
This paper is included in the Proceedings of the
2024 USENIX Annual Technical Conference.

July 10–12, 2024 • Santa Clara, CA, USA
978-1-939133-41-0

Open access to the Proceedings of the
2024 USENIX Annual Technical Conference

is sponsored by

Conspirator: SmartNIC-Aided Control Plane
for Distributed ML Workloads

Yunming Xiao, Northwestern University; Diman Zad Tootaghaj, Aditya Dhakal,
Lianjie Cao, and Puneet Sharma, Hewlett Packard Labs;

Aleksandar Kuzmanovic, Northwestern University
https://www.usenix.org/conference/atc24/presentation/xiao

Conspirator: SmartNIC-Aided Control Plane for Distributed ML Workloads

Yunming Xiao1, Diman Zad Tootaghaj2, Aditya Dhakal2, Lianjie Cao2,
Puneet Sharma2, Aleksandar Kuzmanovic1

1 Northwestern University, 2 Hewlett Packard Labs

Abstract
Modern machine learning (ML) workloads heavily depend on
distributing tasks across clusters of server CPUs and special-
ized accelerators, such as GPUs and TPUs, to achieve optimal
performance. Nonetheless, prior research has highlighted the
inefficient utilization of computing resources in distributed
ML, leading to suboptimal performance. This inefficiency
primarily stems from CPU bottlenecks and suboptimal accel-
erator scheduling. Although numerous proposals have been
put forward to address these issues individually, none have
effectively tackled both inefficiencies simultaneously. In this
paper, we introduce Conspirator, an innovative control plane
design aimed at alleviating both bottlenecks by harnessing the
enhanced computing capabilities of SmartNICs. Following
the evolving role of SmartNICs, which have transitioned from
their initial function of standard networking task offloading
to serving as programmable connectors between disaggre-
gated computing resources, Conspirator facilitates efficient
data transfer without the involvement of host CPUs and hence
circumvents the potential bottlenecks there. Conspirator fur-
ther integrates a novel scheduling algorithm that takes into
consideration of the heterogeneity of accelerators and adapts
to changing workload dynamics, enabling the flexibility to
mitigate the second bottleneck. Our evaluation demonstrates
that Conspirator may provide a 15% end-to-end completion
time reduction compared to RDMA-based alternatives while
being 17% more cost-effective and 44% more power-efficient.
Our proposed scheduler also helps to save 33% GPU hours
compared to naive GPU-sharing schedulers by making close-
to-optimal decisions while taking much less time than the
optimal NP-Hard scheduler.

1 Introduction

Machine learning (ML) has revolutionized a multitude of
applications across various facets of our daily lives [33,44,45,
61, 69, 83]. This pervasive adoption of ML technologies has
in turn catalyzed rapid advancements in the field. A notable

trend in ML development is the increasing reliance on larger
and more intricate datasets, coupled with the utilization of
ever-more complex models. This shift necessitates substantial
computational power and extends the time required for both
training and inference processes. As a result, the need for
efficient ML training and inference has become paramount to
ensure the swift deployment of cutting-edge ML applications,
accommodating the growing demands of diverse industries.

Numerous solutions have been put forth to address these
challenges. One straightforward concept involves distribut-
ing ML workloads across a cluster of machines, enabling the
completion of computations in a distributed manner. Indeed,
distributed ML has evolved into a fundamental approach in
industrial ML practices [51, 53, 72]. However, it is crucial
to ensure efficient communication in distributed ML setups.
It has become evident that relying on the traditional TCP/IP
stack for communication occupies too many CPU resources
and is prohibitively slow in the context of distributed ML
workloads [59,67,77]. As a result, alternative approaches that
bypass the kernel, such as the Data Plane Development Kit
(DPDK) [6], have been extensively explored. Taking this a
step further, Remote Direct Memory Access (RDMA) [43]
technology offers better performance by facilitating data trans-
mission without the direct involvement of the host CPU.

Besides addressing the communication bottleneck, the host
CPU has been proven to be ill-suited for the majority of
computations required in ML training and inference [77]. In-
stead, accelerators like GPUs or TPUs have demonstrated
significantly superior performance compared to CPUs. But
these accelerators vary in terms of technologies and spec-
ifications, making them suitable for different ML work-
loads [29, 45, 57, 66]. Consequently, optimizing accelerator
scheduling plays a pivotal role in enhancing (distributed) ML
workloads. In particular, techniques such as NVIDIA Multi-
Instance GPU (MIG) [21] that enable accelerator-sharing pro-
vide the means for fine-grained resource allocation, ultimately
leading to improved performance and efficiency.

Nevertheless, existing approaches tend to concentrate
solely on addressing one of these bottlenecks, often overlook-

USENIX Association 2024 USENIX Annual Technical Conference 767

ing the intricate interplay between them. Notably, optimiza-
tions proposed for one bottleneck may inadvertently conflict
with those intended for the other. For instance, RDMA-based
optimizations typically prioritize the elimination of any data
communication barriers, e.g., GPUDirect [19] allows direct
read or write access to dedicated GPU memories, which can
run counter to the needs of accelerator schedulers. The latter
often requires a decision-making process to efficiently route
data to its final and optimal destination. One potential solution
to reconcile these conflicting requirements is the implemen-
tation of an omniscient and omnipotent central scheduler,
which would have real-time visibility into the status of every
accelerator and could manage each data transfer request
accordingly. However, this approach is impractical in reality
because of two reasons: (i) network latency is inevitable,
and (ii) most shared cluster environments have diverse users
with distinct requirements for data security and privacy and
consequently demands for data isolation measures.

In this paper, we emphasize the equal significance of both
bottlenecks and undertake a comprehensive investigation to
address them effectively. We introduce Conspirator, a system
designed to tackle both bottlenecks by harnessing the capabil-
ities of SmartNICs. Specifically, we leverage the SmartNIC to
mitigate the data communication and accelerator scheduling
bottlenecks.

On the one hand, Conspirator leverages RDMA and DMA
to facilitate efficient data transfer between remote hosts and
local accelerators, minimizing barriers to the communication
process. On the other hand, Conspirator obtains real-time vis-
ibility into the status of local accelerators and thus enables
optimal accelerator scheduling. This holistic approach seeks
to achieve efficient communication and optimal resource al-
location simultaneously, addressing the dual challenges of
distributed ML workloads.

We have implemented a prototype of Conspirator based
on NVIDIA’s BlueField-3 SmartNICs and A100 GPUs. Our
evaluation reveals Conspirator’s superior performance across
various metrics, including latency, cost-effectiveness, power
efficiency, and GPU resource utilization.

Specifically, Conspirator significantly surpasses TCP-based
data transmission methods, achieving an improvement in the
range of 2x to 4x. When compared to RDMA-based alterna-
tives, Conspirator’s strength is evident in local data transmis-
sion, leveraging SmartNIC to bypass host CPUs and enhance
performance. This results in a local data transmission im-
provement between 8% and 50%, which varies based on CPU
usage. Although the end-to-end latency reduction is capped
at 15% due to GPU ML inference latencies where Conspir-
ator aligns with other options, it still presents meaningful
enhancements. Furthermore, Conspirator excels in terms of
cost-effectiveness, offering a 17% improvement, and power
efficiency, with an increase of 44%.

Last, when comparing against GPUDirect-based solutions
that directly transfer data to accelerator memories without

any barriers, Conspirator only introduces minimal overhead
because it shortly buffers data at the SmartNIC, where
such delay allows Conspirator to make close-to-optimal
scheduling decisions, resulting in substantial savings of over
30% in total consumed GPU hours.

2 Background

2.1 Distributed Machine Learning Workloads
ML has emerged as a prominent trend, with its applications
quickly prevailing in various aspects of everyday life and re-
search fields [33,44,45,61,69,83]. Due to its reliance on large
datasets and complex models, it demands significant compu-
tational power and extended processing time. Consequently,
reducing the duration of both ML training and inference is
crucial to adapt it for diverse routine applications. To ad-
dress this, ML experts have effectively harnessed accelerators
like GPUs and TPUs [49], which excel in parallel processing
capabilities. In addition, distributed computing for ML has
become a common practice, providing a solid foundation for
optimizing its performance [51, 53, 72].

Nevertheless, previous studies have identified inefficient
uses of computing resources for distributed ML, resulting
in suboptimal performance. These inefficiencies primarily
fall into two categories: (i) bottlenecks on CPUs [59, 67, 77],
and (ii) sub-optimal scheduling of accelerators [30, 46, 77].
Note that since TPUs are not as widely accessible to the
average user, this paper focuses on GPUs as the primary ML
accelerator.

2.2 Bottleneck on CPUs
The bottleneck on the CPUs is one major reason for the in-
efficient resource utilization. This arises from various tasks,
including data pre-processing, network stack overhead, aided
computation for ML, background CPU activities, and more.
Among these, data pre-processing often exerts the heaviest
pressure on the CPU [59, 82]. This has led to proposals advo-
cating for the delegation of data pre-processing to dedicated
servers [82].

Apart from the data pre-processing, the high communi-
cation costs of distributed ML tasks also contribute heavily
to CPU contention. For training tasks, distributed ML
necessitates transferring significant amounts of data to feed
the models during the shuffling phase; for inference tasks, the
server may need to handle hundreds of queries per second,
with each query involving high-precision pictures that can
range up to megabytes in size.

The traditional server architecture with an accelerator is
depicted in Figure 1(a). In this architecture, incoming requests
traverse the TCP/IP network stack at kernel and the data is
stored in the host memory. When dealing with distributed
ML workloads that offload computation to the accelerator

768 2024 USENIX Annual Technical Conference USENIX Association

Client
 Request

NIC

Host CPU

GPU

Memory
Kernel

Computing Resource

Memory

User Space

Data FlowControl Flow

(a) Traditional.

Client
 Request

RNIC

Host CPU

GPU

Memory
Kernel

Computing Resource

Memory

User Space

Control Flow

Data Flow

(b) CPU-bypass Design.

Client
 Request

NIC

Host CPU

GPU

Memory
Kernel

User Space

Memory

Computing Resource

Control Flow

Data Flow

(c) SMIF.

Figure 1: Illustrations of alternative designs.

instead of the host CPU, the data must then be copied to the
accelerator memory before being utilized by the accelerator’s
computing units.

Regrettably, previous studies have revealed that the stan-
dard server architecture falls short when handling distributed
ML workloads with large volumes of requests. For instance,
it has been demonstrated that more than 20% of distributed
ML tasks spend over 33% of their total time on data ingestion
rather than executing meaningful computations [59, 67, 77].

Even worse, CPU contention exacerbates the aforemen-
tioned scenarios, as research has shown that high CPU uti-
lization can lead to slowdowns in ML workloads [77]. Such
high CPU utilization can be attributed to two factors: (i) data
processing or simulation tasks involved in the distributed ML
pipeline and (ii) other CPU-intensive tasks coexisting in a
multi-tenant cloud environment.

To address the bottleneck on CPUs and minimize their
involvement, leveraging alternative network stacks and
technologies becomes imperative. Rather than relying on
the TCP/IP stack, which may prove inadequate, adopting
lightweight network stacks can offer better performance.
A good example of this is Data Plane Development Kit
(DPDK) [6], which enables packet processing to bypass the
complex Linux kernel, resulting in improved performance
[37]. Furthermore, when coupled with in-network aggregation
functions provided by programmable switches [67], perfor-
mance gains can be further amplified.

