
Open access to the Proceedings of the
2024 USENIX Annual Technical Conference

is sponsored by

Models on the Move: Towards Feasible Embedded
AI for Intrusion Detection on Vehicular CAN Bus

He Xu, Di Wu, Yufeng Lu, and Jiwu Lu, Hunan University and ExponentiAI
Innovation; Haibo Zeng, Virginia Tech

https://www.usenix.org/conference/atc24/presentation/xu-he

This paper is included in the Proceedings of the
2024 USENIX Annual Technical Conference.

July 10–12, 2024 • Santa Clara, CA, USA
978-1-939133-41-0

Models on the Move: Towards Feasible Embedded AI for Intrusion Detection on
Vehicular CAN Bus

He Xu†§, Di Wu†§ , Yufeng Lu†§, Jiwu Lu†§ , Haibo Zeng‡

†Hunan University, China ‡Virginia Tech, USA §ExponentiAI Innovation
Corresponding Authors: Di Wu (dwu@hnu.edu.cn) and Jiwu Lu (jiwu_lu@hnu.edu.cn)

Abstract
Controller Area Network (CAN) protocol is widely used in ve-
hicles as an efficient standard enabling communication among
Electronic Control Units (ECUs). However, the CAN bus is
vulnerable to malicious attacks because of a lack of defense
features. To achieve efficient and effective intrusion detection
system (IDS) design for hardware and embedded system secu-
rity in vehicles, we have specifically tackled the challenge that
existing IDS techniques rarely consider attacks with small-
batch. We propose a model with hardware implementation to
function in the vehicular CAN bus, namely MULSAM which
employing multi-dimensional long short-term memory with
the self-attention mechanism. The self-attention mechanism
can enhance the characteristics of CAN bus-oriented attack
behavior and the multi-dimensional long short-term memory
can effectively extract the in-depth features of time series data.
The MULSAM model has been compared with other base-
lines on five attacks generated by extracting benign CAN data
from the actual vehicle. Our experimental results demonstrate
that MULSAM has the best training stability and detection
accuracy (98.98%) to identify small-batch injection attacks.
Furthermore, to speed up the inference of MULSAM as an
embedded unit in vehicles, hardware accelerator has been
implemented on FPGA to achieve a better energy efficiency
than other embedded platform. Even with a certain degree
of quantification, the acceleration model for MULSAM still
presents a high detection accuracy of 98.81% and a low la-
tency of 1.88 ms, leading to a new cyber-physical system
security solution towards feasible embedded AI for intrusion
detection on vehicular CAN bus.

1 Introduction

Controller area network (CAN) bus protocol has been widely
used in the industrial automation control system due to its low
cost, high reliability, real-time, and robust anti-interference
ability [14, 43]. In effect, the CAN bus has become a commu-
nication standard in the automotive field [1]. The electronic
control units (ECUs) perform identity authentication through

GPS Lidar Internet

…

Gateway
ECU1

ECU3 ECU4

ECU2ECU1

ECU3 ECU4

ECU2

CAN1 CAN2

Infrared V2V

Figure 1: Vehicular communication network architecture.

the CAN ID of the CAN data frame on the CAN bus [24].
However, CAN ID can be arbitrarily modified, which gives
an opportunity for intruders to attack the network [13]. For
example, the intruder can launch a DoS attack to preempt the
data transmission window time of the CAN network, mak-
ing other legitimate ECUs fail to work continuously and may
even result in the bus-off. In short, due to the communication
characteristics of the CAN protocol, the CAN bus as a type
of embedded networked sensor systems has inevitable safety
hazards, such as illegal control, data leakage, and so on.

1.1 Motivations
The automotive embedded system is the central system of the
vehicle, as shown in Fig. 1, built based on CAN bus commu-
nication network and control the state of the vehicle body by
sending and receiving various commands. Intrusion Detection
Technology is widely used on the in-vehicle CAN bus [18].
In recent years, with the growth of Intelligent Connected Ve-
hicles (ICVs), more and more attacks are targeting the in-
vehicle system, especially the elaborate-designed attacks with

USENIX Association 2024 USENIX Annual Technical Conference 1049

small-batch characteristics that are extremely deceptive and
destructive [22, 39]. However, few researchers have designed
efficient and effective models for attacks with small-batch
characteristics. In addition, with the agreement that ICVs is
a typical cyber-physical system, practical intrusion detection
and prevention deployment on embedded platform to tackle
hardware acceleration and hardware security at the same time
is in need as well [23, 32].

