 Introduction

Large Language Models (LLMs) [1, 29, 33–35, 41] are
renowned for their capacity to process diverse language-
related tasks [2, 8, 9, 28]. However, it is challenging to de-
ploy LLMs as these models are also characterized by their
expansive size, e.g., 175 billion parameter GPT-3 [1] and
1.76 trillion parameter GPT-4 [29]. On one hand, it re-
quires large amounts of GPU memory (326 GB for GPT-3
in FP16) only to accommodate model weights, whereas an
A100/H100 GPU [20, 21] only has up to 80 GB memory. On
the other hand, LLM inference faces severe "memory wall"
issues [12, 37] during token generation, where the speed of
LLM inference is mainly limited by the time reading model
weights from GPU DRAM. It makes LLM inference memory
bounded, under-utilizing the computational power of GPUs.

0

0.5

1

1.5

2

2.5

1 2 4 8 16 32 64 128 256 512

Ke
rn

el
 S

pe
ed

up

Inference Batch Size

TC-FPx_W6A16 TensorRT_LLM_W8A16
AWQ_W4A16_SIMT cuBLAS_W16A16

FP16
Tensor Cores

FP32 SIMT Cores

Figure 1: Performance of a linear layer within the llama-
65b [33] model. The shapes of the weight/activation matrices
are (8192, 22016) and (22016, Batch Size).

Model quantization [4, 6, 14, 32, 39, 42, 44] reduces both
GPU memory footprint and DRAM data access. It uses fewer
bits to represent each model weight, resulting in a more com-
pact representation of the model. However, only a small set
of bit-widths (i.e., 4-bit and 8-bit) are efficiently supported in
existing systems [3, 14, 15, 26] on modern GPUs. We found
that 6-bit is an overlooked "sweet spot" for LLM quantiza-
tion, where superior trade-offs between inference cost and
model quality can be achieved with FP6 quantization. We
tried different bit-widths (goes from 16-bit baseline to 4-bit)
to quantize the models, and the narrowest bit-width we can
achieve is 6-bit, where the accuracy drop compared to FP16 is
negligible constantly across various LLM models. This find-
ing is consistent with recent studies [32, 36]. However, there
is still no efficient system support for the 6-bit linear layer ex-
ecution (i.e., matrix multiplication) on modern GPUs. Thus, it
is urgent to develop the system support for 6-bit quantization
fully leveraging the computing power of GPUs.

On one hand, more efficient LLM inference can be achieved
with 6-bit quantization compared to larger-bit quantization
(e.g., 8-bit). Firstly, more GPU memory can be saved, e.g.
around 40 GB memory can be saved if deploying the GPT-3

USENIX Association 2024 USENIX Annual Technical Conference 699

https://github.com/usyd-fsalab/fp6_llm

model with 6-bit rather than 8-bit quantization. Secondly,
LLM inference can be further accelerated as the time of
reading model weights from GPU DRAM can be effec-
tively reduced. As shown in Figure 1, the linear layer im-
plemented with our newly proposed 6-bit quantization system
design (TC-FPx_W6A16) is constantly faster (up to 1.45×)
than the state-of-the-art support for 8-bit quantization (Ten-
sorRT_LLM_W8A16). On the other hand, 6-bit quantization
can more effectively preserve model quality than smaller-
bit quantization (e.g., 4-bit). Recent studies [10, 30] observe
that the quality degradation of LLMs associated with 4-bit
quantization [5, 14, 39, 40] can be significant. Besides, re-
cent research [36] also demonstrates that in tasks extending
beyond zero-shot1 measurements, such as code generation
and summarization, 4-bit methods underperform and lack
robustness, whereas 6-bit quantization displays strong and
consistent performance across these varied applications.

Motivated by the above observations, we propose TC-FPx,
the first full-stack GPU system design scheme with unified
Tensor Core [20,21] support of float-point weights for various
quantization bit-width (6-bit, 5-bit, 3-bit, etc.), mitigating the
"memory wall" issues during LLM inference. TC-FPx breaks
the limitations of the underlying GPU hardware, allowing
the GPU to support linear layer calculations involving model
weights of arbitrary bit width. In TC-FPx, Tensor Cores are
utilized for intensive computation of matrix multiplications,
while SIMT cores are effectively leveraged for weight de-
quantization, transforming the x-bit model weights to FP16
type during runtime before feeding them to Tensor Cores. To
optimize GPU memory access, we propose Ahead-of-time
Bit-level Pre-packing (Section 5.2) to resolve the challenge
of unfriendly memory access for weights with irregular bit-
width (Section 4.2.1), leveraging the static pattern of model
weights. Besides, we propose SIMT-Efficient GPU Runtime
(Section 5.3) to minimize the runtime overhead of weight
de-quantization (Section 4.2.2). Last but not least, we present
the software pipeline of TC-FPx kernel, where SIMT cores,
Tensor Cores, and the GPU memory hierarchy cooperate effi-
ciently with high performance.

We integrate TC-FPx kernel into a state-of-the-art inference
system [19], providing new end-to-end support (called Quant-
LLM) for quantized LLM inference, where better trade-offs
between inference cost and model quality are achieved. Cur-
rently, Quant-LLM mainly supports 6-bit quantization (FP6)
for popular LLMs such as LLaMA [33], OPT [41] with var-
ious sizes. Evaluations show that Quant-LLM enables the
inference of LLaMA-70b using only a single GPU, achieving
1.69×-2.65× higher normalized inference throughput than
the FP16 baseline. Besides, Quant-LLM improves the infer-
ence throughput of OPT-30b by 1.78×-4.51×.
In summary, we make the following contributions:

1Zero-shot means that the model is directly instructed to perform a task
without any additional examples to steer it.

• We identify the significance and key challenges in support-
ing FP6 quantization on modern GPUs.

• We propose TC-FPx, the first full-stack GPU kernel de-
sign scheme with unified Tensor Core support of float-point
weights with arbitrary bit-width, e.g. FP6, FP5.

• We provide new end-to-end inference support for quantized
LLMs through the integration of TC-FPx, achieving better
trade-offs between inference cost and model quality.

• We evaluate Quant-LLM on various LLM models and
demonstrate that it substantially outperforms the baseline.

2 Background

2.1 Quantization of Large Language Models
Although large language models (LLMs) are known for
their impressive performance, their large size also creates
challenges for model deployment. Thus, model quantiza-
tion [4,6,14,32,39,42,44] is commonly used for LLM deploy-
ment, resulting in a more compact representation of the model.
Weight-only quantization [6, 14] only reduces the precision of
model weights (e.g., INT8, using an 8-bit integer to represent
each weight) while still using an FP16 value to represent each
activation. The major targets to be quantized are the weights
of linear layers (i.e., matrix multiplication), which account
for more than 99% of the overall LLM weights. The activa-
tions can also be quantized during inference [4, 39]. In this
paper, we describe the precision of Weights and Activations
with the term "WxAy", where x/y denotes the bit-width of
weights/activations. Besides, the process of "dequantization"
refers to transforming the quantized weights back to FP16.

2.2 IEEE Standard for Floating-Point
The IEEE 754 float-point standard defines a binary format
for representing real numbers. Each floating point number
consists of three parts: the sign bit (S), the exponent bits (E),
and the mantissa bits (M). The corresponding value f of a
float-point number can be calculated via:

f = (−1)S × (1.M)×2E−bias; bias = 2len(E)−1 −1 (1)

Please refer to [11] for details, where special cases for values
like infinity, zero, and NaN (Not a Number) are also defined.

2.3 Tensor Cores vs. SIMT Cores
SIMT cores 2 are responsible for general-purpose process-
ing tasks in GPUs, which handle a wide range of instruc-
tions including integer operations, floating-point operations,

2Or referred to as CUDA cores on NVIDIA GPUs.

700 2024 USENIX Annual Technical Conference USENIX Association

load/store operations, etc. SIMT cores execute scalar (or vec-
tor) instructions operating on individual (or vector) data el-
ements. Tensor cores [20, 21] are specialized hardware de-
signed for accelerating matrix multiplication. Tensor cores
have 16.0×/14.8× higher FLOPS than SIMT cores on A100
[20]/H100 [21] GPUs. Besides, Tensor cores work at a coarse-
grained granularity, e.g. performing a matrix multiplication
between two FP16 matrices of shape 16 × 16 and 16 × 8 with
a single mma (matrix multiply and accumulate) instruction.

3 Motivations

8-bit [4, 39] and 4-bit quantization [6, 14, 42] are widely ap-
plied schemes for the current post-training LLMs. However,
we found that 6-bit is an overlooked "sweet spot" for LLM
quantization, where superior trade-offs between inference cost
and model quality can be achieved with FP6 quantization. We
tried different bit-widths (goes from 16-bit baseline to 4-bit)
to quantize the models, and we found that the narrowest bit-
width we can achieve is 6-bit, where the accuracy drop com-
pared to FP16 is negligible constantly across various LLM
models. This finding is consistent with recent studies [32, 36].
Besides, NVIDIA recently announced FP6 Tensor Cores that
would be added to their next generation of GPUs (NVIDIA
Blackwell [27]) in the future, also indicating that FP6 matters.