RDMA takes a leap forward by enabling direct memory
access from a remote server, completely bypassing the host
CPU [43]. This capability extends to accelerators as well,
with initiatives such as NVIDIA’s GPUDirect [19] allowing
direct read or write access to GPU memory. Figure 1(b) illus-
trates a typical architecture of distributed ML supported by
GPUDirect, where the data is directly forwarded to the GPU
memory while the host CPU is only responsible for program
initialization, e.g., reserving GPU memory and starting GPU
kernel programs when needed. By eliminating the need for
host CPU involvement, these techniques effectively alleviate
the bottleneck on CPUs [79]. Given the giant benefits from
RDMA, it has been prevalently used in data centers [23] de-
spite it requiring extra hardware – the RDMA-enabled NICs
(RNICs).

However, the host-CPU bypassing architectures such as
those enabled by RDMA and GPUDirect miss the aspect of
the accelerator schedule, leading to sub-optimal scheduling
as explained below.

2.3 Sub-optimal Accelerator Scheduling
Another key aspect of inefficient resource utilization is im-
proper accelerator scheduling, which encompasses three spe-
cific sub-problems. First, the heterogeneity of accelerators
is not adequately considered in distributed ML, leading to
sub-optimal performance [25, 30, 77]. For instance, some ML
tasks may need to run on specific GPUs, while the rest do
not. Further, while the computational capacity of the GPUs
are different, current ML platforms distribute the load with-
out considering the heterogeneity in compute and memory
capacity of the nodes and GPUs [30]. But even when such re-
strictions are not applicable and tasks can run on any available
GPUs, their performance is heavily influenced by the varying
hardware specifications and architectures of the GPUs, where
the significant heterogeneity in GPUs can result in notable
performance disparities.

Second, the presence of ML model heterogeneity also con-
tributes to performance degradation. The growth of the ML
community over the past decades has given rise to numer-
ous prominent ML models, each characterized by distinct
model architectures, e.g., various formations of deep neural
networks [45], and countless model variants generated by
various methods such as graph optimizers [29]. These di-
verse ML models yield different outcomes when applied to
the same inputs, catering to different Service Level Objec-
tives (SLOs). For instance, a compressed model may generate
slightly less accurate results while consuming significantly
fewer computing resources [57]. Consequently, a trade-off
between performance, cost, and accuracy emerges, prompting
numerous studies exploring this space [66].

Last, GPU sharing plays a crucial role in achieving desir-
able performance. In cloud environments, by default, each ML
task is assigned one physical GPU instance [47,58,81], yet the
task usually requires only a fraction of the GPU’s capabilities.
Figure 2 shows an experiment when we run tensorflow train-
ing on ResNet152 model on an A100, V100, and T4 GPUs

USENIX Association 2024 USENIX Annual Technical Conference 769

 0

 500

 1000

 1500

 2000

 2500

10 20 30 40 50 60 70 80 90 100

A
v
er

ag
e

tr
ai

n
in

g
 s

p
ee

d
 (

m
s/

st
ep

)

GPU percentage

A100 V100 T4

Figure 2: Average latency of ML training workload by using
different shares of GPU on A100, V100, and T4 GPUs.

with different GPU percentages. The results show that the ap-
plication does not utilize the whole GPU – we did not observe
much performance improvement when assigning more than
50% of GPU resources. To address this inefficiency, several
techniques have been proposed, including NVIDIA Multi-
Process Service (MPS) [11], Multi-Instance GPU (MIG) [21],
and many more [34, 77]. These techniques enable both time-
multiplexing and space-multiplexing of multiple ML tasks on
a single GPU device.

These GPU-sharing techniques operate at different lev-
els to accommodate varying isolation requirements. For in-
stance, MIG provides the strongest isolation between different
shares of the physical GPU, ensuring data security at the cost
of having only limited fixed sharing configurations. On the
other hand, MPS allows flexible sharing without implement-
ing GPU memory isolation. It is noteworthy, however, that
interference can arise among different running applications
or ML models when using GPU-sharing techniques with-
out complete separation of GPU resources, such as in the
case of NVIDIA MPS. This adds further complexity to the
GPU-sharing decisions when optimal performance is desired.
Overall, efforts have been made to incorporate some yet not
all above-mentioned heterogeneity into the distributed ML
workload scheduling [25, 30].

2.4 SmartNIC Comes Into Help

In this paper, we aim to resolve both inefficiencies – the
bottlenecks on CPUs and the sub-optimal accelerator schedul-
ing – in the distributed ML workloads. To this end, we find
SmartNIC – the RNICs with programmable capabilities – as
a solution to aid in overcoming these challenges.

Specifically, there are two types of SmartNICs: on-path
and off-path. On-path SmartNICs incorporate programmable
units, e.g., FPGAs, directly in the critical path of incoming
packets to the NIC. Some example products of on-path Smart-
NIC include Innova [20] and Marvell [10]. This design en-
ables high-speed processing capabilities. However, program-
ming on-path SmartNICs can be challenging due to the re-
liance on low-level languages and complex hardware con-
straints. Previous studies have explored leveraging on-path
SmartNICs to distribute the incoming traffic with some naive
rules [54]. Yet, this is far from being able to solve the sub-

Table 1: Design alternatives and whether they support the
desired properties.

Design Option
Efficient CPU
Cycle Usage

Flexible
Scheduling

Client GPUDirect←−−−−−→ GPU ✓ ×
Client RDMA←−−−→ CPU PCIe←−→ GPU × ✓

Client RDMA←−−−→ SNIC DMA←−−→ GPU ✓ ✓

optimal accelerator scheduling mentioned in Section 2.3.
We thus opt for the off-path SmartNIC, which comes with

a general-purpose SoC off the critical path of the incoming
packets. Leading examples of off-path SmartNIC products
encompass the BlueField family [12, 13]. It is worth high-
lighting that off-path SmartNICs have predominantly been
harnessed for task offloading and in bare-metal cloud environ-
ments [31, 40, 50, 56]. However, using off-path SmartNICs as
the critical path for incoming packets has been less commonly
explored. This is partly due to concerns that their relatively
weaker SoCs may introduce bottlenecks, limiting latency and
throughput [71, 76].

Nonetheless, we argue that the off-path SmartNIC remains
the optimal choice for our purposes for two key reasons, as
listed in Table 1. First, it effectively bypasses the host CPU,
thus mitigating the bottleneck on the CPU caused by heavy
communication costs. Second, the benefits derived from its
general programmability outweigh the minor latency advan-
tage that on-path SmartNICs offer. Consequently, the off-path
SmartNIC strikes the right balance between performance and
flexibility.

3 Conspirator Design

3.1 Design Overview
We propose Conspirator, a SmartNIC-aided control plane for
distributed ML workloads. Figure 3 illustrates the architecture
of Conspirator where the control plane is located at the off-
path SmartNIC SoC.

As illustrated in Figure 4, the initiation process entails the
host CPU reserving GPU memory chunks across different
(virtual) GPU instances. Concurrently, the host CPU estab-
lishes a secure communication pathway with the SmartNIC
SoC for (i) sending the memory pointers to the control plane
residing within the SmartNIC SoC, and (ii) acquiring data
availability signals.

The SmartNIC SoC provisions a local buffer to process
incoming requests, presuming they are transmitted using the
RDMA protocol for superior efficiency compared to the tra-
ditional TCP/IP stack. Upon receipt of a request, the control
plane identifies the most suitable GPU instance for task as-
signment following the heuristic introduced in Section 3.3
and initiates a DMA transfer of the data.

770 2024 USENIX Annual Technical Conference USENIX Association

Client
 Request

SmartNIC

Host CPU

GPU

MemoryKernel

Computing Resource

Memory

User Space

SoC

Buffer

Scheduler

Control Flow

Data Flow

Figure 3: System overview.

Once the DMA transfer is completed, the control plane
alerts the host CPU, which subsequently triggers the desig-
nated GPU kernel to process the data. Once the processing
task concludes, the GPU kernel informs the host CPU, which
then forwards the results to the SmartNIC SoC using the se-
cure communication channel. The SmartNIC SoC completes
the cycle by returning the results to the original requester.

The above process circumvents the host CPU to the greatest
extent, only requiring it to wait on data availability signals and
start the proper GPU kernel. All the data transfer is kernel-free
and thus occupies few resources.

3.2 SmartNIC-Aided Control Plane

Below, we explain our design and implementation of the
SmartNIC-aided control plane.

SmartNIC selection. As explained earlier in Section 2.4,
we opt for the off-path SmartNIC, which is equipped with
a general-purpose SoC off the critical path of the incoming
packets. The most notable product of the off-path SmartNIC
is the NVIDIA BlueField family. We implement our control
plane with the latest product BlueField-3, which provides 4X
more compute power, 2X faster storage processing, and 4X
more memory bandwidth compared to Bluefield-2 [14].

Helpers at host CPU. In order to mitigate the performance
degradation of ML workloads due to CPU contention, Con-
spirator adopts an approach that emphasizes simplicity for
functions executed on the host CPU. This involves three pri-
mary tasks.

The first task is memory reservation at GPU instances. The
host CPU is responsible for reserving memory within the (vir-
tual) GPU instances. Subsequently, it maintains the availabil-
ity of memory pointers and dispatches them to the SmartNIC’s
controller. The second task is the GPU kernel management.
Upon receiving instructions from the SmartNIC’s controller,
the host CPU undertakes the role of initiating and invoking
GPU kernels for processing incoming jobs. Moreover, the
host CPU also takes charge of any auxiliary computations
that are unsuitable for execution on the GPUs.

All three tasks can only be done by the host CPU because
the SmartNIC lacks the capability to directly invoke a GPU

Requester SmartNIC Host CPU GPU

GPUMemAlloc

GPU Memory
Pointer *gp

*gp
RDMA Init

(*np)

RDMA
Establish

Initialization
Phase

Execution
Phase

RDMA
Write DMA

Write

Notify Invoke

Result r
r

r

MemAlloc
*np

Figure 4: Conspirator procedure flowchart per requester.

kernel, as it connects to the GPU indirectly through a PCIe
switch, unlike the direct PCIe connection between the GPU
and the host CPU.1

As shown in Figure 4, we also assume the results are ob-
tained by the host CPU and then transmitted to the SmartNIC,
rather than using the SmartNIC DMA to read the results in
the GPU. This is because we want to minimize changes to
the existing ML code, where the final step of obtaining the
result is usually executed on the CPU. While it is possible to
leverage DMA, this would require modifying the ML code to
store the results in GPU memory. Given the small size of the
results, using DMA offers imperceptible performance benefits
and hence does not justify the cost of ML code reconstruction.

For our implementation, we build and install a CUDA exten-
sion that creates a GPU tensor object from an address pointer.
Then, at the initialization of Conspirator, we reserve memo-
ries on each GPU instance using the doca_gpu_mem_alloc
function of the DOCA library. The reservation function will
return the memory pointers, with which we can create Tensor
objects later by calling our CUDA extension. This enables us
to reuse any existing ML training or inference code in Python,
by modifying just one line of code pertaining to the creation
of the input tensor.

Control plane at SmartNIC. The controller of Conspirator
operates at the subsystem of SmartNIC’s ARM SoC. The core
function of the controller is proper resource allocation. To
achieve that, the controller should first obtain the pointers to
all the (virtual) GPU instances from the helper functions at
the host CPU. Then, the controller should establish RDMA
connections in advance with potential requesters. The con-
troller should assign the requesters with a dedicated local

1An exception is the NVIDIA Converged Accelerators [15] which physi-
cally integrate the GPU and the SmartNIC. More related discussion please
refer to Section 5.

USENIX Association 2024 USENIX Annual Technical Conference 771

buffer intended for temporary data storage before it is relayed
to the GPUs.

