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Abstract
Tiered memory, combining multiple memory components
with different performance and capacity, provides a cost-
effective solution to increase memory capacity and improve
memory utilization. The existing system software to manage
tiered memory often has limitations: (1) rigid memory pro-
filing methods that cannot timely capture emerging memory
access patterns or lose profiling quality, (2) rigid page demo-
tion (i.e., the number of pages for demotion is driven by an
invariant requirement on free memory space), and (3) rigid
warm page range (i.e., emerging hot pages) that leads to unnec-
essary page demotion from fast to slow memory. To address
the above limitations, we introduce FlexMem, a page profiling
and migration system for tiered memory. FlexMem combines
the performance counter-based and page hinting fault-based
profiling methods to improve profiling quality, dynamically
decides the number of pages for demotion based on the needs
of accommodating hot pages (i.e., frequently accessed pages),
and dynamically decides the warm page range based on how
often the pages in the range is promoted to hot pages. We
evaluate FlexMem with common memory-intensive bench-
marks. Compared to the state-of-the-art (Tiering-0.8, TPP, and
MEMTIS), FlexMem improves performance by 32%, 23%,
and 27% on average respectively.

1 Introduction

Motivation. The surge of memory cost and memory con-
sumption creates challenges for building efficient data centers
while reducing total cost of ownership (TCO). It has been
reported that memory accounts for 50% of Microsoft Azure’s
server costs [68] and 37% of Meta’s server costs [43]. On
the other hand, the memory consumption of many applica-
tions (e.g., quantum mechanical methods [8, 41], in-memory
database [24,25,31], graph analysis [6,7,67,81,87], and large
AI model inference and training [44, 54, 61, 69]) easily reach
the TB scale and call for the support of larger memory.

Recently memory tiering appears as a cost-effective solu-
tion to reconcile the conflict between the increase of memory

cost and increase of the demands for larger memory capacity.
Memory tiering connects multiple memory components with
different capacities and performance (in terms of latency and
bandwidth). In a tiered memory system, the fast-memory tier
is characterized with higher performance but smaller capacity,
while the slow-memory tier is characterized with higher capac-
ity but lower performance. As a result, the tiered memory can
bring larger memory capacity with lower cost. Furthermore,
the recent emergence of advanced memory technologies (such
as Compute Express Link (CXL) [1, 27, 85] and non-volatile
Optane memory [19]) makes the tiered memory feasible and
performance-beneficial [13, 20–23, 51, 62, 72].

The tiered memory demands a memory management sys-
tem because of performance asymmetry across memory com-
ponents. Such a system should make the best use of the fast-
memory tier for high performance while minimizing the page
management overhead. The overhead can come from memory
profiling to determine page access frequency and recency,
page migration, and page formation (forming and splitting
huge pages). The overhead can also come from efforts to mit-
igate the translation cost of the address in the high capacity
memory tier [40, 49, 50], classify pages [22, 26, 43, 51, 71],
and avoid page ping pong migration [26, 43, 56].

Problems. There are recent solutions to manage the tiered
memory from the perspective of system software [22, 26, 43,
51, 56, 71, 82]. These efforts often inherit traditional designs
in memory systems to build a unified, NUMA-based memory
abstract and page migration (e.g., AutoNUMA [10], AutoTier-
ing [22], and Tiering-0.8 [71]). These efforts also customize
the traditional designs to support the tiered memory systems
(e.g., providing flexibility for cross-tier page migration [22],
supporting rich memory tiers [22, 56, 71], and decoupling
memory allocation and reclaim [43]). However, the inherent
limitations in the traditional designs prevent the effectiveness
of the recent solutions from handling the tiered memory. We
summarize these limitations as follows.

First, the page profiling method lacks the flexibility to
timely capture time-changing access patterns. The common
page-profiling methods can be broadly classified into perfor-
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mance counter-based and NUMA hint fault-based (or fault-
based for short). The performance counter-based profiling
method typically uses multiple time intervals to accumulate
memory accesses to pages to confirm the page hotness and
prevent false positive detection of hot pages. This method can
accurately capture the invariant hot-page set, but be slow to
adapt to time-changing access patterns. The fault-based profil-
ing method decides the page hotness based on the records of
sporadic page accesses, which can opportunistically capture
the emerging hot pages, but can mistakenly identify a cold
page as hot. In conclusion, there is no profiling method that
is sensitive to the change of the hot-page set while remaining
accurate.

Second, the page demotion (from fast memory to slow
memory) lacks the flexibility to accommodate upcoming page
promotion (from slow memory to fast memory). The page de-
motion migrates less frequently accessed pages (cold pages)
to slow memory, which is inevitable to save fast memory
space for hot pages to promote. Page demotion is critical for
an application with varying execution phases and dynamic
hot page sets, which demands frequent page exchanges be-
tween fast and slow memories. However, we observe that the
current page demotion in the traditional designs is highly inef-
fective, leading to a large number of page promotion failures
(detailed in Section 3). The existing solutions for the tiered
memory largely inherit this limitation, and cannot timely pro-
mote hot pages and hence lose performance, no matter how
page promotion is optimized.

Our solution. We introduce a transparent page manage-
ment system for the tiered memory, FlexMem, aiming to ad-
dress the above problems.

To address the page profiling problem, we combine the
performance counter-based and fault-based profiling methods.
The major challenges of combining them come from how to
coordinate the two methods in terms of page-promotion tim-
ing and reconcile the disagreement between the two methods
regarding the decision of hot pages. To address the challenges,
FlexMem uses a unified promotion interval and gives the two
profiling methods equal opportunities to contribute hot pages;
also, the hot pages identified by the fault-based method, al-
though recognized as cold by the performance counter-based
method, are not immediately demoted until the two methods
reach agreement on the page hotness.

To address the page demotion problem, we realize that the
current page demotion is essentially driven by the availability
of fast memory space, not by the urgency of page promotion.
As a result, the constant pace of page demotion employed in
the existing solutions may not be able to match the pace of
page migration, hence leading to frequent page promotion
failures. We introduce a mechanism to dynamically adapt the
demotion rate (i.e., how fast to demote pages) guided by the
frequency of page promotion failures and effectiveness of
recent page promotion.