(I) Lower inference cost than 8-bit quantization. Com-
pared to the 8-bit quantization, the cost of deploying LLMs
can be further reduced through more aggressive 6-bit quanti-
zation without a visible accuracy drop. On one hand, the size
of LLM weights can be significantly reduced, nearly 2.7×
smaller than the FP16 baseline. Less GPU memory is required
to store model weights, thereby requiring fewer GPUs and
reducing the serving cost of deploying LLMs. On the other
hand, 6-bit quantization can also more effectively accelerate
the inference of LLMs. Given that the LLM inference is usu-
ally memory-bounded3 during token generation, faster LLM
inference can be achieved through reducing GPU DRAM
access of the model weights. As shown in Figure 1, the ex-
ecution of the linear layer within llama-65b model [33] is
consistently faster (up to 1.42× faster) with our newly pro-
posed 6-bit quantization system design (TC-FPx_W6A16)
compared to the state-of-the-art 8-bit quantization support
(TensorRT-LLM_W8A16 [26]). Given that linear layers are
the most time-consuming part of the large language models,
this speedup will directly translate to performance improve-
ments for end-to-end inference scenarios (See Section 7.3).

(II) Better model quality than 4-bit quantization. Although
4-bit quantization more aggressively reduces memory foot-
print and DRAM access, it unavoidably causes degradation in
model quality [10, 30]. In contrast, near-lossless model com-
pression can be achieved with 6-bit quantization. As shown

3When the execution is memory-bounded, it means that the rate at which
data is transferred to or from the GPU’s memory is the bottleneck, rather
than the computational capabilities of the GPU cores.

Table 1: Zero-shot evaluations, averaging over five datasets
including PTB [17], Wikitext [18], and C4 [31]. Metric: per-
plexity, lower is better.

FP16 FP6 INT4 INT4
Fine-grained Quantization N/A ✗ ✓ ✗

LLaMA-1B [33] 24.13 24.83 564.73 288.22
LLaMA-13B [33] 13.16 13.09 14.19 14.13
LLaMA-65B [33] 6.41 6.42 6.61 7.17

Table 2: Code Generation in HumanEval-X (JavaScript) [43].
Metric: pass@1↑, higher is better.

FP16 FP6 INT4 INT4
Fine-grained Quantization N/A ✗ ✓ ✗

CodeGeeX2-6B [43] 31.50 31.61 28.35 25.15
StarCoder-15B [13] 33.67 33.6 32.32 32.18
CodeLLaMA-34B [16] 45.05 44.51 43.22 43.45

in Table 1 and Table 2, FP6 displays strong and consistent
performance across various tasks including code generation
and zero-shot perplexity performance. It also shows high ro-
bustness across various model sizes, e.g., 1B, 13B, and 65B
LLaMA [33] models. We also find that INT4 quantization
heavily relies on Fine-Grained Quantization (FGQ) methods
to maintain high model quality, whereas our FP6 quantization
already works well on coarse-grained quantization. Note that
the data points in Table 1 and Table 2 are picked from [36].
For more details, please refer to this paper. In conclusion,
FP6 quantization is a practical alternative to further democra-
tize the deployment of LLMs without significantly sacrificing
model quality on complex tasks and various model sizes.

4 Design Choices and Challenges

4.1 Design Choices
Although there is an increasing demand for high-performance
support of post-training FP6 quantization, currently there is
no such efficient FP6-centric system design available that
enables the aforementioned trade-offs against 4-bit and 8-bit
quantization. Specifically, existing supports for linear layers
are mainly designed for data types whose bit-width is a power
of 2 (e.g., 4-bit, 8-bit, and 16-bit). Given that it is not clear
how to support FP6 efficiently on modern GPUs, we illustrate
two important design choices in this section.

Necessity in enabling Tensor Cores. We find it essential to
support Tensor Cores when performing inference of quantized
LLMs. For example, we have evaluated the performance of
AWQ’s [14, 15] pure SIMT-core execution on various batch
sizes to test its scalability. As shown in Figure 1, the runtime
performance of linear layers without Tensor Core support
(AWQ_W4A16_SIMT) becomes extremely low as the infer-
ence batch size increases. The reason behind this is twofold.

USENIX Association 2024 USENIX Annual Technical Conference 701

De-quantization

MatMul (FP16)

W (FPx) A (FP16)

W’ (FP16)

O (FP16)

on-the-fly
DeQuant

MatMul (FP16)

W (FPx) A (FP16)

W’ (FP16)

O (FP16)

Kernel-1

Kernel-2

Single
Kernel

Figure 2: Two different methods to support weight-only
WxA16 quantization during LLM inference. (Left) Dual ker-
nels. (Right) Unified kernel.

On one hand, traditional SIMT cores are an order of magni-
tude slower than Tensor Cores for linear layer execution as
described in Section 2.3. On the other hand, a large fraction
of the SIMT core’s computational power will be used to de-
quantize the model weights at runtime, which further reduces
the available computational power of SIMT cores for comput-
ing matrix multiplication. This motivates us to enable tensor
cores for intensive computation of matrix multiplication while
leveraging versatile SIMT cores for weight de-quantization.

Unified kernel solution rather than dual kernels. The
unique character of WxA16 quantization is that the activation
matrices use FP16 but the weight matrices are stored in a
narrower bit-width. However, Tensor Cores require both the
weights and activations matrices to be stored in the same
data type, e.g. FP16/INT8/INT4. The straightforward solution
(i.e., dual kernel solution) adds an extra GPU kernel that de-
quantizes the weights to FP16 before calling the normal FP16
kernel. However, such inference speed would be even slower
than that of the model without quantization. As shown in
Figure 2 (Left), two GPU kernels will be launched for the
linear layer execution, and the de-quantized FP16 weights
will be written to GPU DRAM before being read by the
second GPU kernel, resulting in 2× DRAM access. It is more
efficient to fuse the de-quantization and the matrix-multiply
process into a single GPU kernel, eliminating the read/write
of the de-quantized weights (W

′
in FP16).

4.2 Design Challenges
Given the design choices in Section 4.1, it is challenging
to design a unified GPU kernel supporting FP6×FP16 ma-
trix multiplication on modern GPUs. On one hand, modern
GPU memory systems do not naturally support irregular bit-
width (not a power of 2) because the minimal access size of
GPU global/shared memory is 8/32 bits per thread and the
memory addresses to access must be aligned. The complex
data layout requirement of Tensor Cores makes it even more
challenging for irregular bit-widths. On the other hand, the
de-quantization computation is expensive as it requires a large
amount of complex bit-level operations. Thus, how to fuse
the de-quantization into the linear layer computation without

T3T2T1T0
T7T6T5T4
T11T10T9T8
T15T14T13T12
T19T18T17T16
T23T22T21T20
T27T26T25T24
T32T30T29T28

FP-xFP-x
2*x bits

8

8

Weights
Matrix

Distributing a
submatrix to

different GPU
threads.

…6362616059585756…15141312111098…76543210

T0 T1 T2 T3 T4 T5 T6 T7 T28 T29 T30 T31

Translating to Linear Memory Space X-bit Weight

(a) Required Data Layout of Tensor Cores Input. T0 Means Thread #0.

…T31T30T29T28…T7T6T5T4…T3T2T1T0

W2W1
Aligned 32-bit Words

Two 6-bit Weights needed by Thread #4.

W4W3
Aligned 32-bit Words

W16W15
Aligned 32-bit Words

(b) Accessing 6-bit weights at the granularity of 32-bit Words.

Figure 3: Memory Access of X-bit Weights for each Thread.

hurting the overall performance is also non-trivial.

4.2.1 Hardware-Unfriendly Memory Access

During the execution of linear layers on modern GPUs, model
weights should be loaded from DRAM to registers before the
corresponding multiplication calculations can be performed.
Usually, the model weights are loaded in two steps, to hide the
high access latency of DRAM for high performance. Specifi-
cally, model weights are first loaded from GPU DRAM and
buffered into on-chip memory (e.g., shared memory) for data
reusing. After that, the buffered weights are then read from
shared memory to registers for the actual computation.

Given that each GPU thread cannot directly access other
threads’ registers4, each thread must put the model weights
that are needed by itself to its private registers on its own.
This process can become extremely challenging when the
weights are stored with irregular bit-width (not 2n, e.g., 6 bit),
given the rigid data layout requirements of Tensor Cores. As
shown in Figure 3a, the minimal input of FP16 Tensor Cores
is a 8×8 sub-matrix in modern GPU architecture, and each
GPU thread should hold a pair of weights in its register. In
normal cases, each weight is stored with 16 bits, and each
pair of weights can be naturally read from shared memory
at the granularity of 32-bit words. However, each weight is
stored with x-bits in our work5, which makes memory access
extremely unfriendly to modern GPU memory hierarchy.

On-chip Memory Access with Unused Bits: We use 6-bit
quantization as an example to show the inefficiency in ac-
cessing weights with irregular bit-width. As shown in Figure

4Each GPU thread is allocated and owns a distinct portion of the whole
registers available on GPU processors.

5Our design principles support not only 6-bit but also any other bit widths.

702 2024 USENIX Annual Technical Conference USENIX Association

3b, weights are already buffered in shared memory, and each
GPU thread needs to read a pair of weights (12 bits, 2∗6bits)
from shared memory. However, shared memory has 32 mem-
ory banks and each memory bank outputs a 32-bit word per
memory request on GPU. Thus, a large fraction of bits read
from shared memory will be unused, resulting in a signifi-
cant waste of shared memory bandwidth. For instance, T0
(Thread #0) in Figure 3b only needs 12 bits. However, a 32-
bit word (W1) will be read, resulting in 20 out of 32 bits
(62.5%) unused. The waste of unused bits can get even more
severe due to the requirement of aligned memory access6

in modern GPU memory hierarchy. As shown in Figure 3b,
the bits needed by T2 (Thread #2) are distributed in both W1
and W2. Thus, T2 needs to read both W1 and W2, reading
2∗32 bits from shared memory. However, only 6∗2 bits will
be eventually used, resulting in 52 out of 64 bits (81.25%)
unused and wasted. It is also worth noting that the memory
management and access on GPU DRAM and registers suffer
from similar problems due to the irregular bit-width.