After completing the initialization, the controller assumes
the task of evaluating the most suitable GPU instance for
incoming jobs. After the allocation decision is made, it or-
chestrates the data transfer to the corresponding GPU and
simultaneously issues a signal to the host CPU, thus trigger-
ing the commencement of GPU processing.

It is noteworthy that the use of local buffers introduces a
minor latency in data transfer. However, the impact of this
latency remains marginal due to the nature of zero-copy data
handling: the data is written via RDMA and read via DMA,
effectively mitigating potential performance drawbacks.

The above functions facilitate four distinct communication
channels associated with the SmartNIC SoC: (i) a secure
communication channel linked to the host CPU, (ii) a DMA
channel connected to the GPUs, (iii) an RDMA channel es-
tablished with the job requesters, and (iv) a supplementary
channel connecting to job requesters for negotiating RDMA
setup specifics. For channels (i) and (iv), implementation
flexibility allows the use of any reliable transfer protocols.
Channel (ii) mandates that the GPU shares the same PCIe bus
as the SmartNIC, while channel (iii) requires the availability
of RDMA capabilities, such as the InfiniBand Fabric.

Our implementation relies on the DOCA library given
that it provides uniform APIs across RDMA, DMA, and
beyond. Specifically, we implement channel (i) using the
DOCA Comm Channel [16]2, channel (ii) using the DOCA
DMA library [17], and channel (iii) using the DOCA RDMA
library [18]. For channel (iv), we use the TCP socket. As
channel (iv) only functions as an RDMA protocol negotiator
before the actual data transfer, it does not impact runtime
performance.

Concurrency Design. It is noteworthy that, in Figure 4, both
the initialization and execution phases between the requester
and SmartNIC are handled per job requester. The controller
assigns each requester a distinct local buffer to prevent con-
tention. Additionally, the controller maintains a job queue.
Whenever it receives a signal indicating that a buffer is filled
(i.e., a requester has sent a task and completed transferring the
data), it creates a job and adds it to the queue. The controller
then periodically executes the resource scheduling algorithm
(see Section 3.3) to determine the next actions, such as which
jobs are DMA’ed to which GPU instance.

2We use DOCA Comm Channel primarily for coding integral consid-
erations: it is the only SmartNIC-CPU communication channel provided
by the DOCA library. This channel is supposed to be faster than the TCP
connection between SmartNIC and the host CPU. But given the small size
of the exchanged data (e.g., signals and results), this benefit will likely be
imperceptible.

3.3 ML workload Scheduling on Heteroge-
neous nodes

Conspirator also envisions the resource scheduling to
be pivotal in optimizing the ML workloads. The GPU
resource scheduling relies on resource isolation by GPU
virtualization techniques, such as MPS [11] and MIG [21],
and considerations on heterogeneity for both GPU resources
and ML models.

Specifically, when executing multiple jobs on the same
GPU, the conventional (default) approach involves CUDA
kernels processing each job in a time-multiplexed manner.
However, this method becomes inefficient due to the consid-
erable overhead imposed by context switching between differ-
ent jobs. MPS, on the other hand, introduces the concept of
multiple virtual instances, harnessing NVIDIA GPUs’ Hyper-
Q capability. This empowers multiple processes to leverage
concurrent CUDA kernel processing on a single GPU. The
outcome is significantly improved performance, attributed to
MPS’s reduction of context switch overheads and more effi-
cient GPU sharing compared to the default time-multiplexing
approach.

MIG enhances the resource isolation paradigm by segregat-
ing GPU memory resources within the same physical GPU.
Consequently, a MIG instance can be conceptualized as a
physical GPU instance. Notably, the key distinction between
a MIG instance and a physical GPU lies in the dynamic ad-
justability of resources for the former. This dynamic resource
adaptability enhances resource utilization and further con-
tributes to optimized ML workload execution.

However, existing container platforms (e.g., Kubernetes)
typically adhere to a paradigm where GPUs are exclu-
sively assigned to individual containers [3] or employ a
time-multiplexing strategy for GPU sharing [1, 2]. They
do not consider efficiently sharing GPUs while scheduling
applications requiring GPU resources, and hence often cause
resource inefficiency and performance degradation. Also, in a
multi-tenant environment, software architects need to ensure
that the shared GPU memory resource is isolated between
tenants. Such isolation can be realized by MIG but not MPS.

Conspirator desires to realize a fine-grained GPU sharing
with heterogeneity considered. To this end, we propose a new
bin-packing-based GPU scheduler that works on a container
platform (e.g., Kubernetes framework) and provides tenant
isolation and security benefits. The tenant isolation means
that no two tenants should share the same GPU computing
and memory resources. This helps protect against attackers
who might illicitly access data from other tenants residing in
the same GPU’s memory [64, 84]. This requirement arises
from real-world demands in our production data centers. Our
GPU scheduler realizes tenant isolation by leveraging MIG
capabilities while minimizing migration cost and operational
costs by leveraging MPS capabilities. Our GPU scheduler
also incorporates considerations of heterogeneous GPU types

772 2024 USENIX Annual Technical Conference USENIX Association

and the diverse demands of ML workloads. This ensures a
well-rounded approach that caters to varying computational
requirements and optimally allocates resources.

All the above GPU information for making the scheduling
decision is stored in the SmartNIC during the initialization
phase. Upon receiving a new job request, the controller at
the SmartNIC makes the decision locally. Following that de-
cision, the controller directly transfers the data to the target
GPU/MIG device and pings the host CPU to start the appro-
priate GPU kernel.

3.3.1 Problem Formulation

Below, we model the distributed ML workload scheduling3

as a mixed integer linear programming (MILP) problem.

Inputs. We denote Rit as the requested computing resource for
job i by tenant t, where i ∈ [1,N] and t ∈ [1,T]. Additionally,
y jw indicates whether the w-th fraction of GPU j has been
allocated to at least one job. The total number of GPUs is J,
i.e., j ∈ [1,J], and each GPU j comprises Wj fractions. We
assume non-overlapping isolation of computing and memory
resources among fractions. For instance, an NVIDIA MIG
instance qualifies as a GPU fraction, whereas NVIDIA MPS
does not meet this criterion because it does not isolate memory
resources.

Wj can vary for different GPU types, based on configura-
tions. For instance, an A30 GPU can accommodate a maxi-
mum of 4 MIG instances, while an A100 GPU can host up to 7
instances [21]. Additionally, GPUs might feature diverse frac-
tion shapes. As an illustration, the A100 can offer fractions
with 1/7, 2/7, 3/7, 4/7, or 7/7 of total resources, resulting
in 14 possible configurations as illustrated in Table 3. Our
formulation will determine the effective fractions and impose
constraints to ensure that the total resource usage of selected
fractions on a GPU does not exceed C j, the total resources of
that GPU.

Outputs. We assume that the distributed ML workload
scheduling is dynamic. The binary variable ki jtw represents
the prior assignment of jobs in the system, whereas xi jtw rep-
resents the latest job assignments. Furthermore, Yj is a binary
variable indicating whether GPU j has any job assignments,
and δi is a binary variable indicating whether job i requires
migration for optimal assignment. The cost of migrating an
ongoing job i is denoted by mi. Table 2 summarizes the nota-
tion used in this paper.

Problem formulation. Our primary goal is to minimize both
GPU operational and job migration costs, considering the
substantial costs associated with migration. We introduce co-
efficients ε1 and ε2 to adjust the objective. The mixed integer
problem representing ML workload scheduling (which we

3While our paper focuses on ML workloads, our scheduler is also applica-
ble to other non-ML jobs, as long as they provide the necessary inputs such
as the requested accelerator resource.

Table 2: Main notations employed in this paper

Notation Explanation

Rit The requested GPU resource for job i by
tenant t

y jw Decision variable to assign GPU j’s wth
fraction for at least one job (when set to 1)
and not otherwise (when set to 0)

Wj The number of fractions for GPU j
α jw The computing resources of GPU j’s wth

fraction
C j The total capacity of GPU j

ki jwt The existing job assignment that shows if
job i is scheduled on GPU j for tenant t, if
set to 1 and not otherwise.

xi jwt The latest job assignment
Yj Whether GPU j has been assigned for at

least one job
δi Decision variable to migrate job i when set

to 1 and not otherwise (when set to 0).
mi The migration cost for job i

refer to as MinGPUCost problem) is defined as follows.

min
xi jwt

ε1 ∑
j

Yj + ε2 ∑
i

miδi (1)

s.t. ∑
t

∑
j
∑
w

xi jwt = 1,∀i ∈ [1,N] (1a)

∑
j
∑
w

xi jwt ≤ Rit ,∀i ∈ [1,N],∀t ∈ [1,T] (1b)

∑
t

∑
i

Rit · xi jwt ≤ α jw · y jw,∀ j ∈ [1,J],∀w ∈ [1,Wj]

(1c)

∑
w

α jw · y jw ≤C j,∀ j ∈ [1,J] (1d)

Yj ≥
∑w y jw

N
,∀ j ∈ [1,J] (1e)

δi = 1−∑
t

∑
j
∑
w

xi jwt · ki jwt ,∀i ∈ [1,N] (1f)

A jt ≥
∑t ∑w xi jwt

N
,∀ j ∈ [1,J],∀t ∈ [1,T] (1g)

∑
t

A jt ≤ 1,∀ j ∈ [1,J] (1h)

δi,xi jwt ,ki jwt ,A jt ,y jw,Yj ∈ {0,1} (1i)

Specifically, Equation 1a ensures the assignment of each
job i only once, while Equation 1b enforces assignments
solely for valid jobs where Rit > 0. Following this, Equa-
tion 1c safeguards that the cumulative resources allocated
to jobs within the w-th fraction of GPU j do not surpass the
fraction’s total capacity. Further, Equation 1d extends this con-
straint to encompass the cumulative resources allocated across
all GPU fractions, ensuring that the aggregated resources of

USENIX Association 2024 USENIX Annual Technical Conference 773

Table 3: The GPU fraction resources for A100.

w 1 2 3 4 5 6 7
α jw(%) 14 14 14 14 14 14 14

w 8 9 10 11 12 13 14
α jw(%) 28 28 28 42 42 57 100

the selected fractions do not exceed the physical GPU’s total
capacity.

Next, Equation 1e serves to flag GPUs that have been
assigned to at least one job. Subsequently, Equation 1f deter-
mines whether the migration of job i is necessary to achieve
optimal resource allocation. To enhance data security in GPU
sharing within a multi-tenant context, Equations 1g and 1h
introduce the intermediary variable A jt , and they together en-
sure that all jobs assigned to the same GPU fraction originate
from a single tenant. Last, Equation 1i comprehensively cat-
alogs all binary variables implicated within the formulation.

Theorem 3.1. MinGPUCost is an NP-Hard problem.

Proof. Bin packing is a well-known combinatorial optimiza-
tion problem that is strongly NP-Hard [36, 38, 68]. We prove
MinGPUCost problem is NP-Hard by showing that bin pack-
ing problem is a special case of MinGPUCost. To reduce
the bin packing problem to an instance of our problem, we
create one tenant with a finite set I of job requests (items), a
size for each job request Ri,∀i ∈ I. Further, we assume having
J GPUs (bins) of the same type (homogeneous case) and a
migration cost of zero (i.e., ε2 = 0). We also assume each
GPU only uses the largest MIG instance (MIG 7g.80gb in
our case) with a bin capacity of 100. This creates an instance
of bin packing problem. Since the bin packing problem is
NP-hard, the MinGPUCost problem is also NP-hard.