Beyond the above contributions, we identify the ineffec-

tiveness of the warm page mechanism in the state-of-the-
art [26, 56]. This mechanism is used to prevent unnecessary
demotion: some pages are becoming less frequently accessed
but are not demoted as cold pages; instead, they are classified
as warm pages without demotion unless the free fast mem-
ory space is really scarce. The existing mechanism classifies
pages as warm when their position in the memory access
histogram is only one bin away from hot pages. This classifi-
cation method is rigid because those warm pages whose posi-
tions are farther can be demoted and promoted later on, which
is ineffective. To address this problem, FlexMem dynamically
changes the range of warm bins based on the estimation of
the bin’s potential to become hot.

We summarize the major contributions of this paper as
follows.

• We identify three performance problems based on a thor-
ough analysis of the state-of-the-art page management sys-
tems for the tiered memory: (1) differences in guiding page
promotion between different memory profiling methods,
(2) frequent promotion failures, and (3) ineffective identifi-
cation of warm pages.

• We introduce FlexMem, a page management system for the
tiered memory, aiming to address the three problems based
on adaptive page profiling (using two profiling methods
to get the best of two worlds), adaptive page demotion to
reduce page promotion failures, and adaptive warm bins.

• We evaluate FlexMem with representative memory-
intensive applications and compare FlexMem with three
state-of-the-art systems (Tiering-0.8 [71], TPP [43], and
MEMTIS [26]). FlexMem outperforms them by 28% on
average (geomean). FlexMem reduces the page migration
failure by 25% and improves the fast memory usage by
21%.

2 Background

We review the background information in this section.

2.1 Page Migration in Tiered Memory

A page, once recognized as hot, will be promoted from slow
memory to fast memory. However, the promotion can fail
when there is not enough space in fast memory. As a result,
the hot page stays in slow memory, leading to performance
loss. Linux and existing efforts (e.g., TPP and AutoTiering)
proactively reclaim fast memory: when the free space in a fast
memory node is lower than low_watermark (i.e., a thresh-
old), the node is considered under memory pressure and page
reclamation for that node is initiated until the free space is
right above the watermark. The page reclamation is not in the
critical path of page migration or allocation. However, when
the memory node is under pressure, the freed memory space
is constrained and up to low_watermark.
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To avoid promotion failures, existing solutions, such as
MEMTIS, limit the pages to promote within the available free
space in fast memory without relying on page reclamation.
This method, however, makes less effective use of fast mem-
ory. Other solutions, such as MTM [55] and Unimem [74],
demote pages as demanded when the promotion failure is
about to happen. This extends the critical path of page promo-
tion, leading to higher page-migration overhead.

2.2 Memory Profiling

Technically, there are two common memory profiling methods
in the state-of-the-art tiered memory systems. We discuss
them as follows.

Triggering NUMA hinting faults. A kernel task routinely
samples a range of a process’s memory (256MB of pages
by default [10]) on each NUMA node. To sample a page, a
specific reserved bit (the _PAGE_PROTNONE bit) in the PTE
is set. When a sampled page is accessed, a minor page fault
(a.k.a. a NUMA hinting fault) is generated, and the reserved
bit is reset. Therefore, by counting the number of NUMA
hinting faults, we can estimate page access frequency. This
method is traditionally used for NUMA balancing (AutoN-
UMA [10]), but used by multiple tiered memory systems (e.g.,
AutoTiering [22], Tiering-0.8 [71], and TPP [43]).

Using performance counters. Performance counters are
special registers in the CPU that can be configured to count
specific architecture events such as last-level cache (LLC)
misses and branch mispredictions. If configured to use pro-
cessor event-based sampling (PEBS), the processor can write
an event record to a preallocated memory buffer after a per-
formance counter overflows. The existing work commonly
takes samples on retired LLC load misses and retired store
instructions, which record the virtual memory address tar-
get for the sampled events. This method is used in recent
work [14,26,29,34,51]. Using the performance counter-based
method, there is usually page metadata associated with each
page to record the number of accesses to that page.

The NUMA hinting faults-based method, relying on soft
faults can be expensive. Because of the high performance over-
head, this profiling method must limit the number of pages
to be sampled (i.e., profiled) in a time interval. For example,
in AutoNUMA, within a profiling time interval (1000 ms, by
default), only 256MB of pages are sampled for profiling. The
whole address space is segmented into a series of 256MB-
sized memory regions, and these regions are profiled one by
one. As a result, the pages chosen for sampling are not driven
by the previous profiling results or page hotness.

In addition, the fault-based method does not use many
records of memory accesses to decide the promotion of a
page in slow memory. For example, AutoNUMA and TPP
use an active list and an inactive list to organize pages. The
pages on the active list are subject to promotion. To be on the
active list, a page only needs to be accessed twice. Tracking

such a small number of memory accesses is used to reduce
performance overhead. However, this compromise can lead
to substantial false positives in the detection of hot pages, i.e.,
a page is recognized as hot for promotion, but is not accessed
often.

In contrast to the fault-based method, the performance
counter-based method uses a large number of memory ac-
cesses to decide the promotion of a page. This is because of
the relatively small overhead of using performance counters.
For example, in MEMTIS, the profiled pages are organized
into a 16-bin histogram based on page accesses. The n-th
bin has the range of page accesses [2n, 2n+1). The pages
falling into the high bins (e.g., the 15-th or 16-th bins) are
subject to promotion. As a result, the emerging hot pages may
take a while to be recognized by the performance counters
as promotion candidates. This creates a profiling problem
for those applications with time-changing memory access
patterns. However, with performance counters, a page, once
recognized as hot, is highly likely to be hot.

3 Motivation

We evaluate three state-of-the-art tiered memory systems:
TPP, AutoNUMA, and MEMTIS. We use a server equipped
with Optane and DRAM as slow and fast memories. Detailed
hardware specifications can be found in Section 8.1. Table 1
summarizes the workloads we use for evaluation. We have
the following observations that drive our design in FlexMem.