4.2.2 High Computation Overhead of De-quantization

The runtime overhead of FPx-FP16 de-quantization can be
extremely high, which easily slows down the overall execu-
tion. On one hand, large amounts of model weights need to be
de-quantized at runtime, e.g. 70 billion FPx weights should
be de-quantized for each LLM decoding step7 for LLaMA-
70b [34] inference. On the other hand, the runtime overhead
to de-quantize each FPx weight is high, requiring complex
bit-wise operations. According to Equation 2, new exponent
(E) and mantissa (M) need to be calculated during runtime, to
obtain the FP16 with the equivalent value of a given FPx.

2E f p16−bias f p16 × (1.M f p16) = 2E f px−bias f px × (1.M f px) (2)

In Equation 2, bias f p16 = 15 and bias f px = 2len(E f px)−1 − 1.
The sign field of the FP16 is identical to that of the FPx, and
the mantissa of the FP16 can also be calculated by padding
zeros to that of the FPx. What’s more, the exponent of FP16
should be E f p16 = E f px +bias f p16 −bias f px, which is more
computationally expensive. In summary, how to de-quantize
FPx values efficiently also becomes a major challenge.

5 Design Methodology

We first provide an overview of our unified designs support-
ing various quantization bit-width with GPU Tensor Cores in
Section 5.1. To solve the challenge of unfriendly memory ac-
cess (Section 4.2.1), we propose Ahead-of-time Bit-level Pre-
packing in Section 5.2. To deal with the challenge of the high
computational overhead of de-quantization (Section 4.2.2),

6Memory access must be aligned, i.e., its address is a multiple of its size.
7To generate a sequence with n tokens, n-1 decoding steps are required.

Global Memory

L2 Cache

Registers

Registers

Tensor Core
mma

Dequant [W]

Shared Memory
Ldmatrix [A]Lds [W]

As
yn

c_
C

op
y

W: FP-x A: FP16

(a) TC-FPx Design.

Global Memory

L2 Cache

Shared Memory

As
yn

c_
C

op
y

Registers

Tensor Core
mma

W: FP16 A: FP16

Ldmatrix
[Activation]

Ldmatrix
[Weight]

(b) Traditional GEMM Design.

Figure 4: Design Overview.

we presented our designs to achieve SIMT-Efficient GPU Run-
time in Section 5.3. At last, we presented our software pipeline
designs in Section 5.4, where SIMT cores, Tensor Cores, and
GPU memory hierarchy can work collaboratively.

5.1 Overview

Figure 4 compares TC-FPx, our x-bit weight-only quantized
linear layer kernel design, with the traditional design for
general-purpose matrix multiplication (GEMM) where both
input matrices are in FP16. The model weight is stored with
a reduced number of bits for TC-FPx. Consequently, an addi-
tional de-quantization stage (Dequant W) is introduced at the
register level, where the FP6 weights are de-quantized to FP16
locally within each thread using SIMT cores. It is worth noting
that the FP16 weights are not written back to shared memory
but stored in registers for future use, eliminating unnecessary
round-trip access to shared memory. Another difference is
that TC-FPx loads x-bit weights from shared memory to regis-
ters using fine-grained lds (load shared) instructions instead
of using the coarse-grained intrinsic ldmatrix (load matrix),
which has a strict layout requirement and is less flexible.

5.2 Ahead-of-time Bit-level Pre-packing

As described in Section 4.2.1, memory access to weights with
irregular bit-width is unfriendly to modern GPU memory hier-
archy. To address this problem, we propose the insight that we
can combine the memory read of every 32 x-bit weights, result-
ing in x request of 4-byte word per GPU thread. In this case,
all the memory access would be aligned at the granularity of
32-bit words rather than the irregular bit-width. However, it
is not trivial to combine the memory read of weights due
to Tensor Cores’ rigid data layout requirements, where the
weights needed by each thread are not stored in continuous
memory space.

To solve this problem, we propose to optimize the run-
time memory access pattern during model serving by reorder-

USENIX Association 2024 USENIX Annual Technical Conference 703

T3T2T1T0
T7T6T5T4
T11T10T9T8
T15T14T13T12
T19T18T17T16
T23T22T21T20
T27T26T25T24
T32T30T29T28

T3T2T1T0
T7T6T5T4
T11T10T9T8
T15T14T13T12
T19T18T17T16
T23T22T21T20
T27T26T25T24
T32T30T29T28

T3T2T1T0
T7T6T5T4
T11T10T9T8
T15T14T13T12
T19T18T17T16
T23T22T21T20
T27T26T25T24
T32T30T29T28

T3T2T1T0
T7T6T5T4
T11T10T9T8
T15T14T13T12
T19T18T17T16
T23T22T21T20
T27T26T25T24
T32T30T29T28

T0
128 * [x bits]

……

4x * [32 bits]

64

Step1 ……

64

A Tile of Weights A Slice Inputs for a mma instruction

16

16

T1
T2

T30

T31

Step2

Figure 5: Ahead-of-time Bit-level Weight Pre-packing. This
technique is independent of the actual bit-width (denoted as
x) of model weights and can be applied to arbitrary bit-width.

ing the weights within each weight matrix and pre-pack the
weights ahead of time, leveraging the static pattern of model
weights. As model weights are statically determined after the
model is trained and quantized, complicated memory layout
transformation can be applied to the weights ahead of time,
introducing no runtime overhead. Besides, this pre-packing
process is a once-for-all overhead before model deployment,
which usually takes several minutes to process a model.

In general, weight pre-packing consists of two steps. In
the first step, we gather all the weights needed by each GPU
thread and combine these weights locally. Given that the
weights needed by each GPU thread are not originally in con-
tinuous locations (see Figure 3a) within each weight matrix,
we must pick the weights for each GPU thread carefully. The
weights picked for each thread are then combined locally in
relative temporal order as they are consumed by Tensor Cores
at runtime. In the second step, we combine all the weights
needed by the whole GPU WARP (consisting of 32 GPU
threads) into a unified linear memory space, in which order
the weights will be stored in GPU DRAM before runtime. To
fully eliminate shared memory bank conflict8, we propose to
combine the 32-bit word of each thread in a "jagged" order.

Step 1: Per-thread Weight Gathering Figure 5 demon-
strates the weights picked by T0 (Thread #0) and the order
to combine them. We suppose the WARP-level tiling size
is 64×64, which means each weight matrix is divided into
64×64 data tiles and loaded to GPU’s shared memory at this

8Bank conflicts occur in shared memory when multiple threads access
data in the same memory bank simultaneously, leading to lower throughput.

granularity for each WARP. Each weight tile is then further
divided into four slices, as the weights are loaded from shared
memory and used for Tensor Core computations on a slice-
by-slice basis. What’s more, each slice is divided into four
16×16 chunks, as Tensor Core processes 16×16 data items
in each instruction. Within each 16× 16 chunk, four pairs
of FPx weights are picked for T0 and combined. As shown
in Figure 5, we get 32 (i.e., the WARP size) groups of FPx
weights after Step 1. The weights are combined and stored
continuously within each group and each group of weights
will be consumed by a certain GPU thread. In summary, each
64× 64 weight tile is eventually assigned to 32 threads (a
WARP), and each thread will consume 128 x-bit weights.

Step 2: Bit-level Assembling per WARP In Step 2, we
assemble all the weights of different groups into a unified
memory space. During this process, we consider the com-
bined weights as continuous data to copy, temporarily ignor-
ing the meaning of each bit. Specifically, 128 x-bit items are
considered 4x items with 32 bits. Besides, we propose to as-
semble the weights of all groups in the jagged order shown
in Figure 5. To begin with, the first 32-bit item of each thread
is concatenated together. After that, the second 32-bit item
of each thread is concatenated and appended to the previous
results. By repeating this process, all weights can be stored
continuously in a linear memory space and well-aligned (128-
byte aligned). In this way, all weights can be simply copied
from DRAM to shared memory at the granularity of 128-byte
blocks without any changes, easily achieving optimal DRAM
access. Besides, these weights can then be loaded from shared
memory with optimal performance as well, where a WARP of
threads read consecutive 32-bit items in shared memory for
each memory request, fully avoiding bank conflict.

5.3 SIMT-Efficient GPU Runtime
Parallel De-quantization To reduce the runtime overhead
of FP-x weight de-quantization, we implemented FP-x de-
quantization with optimized bit-wise SIMT core instructions.
Besides, we propose to de-quantize multiple FPx weights
in parallel, further reducing the SIMT overhead by 4× by
exploiting the bit-level parallelism within each 32-bit register.

(1) Optimized Bit-wise Operations: As described in Sec-
tion 4.2.2, the exponent for FP16 should be E f p16 = E f px +
bias f p16 − bias f px, when casting an FPx to the equivalent
FP16. To simplify this process, we adopted the mathe-
matical transformation in [36], calculating the exponent of
FP16 with E f p16 = E f px instead. To maintain correctness,
the result FP16 is then multiplied with the FP16 constant
2bias f p16−bias f px

:

cast(Wf px) = new_cast(Wf px)×2bias f p16−bias f px
. (3)

Fig.6a shows the optimized FP16 to FP6 conversion. Al-
though we only draw the cast from FP6 to FP16 for demon-

704 2024 USENIX Annual Technical Conference USENIX Association

654321

16151413121110987654321

654321

16151413121110987654321

S E M (1) S_[1] = S[1]
(2) S_[2:6] = S[2:4]+12
(3) S_[7:8] = S[5:6]
(4) S_[9:16] = 00…0

(1) S_[1] = S[1]
(2) S_[2:3] = 00
(3) S_[4:8] = S[2:6]
(4) S_[9:16] = 00…0

(a) Optimized FP6 to FP16 cast.