3.3.2 Greedy Heuristic

Since MinGPUCost is an NP-Hard problem, finding the op-
timal resource allocation entails solving Equation 1 through
techniques like the Branch and Bound algorithm [32]. Yet,
it is crucial to acknowledge that such approaches often en-
tail considerable computational complexities. Unfortunately,
these complexities do not align with our objective of mini-
mizing latency and maximizing throughput, which demands
a more efficient strategy.

Consequently, we introduce a practical and expedient solu-
tion in the form of a greedy heuristic, which ignores the job
migration and efficiently computes resource allocations for
incoming jobs with a time complexity of O(NJWj).

Below, we explain our heuristic algorithm presented in
Algorithm 1 in detail. First, lines L1-2 synchronize existing
allocations and initialize variables Ti jw representing GPU
fraction occupancy by tenant. L3 then iterates through all jobs.
For each job i, L5-10 determines the tenant ti who requested it.

Algorithm 1 ML Workload Scheduling Heuristic.
Require: Rit ,y jw,W j,α jw,C j,ki jwt
Ensure: xi jwt

1: xi jwt ← ki jwt // Synchronize existing allocations
2: Ti jw← 0 // GPU fractions’ tenant occupation
3: for i← 1 to N do
4: success← False
5: for t← 1 to T do
6: if Rit = 1 then
7: ti← t // Determine the tenant for job i
8: break
9: end if

10: end for
11: for j← 1 to J do
12: if success = True then
13: break
14: end if
15: for w← 1 to W j do
16: if success = True then
17: break
18: else if Ti jw ̸= ti then
19: continue
20: else if y jw = 1 then
21: rle f t ← α jw
22: for i← 1 to N do
23: rle f t ← rle f t − xi jwti ∗Riti
24: end for
25: if rle f t ≥ Rit then
26: xi jwt ← 1
27: success← True
28: end if
29: else
30: rle f t ←C j
31: for w2← 1 to W j do
32: rle f t ← rle f t − y jw ∗α jw
33: end for
34: if rle f t ≥ α jw and rle f t ≥ Rit then
35: xi jwt ← 1
36: y jw← 1
37: Ti jw← ti
38: success← True
39: end if
40: end if
41: end for
42: end for
43: end for

Next, we iterate through all GPUs (L11-40) and their fractions
(L15-39) until the current job i is successfully allocated (L12-
14 and L16-17).

While the job i is not yet allocated, L18-19 determine
whether the current GPU fraction is occupied by another
tenant. If so, proceed to the next fraction. If the GPU fraction
has been previously allocated to a job belonging to tenant ti
(L20), L21-24 calculate whether there are available resources
for job i. If resources are available, L25-28 assign job i to

774 2024 USENIX Annual Technical Conference USENIX Association

Client
 Request

RNIC

Host CPU

GPU

Memory

Kernel

Computing Resource

Memory

User Space

Control Flow

Data Flow

Figure 5: An alternative design which relies on RDMA for
remote data transmission and exhibits a local scheduler at
host CPU.

this fraction. If the GPU fraction is currently unoccupied
(L29), L30-34 determine if it can be initialized and whether it
has sufficient resources for job i. If both conditions are met,
L35-38 assign job i to this fraction. It is noteworthy that in
Algorithm 1, we have presented only the generation of xi jwt
as an example to streamline the explanation. Other outputs
such as Yj can also be obtained from the algorithm without
introducing any additional complexity. Overall, this heuristic
efficiently computes resource allocations for incoming jobs
with a time complexity of O(NJWj), where N is the total
number of jobs, J is the total number of GPUs and Wi is the
maximum number of fractions among the GPUs.

4 Evaluation

Below, we comprehensively assess Conspirator from two dis-
tinct perspectives: end-to-end performance and the advantages
derived from workload scheduling. We initiate this evaluation
by presenting the results of our end-to-end system analysis,
conducted using a testbed comprising servers equipped with
BlueField-3 SmartNICs and A100 GPUs. Subsequently, we
proceed to the performance evaluation of Conspirator’s work-
load scheduling. This evaluation is underpinned by a real-
world dataset portraying GPU usage patterns in contemporary
data center environments.

4.1 End-To-End Evaluation

4.1.1 Evaluation Setup

Our testing infrastructure comprises two servers, each
equipped with BlueField-3 SmartNICs and A100 GPUs. To
facilitate a comprehensive comparison, we consider several
distinct configurations:

1 TCP Server with Host CPU Handling: In this setup, job
requests are managed by a TCP server on the host CPU,
which subsequently conveys the job data to the GPU.
(Figure 1(a))

1 2 4 8 16 32 64 128
Batch Size

1

10

100

1K

En
d-

To
-E

nd
 D

ur
at

io
n

(s
)

Setting
➀
➁
➂
➃

Workflow
Data Movement
GPU Processing

(a) 0% background CPU load.

1 2 4 8 16 32 64 128
Batch Size

1

10

100

1K

En
d-

To
-E

nd
 D

ur
at

io
n

(s
)

Setting
➀
➁
➂
➃

Workflow
Data Movement
GPU Processing

(b) 80% background CPU load.

Figure 6: End-to-end duration.

2 Direct Data Transfer to GPU Memory: This con-
figuration involves the direct transfer of job data to
GPU memory through NVIDIA’s GPUDirect RDMA
technology. (Figure 1(b))

3 Direct Data Transfer to Host Memory: Here, the job
data will be transferred to a chunk of memory located
at the host. The host CPU will later decide on the job
scheduling and transfer the data to the corresponding
GPU memory using the CUDA library. This setting
closely resembles Conspirator, as it employs RDMA
for remote data transmission and incorporates a local
scheduler. The primary distinction lies in the absence
of SmartNIC utilization; instead, the scheduler resides
on the host CPU. Figure 5 provides an architectural
representation and information flow for this setting.

4 Conspirator Implementation: In the Conspirator frame-
work, job requests are transmitted via RDMA to the
SmartNIC SoC, which then orchestrates data transfer
to the appropriate GPU memory using DMA. (Figure 3)

These distinct configurations enable us to conduct a com-
prehensive performance assessment and comparative analy-
sis of Conspirator against other pertinent alternatives. In our
evaluation, we employ an ML inference workload designed
to process incoming batches of images from the ImageNet
dataset [8]. We further assume that the images have been
pre-processed before arriving at Conspirator, e.g., adopting
a similar architecture where data pre-processing is delegated

USENIX Association 2024 USENIX Annual Technical Conference 775

1 2 4 8 16 32 64 128
Batch Size

0

2

4

6

8

10

12
Da

ta
 C

op
y

Du
ra

tio
n

(m
s) Setting ➂

Setting ➃

(a) Impact of batch sizes.

0 10 20 30 40 50 60 70 80 90100
Background CPU Load (%)

0

2

4

6

8

10

12

Da
ta

 C
op

y
Du

ra
tio

n
(m

s) Setting ➂
Setting ➃

(b) Impact of batch sizes background CPU load.
Batch size is 16.

1 2 4 8 16 32 64128
Batch Size

0
10
20
30
40
50
60
70
80
90

100

Ba
ck

gr
ou

nd
 C

PU
 L

oa
d

(%
)

−20

0

20

40

60

80

Da
ta

 C
op

y
Sp

ee
du

p
(%

)

(c) Setting 4⃝’s speedup to setting 3⃝.

Figure 7: Local data transmission evaluation.

to dedicated servers [82] which act as the job requesters in
our settings. It follows that the transmitted data will be in
a transformed format. Specifically, for a batch size of one
image, the data will occupy around 600 KB.

4.1.2 Results

End-to-end performance. In Figure 6(a), we illustrate the
end-to-end duration across various data path configurations
and diverse job batch sizes. The results indicate that configura-
tion 1⃝ is generally less performant than other RDMA-based
configurations, except for scenarios with small batch sizes (i.e.,
one or two). The relative efficiency of 1⃝ in these cases can
be attributed to the current limitations in RDMA’s optimiza-
tion when using Nvidia’s DOCA library. However, it is noted
that utilizing other RDMA-based libraries, as evidenced in
existing research [76], would likely enhance the performance
of RDMA-based settings over TCP even for small batch sizes.
The rest of the outcome is expected as the TCP/IP stack has
been proven to incur a notably high overhead.

Next, setting 2⃝ allows the job requester to directly place
data at the target GPU memory, without any hindrance in
the way. Indeed, such a setup brings the fastest end-to-end
duration compared to all other settings, despite that the per-
formance discrepancies with other RDMA-based settings are
marginal. For example, Conspirator (setting 4⃝) only adds
a minimal delay of up to a few seconds, or up to 8% of the
total time, for making scheduling decisions as well as the
local data transmission using DMA, compared to setting 2⃝.
In contrast, setting 2⃝ does not allow any GPU scheduling
and may lead to sub-optimal performance (see Section 4.2),
unless we unrealistically assume that the job requester has
real-time visibility into every accelerator. We thus discard this
option.

Setting 3⃝ and 4⃝ both leverages the power of RDMA and
GPU scheduling simultaneously. The difference is that setting
3⃝ decides on the GPU scheduling and transfers the job data

to the GPU using the host CPU whereas setting 4⃝ places
such job at the SmartNIC SoC. Figure 6(a) shows that setting
4⃝ outperforms setting 3⃝ with respect to the end-to-end

duration in most scenarios. The performance gap between
settings 3⃝ and 4⃝ becomes larger if we only consider the
data movement and exclude the ML inference at GPU.

To mimic a real-world data center scenario with ongoing
background CPU utilization, particularly in shared environ-
ments, we added CPU load while testing our four configura-
tions. Figure 6(b) shows that under high background CPU
load (80%), the performance differences between the settings
become more pronounced. Specifically, the end-to-end per-
formance of configuration 1⃝ is up to 5 times slower than
the others, or 12 times slower if excluding GPU processing
time. Configuration 4⃝ consistently outperforms 3⃝ by up to
30s or 20% of the total end-to-end latency, while only adding
a few seconds of delay compared to 2⃝, with the maximum
discrepancy of about 8s at a batch size of 128.

Zooming in data movement. We further narrow our focus to
settings 3⃝ and 4⃝ with respect to the data movement, which
consists of three sub-tasks: (i) RDMA transmission, (ii) local
data transmission, and (iii) GPU scheduling. Among them,
setting 3⃝ and 4⃝ only differ in the second sub-task of local
data transmission, which we take a closer look at below.

Figure 7(a) depicts the durations for local data transmission
for settings 3⃝ and 4⃝ with varying batch sizes. Overall,
setting 4⃝ consistently outperforms 3⃝ across most scenarios.
An exception arises when the batch size is 4, and this anomaly
could potentially be attributed to some internal mechanisms
within the CUDA library. The most significant performance
disparity is observed when the batch size is 1, with setting
4⃝ reducing the duration by an impressive 63%. This

phenomenon can be again attributed to internal mechanisms
within the CUDA library, as we consistently observe that the
host CPU takes less time to transfer data for batch sizes 2 and
4 compared to batch size 1. For the remaining batch sizes,
setting 4⃝ reduces the duration of local data transmission by
percentages ranging from 3% to 10%.

While the performance improvement may not appear
substantial, one of the key advantages of setting 4⃝ lies in its
less reliance on the host CPU compared to setting 3⃝. This
characteristic becomes particularly valuable in real-world
cluster environments where the host CPU may frequently be

776 2024 USENIX Annual Technical Conference USENIX Association

Table 4: Cost efficiency of Conspirator.