Observation 1: no single profiling method is a perma-
nent winner. We compare the performance of TPP (using
the fault-based profiling) and MEMTIS (using the perfor-
mance counter-based profiling), as shown in Figure 1. We
can see that no method is a permanent winner and different
workloads require different profiling methods: in some cases
(e.g., FT and SP), the fault-based profiling wins while in other
cases (e.g., Btree, Silo, Graph500, and LU), the performance
counter-based profiling wins.

To identify the root causes, we further collect the number
of fast memory accesses 1, as shown in Figure 2. Comparing
Figures 1 and 2, we find there is a clear positive association
between the performance of profiling methods and the num-
ber of fast memory accesses, i.e., the larger the number of
fast memory accesses, the better the performance of profiling
methods. It motivates us to employ the fault-based profiling
in conjunction with the performance counter-based profiling
in an adaptive manner to enjoy the best of both worlds.

Observation 2: page promotion failures happen often.
Figure 3 reports the rates of page promotion failures with
TPP (Figure 3a) and AutoNUMA (Figure 3b) respectively.
The failure rate is computed as the rate of the number of
pages that need to be promoted but fail (due to the limited fast

1We exclude fast memory accesses due to page migration and only collect
those from the workloads.
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Figure 1: Performance comparison between the fault-based
and performance counter-based (PEBS-based) profiling meth-
ods. The numbers on top of each bar are the performance in
seconds.

Figure 2: The number of fast memory accesses, excluding
those from page migrations.

memory space) to the total number of pages promoted to fast
memory successfully. We can see that TPP and AutoNUMA
both suffer from significant page promotion failures, with an
average 83% failure rate for TPP and an almost 100% failure
rate for AutoNUMA. The reasons are as follows.

For TPP, it uses a threshold-based mechanism to proactively
determine when page demotion should happen to reclaim fast
memory (detailed in Section 2.1). This mechanism is con-
strained by the predefined threshold and thus may not reclaim
sufficient space in fast memory for future page promotion.
For AutoNUMA, it leverages NUMA balancing to allocate
pages in fast memory, which does not provide a page demo-
tion mechanism for CPU-less memory nodes (slow memory
in our evaluation platform). This is because the page demo-
tion based on NUMA balancing works only when memory
accesses can be attributed to CPUs. TPP is better than AutoN-
UMA because TPP triggers demotion to proactively reclaim
fast memory. We also evaluate MEMTIS with the same work-
loads (not shown in Figure 3). With MEMTIS, the rate of
page promotion failures is less than 1%. However, it makes
less effective use of fast memory, as discussed in Section 2.1.

Observation 3: warm-page set changes over time. We
take Silo as an example to study the change of warm-page
set. We use PEBS to collect page access frequency, based
on which, we categorize pages into different bins. Bini has
the range of page accesses [2n, 2n+1). For every 0.1-million
sampled PEBS records, we update each bin size based on page
accesses and for every two-million sampled PEBS records, we
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Figure 3: The rate of the number of pages failed to be pro-
moted to the total number of pages promoted to fast memory
successfully.

halve page accesses to decay the impact of old accesses and
give more weight to recent accesses, which is aligned with
MEMTIS. In MEMTIS, this is called “cooling operation”.
Figure 4 draws an overview of the change of bin sizes in
three phases of Silo: beginning, middle, and end 2. The three
phases evenly divide the execution time of Silo. We make the
following observations.

Beginning phase. Cold pages are getting accesses and these
pages are moving towards hot bins. At sample1 in Figure 4a,
95% of pages are located at bin1 and bin2. In this phase,
the pages in low bins are quickly shifting-up to higher bins
because of the accumulation of memory accesses. For bin1,
96% of pages are promoted to higher bins (i.e., bin2 and
bin3) within two sample intervals. However, for bin2 and
bin3, at least 50% of pages are promoted to higher bins within
four intervals. Compared to bin1, bin2, and bin3, bin4 needs a
longer duration, spanning seven intervals, to ascend to higher
bins. This extended interval is attributed to the additional time
required for accumulating a sufficient number of memory
accesses.

Middle and end phases. Figures 4b and 4c show the change
of bin sizes in the middle and end phases. The hot page thresh-
old is 7 (i.e., bin7). This means all the pages above bin7 are
hot. All the pages below bin7 are cold. However, We find that
the majority of the pages in cold bins are moving between
bin5 and bin6. In Figure 4b, pages in bin5 shift to bin6, shown
from sample3 to sample19. At sample20, we see that the size
of bin5 suddenly increases. That is because of the cooling
operation, which makes the pages shifting to bin6 fall back to
bin5. The page shifting indicates that pages in the cold bins
are being frequently accessed by the application.

In conclusion, in the beginning phase, the warm pages are
in bin1 to bin5, while in the middle and end phases, the warm
pages are in bin5 and bin6. No single bin can effectively
capture warm pages.

2Because of the page limitation, we only show 20 continuous samples for
each phase.
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Figure 4: Bin sizes in three phases of Silo.
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Figure 5: Overview of FlexMem.

4 Overview

FlexMem has three major designs.
(1) Adaptive profiling. This design combines the perfor-

mance counter-based and fault-based profiling methods such
that FlexMem can use the fault-based profiling method to op-
portunistically and timely identify emerging hot pages (solv-
ing the limitation of the performance counter-based method),
and use the performance counter-based method to reduce
the possibility of falsely identifying hot pages (solving the
limitation of the fault-based method).

To coordinate the two profilers for page promotion,
FlexMem suspends the irregular page promotions in the fault-
based profiling method until the performance counter-based
profiling method is ready to promote pages on a regular basis.
To coordinate the two profilers for page demotion, a hot page
identified by the fault-based profiling method, even though
recognized as cold by the performance counter-based profil-
ing method, is not demoted, until FlexMem finds that the page
has few accesses in the next few time intervals. This method
prevents unnecessary page demotion for emerging hot pages.
FlexMem also enriches the histogram that tracks memory
accesses across pages by adding page address information,

which leads to simplification of data structure (i.e., the page
promotion list). In addition, FlexMem couples the determi-
nation of the hot page threshold with page migration instead
of decoupling them as in the existing work. This coupling
method ensures the correct migration of hot and cold pages.