654321654321654321654321

654321654321654321654321

Slot 2

654321654321

654321654321

654321654321

R2 = R1 & 0x80808080
R1 = R1 >> 2
R1 = R1 & 0x1f1f1f1f
R2 = R2 | R1
R1 = R2 & 0x9f009f00
[#2 FP16, #1 FP16]

R2 =R2&0x009f009f
R2 = R2 << 8
[#4 FP16, #3 FP16]

1

2

4
3

Slot 4 Slot 1 Slot 3
R1

R2

R1

R2

R2

(b) 4-Way parallel de-quantization within 32-bit registers.

Figure 6: SIMT-Efficient Parallel De-quantization. To maintain correctness, the de-quantized FP16 should be multiplied with the
FP16 constant 1.0∗2bias f p16−bias f px

after the process demonstrated in (b). Besides, we do not pad FPx values at global/shared
memory level. The initial bit layout shown in (b) is only an intermediate representation in registers generated by the "Weight Split
and Stitching" process during runtime. More importantly, this design scheme can also be applied to other bit widths accordingly,
e.g., 5-bit. Four-way de-quantization might not be applicable for some bit widths, but two-way parallelism can always be used.

stration, it can be applied to any bit-width. The sign field of
FP16 is identical to that of FPx. Besides, the lower bits of the
exponent field and the higher bits of the mantissa field can
be copied from FPx to FP16 together for efficiency. What’s
more, other bits of FP16 should be padded with zeros.

With careful designs, we succeeded in achieving cast from
FP6 to FP16 with only two bit-wise "and", one "shifting", and
one "or" as shown in ❶ of Figure 6b. The sign field is copied
from FP6 to FP16 with the first "and" and all other bits of the
FP16 are initialized to zeros at the same time eliminating the
need to pad zeros to the exponent and mantissa fields later.
All bits of the FP6 are then shifted right with the bit-wise
"right shifting". After that, the lower bits of the exponent and
the higher bits of the mantissa in FP6 are first selected via the
"and" between the FP6 and the bit mask "0x1f1f1f1f", and
then copied to the FP16 with the bit-wise operation "or".

(2) Bit-level Parallelism: Given the insight that we can ex-
ploit the bit-level parallelism within each 32-bit word, we
propose to de-quantize multiple FPx weights in parallel, fur-
ther reducing the runtime overhead of de-quantization. The
detailed design is demonstrated in Figure 6b using FP6 as an
example. The 32-bit registers are treated as four processing
slots, where each slot works independently with the same
instruction but different input FP6 data. Before the start of
de-quantization, four FP6 should be stored in R1 (Register #1)
with the initial data layout shown in the figure. With the code
snippet ❶, these four FP6 can be simultaneously de-quantized
into four FP16, where only the first 8 bits of each FP16 are
stored in R2. After that, the first and the second FP16 are
extracted to R1 with their last 8 bits padded with zeros, with
the code snippet ❷. Finally, with the code snippet ❸ and ❹,
the third and the fourth FP16 are extracted to R2.

Weight Split and Stitching We will then demonstrate the
method to efficiently reconstruct the 6-bit weights from the

2+4 scheme [36] on GPUs with a carefully designed memory
layout. Note that all the techniques discussed in the follow-
ing paragraphs can also be applied to other bit-width, e.g.,
5-bit weights can be decomposed into 1+4 scheme, and 7-
bit weights can be decomposed into 1+2+4 scheme. With
this method, the model weights with irregular bit-width could
be transformed into several segments with regular bit-width
(power of 2). Given that these segments have regular bit
widths, the stitching process ("Runtime Weight Stitching")
can be highly efficient with the following designs.

(1) Ahead-of-time Weight Split: To store the weights in a
well-aligned manner in GPU’s 32-bit registers, we split each
weight into several segments, where the bit-width of each
segment is 2n, e.g. each 6-bit weight can be split into either
2+4 or 4+2. Based on this scheme, the index calculations for
the following designs are significantly simplified. Note that
the techniques described in Section 5.2 can be applied to any
bit-width, thus the 2-bit and 4-bit segments can be pre-packed
separately and efficiently according to Section 5.2.

(2) Runtime Weight Stitching: Before the de-quantization,
the weights are first loaded from shared memory to registers.
As each weight is split into several segments, the complete
weights need to be reconstructed at the register level during
runtime. To reduce this runtime overhead, we propose to
extract and stitch the weights in parallel. As shown in Figure
7, two sets of registers are used to store 32 FP6 weights, where
Frag1_PT R points to two 32-bit registers containing 32 2-bit
segments while Frag2_PT R points to four 32-bit registers
containing 32 4-bit segments. With our parallel stitching, four
FP6 weights are reconstructed simultaneously, reducing the
number of SIMT core instructions by 4×. As shown in Figure
7, four 2-bit segments are first extracted to Register #1 (❶),
and four 4-bit segments are then extracted to Register #2 (❷).
After that, Register #2 is right-shifted (❸) and its valid bits are
copied to Register #1 (❹), resulting in complete 6-bit weights.

USENIX Association 2024 USENIX Annual Technical Conference 705

21212121212121212121212121212121
6 # 10# 14 # 4 # 8 # 12# 16

2 # 6 # 4 # 8 # 1 # 5 # 3 # 7
65436543654365436543654365436543

21212121
2 # 1# 4 # 3

654321654321654321654321
6543654365436543

6543654365436543

Int* Frag1_PTR

21212121212121212121212121212121

2 # 5 # 9 # 13 # 3 # 7 # 11# 15# 1

Int* Frag2_PTR

65436543654365436543654365436543
65436543654365436543654365436543
65436543654365436543654365436543

Weight Extraction & Stitching

2 # 1# 4 # 3
1

2
3
4

Figure 7: Parallel Weight Stitching. We show the stitching
of 2-bit and 4-bit segments here, and the support of 1-bit
segments can be designed accordingly. Eventually, weights
with arbitrary bit widths can be effectively re-constructed by
composing the segments with regular bit widths in runtime.

(3) Bit Reordering: To extract and stitch the weight in par-
allel, it is necessary to enforce the initial data layout in Figure
7. The key observation is that each four continuous segments
must be placed in the order shown in the figure, e.g. the first
four segments must be stored in the order of #2, #4, #1, and
#3. Besides, the stride between each pair of 2/4-bit segments
should be 6/4, respectively. Otherwise, it is not possible to
stitch four segments simultaneously with only four SIMT core
instructions. To satisfy the initial data layout requirements in
Figure 7, we propose to ensure this layout via reordering the
weight segments before runtime with no runtime overhead.
Besides, this technique is supposed to be superimposed on
the technique described in Section 5.2 as an additional pass.

Overall Pseudo Code Algorithm 1 shows the pseudo code
for FP69, including both Parallel De-quantization and Weight
Stitching. All the input and output variables in the pseudo
code are stored in registers. As demonstrated in Figure 7,
Algorithm 1 de-quantizes 32 FP6 weights in total, where four
FP16 weights are generated for each loop. The transforma-
tions in Figure 7 (❶, ❷, ❸, and ❹) are achieved with the
SIMT core operations of lines 5-8 in Algorithm 1. Eventually,
the output register array (OutputReg) will be directly used by
Tensor Cores as inputs.

5.4 Software Pipeline Design

In our designs, Tensor Cores are mainly used for matrix multi-
plications, while SIMT Cores are used for bit-level operations
related to weight de-quantization and stitching (See Section

9Please refer to our complete source code on GitHub if you want to see
our support of other bit-widths, e.g., FP5.

Algorithm 1 Weight Stitching & De-quantization.
1: Inputs: int Frag1_ptr[], int Frag2_ptr[], half Scales[]
2: Output: int Out putReg[]
3: for int i = 0; i < 8; i++ do
4: //Weight Extraction & Stitching
5: unsigned int R1 = (∗Frag1_ptr)&0xc0c0c0c0; ▷ ❶
6: unsigned int R2 = (∗Frag2_ptr)&0x f 0 f 0 f 0 f 0; ▷ ❷
7: R2 = R2 >> 2; ▷ ❸
8: R1 = R1|R2; ▷ ❹
9: //Advancing to next register or shifting current register.

10: if i%4 == 3 then
11: Frag1_PT R++;
12: else
13: (∗Frag1_PT R) = (∗Frag1_PT R)<< 2;
14: if i%2 == 1 then
15: Frag2_PT R++;
16: else
17: (∗Frag2_PT R) = (∗Frag2_PT R)<< 4;
18: //4-Way Parallel de-quantization.
19: ∗R2 = ∗R1&0x80808080;
20: ∗R1 = ∗R1 >> 2;
21: ∗R1 = ∗R1&0x1 f 1 f 1 f 1 f ;
22: ∗R2 = ∗R2| ∗R1;
23: ∗R1 = ∗R2&0x9 f 009 f 00;
24: ∗R2 = ∗R2&0x009 f 009 f ;
25: ∗R2 = ∗R2 << 8; ▷ R1 and R2 now each has 2 FP16 weights.
26: //Multiplying with the FP16 constant to maintain correctness.
27: R1 = Multiply(R1,1.0∗2bias f p16−bias f px

);
28: R2 = Multiply(R2,1.0∗2bias f p16−bias f px

);
29: //Multiplying with quantization scales & Output to registers.
30: Out putReg[i∗2] = Multiply(R1,Scales[i/2∗2]);
31: Out putReg[i∗2+1] = Multiply(R2,Scales[i/2∗2+1]);

5.3). In this section, we will describe the appropriate timing
of doing de-quantization so that Tensor Cores, SIMT Cores,
and the GPU memory hierarchycan work in parallel without
harmful instruction stalls due to data or barrier dependency.