Hardware Price (Normalized) Power Consumption Throughput (Normalized) Cost-Effectiveness Power Efficiency

Host CPU $1,000 800W 1,000 1.0 1.25
SmartNIC $231 150W 270 1.17 (+17%) 1.8 (+44%)

occupied by various tasks, whether related to ML or unrelated
to it. To emulate such scenarios, we introduced an additional
CPU-intensive program, thereby introducing background
host CPU utilization. As demonstrated in Figure 7(b), the per-
formance of setting 3⃝ is negatively affected by the presence
of background CPU utilization. The local data transmission
duration increases as the background CPU utilization rises,
escalating from less than 4 ms to a maximum of over 11 ms.
Consequently, the speedup achieved by setting 4⃝ in com-
parison to setting 3⃝ grows from 29% to a substantial 76%.

Figure 7(c) provides a comprehensive overview of the
speedup achieved when transitioning from setting 4⃝ to 3⃝,
considering various batch sizes and background CPU utiliza-
tion levels. It is noteworthy that speedup is evident in all
configurations except when the batch size is 4 and when CPU
utilization is 0%, as previously discussed. The most substan-
tial speedups are observed when the batch size is either 1
or greater than 8. In summary, setting 4⃝ yields an average
speedup of 36%. Importantly, the average speedup increases
as background CPU utilization rises, ranging from 17% when
CPU utilization is at 0%, through a substantial 30% when
CPU utilization is at 30%, to an impressive 50% when CPU
utilization reaches 100%. It is worth noting that if we account
for RDMA data transmission, these numbers would be halved,
but they still represent significant improvements.

Cost effectiveness and power efficiency. Beyond perfor-
mance advantages, Conspirator’s most significant benefits
lie in its cost effectiveness, defined as throughput relative to
the purchase price, and power efficiency, measured as through-
put per maximum power consumption. Table 4 reveals that
although a host CPU might have higher throughput due to
more CPU cores, SmartNIC (setting 4⃝) outperforms a setup
relying solely on host CPUs (setting 3⃝) in terms of cost and
power, being 17% more cost-effective and 44% more power-
efficient. Notably, the pricing for the NVidia BlueField-3
SmartNIC listed in the table represents its total cost after
normalization. Considering that when SmartNIC is absent, a
standard server would still require a NIC for operation, the
actual cost-effectiveness and power efficiency of Conspira-
tor are likely even more advantageous than indicated. This
underscores Conspirator’s significant value in data center en-
vironments.

4.2 ML Workload Scheduling

Evaluation Setup. Next, we evaluate the ML workload
scheduling capabilities of Conspirator. To provide a mean-
ingful basis for comparison, we have implemented two ad-

ditional scheduling approaches. First, we have created an
optimal scheduler that solves the mixed ILP problem defined
in Equation 1 using OR-Tools [7]. To obtain the optimal
GPU assignment at all times, we set ε2 in Equation 1 to be
zero, meaning that there is no cost for job migration. Second,
we have designed a heuristic approach similar to our system
where it leverages NVIDIA MPS to enable multiple jobs from
the same tenant to share the same GPU. However, it does not
consider the use of MIG technology.

Our evaluation is conducted using the Alibaba Cluster
Trace GPU 2020 dataset [4, 77], which captures a wide range
of training and inference jobs within a large production
cluster featuring diverse GPU types. The original dataset
chronicles the activities of more than 1,300 users over a
span of two months. To streamline the presentation of our
evaluation results, we have restricted the analysis to a subset
considering activities over a continuous 60-hour period.

Results. Figure 8(a) shows the cumulative consumed GPU
hour by all the jobs over time following the scheduling deci-
sions made by either the heuristics or the optimal scheduler.
The jobs, when scheduled optimally, collectively require 233
GPU hours. Remarkably, our heuristic achieves this identical
result without any performance degradation, surpassing the
total of 345 GPU hours necessitated by simpler heuristics that
do not take advantage of the MIG feature. This illustrates a
33% savings on the total consumed GPU hours.

Next, we proceed to examine the scheduling durations. Fig-
ure 8(b) shows the CDFs of scheduling durations for both the
heuristics and optimal scheduler that solve the MILP problem.
Unfortunately, the optimal scheduler, while capable of provid-
ing the optimal solution, exhibits significant delays, ranging
from at least 100 ms to potentially several minutes.4 Such pro-
tracted scheduling times outweigh the advantages of optimal
scheduling and render it impractical for real-world systems.
In contrast, our heuristic is swift, necessitating a median time
of only 4 ms – over 1,000x faster than the optimal sched-
uler – to determine the optimal scheduling. This imposes an
acceptable level of overhead on Conspirator. Note that the
scale of the dataset used for this evaluation necessitates the
availability of over 80 GPUs for scheduling. In real-world
deployments, single machines typically host only a few GPUs.
As a result, the scheduling duration of our proposed heuristic
within Conspirator is expected to be significantly shorter.

We further evaluate the applicability of the scheduler. Fig-
ure 8(c) illustrates the scheduling durations when executing
on the SmartNIC with no background use and on the host CPU

4A cut-off timer is set to 10 minutes to prevent optimal scheduling tasks
from taking excessively long to complete.

USENIX Association 2024 USENIX Annual Technical Conference 777

0 10 20 30 40 50
Time (Hour)

0

100

200

300

Cu
m

l.
Co

ns
um

ed
 G

PU
 H

ou
r

Heuristic w/o MIG
Heuristic w/ MIG
Optimal

(a) Cumulative consumed GPU hour over time.

1 100 10K
Scheduling Duration (ms)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(0
-1

)

Heuristic w/o MIG
Heuristic w/ MIG
Optimal

(b) CDF of scheduling durations.

Smart-
NIC

0% 25% 50%
Host CPU w/ Background Use

75% 100%

100

102

104

106

Sc
he

du
lin

g
Du

ra
tio

n
(m

s) Heuristic w/o MIG
Heuristic w/ MIG

Optimal

(c) Boxplots of scheduling durations under dif-
ferent scenarios.

Figure 8: Scheduler evaluations.

with varying levels of background usage. Overall, the host
CPU without high contention outperforms the SmartNIC, an
expected result given the latter’s weaker SoC. However, when
background CPU usage reaches or exceeds 75%, scheduling
on the host CPU becomes slower than on the SmartNIC. In
either case, the scheduling heuristic completes in a few mil-
liseconds, even when handling a larger-than-usual problem
scale, remaining within the acceptable range. This demon-
strates the good applicability of our scheduler.

In conclusion, these results underscore the efficacy of our
proposed heuristic, which effectively achieves GPU resource
scheduling that is close to optimal or even optimal in this
particular dataset. Importantly, it accomplishes this with sig-
nificantly reduced time requirements, rendering it a practical
solution and a good fit in Conspirator.

5 Discussion

Distributing client requests to both SmartNIC SoC and
CPU. One additional alternative is to leverage both the Smart-
NIC SoC and CPU for accepting requests at the same time. As
Xing et al. [76] suspects, SmartNIC internally reserves some
NIC cores for each endpoint, i.e., the SmartNIC SoC and host.
Hence, it is possible to gain performance improvement if both
the SoC and the host take requests and ship them to the GPU.
However, this requires careful tunning on both the ratio of the
requests and the scheduling algorithm – as it needs to work
distributively in this scenario – to maximize the benefits. We
leave this as future work.

Non-NVIDIA GPU Technologies. Other GPU vendors such
as AMD and Intel also offer peer-to-peer data movement tech-
nologies. AMD’s PeerDirect [22] allows the transfer of data
from GPU to other PCIe devices such as NICs. Meanwhile,
Intel offers DMABuf [9] with similar features as NVIDIA’s
GPUDirect. However, these techniques are at different levels
of maturity and run only on hardware from specific vendors.
We thus opt for NVIDIA solutions in this paper.

Converged Accelerator Cards. In response to the challenges
posed by bottlenecks in distributed ML workloads, industries

have explored novel hardware architectures to address these
limitations. Notably, the introduction of Nvidia’s A100X con-
verged accelerator [15] stands out, leveraging the robust per-
formance of the NVIDIA Ampere architecture in conjunction
with the enhanced latency reduction capabilities offered by
the NVIDIA BlueField-2 data processing unit (DPU). More
concretely, the converged accelerator physically integrates
the GPU and the SmartNIC with a PCIe bus. This allows
the SmartNIC to play the role of the host CPU, i.e., directly
managing the GPU kernel.

It is noteworthy, however, that such hardware architectures
come with two major limitations. First, the SmartNIC’s ARM
SoC, acting as the host CPU in this context, demonstrates
inadequacy in terms of computational strength. It struggles to
efficiently handle auxiliary aspects of ML workloads, conse-
quently leading to an overall performance degradation. Sec-
ond, the converged accelerators are constrained by a one-to-
one correspondence between the DPU and the GPU, meaning
that the DPU in embedded mode can communicate solely with
one A100 GPU node on the converged card. In contrast, our
proposed architecture boasts the advantage of overcoming this
limitation, demonstrating compatibility with multiple GPUs
on the same node. This becomes particularly pivotal in the
context of large machine learning models, such as large lan-
guage models (LLMs) [61], where the model’s scale exceeds
the capacity of a single GPU.

Balance of System Configurations. While this paper focuses
on reducing the communication costs to relieve the bottleneck
on CPUs, we acknowledge that it is not the only source. The
CPU contention is resulted by the collective efforts of many
tasks, including data pre-processing, network stack overhead,
aided computation for ML, background CPU tasks, and more.
The specific bottlenecks in ML inherently depend on (i) ML
workload characteristics, (ii) the balance of the system con-
figurations, and (iii) other background workloads.

For example, some ML models are more computationally
intensive than others [79], and training with parameter servers
burdens the CPU more than all-reduce training [48]. Further,
in the evaluation of Conspirator, we assume an inference
workload, where communication and network stack will have

778 2024 USENIX Annual Technical Conference USENIX Association

a significant impact on CPU load because of the large amount
of data volume transmitted.

The balance of system configurations, i.e., the hardware
capabilities of the GPUs, CPUs, and NICs, also plays an im-
portant role. For example, a server equipped with a strong
GPU and a relatively weak CPU may experience network
stack bottlenecks even if data pre-processing is delegated to
another server [82]. In addition, servers handling ML tasks in
multi-tenant environments face additional CPU loads.

Irrespective of what causes the CPU bottleneck, a high CPU
utilization rate degrades ML performance [77]. Conspirator
alleviates CPU load by removing it from the data path —
regardless of whether the data is pre-processed or not —,
leveraging the more cost-effective SmartNICs (see Table 4).
From a different perspective, Conspirator promotes a more
cost-effective system configuration balance.

On-path vs off-path SmartNICs. While this paper fo-
cuses on off-path SmartNICs due to their easier programma-
bility, on-path SmartNICs merit further exploration. On-
path SmartNICs come in various implementations; the job
scheduling algorithm cannot be realized in some, such as the
Netronome/Agilio SmartNIC with P4 programmable hard-
ware [5]. Others, based on FPGAs [10, 20], may have the
potential to implement the functionalities of Conspirator. We
expect some of these to offer better performance than the
off-path SmartNICs demonstrated in this paper. However,
the reliance on low-level languages and complex hardware
constraints poses significant development challenges. We ac-
knowledge that the lack of further exploration and comparison
of on-path SmartNICs is a limitation of our paper, and we
leave this for future work.