(2) Adaptive demotion. In FlexMem, the number of pages
to demote is dynamically determined by the number of cold
pages in fast memory and the number of pages to promote
but fails. Promoting some pages identified by the fault-based
profiling method may not be effective, when the pages do not
become hot in the near future as expected. The page demotion
considers this kind of ineffectiveness: FlexMem considers
if the most recent page promotion from the fault-based pro-
filing method leads to the discovery of emerging hot pages.
FlexMem quantifies the successful discovery and dynamically
changes the number of page demotions in proportion to the
increase (or decrease) of successful discovery.

(3) Adaptive warm bins. FlexMem does not always use a
single bin for warm pages (i.e., the warm bin) as the existing
work. Instead, it dynamically extends the lower bound of
warm bins towards the cold bins after the hot page threshold
is selected. A cold bin can be counted as a warm bin when a
certain percentage of pages in the cold bin were promoted to
higher bins recently.

Figure 5 overviews the design of FlexMem.

5 Adaptive Profiling

The adaptive profiling method in FlexMem combines a per-
formance counter-based profiler and a fault-based profiler.

Performance counter-based profiler is built upon the
profiler in MEMTIS and MTM [55], but with significant ex-
tension to improve accuracy and enable easy interaction with
the fault-based profiler.

Existing design in MEMTIS and MTM is employed in
FlexMem, discussed as follows. FlexMem counts memory
accesses by sampling LLC load misses and store instructions
using PEBS. Each memory access is attributed to a page. The
number of accesses to a page is accumulated using the expo-
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nential moving average (EMA). In other words, assuming that
the number of accesses to a page in the ith profiling interval is
x, and the EMA at the (i−1)th interval is EMAi−1, then the
EMA in the ith interval is as follows.

EMAi = k× x+(1− k)×EMAi−1 (1)

where k is a parameter to balance the contribution of history
profiling records and the current record.

Using EMAs collected for memory access samples,
FlexMem builds a page access histogram. In particular, the
histogram consists of 16 bins, and each bin has a range of
EMA following an exponential scale. For example, nth bin
has the range of EMA [2n,2n+1). The value of each bin is
the number of distinct base pages in the EMA range. Using
the histogram, we decide the hot page threshold. This thresh-
old is a bin index, h. The accumulated size of those pages
in the bin h and above is just smaller than the fast memory
capacity. Such a threshold is periodically updated because
the histogram is updated all the time. MEMTIS introduces a
warm page threshold w and a cold page threshold c (w = h−1
and c = w−1).

As MEMTIS, FlexMem uses two kernel threads per mem-
ory node, kimgrated and kprof, to implement the perfor-
mance counter-based profiler. When a page access is sam-
pled, kprof updates the EMA of the page and updates the
histogram. If the page becomes hot, the page is moved to a
promotion list. kmigrated awakes periodically to examine
the promotion list and move hot pages in slow memory to
fast memory. When the free space in fast memory is below a
threshold (2% of fast memory capacity), kmigrated performs
page demotion. The cold pages (and warm pages if there is
not enough space in fast memory) are demoted.

New design. Different from the existing work, the unique-
ness of our performance counter-based profiler comes from
two perspectives. (1) Couple the determination of the hot
page threshold with page migration. In the existing work
MEMTIS, there is no synchronization between the adaptation
of the hot page threshold and page migration: the threshold
adaptation happens every 100,000 sampled events and the
page migration happens every 500ms. This creates a problem:
some warm/cold pages become hot since the last threshold-
adaption, but the page migration cannot timely migrate these
pages because of using a stale hot-page threshold.

To address this problem, FlexMem couples the determina-
tion of the hot page threshold with page migration. In par-
ticular, whenever kmigrated awakes, it adapts the threshold
using the most recent histogram, decides hot pages, and then
migrates them. This method can reduce the delay of migrating
recent hot pages.

(2) Embed page addresses into the histogram. Given the
design (1), the design (2) is used to reduce the runtime over-
head. The traditional histogram does not have information on
page addresses: for each bin, the histogram only records the
number of pages. Such a histogram is enough to determine

the hot page threshold, and the page migration only needs the
promotion list to determine which pages should be migrated.
However, with the design (1), the hot page threshold is deter-
mined right before page migration. As a result, the promotion
list must be re-examined to determine hot pages, which can
be time-consuming.

To address this problem, FlexMem extends the histogram
by adding page addresses. Each bin not only has the number of
pages but also the addresses of those pages. The pages are clas-
sified into slow memory pages and fast memory pages. As a
result, once the hot page threshold is determined, kmigrated
can immediately know which pages should be migrated with-
out using the promotion list. This also saves the overhead of
running the promotion list.

Maintaining the new histogram is lightweight. When a
page access is sampled, kprof updates the page EMA and the
histogram as usual. However, the histogram update may in-
clude adding the page address into a bin when the page needs
to be moved from one bin to another, which is lightweight.

Fault-based profiler uses Linux’s active list and inactive
list. The two lists are LRU-based and serve as a building
block to track page hotness. A page, once found accessed
by counting a page fault, is moved to the active list; once
accessed again, it is immediately promoted from slow memory
to fast memory and moved from the inactive list to the active
list. The above design is also employed in AutoNUMA, TPP,
and Tiering-0.8.

However, the above design creates difficulty in coordinat-
ing the two profilers. In particular, the fault-based profiler
immediately promotes a page, once finding it hot. In contrast,
the performance counter-based profiler promotes pages by
kmigrated at a constant time interval. There is no synchro-
nization between the two profilers. As a result, there is no
good control over how the hot pages decided by the different
profilers should be migrated to fast memory.