Slice-by-slice De-quantization Instead of de-quantizing all
the weights at once, we de-quantize the FPx weights slice
by slice. As shown in Figure 8a, we assume that an FPx
weights tile and an FP16 activation tile are already copied
from DRAM to shared memory. The whole tile of weight
in shared memory is then de-quantized in several steps. In
each step, only a slice of FPx weights is loaded from shared
memory to registers, de-quantized into FP16 weights with
SIMT-Efficient GPU Runtime (Section 5.3), and then stored in
the register buffer A1 or A2 as inputs for Tensor Cores. ASlice
and BSlice are then multiplied using Tensor Cores.

Compared to de-quantizing the whole tile at once, our slice-
by-slice de-quantization reduces the number of registers re-
quired to store the FP16 weights by 4×, significantly reducing
register pressure. Besides, more opportunities are created for
instruction-level parallelism, since Tensor Cores can be used
immediately for computations once a slice of weights is de-
quantized, rather than waiting for the entire tile.

706 2024 USENIX Annual Technical Conference USENIX Association

Tensor cores

Double Buffers Implemented with GPU Registers

ATile [Shared Mem]

A1 B1
(1) Load Shared;
(2) SIMT-efficient

De-quantization

Load Matrix
(“ldmatrix”)

B0A0

BTile [Shared Mem]

FP-x
Weights

FP16
Activation

A
Slice

BSlice

(a) Slice-by-slice De-quantization.

cp.async
cp.async

cp.async

mma

De-quant

k=0Initializing Pipeline More Loops…

B1
B0

A0

async_copy_barrier();
__sync_threads();

Write/Read
Shared

1st Loop

De-quant
A1

Dequant
De-quant De-quant Dequant

ldmatrix ldmatrix ldmatrix
ldmatrix ldmatrix ldmatrix

mma mma mma mma
k=1 k=2 k=3

Time

O
n-

ch
ip

 B
uf

fe
rs

Write/Read
Registers

Data
Dependency

(b) Space-time Diagram of the Kernel Pipeline.

Figure 8: Software Pipeline of TC-FPx GPU Kernel.

Effective Overlapping The software pipeline is illustrated
via the space-time diagram in Figure 8b, where SIMT cores
(working on de-quantization), Tensor Cores (working on ma-
trix multiplication), and GPU memory hierarchy work collab-
oratively, achieving high instruction-level parallelism.

Firstly, global memory read is executed asynchronously
using the cp.async [20] intrinsic, fully overlapped with other
operations. Memory barrier and thread block synchronization
are issued after the third slice is processed (at the end of k=2),
making sure that the data for the next main loop is ready in
shared memory so that the "De-quant" (de-quantization) and
the "ldmatrix" operations can be started when k=3.

Secondly, shared memory read is also overlapped with ten-
sor core operations. When the ith slice is being computed,
the data of the (i+ 1)th slice are read from shared memory
simultaneously via "De-quant" and "ldmatrix".

Last but not least, the SIMT core operations for weight
de-quantization are also effectively overlapped with Tensor
Core operations. Within the "De-quant" process of the ith
slice, the FPx weights are first loaded from shared memory
to registers using the hardware intrinsic load shared (LDS),
and then immediately de-quantized into FP16 weights with
SIMT cores. At the same time, Tensor Cores are computing
the (i−1)th slice with no data dependency.

6 Implementation

We implemented the TC-FPx kernel supporting matrix multi-
ply C = A×B, where A is the weight matrix of shape [M,K]
and B is the activation matrix of shape [K,N]. The weight ma-

trices are stored in our customized format described in Section
5.2, and the input and output activation matrices are stored
in column-major. Thus, our TC-FPx kernel could be a drop-
in replacement of cuBLAS kernels in inference frameworks
for quantized LLMs. Our GPU kernel is implemented with
more than 1.2K lines of CUDA codes on top of the code of
Flash-LLM [38]. Our code is fully templated and can support
different combinations of "eXmY"10. In this paper, we tested
the performance of our TC-FPx kernel with model weights
in FP6_e3m2 and FP5_e2m2. Meanwhile, the activations are
always in FP16 format. Our TC-FPx kernels could be com-
piled separately into a .so dynamic link-able library, and we
provide a set of C++ APIs to call the kernels. Our kernels
could also be easily installed locally with "pip" (the package
installer for Python) and called via our Pytorch APIs. Thus,
our kernels could be easily used and integrated. Besides, we
also provided C++/Pytorch APIs to pre-pack the weight ma-
trices (See Section 5.2). More importantly, we provide new
system support for end-to-end inference of quantized LLMs,
by integrating our kernel into the state-of-the-art inference
framework DeepSpeed [19].

7 Evaluation

We evaluate the performance at two levels: kernel-level bench-
marking using TC-FPx GPU kernels and model-level end-to-
end inference using DeepSpeed integration (which we call
Quant-LLM). The kernel-level evaluation is conducted on
the NVIDIA A100-40GB platform with CUDA 11.8, and
we mainly evaluate the performance of linear layers within
LLMs during the token generation phase. The utilization of
each GPU hardware unit during runtime (Section 7.1) is mea-
sured using NVIDIA Nsight Compute [23]. For end-to-end
evaluations, we conduct the inference of typical LLMs on
the NVIDIA A100-SXM4-80GB DGX platform with CUDA
11.8. The inference latency and the latency breakdown (Sec-
tion 7.3) are measured using NVIDIA Nsight System [24].

7.1 Linear Layer Speedups to 8-/16- bit

Workloads. We evaluate the performance of TC-FPx on
linear layers under different shapes, coming from the shapes
of the weight matrices within LLaMA models [33] (llama-
7b, llama-13b, llama-33b, and llama-65b) and OPT mod-
els [41] (OPT-30b, OPT-65b, and OPT-175b). We evaluate
two versions of our TC-FPx kernel, including the W6A16
(FP6_e3m2) version and the W5A16 (FP5_e2m2) version.
For each model, we evaluated the latency of each GPU kernel
at three typical inference batch sizes, i.e., 8, 16, and 32.

10"eXmY" here means that the model weights are stored in a float-point
format with X exponent bits and Y mantissa bits.

USENIX Association 2024 USENIX Annual Technical Conference 707

0
0.5
1

1.5
2

2.5
3

15
k*
5k

5k
*5
k

13
.5k
*5
k

5k
*1
3.5
k

19
.5k
*6
.5k

6.5
k*
6.5
k

17
.5k
*6
.5k

6.5
k*
17
.5k

24
k*
8k

8k
*8
k

21
.5k
*8
k

8k
*2
1.5
k

21
k*
7k

7k
*7
k

28
k*
7k

7k
*2
8k

27
k*
9k

9k
*9
k

36
k*
9k

9k
*3
6k

36
k*
12
k

12
k*
12
k

48
k*
12
k

12
k*
48
k

0
0.5
1

1.5
2

2.5
3 BitsandBytes_W4A16_FP4 cuBLAS_W16A16 TensorRT_LLM_W8A16 TC_FPx_W6A16 TC_FPx_W5A16

0
0.5
1

1.5
2

2.5
3

Batch Size = 8

Batch Size = 16

Batch Size = 32

Llama-13b Llama-33b Llama-65b OPT-30b OPT-66b OPT-175b M
EA

N

Figure 9: Linear layer speedups compared to the FP16 baseline (cuBLAS) for token generation phase. Two versions of our
TC-FPx kernels are evaluated, e.g., W6A16 (FP6_e3m2) and W5A16 (FP5_e2m2). The geometric mean is shown on the right.

Baselines. The baselines we compare include the W16A16
kernels from cuBLAS [22] and the W8A16 kernels from
TensorRT-LLM (commit: 6837c81) [26]. What’s more, we
also include the W4A16 (FP4) support from BitsandBytes
(commit: f1ef74f) [3] as a baseline.

Results. Figure 9 shows the latency speedups of TC-
FPx and other baselines. We use the performance of
cuBLAS to normalize the performance of all GPU ker-
nels. As shown in Figure 9, TC-FPx_W6A16 outper-
forms BitsandBytes (W4A16), cuBLAS (W16A16), and Ten-
sorRT_LLM (W8A16, INT8 weights) by up to 8.9×, 2.6×,
and 1.9×. On average, TC-FPx_W6A16 outperforms Bitsand-
Bytes, cuBLAS and TensorRT_LLM by 7.8×/7.5×/6.6×,
2.3×/2.2×/2.0×, and 1.4×/1.3×/1.2× when the batch size
is 8/16/32, respectively. Higher speedups can be achieved
if the model weights are quantized into FP5. On average,
TC-FPx_W5A16 outperforms BitsandBytes, cuBLAS and
TensorRT_LLM by 9.0×/8.3×/7.0×, 2.6×/2.4×/2.1×, and
1.6×/1.4×/1.3× when the batch size is 8/16/32, respectively.