6 Related Work

Heterogeneous accelerator scheduling. Specialized acceler-
ators are increasingly deployed for ML workloads [26, 27, 39,
42, 60, 77, 78]. These accelerators demonstrate diverse perfor-
mance characteristics across different workloads. While exist-
ing cluster schedulers for accelerators are proficient at man-
aging the allocation of these workloads among multiple users,
they have typically focused on optimizing one objective, such
as fairness, throughput, or latency [42, 60, 78]. For instance,
Optimus [62] and Tiresias [42] propose a GPU scheduling ap-
proach for distributed training workload that aims at minimiz-
ing the average job completion time. MLaaS [77] conducts
an in-depth analysis of extensive workload traces within Al-
ibaba, showing the advantages of GPU sharing in operational
GPU data centers. The findings also highlight that, in their
suggested approach, the CPU can act as a potential bottleneck.
Gavel [60] is a scheduling policy designed for deep learn-
ing workloads, employing a round-robin-based scheduling
mechanism to ensure that jobs receive their optimal allocation
in alignment with the designated scheduling policy. Unfor-

tunately, existing works do not consider the heterogeneous
performance of workloads running on different GPU architec-
tures.

Communication optimization for distributed ML work-
loads. Some ML schedulers [63,67] study the impact of com-
munication bandwidth on ML workload efficiency and pro-
pose to mitigate the communication overhead of ML training.
Compression is widely studied and employed in the current
distributed ML training [24, 28, 35, 73–75, 80]. In parallel,
there are ongoing initiatives in the field that concentrate on
delegating the responsibility of gradient aggregation to pro-
grammable switches [52, 67]. Conspirator does not conflict
with any of the above work as it focuses on optimizing the
local data transmission workflow.

SmartNIC. Recent works on SmartNICs focus on harnessing
the computational capabilities of the SmartNICs to offload var-
ious application workloads [31, 55, 56, 65, 70]. Some propose
using P4 switches to accelerate parameter server (PS) train-
ing applications [67]. While others propose to accelerate all-
reduce by using InfiniBand switch [41]. Recent studies have
demonstrated substantial advantages in offloading specific
functions from host CPUs to more specialized hardware. iP-
ipe [55] introduces the actor programming model as a solution
for offloading applications like KV stores, distributed transac-
tion systems, and real-time analytics to SoC-based SmartNICs.
E3 [56] and λ-NIC [31] focus on offloading microservices
to SoC-based SmartNICs. While these approaches share the
common goal with Conspirator of alleviating the host CPU
burden through task offloading and utilizing SmartNIC re-
sources to enhance task acceleration, they do not specifically
tackle the unique challenges associated with data movement
between accelerators and workload placement and scheduling.

7 Conclusion

We have introduced Conspirator, a SmartNIC-assisted con-
trol plane designed to optimize distributed ML workloads
by concurrently addressing two critical bottlenecks: CPU
limitations and suboptimal accelerator scheduling. To attain
this objective, Conspirator uses the SmartNIC to overcome
these challenges and balance efficient data communication
and optimal accelerator scheduling.

We have developed a prototype of Conspirator on the
Nvidia BlueField-3 SmartNIC and conducted a comprehen-
sive comparison with state-of-the-art RDMA-based alterna-
tives. Our evaluation reveals that Conspirator yields a 15%
reduction in end-to-end completion time compared to RDMA-
based alternatives while being 17% more cost-effective and
44% more power efficient. Furthermore, our proposed sched-
uler not only contributes to a 33% reduction in GPU hours
compared to naive GPU-sharing schedulers but also makes
close-to-optimal decisions efficiently, requiring significantly
less time than an optimal NP-Hard scheduler.

USENIX Association 2024 USENIX Annual Technical Conference 779

References

[1] Alibaba., GPU Sharing Device Plugin in Kubernetes.
https://github.com/AliyunContainerService/
gpushare-device-plugin.

[2] Deepomatic., Support for shared GPUs by declar-
ing GPUs multiple times. https://github.com/
Deepomatic/shared- gpu- nvidia- k8s- device-
plugin.

[3] Kubernetes., Schedule GPUs. https :
/ / kubernetes.io / docs / tasks / manage - gpus /
scheduling-gpus/.

[4] Alibaba Cluster Trace GPU 2020, 2020. https://
github.com/alibaba/clusterdata/tree/master/
cluster-trace-gpu-v2020.

[5] Agilio CX SmartNICs, 2023. https :
//netronome.com/agilio-smartnics/.

[6] DPDK: Home, 2023. https://www.dpdk.org/.

[7] Google OR-tool, 2023. https : / /
developers.google.com/optimization.

[8] ImageNet, 2023. https://www.image- net.org/
index.php.

[9] Intel DMA Buf, 2023. https://github.com/intel/
linux-intel-lts/blob/master/Documentation/
driver-api/dma-buf.rst.

[10] Marvell LiquidIO III, 2023. https : / /
www.marvell.com / content / dam / marvell / en /
public - collateral / embedded - processors /
marvell-liquidio-III-solutions-brief.pdf.

[11] Multi-Process Service :: GPU Deployment and Doc-
umentation, 2023. https : / / docs.nvidia.com /
deploy/mps/index.html.

[12] NVidia BlueField-2 DPU Datasheet, 2023. https:
/ / resources.nvidia.com / en - us - accelerated -
networking - resource - library / bluefield - 2 -
dpu - datasheet?lx = LbHvpR&topic = networking -
cloud.

[13] NVidia BlueField-3 DPU Datasheet, 2023. https://
www.nvidia.com/content/dam/en-zz/Solutions/
Data - Center / documents / datasheet - nvidia -
bluefield-3-dpu.pdf.

[14] NVIDIA Bluefield-3 Networking Platform,
2023. https://resources.nvidia.com/en- us-
accelerated - networking - resource - library /
datasheet-nvidia-bluefield.

[15] NVIDIA Converged Accelerators, 2023. https://
www.nvidia.com/en-us/data-center/products/
converged-accelerator/.

[16] NVIDIA DOCA Comm Channel Programming Guide,
2023. https://docs.nvidia.com/doca/sdk/comm-
channel-programming-guide/index.html.

[17] NVIDIA DOCA DMA Programming Guide,
2023. https : / / docs.nvidia.com / doca / sdk /
dma-programming-guide/index.html.

[18] NVIDIA DOCA RDMA Programming Guide,
2023. https://docs.nvidia.com/doca/sdk/rdma-
programming-guide/index.html.

[19] NVIDIA GPUDirect, 2023. https : / /
developer.nvidia.com/gpudirect.

[20] NVIDIA Mellanox Innova-2 Flex Open Programmable
SmartNIC, 2023. https://www.nvidia.com/en-us/
networking/ethernet/innova-2-flex/.

[21] NVIDIA Multi-Instance GPU User Guide, 2023. https:
//docs.nvidia.com/datacenter/tesla/mig-user-
guide/index.html.

[22] ROCM Peer Direct, 2023. https : / /
rocm.docs.amd.com / en / latest / how_to /
gpu_aware_mpi.html.

[23] W. Bai, S. S. Abdeen, A. Agrawal, K. K. Attre,
P. Bahl, A. Bhagat, G. Bhaskara, T. Brokhman, L. Cao,
A. Cheema, R. Chow, J. Cohen, M. Elhaddad, V. Ette,
I. Figlin, D. Firestone, M. George, I. German, L. Ghai,
E. Green, A. G. Greenberg, M. Gupta, R. Haagens,
M. Hendel, R. Howlader, N. John, J. Johnstone, T. Jolly,
G. Kramer, D. Kruse, A. Kumar, E. Lan, I. Lee, A. Levy,
M. Lipshteyn, X. Liu, C. Liu, G. Lu, Y. Lu, X. Lu,
V. Makhervaks, U. Malashanka, D. A. Maltz, I. Marinos,
R. Mehta, S. Murthi, A. Namdhari, A. Ogus, J. Padhye,
M. Pandya, D. Phillips, A. Power, S. Puri, S. Raindel,
J. Rhee, A. Russo, M. Sah, A. Sheriff, C. Sparacino,
A. Srivastava, W. Sun, N. Swanson, F. Tian, L. Tom-
czyk, V. Vadlamuri, A. Wolman, Y. Xie, J. Yom, L. Yuan,
Y. Zhang, and B. Zill. Empowering azure storage with
RDMA. In 20th USENIX Symposium on Networked Sys-
tems Design and Implementation, NSDI 2023, Boston,
MA, April 17-19, 2023, pages 49–67. USENIX Associa-
tion, 2023.

[24] Y. Bai, C. Li, Q. Zhou, J. Yi, P. Gong, F. Yan, R. Chen,
and Y. Xu. Gradient compression supercharged high-
performance data parallel DNN training. In R. van
Renesse and N. Zeldovich, editors, SOSP ’21: ACM
SIGOPS 28th Symposium on Operating Systems Princi-
ples, Virtual Event / Koblenz, Germany, October 26-29,
2021, pages 359–375. ACM, 2021.

780 2024 USENIX Annual Technical Conference USENIX Association

https://github.com/AliyunContainerService/gpushare-device-plugin
https://github.com/AliyunContainerService/gpushare-device-plugin
https://github.com/Deepomatic/shared-gpu-nvidia-k8s-device-plugin
https://github.com/Deepomatic/shared-gpu-nvidia-k8s-device-plugin
https://github.com/Deepomatic/shared-gpu-nvidia-k8s-device-plugin
https://kubernetes.io/docs/tasks/manage-gpus/scheduling-gpus/
https://kubernetes.io/docs/tasks/manage-gpus/scheduling-gpus/
https://kubernetes.io/docs/tasks/manage-gpus/scheduling-gpus/
https://github.com/alibaba/clusterdata/tree/master/cluster-trace-gpu-v2020
https://github.com/alibaba/clusterdata/tree/master/cluster-trace-gpu-v2020
https://github.com/alibaba/clusterdata/tree/master/cluster-trace-gpu-v2020
https://netronome.com/agilio-smartnics/
https://netronome.com/agilio-smartnics/
https://www.dpdk.org/
https://developers.google.com/optimization
https://developers.google.com/optimization
https://www.image-net.org/index.php
https://www.image-net.org/index.php
https://github.com/intel/linux-intel-lts/blob/master/Documentation/driver-api/dma-buf.rst
https://github.com/intel/linux-intel-lts/blob/master/Documentation/driver-api/dma-buf.rst
https://github.com/intel/linux-intel-lts/blob/master/Documentation/driver-api/dma-buf.rst
https://www.marvell.com/content/dam/marvell/en/public-collateral/embedded-processors/marvell-liquidio-III-solutions-brief.pdf
https://www.marvell.com/content/dam/marvell/en/public-collateral/embedded-processors/marvell-liquidio-III-solutions-brief.pdf
https://www.marvell.com/content/dam/marvell/en/public-collateral/embedded-processors/marvell-liquidio-III-solutions-brief.pdf
https://www.marvell.com/content/dam/marvell/en/public-collateral/embedded-processors/marvell-liquidio-III-solutions-brief.pdf
https://docs.nvidia.com/deploy/mps/index.html
https://docs.nvidia.com/deploy/mps/index.html
https://resources.nvidia.com/en-us-accelerated-networking-resource-library/bluefield-2-dpu-datasheet?lx=LbHvpR&topic=networking-cloud
https://resources.nvidia.com/en-us-accelerated-networking-resource-library/bluefield-2-dpu-datasheet?lx=LbHvpR&topic=networking-cloud
https://resources.nvidia.com/en-us-accelerated-networking-resource-library/bluefield-2-dpu-datasheet?lx=LbHvpR&topic=networking-cloud
https://resources.nvidia.com/en-us-accelerated-networking-resource-library/bluefield-2-dpu-datasheet?lx=LbHvpR&topic=networking-cloud
https://resources.nvidia.com/en-us-accelerated-networking-resource-library/bluefield-2-dpu-datasheet?lx=LbHvpR&topic=networking-cloud
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-3-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-3-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-3-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-3-dpu.pdf
https://resources.nvidia.com/en-us-accelerated-networking-resource-library/datasheet-nvidia-bluefield
https://resources.nvidia.com/en-us-accelerated-networking-resource-library/datasheet-nvidia-bluefield
https://resources.nvidia.com/en-us-accelerated-networking-resource-library/datasheet-nvidia-bluefield
https://www.nvidia.com/en-us/data-center/products/converged-accelerator/
https://www.nvidia.com/en-us/data-center/products/converged-accelerator/
https://www.nvidia.com/en-us/data-center/products/converged-accelerator/
https://docs.nvidia.com/doca/sdk/comm-channel-programming-guide/index.html
https://docs.nvidia.com/doca/sdk/comm-channel-programming-guide/index.html
https://docs.nvidia.com/doca/sdk/dma-programming-guide/index.html
https://docs.nvidia.com/doca/sdk/dma-programming-guide/index.html
https://docs.nvidia.com/doca/sdk/rdma-programming-guide/index.html
https://docs.nvidia.com/doca/sdk/rdma-programming-guide/index.html
https://developer.nvidia.com/gpudirect
https://developer.nvidia.com/gpudirect
https://www.nvidia.com/en-us/networking/ethernet/innova-2-flex/
https://www.nvidia.com/en-us/networking/ethernet/innova-2-flex/
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/index.html
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/index.html
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/index.html
https://rocm.docs.amd.com/en/latest/how_to/gpu_aware_mpi.html
https://rocm.docs.amd.com/en/latest/how_to/gpu_aware_mpi.html
https://rocm.docs.amd.com/en/latest/how_to/gpu_aware_mpi.html