Coordination of the two profilers. To address the above
problem, FlexMem does not immediately promote the hot
page decided by the fault-based profiler. Instead, the page is
only moved to the LRU-based active list without page promo-
tion. When kmigrated promotes hot pages, it checks both
the active list and histogram, and promotes pages in the active
list and hot bins in the histogram. In the case that there is
no enough free space in fast memory to host those pages,
FlexMem chooses pages from the active list and hot bins in a
round-robin fashion until reaching the maximum capacity of
fast memory. Using this method, the active list and hot bins
have equal opportunities to contribute hot pages.

Using the above method, there is no need to change the
method of deciding the hot threshold in the performance
counter-based profiler. FlexMem uses the hot threshold only
for this profiler, and relies on the fault-based profiler to op-
portunistically find hot pages.

A hot page in the active list, once promoted, can be im-
mediately subject for demotion by the histogram mechanism,
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because this page may fall into a cold bin. To prevent this
ping-pong effect, we add a countdown timer to the “hot page”
in the cold bin. The countdown timer is initially set to 5, but
counts down by one whenever this page is selected for de-
motion. This page is not demoted until the countdown timer
reaches 0. The countdown timer is disabled when the page is
promoted to a hot bin.

Using this countdown timer, the hot page identified by the
fault-based profiler can stay in fast memory and be promoted
to a hot bin, which means that the two profilers reach an
agreement on the page hotness. In addition, if this hot page
stays in the cold bin and is falsely detected by the fault-based
profiler, the countdown timer allows us to demote the page
and correct the page-promotion mistake.

Besides the above change to the page demotion in the
performance counter-based profiler, we remove the page de-
motion mechanism in the fault-based profiler, because the
performance counter-based profiler is more reliable to decide
page demotion.

Thread management for the profilers. The two profilers
share a kernel thread, kmigrated, for page migration. Be-
sides this thread, the performance counter-based profiler has
kprof, and the fault-based profiler has a page-fault handler to
update the (in)active list. kmigrated is also used for adaptive
demotion (Section 6) and kprof is also used to implement
adaptive warm bins (Section 7).

Discussion on the profiling overhead. The profiling time
overhead is small and remains at the same level as MEMTIS
(i.e., 2% on a single CPU). This is because memory access
tracking and page migration happen asynchronously in the
background. In addition, compared with MEMTIS, FlexMem
removes the promotion list, but adds an overhead of adding
page addresses into the bins and add/update countdown timers
in a few pages, which is small.

Time intervals. Like existing tiered memory systems,
FlexMem has multiple time intervals. (1) The hot-page thresh-
old adaptation interval is the same as the one in MEMTIS
which takes a sample every 100K PEBS events; (2) there is
no page migration interval. Once the hot page threshold is
updated, FlexMem migrates pages (including page promotion
and demotion); (3) the profiling interval (such as the time du-
ration used to collect performance events in the performance
counter-based profiler or the time duration used to scan a
memory address range in the fault-based profiler) remains the
same as the original profilers.

6 Adaptive Demotion

The demotion rate is defined as the number of pages to demote
from fast memory to slow memory in a time interval (the hot-
page threshold adaptation interval). Most existing solutions
(e.g., TPP and MEMTIS) use a threshold to trigger page de-
motion: when the free fast-memory space is below a threshold

(e.g., 2% of the fast memory size), the page demotion (page
reclamation) happens.

FlexMem dynamically decides the demotion rate at run-
time. The demotion rate (DR) is calculated in Equation 2. DR
is controlled by ① the number of cold pages in the fast mem-
ory, ② the number of hot pages identified by the histogram
(promo_ f ailshisto) to promote but fails, and ③ the number of
hot pages identified by the fault-based profiler to promote but
fails (promo_ f ailsp f ).

DR = cold_pages+ promo_ f ailshisto+

α× promo_ f ailsp f
(2)

The promotion failures in ② are caused by real hot pages
identified by the history information. The promotion of those
pages is necessary, and hence the demotion must reclaim
enough pages to accommodate those hot pages. The promo-
tion failures in ③ are caused by hot pages opportunistically
identified (called promising hot pages). The promotion of the
promising hot pages is subject to the effectiveness of promot-
ing them. The effectiveness of promoting them is quantified
by a variable, α. α ∈ [0,1]. A larger α indicates that more
promising hot pages have been correctly identified recently
and FlexMem should demote more pages to allow the promo-
tion of promising hot pages. Hence α can work as a metric to
guide the promotion of promising hot pages (or page reclaim).
We describe the above method in more detail as follows. Al-
gorithm 1 depicts details.

Counting cold pages in fast memory. The histogram main-
tains page information for bins: for each bin, there are page
addresses classified into slow memory pages and fast memory
pages (see Section 5). FlexMem counts the number of pages
in fast memory and stores them in an array BS f c for all bins,
shown in Algorithm 1.

Adaptive α. α is initially set as 1 to maximize the promo-
tion of promising hot pages, and then dynamically changed
according to how many promising hot pages are mistakenly
promoted. We leverage the countdown timer mechanism to
determine whether a promising hot page is mistakenly pro-
moted: if the page is not promoted to any bin before the timer
reaches 0, it is mistakenly promoted. We count such pages
since the last page demotion.

The change of α is aligned with the change of the promo-
tion mistakes. In particular, FlexMem records the number
of mistakenly promoted pages (denoted by m), and the total
number of promoted promising-hot-pages (denoted by t p).
The new α is calculated as follows.

α = 1−m/t p (3)

m/t p quantifies the degree of promotion mistakes. When
m/t p is large, it means that the promoted pages are not ac-
tually hot. As a result, α should decrease to discourage the
opportunistic promotion caused by the fault-based profiling.
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Algorithm 1: Adaptive demotion rate.