Performance Analysis With extensive kernel profiling, We
demonstrate the utilization11 of each GPU hardware unit and
provide more in-depth insights into the source of our perfor-
mance improvements. During the execution of linear layers,
as for the cuBLAS baseline, the DRAM bandwidth (shown
as the yellow lines in Figure 10a) is almost exhausted (>80%)
while the GPU Tensor Cores (shown as the yellow bar in Fig-
ure 10a) are not fully used (<50%), when the inference batch

11"Utilization" typically refers to the degree to which a particular hardware
resource is being actively used during the execution of a GPU kernel.

size is smaller than 128. It is a common issue during the infer-
ence of large language models caused by the auto-regressive
inference scheme of large language models. With our sup-
port of 6-bit quantization, the DRAM access is significantly
reduced (up to 2.7×), mitigating the bottleneck of insufficient
DRAM bandwidth. Consequently, the Tensor Cores can be
more effectively utilized for matrix computations, shown as
blue bars compared to yellow bars in Figure 10a. In summary,
our kernel mitigated the "memory wall" issue and achieved
higher computational efficiency (higher utilization of Tensor
Cores) by supporting 6-bit quantization on Tensor Cores.

Furthermore, it explains that our kernel can outperform
TensorRT-LLM’s W8A16 kernel because we are more effec-
tive in reducing DRAM access of model weights. Note that
the performance of our TC-FPx kernel, cuBLAS kernel, and
TensorRT-LLM’s W8A16 kernel will eventually converge to
the same performance when the inference batch size is larger
(bigger than 128), as their performance will all be bounded
by the peak computing power of Tensor Cores.

We also observed that BitsandBytes is constantly slower
than cuBLAS, which is 29.6% as fast as cuBLAS on aver-
age. After further investigation, we found that BitsandBytes
adopted the dual-kernel method (discussed in Section 4.1) to
support FP4 quantization. During the execution of the first
kernel, the FP4 model weights will be first loaded from global
memory, de-quantized into FP16, and then written back to
global memory in the FP16 data type. After that, a normal
cuBLAS kernel is launched computing the matrix multipli-
cation as the second kernel. Thus, the FP4 GPU kernel is
always slower than the original FP16 cuBLAS kernel due to
the overhead of the extra GPU kernel for FP4 de-quantization.

708 2024 USENIX Annual Technical Conference USENIX Association

0
20
40
60
80
100

1 8 16 32 64 128 256 512U
til

iza
tio

n
%

TC_cuBLAS TC_TC-FPx DRAM_cuBLAS DRAM_TC-FPx

(a) Tensor core and DRAM utilization at different batch sizes.

0
10
20
30
40

1 8 16 32 64 128 256 512

U
til

iza
tio

n
%

ALU_cuBLAS ALU_TC-FPx FMA_cuBLAS FMA_TC-FPx

(b) ALU and FMA unit utilization at different batch sizes.

Figure 10: Performance Analysis of TC-FPx_W6A16. SIMT
and Tensor Cores are independent computational units
whose utilization rate can be measured independently us-
ing NVIDIA’s profiling tool [23]. As shown in this Figure,
"TC_TC-FPx" and "ALU_TC-FPx" are the measured runtime
utilization of Tensor Cores and SIMT Cores.

Analysis of on-the-fly De-quantization Figure 10b shows
the overhead of FP6-to-FP16 de-quantization in two aspects.
On one hand, the FP6-to-FP16 de-quantization introduces
a significant number of bit-wise operations even with our
SIMT-efficient designs. As a result, the utilization of the Arith-
metic/Logic Unit (ALU) has increased from 6.36% to 38.8%
on average. It is also strong evidence that the SIMT-efficient
designs (Section 5.3) for de-quantization are essential. On the
other hand, the FP6-to-FP16 de-quantization also introduces
more float-point multiplications, computing the multiplication
between the weights and the quantization scales. On average,
the utilization of the FMA unit is increased from 0.33% to
16.64%. Given that both ALU and FMA units are part of the
SIMT cores, the de-quantization operations will not consume
the computing power of Tensor Cores. More importantly, the
runtime overhead of SIMT cores can be effectively hidden by
overlapping these SIMT instructions with other operations,
with our novel designs described in Section 5.4.

7.2 Performance Comparison to 4-bit
Workloads As described in Section 3, 6-bit quantization is
more appealing than 4-bit quantization in terms of preserving
model quality. However, we still compare the performance
of our W6A16 kernels to the state-of-the-art W4A16 kernels,
fully demonstrating that our 6-bit quantization can achieve
comparable inference speed to the existing 4-bit quantization
methods. We evaluate the performance of the linear layers
within the LLaMA-65b model [33] under different batch sizes.

Baselines The major baselines here include the W4A16
support of row-wise quantization (Coarse-grained_W4A16)

L1 L2 L3 L4 Sum L1 L2 L3 L4 Sum L1 L2 L3 L4 Sum

cuBLAS_W16A16 TC-FPx_W6A16
Fine-grained_W4A16 Coarse-grained_W4A16

Batch Size = 8 Batch Size = 16 Batch Size = 32

1

2

3

0

Figure 11: Linear layer speedups compared to using 4-bit
weights for token generation phase of the LLaMA-65b model.

and the W4A16 support of group-wise quantization (Fine-
grained_W4A16) from TensorRT-LLM [26] (commit:
6837c81) with state-of-the-art performance. We also include
cuBLAS [22] here as the performance baseline, clearly show-
ing the benefits of each quantization method.

Results Figure 11 shows the latency speedups of TC-FPx
and other baselines running four different linear layers (i.g.
L1, L2, L3, and L4) within the LLaMA-65b models. We use
cuBLAS’ performance to normalize the performance of other
GPU kernels. As shown in Figure 11, TC-FPx_W6A16, Fine-
grained_W4A16, and Coarse-grained_W4A16 outperform
cuBLAS_W16A16 by up to 2.4×, 3.0×, and 3.3×. More
importantly, TC-FPx achieves similar performance with Fine-
grained_W4A16, which is 1.06×/1.04×/0.94× faster than
Fine-grained_W4A16 when running all these linear layers at
batch size 8/16/32, respectively. Besides, TC-FPx is only 16%
/ 17% / 24% slower than Coarse-grained_W4A16 at batch size
8/16/32. Since 6-bit quantization can provide significantly
higher model quality, it is a worthwhile trade-off.

7.3 End2End Inference
Workloads We evaluate the end-to-end inference perfor-
mance of Quant-LLM on two typical large language models,
i.g., LLaMA-70b [34] and OPT-30b [41]. For each model, we
evaluated its token generation throughput at different batch
sizes, starting from 1 until GPU memory is exhausted.

Metric. We use the metric tokens per GPU-second to in-
dicate the normalized inference throughput with the consid-
eration of both execution time and hardware cost (i.e., the
number of GPUs used). It is calculated with this equation:

In f erence_Per f ormance =
Ntoken

∑
NGPU
i=1 Ti

(4)

Ntoken means the number of tokens generated, whereas NGPU
and Ti mean the GPU number and the time spent on the i’th
GPU for execution. We use this metric to evaluate the end-to-
end inference performance in this section.

USENIX Association 2024 USENIX Annual Technical Conference 709

0

50

100

150

200

250

300

1 2 4 8 16 32

To
ke

n
/ G

PU
-S

ec
on

d

FP6 - 1GPU
INT8 - 1GPU
FP16 - 2GPU

(a) Generation throughput.

0

50

100

150

200

1 2 4 8 1 2 4 8 1 2 4 8

FP16 INT8 FP6
Ti

m
s (

s)

MatMul MHA NCCL Others

(b) Inference latency breakdown.

Figure 12: LLaMA-70b inference at different batch sizes. Mat-
Mul: linear layers, implemented with cuBLAS or our TC-FPx;
MHA: multi-head attention; NCCL: cross-GPU communica-
tions; Others: other GPU kernels or GPU idle time.

Settings and Baselines We set the prefill/prompt length
of each request to 0.5K and generate 1.5K tokens for each
request, ignoring the "EOS" (end of sequence) token. We
integrate our TC-FPx kernel into DeepSpeed [19] for end-to-
end evaluation and call this new system support Quant-LLM.
We use the FP16 execution of the original DeepSpeed system
as a baseline for end-to-end comparison. Besides, we integrate
the W8A16 kernels of TensorRT-LLM [26] to DeepSpeed and
run INT8 inference as another baseline. With our Quant-LLM,
only a single 80GB A100 GPU is used for the inference for
all the workloads, including the LLaMA-70b model [34]. In
contrast, two 80GB A100 GPUs are used for the inference
of the LLaMA-70b model for the FP16 baseline, since the
model weights (≈ 130 GB) can not be fit into a single GPU.

LLaMA-70b Figure 12a shows token generation through-
put on the LLaMA-70b model using our Quant-LLM (FP6-
1GPU), compared to the FP16 (FP16-2GPU) and INT8 (INT8-
1GPU) baselines. According to our experiments, both our
Quant-LLM and FP16 baseline can at most set the inference
batch size to 32 before running out of GPU memory, whereas
Quant-LLM only requires a single GPU and the FP16 base-
line uses two GPUs. The results show that Quant-LLM can
achieve 1.69×-2.65× higher normalized inference through-
put than the FP16 baseline. Meanwhile, the INT8 baseline can
at most set batch size to 8 before running out of GPU memory,
while our FP6 solution can set batch size to 32. As a result, our
FP6 solution can at most achieve 246 tokens per GPU-second
(2.31× higher) with batch size 32, while the INT8 baseline
can at most achieve 107 tokens per GPU second with batch
size 8, given the same GPU budget. When evaluated with
the same batch sizes (1/2/4/8), our FP6 solution can achieve
1.14×−1.21× higher throughput than the INT8 baseline.