[25] S. Chaudhary, R. Ramjee, M. Sivathanu, N. Kwatra, and
S. Viswanatha. Balancing efficiency and fairness in
heterogeneous GPU clusters for deep learning. In Eu-
roSys ’20: Fifteenth EuroSys Conference 2020, Herak-
lion, Greece, April 27-30, 2020, pages 1:1–1:16. ACM,
2020.

[26] H. Chen, Y. Ni, A. Zakeri, Z. Zou, S. Yun, F. Wen,
B. Khaleghi, N. Srinivasa, H. Latapie, and M. Imani.
Hdreason: Algorithm-hardware codesign for hyper-
dimensional knowledge graph reasoning. CoRR,
abs/2403.05763, 2024.

[27] H. Chen, A. Zakeri, F. Wen, H. E. Barkam, and M. Imani.
Hypergraf: Hyperdimensional graph-based reasoning
acceleration on FPGA. In N. Mentens, L. Sousa,
P. Trancoso, N. Papadopoulou, and I. Sourdis, editors,
33rd International Conference on Field-Programmable
Logic and Applications, FPL 2023, Gothenburg, Sweden,
September 4-8, 2023, pages 34–41. IEEE, 2023.

[28] J. Chen, T. Lan, and C. Joe-Wong. Rgmcomm: Return
gap minimization via discrete communications in multi-
agent reinforcement learning. In M. J. Wooldridge,
J. G. Dy, and S. Natarajan, editors, Thirty-Eighth AAAI
Conference on Artificial Intelligence, AAAI 2024, Thirty-
Sixth Conference on Innovative Applications of Artifi-
cial Intelligence, IAAI 2024, Fourteenth Symposium on
Educational Advances in Artificial Intelligence, EAAI
2014, February 20-27, 2024, Vancouver, Canada, pages
17327–17336. AAAI Press, 2024.

[29] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Q. Yan,
H. Shen, M. Cowan, L. Wang, Y. Hu, L. Ceze,
C. Guestrin, and A. Krishnamurthy. TVM: an auto-
mated end-to-end optimizing compiler for deep learning.
In 13th USENIX Symposium on Operating Systems De-
sign and Implementation, OSDI 2018, Carlsbad, CA,
USA, October 8-10, 2018, pages 578–594. USENIX As-
sociation, 2018.

[30] J. Cho, D. Z. Tootaghaj, L. Cao, and P. Sharma. Sla-
driven ML inference framework for clouds with heterge-
neous accelerators. In Proceedings of Machine Learning
and Systems 2022, MLSys 2022, Santa Clara, CA, USA,
August 29 - September 1, 2022. mlsys.org, 2022.

[31] S. Choi, M. Shahbaz, B. Prabhakar, and M. Rosenblum.
λ-nic: Interactive serverless compute on programmable
smartnics. In 40th IEEE International Conference on
Distributed Computing Systems, ICDCS 2020, Singa-
pore, November 29 - December 1, 2020, pages 67–77.
IEEE, 2020.

[32] J. Clausen. Branch and bound algorithms-principles and
examples. Department of Computer Science, University
of Copenhagen, pages 1–30, 1999.

[33] J. Devlin, M. Chang, K. Lee, and K. Toutanova. BERT:
pre-training of deep bidirectional transformers for lan-
guage understanding. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, NAACL-HLT 2019, Minneapolis,
MN, USA, June 2-7, 2019, Volume 1 (Long and Short Pa-
pers), pages 4171–4186. Association for Computational
Linguistics, 2019.

[34] A. Dhakal, S. G. Kulkarni, and K. Ramakrishnan. Gslice:
controlled spatial sharing of gpus for a scalable inference
platform. In Proceedings of the 11th ACM Symposium
on Cloud Computing, pages 492–506, 2020.

[35] J. Fei, C. Ho, A. N. Sahu, M. Canini, and A. Sapio.
Efficient sparse collective communication and its ap-
plication to accelerate distributed deep learning. In
F. A. Kuipers and M. C. Caesar, editors, ACM SIG-
COMM 2021 Conference, Virtual Event, USA, August
23-27, 2021, pages 676–691. ACM, 2021.

[36] S. P. Fekete and J. Schepers. New classes of lower
bounds for bin packing problems. In International Con-
ference on Integer Programming and Combinatorial
Optimization, pages 257–270. Springer, 1998.

[37] M. Furukawa and H. Matsutani. Accelerating distributed
deep reinforcement learning by in-network experience
sampling. In 30th Euromicro International Conference
on Parallel, Distributed and Network-based Processing,
PDP 2022, Valladolid, Spain, March 9-11, 2022, pages
75–82. IEEE, 2022.

[38] M. R. Garey and D. S. Johnson. Approximation algo-
rithms for bin packing problems: A survey. In Analysis
and design of algorithms in combinatorial optimization,
pages 147–172. Springer, 1981.

[39] T. Geng, A. Li, R. Shi, C. Wu, T. Wang, Y. Li, P. Haghi,
A. Tumeo, S. Che, S. K. Reinhardt, and M. C. Herbordt.
AWB-GCN: A graph convolutional network accelerator
with runtime workload rebalancing. In 53rd Annual
IEEE/ACM International Symposium on Microarchi-
tecture, MICRO 2020, Athens, Greece, October 17-21,
2020, pages 922–936. IEEE, 2020.

[40] P. Gootzen, J. Pfefferle, R. Stoica, and A. Trivedi. DPFS:
dpu-powered file system virtualization. In Proceed-
ings of the 16th ACM International Conference on Sys-
tems and Storage, SYSTOR 2023, Haifa, Israel, June 5-7,
2023, pages 1–7. ACM, 2023.

[41] R. L. Graham, D. Bureddy, P. Lui, H. Rosenstock,
G. Shainer, G. Bloch, D. Goldenerg, M. Dubman,
S. Kotchubievsky, V. Koushnir, et al. Scalable hier-
archical aggregation protocol (sharp): A hardware ar-
chitecture for efficient data reduction. In 2016 First

USENIX Association 2024 USENIX Annual Technical Conference 781

International Workshop on Communication Optimiza-
tions in HPC (COMHPC), pages 1–10. IEEE, 2016.

[42] J. Gu, M. Chowdhury, K. G. Shin, Y. Zhu, M. Jeon,
J. Qian, H. Liu, and C. Guo. Tiresias: A {GPU} cluster
manager for distributed deep learning. In 16th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 19), pages 485–500, 2019.

[43] C. Guo, H. Wu, Z. Deng, G. Soni, J. Ye, J. Padhye, and
M. Lipshteyn. RDMA over commodity ethernet at scale.
In Proceedings of the ACM SIGCOMM 2016 Confer-
ence, Florianopolis, Brazil, August 22-26, 2016, pages
202–215. ACM, 2016.

[44] T. Hayashi, R. Yamamoto, K. Inoue, T. Yoshimura,
S. Watanabe, T. Toda, K. Takeda, Y. Zhang, and X. Tan.
Espnet-tts: Unified, reproducible, and integratable open
source end-to-end text-to-speech toolkit. In 2020 IEEE
International Conference on Acoustics, Speech and Sig-
nal Processing, ICASSP 2020, Barcelona, Spain, May
4-8, 2020, pages 7654–7658. IEEE, 2020.

[45] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-
ing for image recognition. In 2016 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2016,
Las Vegas, NV, USA, June 27-30, 2016, pages 770–778.
IEEE Computer Society, 2016.

[46] P. Jain, X. Mo, A. Jain, H. Subbaraj, R. S. Durrani, A. Tu-
manov, J. Gonzalez, and I. Stoica. Dynamic space-time
scheduling for GPU inference. CoRR, abs/1901.00041,
2019.

[47] M. Jeon, S. Venkataraman, A. Phanishayee, J. Qian,
W. Xiao, and F. Yang. Analysis of large-scale multi-
tenant GPU clusters for DNN training workloads. In
2019 USENIX Annual Technical Conference, USENIX
ATC 2019, Renton, WA, USA, July 10-12, 2019, pages
947–960. USENIX Association, 2019.

[48] Y. Jiang, Y. Zhu, C. Lan, B. Yi, Y. Cui, and C. Guo. A
unified architecture for accelerating distributed DNN
training in heterogeneous GPU/CPU clusters. In 14th
USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2020, Virtual Event, November
4-6, 2020, pages 463–479. USENIX Association, 2020.

[49] N. P. Jouppi, C. Young, N. Patil, D. A. Patterson,
G. Agrawal, R. Bajwa, S. Bates, S. Bhatia, N. Boden,
A. Borchers, R. Boyle, P. Cantin, C. Chao, C. Clark,
J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, T. V.
Ghaemmaghami, R. Gottipati, W. Gulland, R. Hag-
mann, C. R. Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt,
J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan, H. Khaitan,
D. Killebrew, A. Koch, N. Kumar, S. Lacy, J. Laudon,
J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin,

G. MacKean, A. Maggiore, M. Mahony, K. Miller,
R. Nagarajan, R. Narayanaswami, R. Ni, K. Nix, T. Nor-
rie, M. Omernick, N. Penukonda, A. Phelps, J. Ross,
M. Ross, A. Salek, E. Samadiani, C. Severn, G. Sizikov,
M. Snelham, J. Souter, D. Steinberg, A. Swing, M. Tan,
G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasude-
van, R. Walter, W. Wang, E. Wilcox, and D. H. Yoon.
In-datacenter performance analysis of a tensor process-
ing unit. In Proceedings of the 44th Annual Interna-
tional Symposium on Computer Architecture, ISCA 2017,
Toronto, ON, Canada, June 24-28, 2017, pages 1–12.
ACM, 2017.