BS f c : # cold pages in f ast memory f or each bin;
N f c : total number o f cold pages in f ast memory;
m : # o f mistakenly promoted pages;
t p : # promoted pages by f ault−based pro f iling;
DR : demotion rate;
Twarm : the lower boundary o f the warm bins;

1 i← 0;
2 N f c← 0;

// calculate #cold pages in fast memory.
3 while i < Twarm do
4 N f c← N f c +BS f c[i];
5 i← i+1;
6 end

// update α

7 α← 1−m/t p;

// calculate the demotion rate.
8 DR← N f c + promo_ f ailhisto +α∗ promo_ f ailp f ;

// reset the statistics.
9 promo_ f ailhisto← 0;

10 promo_ f ailp f ← 0;
11 m← 0;
12 t p← 0

Overhead analysis. We allocate an array BS f c to store the
statistics for cold pages. This array only consumes 64 bytes
(4 bytes for each bin). FlexMem only needs to run Algorithm
1 to determine DR, which is lightweight, because only Twarm
of bins need to be examined to count cold pages (Twarm is the
minimum index of warm bins), and Twarm is bounded by 16
(the total number of bins).

7 Adaptive Warm Bins

Definition of warm pages. The warm pages in FlexMem is
a category of pages between “hot” and “cold” in terms of
access frequency. The warm pages are about to become hot
but can be unnecessarily demoted when page reclaim happens.
Demoting warm pages that will become hot increases slow
memory accesses and adds extra page migration when back-
promotion.

MEMTIS designates the bin whose index is just one less
than the minimum index of the hot bins (i.e., binhot) as the
warm bin. All the other bins are either hot or cold. However,
as illustrated in Figures 4a-4c, the range of warm bins can
vary across execution phases.

Deciding the range of warm bins. FlexMem dynamically
adjusts the lower bound of warm bins, and the upper bound is
binhot −1. The adjustment happens right after the adjustment
of the hotness threshold binhot . The determination of hot pages

Algorithm 2: Adaptive warm bins

Thot : the current hotness threshold;
Twarm : the current lower bound o f warm bins;
BS : the size o f each bin;
MS : the number o f shi f ting−up pages in each bin;

1 w← 0;
2 i← Thot −1;

// calculate the lower bound of warm bins.
3 while i >= 0 and MS[i]>= β∗BS[i] do
4 i = i−1;
5 w = w+1;
6 end

7 Twarm← Thot −w;

// Reset the MS
8 for i← 0 to bhot −1 do
9 MS[i]← 0;

10 end

is not impacted by the determination of warm bins.

FlexMem uses a greedy strategy to decide the lower bound,
shown in Algorithm 2. The algorithm expands the warm page
range from Thot−1 as far as possible under certain conditions.
The condition to count a bin as a warm bin is whether there
are many pages in that bin shifting to higher bins. If yes, that
indicates that the bin is becoming hot and should not be used
for page demotion. We introduce a parameter β as a threshold
to determine if a bin is warm. β is the ratio of the number
of shifting-up pages to the total number of pages in a bin. A
larger β leads to a smaller range of warm bins, and vice versa.

Algorithm 2 gives more details. The algorithm takes four
variables as input: the current hotness threshold, the variable
for recording the upper bound of warm bins, the number of
pages in each bin, and the number of shifting-up pages in
each bin. At Lines 3-6, the algorithm attempts to find a bin
that meets the warm-bin condition. Line 7 updates the lower
bound of warm bins.

Building BS and MS. Algorithm 2 uses two arrays (BS
and MS) to record the number of pages in each bin, and the
number of shift-up pages in each bin within a timer interval
(the hot-page threshold adaptation interval). Whenever there
is a PEBS performance event, the two arrays are updated
accordingly.

Overhead analysis. We allocate an extra array BS and
MS to record the moving page size and the size of each bin.
These two arrays only consume 128 bytes (8 bytes for each
bin). FlexMem runs Algorithm 2 after changing the hotness
threshold. The algorithm needs to check at most Thot bins to
determine the lower bound of warm bins and Thot is bounded
by 16 (the total number of bins), which is lightweight.
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8 Evaluation

We implement FlexMem 3 in Linux Kernel v5.15. We extend
the implementation of MEMTIS: we maintain a page-address
list for each bin in the histogram using page frame number
(PFN) [32]; we record the number of page promotion failures
and the number of pages moved between bins, and feed these
numbers to the adaptive demotion and adaptive warm bin al-
gorithms; we also change the demotion mechanism to demote
cold pages till the warm bins.

We evaluate FlexMem by answering the following ques-
tions:

• How does FlexMem perform with memory-intensive
applications (such as HPC workloads and in-memory
database engines), compared with the state-of-the-art
memory tiering solutions?

• Can FlexMem use fast memory effectively?

• Can FlexMem address the existing memory management
problems effectively?

8.1 Evaluation Methodology
Evaluation platform. We evaluate FlexMem on a dual-socket
server equipped with Intel Xeon Gold 6252 @2.10 GHz pro-
cessors (24 cores per socket), where each socket has 6×16GB
DDR4 DRAM (i.e., fast memory), and 6×128GB Intel Optane
DCPMM (i.e., slow memory). Similar to prior works [26, 43],
we use a single socket for our evaluation to avoid NUMA
effects. We use Intel Memory Latency Checker [11] to get
the memory acccess latency of DRAM( 98ns) and Optane
memory( 348ns).

Benchmarks. We use six representative memory-intensive
applications, including a graph processing benchmark
(Graph500) [45], an in-memory database engine (Silo) [70],
an in-memory index lookup benchmark (Btree) [58], and three
NAS parallel benchmarks (HPC workloads) [3, 46]: discrete
3D fast Fourier Transform (FT), Lower-Upper Gauss-Seidel
solver (LU), and Scalar Penta-diaagonal solver (SP). Table 1
details these benchmarks.

Comparison targets. We compare FlexMem to three
state-of-the-art tiered memory systems: TPP, MEMTIS, and
Tiering-0.8. We enable transparent huge page (THP) for huge
page allocation. We run each benchmark with 24 threads and
report its relative performance normalized to the performance
of running it entirely in slow memory (i.e., the all-NVM case).

Memory tiering configurations. Due to the relatively
small working set size of the benchmarks for evaluation, we
reduce the fast memory size to 30GB to evaluate the effec-
tiveness of page migration. More specifically, for MEMTIS,
we use cgroups to limit the free fast memory size, and for
TPP and Tiering-0.8, we use the memmap kernel parameter to

3https://github.com/PASAUCMerced/FlexMem

Table 1: Benchmarks for evaluation.