We conduct a careful latency breakdown of this end-to-
end inference process in Figure 12b. Given that two GPUs
are used in the FP16 baseline, the execution time on both
GPUs is summed in this Figure for fair comparisons. As

0
50

100
150
200
250
300
350
400

1 2 4 8 16

To
ke

n
/ G

PU
-S

ec
on

d

FP6 - 1GPU
INT8 - 1GPU
FP16 - 1GPU

(a) Generation throughput.

0

20

40

60

80

1 2 4 8 1 2 4 8 1 2 4 8

FP16 INT8 FP6

Ti
m

s (
s)

MatMul MHA NCCL Others

(b) Inference latency breakdown.

Figure 13: OPT-30b inference at different batch sizes.

shown in Figure 12b, our TC-FPx kernel (used in our FP6
Quant-LLM) is 2.40× faster than cuBLAS kernel (used in
FP16 baseline) on average. Besides, the NCCL [25] overhead
(cross-GPU communications) is fully avoided using Quant-
LLM since only a single GPU is required. Overall, our Quant-
LLM achieves up to 2.65× higher throughput than the FP16
baseline as for tokens per GPU-second. Moreover, our FP6
TC-FPx is 1.22×−1.34× faster than the INT8 kernels when
setting batch size to 1/2/4/8, resulting in up to 1.21× higher
throughput comparing our FP6 solution to the INT8 solution.

OPT-30b Figure 13a shows token generation throughput
on the OPT-30b model using our Quant-LLM (FP6-1GPU),
compared to the FP16 (FP16-1GPU) and INT8 (INT8-1GPU)
baselines. According to our experiments, Quant-LLM can at
most set the inference batch size to 16 before running out of
GPU memory while the FP16 baseline can at most serve 4 re-
quests in a batch. As a result, Quant-LLM can at most achieve
356 tokens per GPU-second (4.51× higher) with batch size
16 while the FP16 baseline can at most achieve 79 tokens
per GPU-second with batch size 4, given the same GPU bud-
get. Besides, Quant-LLM can achieve 1.91×/1.86×/1.78×
higher generation throughput than the FP16 baseline when
their batch sizes are set to 1/2/4. These overall performance
improvements mainly come from the reduction of time in
executing linear layers. As shown in Figure 13b, TC-FPx ker-
nel is 2.27× faster than the FP16 cuBLAS kernel on average.
Furthermore, our FP6 TC-FPx kernel is 1.14×−1.26× faster
than the INT8 kernels, resulting in 1.09×−1.34× higher end-
to-end inference throughput compared to the INT8 solution.

8 Related Work

Six-bit Quantization [36] shows that FP6 performs ro-
bustly across various algorithms and tasks, demonstrating its
superiority in accuracy and versatility. Besides, [32] verified
that the FP6 data format can closely match FP32 for inference
after quantization-aware fine-tuning. However, there is no
existing hardware support for the proposed data types. Their

710 2024 USENIX Annual Technical Conference USENIX Association

inference/training experiments can only be done via software
emulations. Quant-LLM can provide high-performance GPU
support for the inference of LLMs after FP6 quantization.
NVIDIA recently announced FP6 Tensor Cores that would
be added to their next generation of GPUs (NVIDIA Black-
well [27]) in the future, indicating that FP6 matters. Compared
to this hardware-bounded support of FP6, our software-based
techniques (TC-FPx) are generic enough to be applied to a
wide range of GPU architecture generations and vendors.

GPU Support for Irregular Bit-widths There is no exist-
ing hardware/software support for irregular bit-widths (non-
power of 2, e.g., 6-bit, 5-bit) on GPU Tensor Cores. Although
supporting irregular bit-width quantization is important for in-
dustrial deployment and algorithm exploration, it is extremely
challenging on Tensor Cores (See Section 4.2.1). We are the
first to provide complete system designs for unified Tensor
Core support of various quantization bit-widths, including
irregular bit-widths. Although it would be easier to support
irregular bit-widths only using SIMT Cores (without Tensor
Cores), the performance scalability would be poor (See Fig-
ure 1). GPTQ [5] supports 3-bit, and Llama.cpp [7] supports
2/3/4/5/6 bit quantization, but they only use SIMT Cores and
leave Tensor Cores idle.

GPU Support for Regular Bit-widths Existing Tensor
Core based solutions [14,26] only support regular bit-widths
(power of 2), e.g., 4-bit and 8-bit. TensorRT-LLM [26] has
state-of-the-art kernel supports for weight-only quantization.
However, it only supports weights in INT4 (W4A16 [6, 14])
or INT8 (W8A16 and W8A8 [39]) data types while we pro-
vide better trade-offs by supporting weights in 6 bits. Besides,
TensorRT-LLM does not support float-point data type (e.g.,
FP6), which is much more complicated to de-quantize during
runtime than the integer type. Bitsandbytes [3] mainly sup-
ports INT8 weights (W8A8) and has very naive support for
FP4 (W4A16) with poor performance. AWQ [14] only has
GPU kernel implementation [15] for INT4 (W4A16) in Py-
Torch. Flash-LLM [37] studies the Tensor Core computation
on irregular weight format (i.e., unstructured sparsity), but
does not support irregular bit-width and quantization. To the
best of our knowledge, our work is the first GPU system that
can support FP6 weights on Tensor cores.

9 Conclusions

In this paper, we introduce TC-FPx, the first full-stack GPU
kernel design scheme with unified tensor core support for
float-point weights of various quantization bit-width, mitigat-
ing the "memory wall" issues during LLM inference. We inte-
grate TC-FPx kernel into a state-of-the-art inference system,
providing new end-to-end support (called Quant-LLM) for
quantized LLM inference, where better trade-offs between in-

ference cost and model quality are achieved. Quant-LLM tack-
les the problems of hardware-unfriendly memory access and
high computation overhead of de-quantization with a set of
novel techniques, achieving faster inference speed with signif-
icantly less GPU memory. Evaluations show that Quant-LLM
enables the inference of LLaMA-70b using only a single GPU,
achieving 1.69×-2.65× higher normalized inference through-
put than the FP16 baseline. Besides, Quant-LLM improves
the inference throughput of OPT-30b by 1.78×-4.51×.

References

[1] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen
Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christo-
pher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher
Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language models are few-shot learn-
ers, 2020.

[2] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri
Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman,
et al. Evaluating large language models trained on code.
arXiv preprint arXiv:2107.03374, 2021.

[3] Tim Dettmers. bitsandbytes. "https://github.com/
TimDettmers/bitsandbytes", 2023.

[4] Tim Dettmers, Mike Lewis, Younes Belkada, and Luke
Zettlemoyer. Llm.int8(): 8-bit matrix multiplication for
transformers at scale, 2022.

[5] Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan
Alistarh. Gptq: Accurate post-training quantization
for generative pre-trained transformers. arXiv preprint
arXiv:2210.17323, 2022.

[6] Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan
Alistarh. Optq: Accurate quantization for generative
pre-trained transformers. In The Eleventh International
Conference on Learning Representations, 2022.

[7] Georgi Gerganov. llama.cpp. "https://github.com/
ggerganov/llama.cpp", 2023.

[8] Github. Copilot. "https://github.com/features/
copilot", 2022.

[9] Google. Bard. "https://bard.google.com/", 2023.

USENIX Association 2024 USENIX Annual Technical Conference 711

"https://github.com/TimDettmers/bitsandbytes"
"https://github.com/TimDettmers/bitsandbytes"
"https://github.com/ggerganov/llama.cpp"
"https://github.com/ggerganov/llama.cpp"
"https://github.com/features/copilot"
"https://github.com/features/copilot"
"https://bard.google.com/"

[10] Wei Huang, Xudong Ma, Haotong Qin, Xingyu Zheng,
Chengtao Lv, Hong Chen, Jie Luo, Xiaojuan Qi, Xiang-
long Liu, and Michele Magno. How good are low-bit
quantized llama3 models? an empirical study, 2024.

[11] William Kahan. Ieee standard 754 for binary floating-
point arithmetic. Lecture Notes on the Status of IEEE,
754(94720-1776):11, 1996.

[12] Sehoon Kim, Coleman Hooper, Thanakul Wattanawong,
Minwoo Kang, Ruohan Yan, Hasan Genc, Grace Dinh,
Qijing Huang, Kurt Keutzer, Michael W Mahoney, et al.
Full stack optimization of transformer inference: a sur-
vey. arXiv preprint arXiv:2302.14017, 2023.

[13] Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim, Qian
Liu, Evgenii Zheltonozhskii, Terry Yue Zhuo, Thomas
Wang, Olivier Dehaene, Mishig Davaadorj, Joel Lamy-
Poirier, João Monteiro, Oleh Shliazhko, Nicolas Gon-
tier, Nicholas Meade, Armel Zebaze, Ming-Ho Yee, Lo-
gesh Kumar Umapathi, Jian Zhu, Benjamin Lipkin, Muh-
tasham Oblokulov, Zhiruo Wang, Rudra Murthy, Ja-
son Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov,
Marco Zocca, Manan Dey, Zhihan Zhang, Nour Fahmy,
Urvashi Bhattacharyya, Wenhao Yu, Swayam Singh,
Sasha Luccioni, Paulo Villegas, Maxim Kunakov, Fe-
dor Zhdanov, Manuel Romero, Tony Lee, Nadav Timor,
Jennifer Ding, Claire Schlesinger, Hailey Schoelkopf,
Jan Ebert, Tri Dao, Mayank Mishra, Alex Gu, Jen-
nifer Robinson, Carolyn Jane Anderson, Brendan Dolan-
Gavitt, Danish Contractor, Siva Reddy, Daniel Fried,
Dzmitry Bahdanau, Yacine Jernite, Carlos Muñoz Fer-
randis, Sean Hughes, Thomas Wolf, Arjun Guha, Lean-
dro von Werra, and Harm de Vries. Starcoder: may the
source be with you!, 2023.