[50] J. Kim, I. Jang, W. Reda, J. Im, M. Canini, D. Kostic,
Y. Kwon, S. Peter, and E. Witchel. Linefs: Efficient
smartnic offload of a distributed file system with pipeline
parallelism. In SOSP ’21: ACM SIGOPS 28th Sympo-
sium on Operating Systems Principles, Virtual Event /
Koblenz, Germany, October 26-29, 2021, pages 756–771.
ACM, 2021.

[51] T. Kraska, A. Talwalkar, J. C. Duchi, R. Griffith, M. J.
Franklin, and M. I. Jordan. Mlbase: A distributed
machine-learning system. In Sixth Biennial Confer-
ence on Innovative Data Systems Research, CIDR 2013,
Asilomar, CA, USA, January 6-9, 2013, Online Proceed-
ings. www.cidrdb.org, 2013.

[52] C. Lao, Y. Le, K. Mahajan, Y. Chen, W. Wu, A. Akella,
and M. M. Swift. ATP: in-network aggregation for
multi-tenant learning. In J. Mickens and R. Teixeira,
editors, 18th USENIX Symposium on Networked Systems
Design and Implementation, NSDI 2021, April 12-14,
2021, pages 741–761. USENIX Association, 2021.

[53] K. Lee, M. Lam, R. Pedarsani, D. S. Papailiopoulos,
and K. Ramchandran. Speeding up distributed ma-
chine learning using codes. IEEE Trans. Inf. Theory,
64(3):1514–1529, 2018.

[54] J. Lin, K. Patel, B. E. Stephens, A. Sivaraman, and
A. Akella. PANIC: A high-performance programmable
NIC for multi-tenant networks. In 14th USENIX Sympo-
sium on Operating Systems Design and Implementation,
OSDI 2020, Virtual Event, November 4-6, 2020, pages
243–259. USENIX Association, 2020.

[55] M. Liu, T. Cui, H. Schuh, A. Krishnamurthy, S. Peter,
and K. Gupta. ipipe: A framework for building dis-
tributed applications on multicore soc smartnics. In
Proceedings of the ACM Special Interest Group on Data
Communication (SIGCOMM), 2019.

[56] M. Liu, S. Peter, A. Krishnamurthy, and P. M.
Phothilimthana. E3: energy-efficient microservices on
smartnic-accelerated servers. In 2019 USENIX Annual
Technical Conference, USENIX ATC 2019, Renton, WA,

782 2024 USENIX Annual Technical Conference USENIX Association

USA, July 10-12, 2019, pages 363–378. USENIX Asso-
ciation, 2019.

[57] J. Luo, J. Wu, and W. Lin. Thinet: A filter level pruning
method for deep neural network compression. In IEEE
International Conference on Computer Vision, ICCV
2017, Venice, Italy, October 22-29, 2017, pages 5068–
5076. IEEE Computer Society, 2017.

[58] K. Mahajan, A. Balasubramanian, A. Singhvi,
S. Venkataraman, A. Akella, A. Phanishayee, and
S. Chawla. Themis: Fair and efficient GPU cluster
scheduling. In 17th USENIX Symposium on Networked
Systems Design and Implementation, NSDI 2020, Santa
Clara, CA, USA, February 25-27, 2020, pages 289–304.
USENIX Association, 2020.

[59] D. G. Murray, J. Simsa, A. Klimovic, and I. Indyk.
tf.data: A machine learning data processing framework.
Proc. VLDB Endow., 14(12):2945–2958, 2021.

[60] D. Narayanan, K. Santhanam, F. Kazhamiaka, A. Phan-
ishayee, and M. Zaharia. {Heterogeneity-Aware} cluster
scheduling policies for deep learning workloads. In 14th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20), pages 481–498, 2020.

[61] OpenAI. GPT-4 technical report. CoRR,
abs/2303.08774, 2023.

[62] Y. Peng, Y. Bao, Y. Chen, C. Wu, and C. Guo. Optimus:
an efficient dynamic resource scheduler for deep learn-
ing clusters. In Proceedings of the Thirteenth EuroSys
Conference, pages 1–14, 2018.

[63] Y. Peng, Y. Zhu, Y. Chen, Y. Bao, B. Yi, C. Lan, C. Wu,
and C. Guo. A generic communication scheduler for dis-
tributed dnn training acceleration. In Proceedings of the
27th ACM Symposium on Operating Systems Principles,
pages 16–29, 2019.

[64] R. D. Pietro, F. Lombardi, and A. Villani. CUDA leaks:
A detailed hack for CUDA and a (partial) fix. ACM
Trans. Embed. Comput. Syst., 15(1):15:1–15:25, 2016.

[65] Y. Qiu, Q. Kang, M. Liu, and A. Chen. Clara: Perfor-
mance clarity for smartnic offloading. In Proceedings
of the 19th ACM Workshop on Hot Topics in Networks,
pages 16–22, 2020.

[66] F. Romero, Q. Li, N. J. Yadwadkar, and C. Kozyrakis.
Infaas: Automated model-less inference serving. In
2021 USENIX Annual Technical Conference, USENIX
ATC 2021, July 14-16, 2021, pages 397–411. USENIX
Association, 2021.

[67] A. Sapio, M. Canini, C. Ho, J. Nelson, P. Kalnis, C. Kim,
A. Krishnamurthy, M. Moshref, D. R. K. Ports, and

P. Richtárik. Scaling distributed machine learning with
in-network aggregation. In 18th USENIX Symposium on
Networked Systems Design and Implementation, NSDI
2021, April 12-14, 2021, pages 785–808. USENIX As-
sociation, 2021.

[68] X. Schepler, A. Rossi, E. Gurevsky, and A. Dolgui. Solv-
ing robust bin-packing problems with a branch-and-
price approach. European Journal of Operational Re-
search, 297(3):831–843, 2022.

[69] J. Skolnick, M. Gao, H. Zhou, and S. Singh. Alphafold 2:
Why it works and its implications for understanding the
relationships of protein sequence, structure, and function.
J. Chem. Inf. Model., 61(10):4827–4831, 2021.

[70] D. Z. Tootaghaj, A. Mercian, V. Adarsh, M. Sharifian,
and P. Sharma. Smartnics at edge for transient com-
pute elasticity. In Proceedings of the 3rd International
Workshop on Distributed Machine Learning, pages 9–15,
2022.

[71] M. Tork, L. Maudlej, and M. Silberstein. Lynx: A
smartnic-driven accelerator-centric architecture for net-
work servers. In ASPLOS ’20: Architectural Support for
Programming Languages and Operating Systems, Lau-
sanne, Switzerland, March 16-20, 2020, pages 117–131.
ACM, 2020.

[72] J. Verbraeken, M. Wolting, J. Katzy, J. Kloppenburg,
T. Verbelen, and J. S. Rellermeyer. A survey on
distributed machine learning. ACM Comput. Surv.,
53(2):30:1–30:33, 2021.

[73] Z. Wang, H. Lin, Y. Zhu, and T. S. E. Ng. Hi-speed
DNN training with espresso: Unleashing the full poten-
tial of gradient compression with near-optimal usage
strategies. In G. A. D. Luna, L. Querzoni, A. Fedorova,
and D. Narayanan, editors, Proceedings of the Eigh-
teenth European Conference on Computer Systems, Eu-
roSys 2023, Rome, Italy, May 8-12, 2023, pages 867–882.
ACM, 2023.

[74] Z. Wang, X. Wu, Z. Xu, and T. Ng. Cupcake: A com-
pression scheduler for scalable communication-efficient
distributed training. Proceedings of Machine Learning
and Systems, 5, 2023.

[75] Z. Wang, Z. Xu, A. Shrivastava, and T. Ng. Zen: Near-
optimal sparse tensor synchronization for distributed
dnn training. arXiv preprint arXiv:2309.13254, 2023.

[76] X. Wei, R. Cheng, Y. Yang, R. Chen, and H. Chen.
Characterizing off-path SmartNIC for accelerating dis-
tributed systems. In 17th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI 23),
pages 987–1004, Boston, MA, July 2023. USENIX As-
sociation.

USENIX Association 2024 USENIX Annual Technical Conference 783

[77] Q. Weng, W. Xiao, Y. Yu, W. Wang, C. Wang, J. He,
Y. Li, L. Zhang, W. Lin, and Y. Ding. Mlaas in the wild:
Workload analysis and scheduling in large-scale hetero-
geneous GPU clusters. In 19th USENIX Symposium on
Networked Systems Design and Implementation, NSDI
2022, Renton, WA, USA, April 4-6, 2022, pages 945–960.
USENIX Association, 2022.

[78] W. Xiao, R. Bhardwaj, R. Ramjee, M. Sivathanu,
N. Kwatra, Z. Han, P. Patel, X. Peng, H. Zhao, Q. Zhang,
et al. Gandiva: Introspective cluster scheduling for deep
learning. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18), pages
595–610, 2018.

[79] J. Xue, Y. Miao, C. Chen, M. Wu, L. Zhang, and L. Zhou.
Fast distributed deep learning over RDMA. In Proceed-
ings of the Fourteenth EuroSys Conference 2019, Dres-
den, Germany, March 25-28, 2019, pages 44:1–44:14.
ACM, 2019.

[80] H. You, C. Li, P. Xu, Y. Fu, Y. Wang, X. Chen, R. G.
Baraniuk, Z. Wang, and Y. Lin. Drawing early-bird tick-
ets: Toward more efficient training of deep networks. In
8th International Conference on Learning Representa-
tions, ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020. OpenReview.net, 2020.

[81] H. Zhao, Z. Han, Z. Yang, Q. Zhang, F. Yang, L. Zhou,
M. Yang, F. C. M. Lau, Y. Wang, Y. Xiong, and B. Wang.

Hived: Sharing a GPU cluster for deep learning with
guarantees. In 14th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2020, Virtual
Event, November 4-6, 2020, pages 515–532. USENIX
Association, 2020.

[82] M. Zhao, N. Agarwal, A. Basant, B. Gedik, S. Pan,
M. Ozdal, R. Komuravelli, J. Pan, T. Bao, H. Lu,
S. Narayanan, J. Langman, K. Wilfong, H. Rastogi,
C. Wu, C. Kozyrakis, and P. Pol. Understanding data
storage and ingestion for large-scale deep recommen-
dation model training: industrial product. In ISCA ’22:
The 49th Annual International Symposium on Computer
Architecture, New York, New York, USA, June 18 - 22,
2022, pages 1042–1057. ACM, 2022.

[83] G. Zhou, X. Zhu, C. Song, Y. Fan, H. Zhu, X. Ma, Y. Yan,
J. Jin, H. Li, and K. Gai. Deep interest network for click-
through rate prediction. In Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, KDD 2018, London, UK,
August 19-23, 2018, pages 1059–1068. ACM, 2018.

[84] Z. Zhou, W. Diao, X. Liu, Z. Li, K. Zhang, and R. Liu.
Vulnerable GPU memory management: Towards recov-
ering raw data from GPU. Proc. Priv. Enhancing Tech-
nol., 2017(2):57–73, 2017.

784 2024 USENIX Annual Technical Conference USENIX Association

	Introduction
	Background
	Distributed Machine Learning Workloads
	Bottleneck on CPUs
	Sub-optimal Accelerator Scheduling
	SmartNIC Comes Into Help

	Conspirator Design
	Design Overview
	SmartNIC-Aided Control Plane
	ML workload Scheduling on Heterogeneous nodes
	Problem Formulation
	Greedy Heuristic

	Evaluation
	End-To-End Evaluation
	Evaluation Setup
	Results

	ML Workload Scheduling

	Discussion
	Related Work
	Conclusion