Benchmark Description Working set size
FT Discrete 3D fast Fourier Transform. 80.4GB

Graph500 Generation and search of large graphs 120GB
Btree In-memory index lookup benchmark 64GB
Silo In-memory database engine 89.5GB
LU Lower-Upper Gauss-Seidel solver. 134GB
SP Scalar Penta-diagonal solver 80GB

limit the free fast memory size. For other configurations, we
use the default values in MEMTIS and TPP. For Tiering-0.8,
we use the recommended values.

8.2 Overall Performance
Figure 6 shows the performance improvement of Tiering-
0.8, TPP, MEMTIS, and FlexMem over all-NVM. FlexMem
performs best in all the benchmarks, and outperforms Tiering-
0.8, TPP, and MEMTIS by 32%, 23% and 27% on average
respectively. Tiering-0.8 performs worst, because it sets an
upper bound on the promotion and demotion rates to limit
the utilization of memory bandwidth and the promotion of
hot pages. We build a heatmap for each benchmark, as shown
in Figure 7, to visualize the change of page hotness during
program execution. We also collect the numbers of fast mem-
ory and slow memory accesses using performance counters
and calculate their ratio, as shown in Figure 9, to quantify
how effectively the benchmarks use fast memory after page
migration.

8.2.1 NPB benchmarks: FT, SP and LU

FT. FlexMem outperforms TPP and MEMTIS by 32% and
57% respectively. Figure 7a shows its heatmap.

In the beginning phase, the entire address space in FT is
evenly accessed. Hence, MEMTIS successfully marks hot
pages. After a short while, however, most memory accesses
are attributed to the first half of the address space, and the
hot page set keeps changing over time. In this case, MEMTIS
fails to timely and accurately detect and promote emerging hot
pages. Because those “old” hot pages with low access recency
remain in fast memory due to their higher cumulative access
frequency than the emerging hot pages. This is a fundamental
drawback of performance counter-based profiling. Unlike
MEMTIS, TPP and FlexMem employ fault-based profiling
to quickly promote the emerging hot pages and thus deliver
better performance.

FlexMem outperforms TPP because of adaptive demotion.
FlexMem demotes cold pages more quickly for the sake of
better use of fast memory. This conclusion is backed up by
Figure 9. The figure shows the ratio of fast memory accesses
to slow memory accesses. For FT, the ratio is 2.17 and 3.75 for
TPP and FlexMem respectively, indicating FlexMem makes a
better use of fast memory.
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Figure 6: Performance improvement over all-NVM.
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(f) Graph500

Figure 7: Memory access patterns of different benchmarks.

LU and SP. FlexMem outperforms TPP by 8% and 27%
and MEMTIS by 6% and 57% for LU and SP respectively.
Figures 7b and 7c show their respective heatmaps. We can
see that the hot page set changes over time although a small
number of pages periodically become hot. Therefore, timely
and accurately capturing the time-changing hot page set is
the key to success, which TPP and MEMTIS lack. Figure 9
further backs up our conclusion: FlexMem enjoys a higher
ratio (52%) of fast memory to slow memory accesses than
TPP (46%) and MEMTIS (36%).

8.2.2 Graph Processing: Graph500

Graph500 uses a Breadth-First Search (BFS) algorithm to
search for 64 keys within a generated graph. The default
generator in Graph500 is a stochastic Kronecker graph gener-
ator [28]. It is a power-law graph, where a small number of
nodes have the majority of edges (i.e., these nodes require mul-
tiple pages to store their neighbors). During BFS, the pages
containing neighbor information are frequently accessed.

FlexMem outperforms TPP and MEMTIS by 32% and
17% respectively. TPP performs the worst because it demotes
pages without considering their future accesses. We manually
examine its page demotion and find that 25% pages contain-
ing neighbor information are demoted and then promoted
again within a mere two migration intervals, indicating many
unnecessary page migrations. Different from TPP, MEMTIS
categorizes old hot pages as warm to avoid unnecessary page
migration and hence performs better. However, MEMTIS only
considers the pages in a single bin as warm, diminishing the
effectiveness of the warm bin mechanism. FlexMem circum-
vents the above limitations by adopting adaptive demotion
and multiple warm bins.

8.2.3 In-Memory Database Engine: Silo

We use YCSB-C [9] as the substrate to benchmark Silo.
YCSB-C, a minimal C++ version of YCSB, performs 300
million lookup operations per thread. FlexMem outperforms
TPP and MEMTIS by 26% and 13% respectively.

FlexMem outperforms MEMTIS because of its adaptive
warm-bin mechanism. From Figure 4, we can see that mem-
ory pages in Silo get hot progressively instead of abruptly.
Therefore circumventing the demotion of warm pages that
are getting hot is critical, which MEMTIS’s single warm-bin
mechanism fails to address. Figure 10 further backs up our
conclusion. We can see that MEMTIS increases the number of
page migrations (including page demotion and promotion) by
56% compared to FlexMem. Because MEMTIS mistakenly
demotes warm pages and then promotes them soon. FlexMem
outperforms TPP because of its higher accuracy in detecting
hot pages.

8.2.4 In-Memory Index Lookup Benchmark: Btree

We populate Btree with 315-million key-value pairs and per-
form 20-billion random lookup operations. Figure 7d shows
its heatmap. FlexMem outperforms TPP and MEMTIS by
9% and 6% respectively. Further investigation reveals that the
memory accesses in Btree are scattered all over the program’s
address space. As a result, the performance counter-based
MEMTIS needs a longer duration to identify hot pages and
the fault-based TPP is more likely to mistakenly identify hot
pages.
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Figure 8: The number of migration failures in FT.

8.3 Analysis on Page Management
We perform deeper analysis to evaluate FlexMem.

Effectiveness of adaptive demotion. Figure 8 shows the
number of promotion failures at 5-second time intervals when
we run FT with TPP and FlexMem. We exclude MEMTIS
because it has few promotion failures. The figure shows that
compared to TPP, FlexMem cuts promotion failures by 26%
thanks to the adaptive demotion. For all the benchmarks,
FlexMem reduces the promotion failures by 18% on average.