[14] Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Xingyu
Dang, Chuang Gan, and Song Han. Awq: Activation-
aware weight quantization for llm compression and ac-
celeration, 2023.

[15] Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Xingyu
Dang, and Song Han. llm-awq. "https://github.
com/mit-han-lab/llm-awq", 2023.

[16] Bingchang Liu, Chaoyu Chen, Cong Liao, Zi Gong,
Huan Wang, Zhichao Lei, Ming Liang, Dajun Chen,
Min Shen, Hailian Zhou, Hang Yu, and Jianguo Li. Mft-
coder: Boosting code llms with multitask fine-tuning.
arXiv preprint arXiv, 2023.

[17] Mary Ann Marcinkiewicz. Building a large annotated
corpus of english: The penn treebank. Using Large
Corpora, page 273, 1994.

[18] Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. Pointer sentinel mixture models. In
International Conference on Learning Representations,
2017.

[19] Microsoft. Deepspeed github. "https://github.com/
microsoft/DeepSpeed", 2023.

[20] NVIDIA. Nvidia a100 tensor core gpu ar-
chitecture. "https://images.nvidia.com/
aem-dam/en-zz/Solutions/data-center/
nvidia-ampere-architecture-whitepaper.pdf",
2020.

[21] NVIDIA. Nvidia h100 tensor core gpu archi-
tecture. "https://www.hpctech.co.jp/catalog/
gtc22-whitepaper-hopper_v1.01.pdf", 2022.

[22] NVIDIA. cublas. "https://developer.nvidia.
com/cublas", 2023.

[23] NVIDIA. Nsight compute profiling guide.
"https://docs.nvidia.com/nsight-compute/
ProfilingGuide/#introduction", 2023.

[24] NVIDIA. Nsight system. "https://developer.
nvidia.com/nsight-systems", 2023.

[25] NVIDIA. Nvidia collective communications library
(nccl). "https://developer.nvidia.com/nccl",
2023.

[26] NVIDIA. Tensorrt-llm. "https://github.com/
NVIDIA/TensorRT-LLM/", 2023.

[27] NVIDIA. Nvidia blackwell architecture tech-
nical brief. "https://resources.nvidia.com/
en-us-blackwell-architecture", 2024.

[28] OpenAI. Chatgpt. "https://openai.com/blog/
chatgpt", 2022.

[29] OpenAI. Gpt-4 technical report, 2023.

[30] Irina Proskurina, Luc Brun, Guillaume Metzler, and
Julien Velcin. When quantization affects confidence
of large language models?, 2024.

[31] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei
Li, and Peter J Liu. Exploring the limits of transfer learn-
ing with a unified text-to-text transformer. The Journal
of Machine Learning Research, 21(1):5485–5551, 2020.

[32] Bita Darvish Rouhani, Ritchie Zhao, Ankit More,
Mathew Hall, Alireza Khodamoradi, Summer Deng,
Dhruv Choudhary, Marius Cornea, Eric Dellinger,
Kristof Denolf, Stosic Dusan, Venmugil Elango, Maxi-
milian Golub, Alexander Heinecke, Phil James-Roxby,

712 2024 USENIX Annual Technical Conference USENIX Association

"https://github.com/mit-han-lab/llm-awq"
"https://github.com/mit-han-lab/llm-awq"
"https://github.com/microsoft/DeepSpeed"
"https://github.com/microsoft/DeepSpeed"
"https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf"
"https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf"
"https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf"
"https://www.hpctech.co.jp/catalog/gtc22-whitepaper-hopper_v1.01.pdf"
"https://www.hpctech.co.jp/catalog/gtc22-whitepaper-hopper_v1.01.pdf"
"https://developer.nvidia.com/cublas"
"https://developer.nvidia.com/cublas"
"https://docs.nvidia.com/nsight-compute/ProfilingGuide/#introduction"
"https://docs.nvidia.com/nsight-compute/ProfilingGuide/#introduction"
"https://developer.nvidia.com/nsight-systems"
"https://developer.nvidia.com/nsight-systems"
"https://developer.nvidia.com/nccl"
"https://github.com/NVIDIA/TensorRT-LLM/"
"https://github.com/NVIDIA/TensorRT-LLM/"
"https://resources.nvidia.com/en-us-blackwell-architecture"
"https://resources.nvidia.com/en-us-blackwell-architecture"
"https://openai.com/blog/chatgpt"
"https://openai.com/blog/chatgpt"

Dharmesh Jani, Gaurav Kolhe, Martin Langhammer,
Ada Li, Levi Melnick, Maral Mesmakhosroshahi, An-
dres Rodriguez, Michael Schulte, Rasoul Shafipour, Lei
Shao, Michael Siu, Pradeep Dubey, Paulius Micikevi-
cius, Maxim Naumov, Colin Verrilli, Ralph Wittig, Doug
Burger, and Eric Chung. Microscaling data formats for
deep learning, 2023.

[33] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix, Bap-
tiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar,
Aurelien Rodriguez, Armand Joulin, Edouard Grave,
and Guillaume Lample. Llama: Open and efficient foun-
dation language models, 2023.

[34] Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay Bash-
lykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale,
Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya
Chen, Guillem Cucurull, David Esiobu, Jude Fernan-
des, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao,
Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas,
Viktor Kerkez, Madian Khabsa, Isabel Kloumann, Artem
Korenev, Punit Singh Koura, Marie-Anne Lachaux,
Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu,
Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar
Mishra, Igor Molybog, Yixin Nie, Andrew Poulton,
Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan
Schelten, Ruan Silva, Eric Michael Smith, Ranjan Sub-
ramanian, Xiaoqing Ellen Tan, Binh Tang, Ross Taylor,
Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng
Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie
Kambadur, Sharan Narang, Aurelien Rodriguez, Robert
Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2:
Open foundation and fine-tuned chat models, 2023.

[35] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances
in neural information processing systems, 30, 2017.

[36] Xiaoxia Wu, Haojun Xia, Stephen Youn, Zhen Zheng,
Shiyang Chen, Arash Bakhtiari, Michael Wyatt, Yux-
iong He, Olatunji Ruwase, Leon Song, and Zhewei Yao.
Zeroquant(4+2): Redefining llms quantization with a
new fp6-centric strategy for diverse generative tasks.
arXiv preprint arXiv: 2312.08583, 2023.

[37] Haojun Xia, Zhen Zheng, Yuchao Li, Donglin Zhuang,
Zhongzhu Zhou, Xiafei Qiu, Yong Li, Wei Lin, and
Shuaiwen Leon Song. Flash-llm: Enabling cost-
effective and highly-efficient large generative model
inference with unstructured sparsity. Proc. VLDB En-
dow., 17(2):211–224, oct 2023.

[38] Haojun Xia, Zhen Zheng, Yuchao Li, Donglin Zhuang,
Zhongzhu Zhou, Xiafei Qiu, Yong Li, Wei Lin, and
Shuaiwen Leon Song. Flash-llm github. "https://
github.com/AlibabaResearch/flash-llm", 2023.

[39] Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu,
Julien Demouth, and Song Han. Smoothquant: Accu-
rate and efficient post-training quantization for large
language models, 2023.

[40] Zhewei Yao, Xiaoxia Wu, Cheng Li, Stephen Youn, and
Yuxiong He. Zeroquant-v2: Exploring post-training
quantization in llms from comprehensive study to low
rank compensation. arXiv preprint arXiv:2303.08302,
2023.

[41] Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mi-
haylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel
Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang,
and Luke Zettlemoyer. Opt: Open pre-trained trans-
former language models, 2022.

[42] Yilong Zhao, Chien-Yu Lin, Kan Zhu, Zihao Ye, Lequn
Chen, Size Zheng, Luis Ceze, Arvind Krishnamurthy,
Tianqi Chen, and Baris Kasikci. Atom: Low-bit quanti-
zation for efficient and accurate llm serving, 2023.

[43] Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan
Wang, Yufei Xue, Zihan Wang, Lei Shen, Andi Wang,
Yang Li, Teng Su, Zhilin Yang, and Jie Tang. Codegeex:
A pre-trained model for code generation with multilin-
gual evaluations on humaneval-x. In KDD, 2023.

[44] Xunyu Zhu, Jian Li, Yong Liu, Can Ma, and Weiping
Wang. A survey on model compression for large lan-
guage models. arXiv preprint arXiv:2308.07633, 2023.

USENIX Association 2024 USENIX Annual Technical Conference 713

"https://github.com/AlibabaResearch/flash-llm"
"https://github.com/AlibabaResearch/flash-llm"

	Introduction
	Background
	Quantization of Large Language Models
	IEEE Standard for Floating-Point
	Tensor Cores vs. SIMT Cores

	Motivations
	Design Choices and Challenges
	Design Choices
	Design Challenges
	Hardware-Unfriendly Memory Access
	High Computation Overhead of De-quantization

	Design Methodology
	Overview
	Ahead-of-time Bit-level Pre-packing
	SIMT-Efficient GPU Runtime
	Software Pipeline Design

	Implementation
	Evaluation
	Linear Layer Speedups to 8-/16- bit
	Performance Comparison to 4-bit
	End2End Inference

	Related Work
	Conclusions