Fast memory and slow memory accesses. We use the
Linux perf tool [33] to collect fast memory and slow memory
accesses and present their ratio in Figure 9. The figure reveals
that for all the benchmarks, FlexMem has a higher ratio than
TPP and MEMTIS, demonstrating that FlexMem makes better
use of fast memory for high performance.

Effectiveness of adaptive warm bins. Figure 11a and
11b show the number of warm pages in Silo and Graph500
identified by FlexMem and MEMTIS respectively. We can
see that FlexMem identifies more pages as warm, leading
to more fast memory accesses (Figure 9) and fewer page
migrations (Figure 10). We observe similar results in the
other benchmarks.

Migration volume. Figure 10 shows the page migration
volume in terms of the number of 4KB pages. For Btree, Silo,
and Graph500, FlexMem has (nearly) the lowest migration
volume because it uses multiple bins for warm pages, avoid-
ing unnecessary migration of warm pages. For FT, LU, and
SP, MEMTIS’ migration volume is 57% and 51% lower than
TPP and FlexMem respectively. This is because of MEMTIS’
inability to timely promote hot pages (due to the slow accu-
mulation of PEBS records) and demote cold pages (due to the
single warm-bin mechanism).

8.4 Sensitivity Analysis
α variance. Figure 12 shows the variance of α at runtime. We
use FT as an example to demonstrate the adaptiveness of α.
α continuously changes between 0 and 1. At some time, the
value drops from 1 to 0 or goes up to 1 from 0 because m is
close to t p and vice versa (see Equation 3).

Sensitivity to the setting of β. Figure 13 shows the sen-
sitivity of Silo and Graph500 to β. We exclude the other
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Figure 11: The number of warm pages identified by MEMTIS
and FlexMem. The workloads are Silo and Graph500.

benchmarks because their performance is insensitive to the
adaptive warm bins. We change β from 10% to 40% and ob-
serve that the default β value enjoys the best performance in
all cases. When β is smaller than the default value, it becomes
difficult to add more warm bins, leading to more unnecessary
page demotion.

Sensitivity to the fast memory size. Figure 14 shows the
performance variance of Silo under different fast memory
sizes. We use Silo as an example, but the other benchmarks
show a similar trend. The figure shows that FlexMem consis-
tently outperforms TPP and MEMTIS. With the increase of
the fast memory size, however, the performance difference
between them becomes smaller. This is because the larger the
fast memory is, the less performance improvement the page
migration delivers.
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8.5 Overhead Analysis

Maintaining histogram. FlexMem maintains a page list for
each bin. The page list is a collection of physical PFN. Record-
ing PFNs incurs at most 0.19% memory overhead in our evalu-
ation. The histogram is maintained by the kprof kernel thread
and the runtime overhead is less than 1% in our evaluation.

Maintaining the page list. We use PFN(page frame num-
ber) as the element in the list. There are only adding and
deleting operations in a linked list. Only when a page’s accu-
mulated access exceeds the range of the current bin, an adding
operation will happen. Only when the page list is going to be
migrated, FlexMem will delete the pages from the head of the
list. Both operations have O(1) time complexity.

9 Related Work

Page management in tiered memory. Recent works [2, 12,
16–18,26,29,35,36,39,42,43,51–55,57,60,71,74–80,82–84]
explored the design of tiered memory systems. AutoNUMA
[39] is designed to improve the performance of applica-
tions running on NUMA hardware systems. Tiering-0.8 [71],
MTM [55] and Nimble [82] target multi-tier memory systems.
Tiering-0.8 leverages runtime memory-bandwidth usage to
decide migration volume. Nimble applies multi-threading
to accelerate huge page migration. HeMem [51], TPP [43],
MEMTIS [26], Pond [29], TMTS [15], MTM [55] and Ther-
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Figure 14: Performance variance when changing the fast
memory size. The results are for Silo.

mostat [2] are designed for two-tiered memory systems.
HeMem uses performance counters and an experience-based
hotness threshold to identify hot pages. Thermostat uses ran-
dom poisoning to identify hot huge pages. TPP sets a water-
mark to trigger page demotion. MEMTIS proposes a dynamic
hotness threshold based on runtime profiling. Pond creates ma-
chine learning models that can accurately predict how much
local and pool memory to allocate to a virtual machine. TMTS
implements an adaptive, hardware-guided architecture to dy-
namically optimize access to the various directly-addressed
memory tiers without faults. MTM [55] uses PEBS to profile
the hot pages and reduce the memory profiling overhead.

Memory profiling. Memory profiling plays a key role
in measuring, analyzing, and optimizing various forms of
inefficiencies in memory subsystems, including high mem-
ory latency [5, 30, 37, 66], redundant memory accesses [48,
63–65, 73], poor locality of reference [38, 59, 86], memory
leaks [4, 47], to name a few. Technically, memory profiling
can be classified into hardware-assisted and software-based
approaches. The former leverages performance counters avail-
able in almost (if not) all CPU processors to collect memory
metrics (e.g., access frequencies of individual pages) at a low
cost (typically less than 5% time and memory overhead). In
contrast, the latter leverages source, intermediate, or binary
code instrumentation to collect memory metrics from pro-
gram execution at a high cost (typically greater than 10× time
and memory overhead), thus significantly perturbing program
behavior. As an online approach, FlexMem uses performance
counters in conjunction with NUMA hinting faults to per-
form non-intrusive, lightweight profiling so as to minimize
interference with the monitored program.

10 Conclusions

Tiered memory system, combining fast memory and slow
memory components, is promising, but brings challenges to
page profiling and migration to decide page allocation and
placement on the memory components in the tiered memory.
Although there are many progresses in the system software to
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manage the tiered memory, their designs often lack flexibility
to capture changing memory access patterns and make the
best use of fast memory. In this paper, we introduce FlexMem
to address the above limitation. By adapting the system de-
signs based on the performance feedback of page demotion
rate and warm bins, and combining two profiling methods to
improve profiling quality, FlexMem outperforms the state-of-
the-art by at least 20% on average.
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