Meanwhile, we notice that the protein structure prediction
through deep learning in gene sequence has achieved tremen-
dous progress and success in recent years. For example, the
RoseTTAFold model [2] with a three-track neural network
structure has a super high accuracy on protein structure pre-
diction, where the flow of information between different di-
mensions allows the network to focus on the chemical part of
the protein and its folding structure. Inspired by the idea of
multi-dimensions in RoseTTAFold, we get the intuition to de-
sign our Intrusion Detection System (IDS) [35, 40] based on
Multi-dimensional Long Short-Term Memory (MD-LSTM),
which can deploy LSTM cells along any or all of the dimen-
sions. To speed up the model inference as an embedded unit
in vehicles from practical perspective, Field Programmable
Gate Array (FPGA) platform is adopted for hardware acceler-
ator and deployment [6], where the IDS model is sepcifically
created in two dimensions. At the same time, to compensate
for the loss caused by the reduction of dimensions, the fusion
of the self-attention mechanism (SAM) [37] is utilized to im-
prove the detection performance. By doing so, the IDS model
can learn multi-dimensional features of CAN time-series data,
providing agile and stable processing at the CAN bus network
edge. Due to the effect of the self-attention mechanism, the
IDS model can better separate data, which has more complex
features and more separated inter-dependencies than standard
MD-LSTM networks.

1.2 Challenges
With the unceasing improvement of the automotive intelli-
gence level, the number of in-vehicle network’s ECUs has
been gradually increasing, which makes the in-vehicle net-
work more complex. Unfortunately, the CAN bus lacks an
effective security mechanism to resist external intrusion at-
tacks [12, 17, 38]. The exposed interfaces, such as GPS, V2V,
4G/5G, and so on, have imported many unpredictable secu-
rity threats to the automobile [8, 41]. Also, with the wireless
V2X connection, attackers have more opportunities to access
the vehicle network to obtain vehicle information and even
remotely control the vehicle [21, 34]. The original built-in
safety mechanism of the CAN bus is mainly to ensure reli-
able communication. However, intrusion attacks on the CAN
bus now can cause malfunction, jam, and data tampering of
the vehicle network communication. These eventually cause
abnormal vehicle driving conditions, which endangers the
safety of vehicles and drivers. It may also involve personal

privacy data leakage problems and lead to property damage.
Wherefore, the security defense methods of communication
systems are becoming more and more critical.

Today, the CAN bus protocol plays an essential role in the
in-vehicle electronic system. Any abnormal information trans-
mission caused by intrusion attacks may cause abnormal
working status and endanger the vehicle’s safe driving, caus-
ing unpredictable loss and damage. Therefore, detecting ab-
normal data transmission quickly and efficiently on the CAN
bus in intelligent connected vehicles (ICVs) is crucial impo-
rant [19]. Through the intrusion detecting technology, the ve-
hicle generates an alarm message and switches into a safe pro-
tection mode [25]. However, the widely-used automotive em-
bedded systems have limited hardware computing resources
due to cost constraints [29]. If the IDS is directly deployed
into the in-vehicle system, it will have a performance trade-
off on the vehicle system itself. Therefore, most researchers
plug IDS hardware externally onto the CAN bus network and
conduct intrusion detection experiments by monitoring CAN
bus data transmission messages [7, 11, 36]. The advantage of
this method is that no change in the hardware architecture is
needed. However, to ensure the safety of vehicles, intrusion
detection systems are compulsory to be real-time and effi-
cient, which is difficult for the existing automotive embedded
system. Therefore, although challenging, it is worthwhile to
implement an IDS in the vehicle, where there are few related
studies as far as we know.

1.3 Our Contributions
We propose a compact and novel deep learning model with
hardware implementation to function as efficient and effec-
tive intrusion detection systems in ICVs, namely MULSAM
which employing multi-dimensional long short-term mem-
ory (MD-LSTM) with the self-attention mechanism (SAM).
MULSAM is designed to improve the performance of IDS
under multiple different attacks on the vehicle’s CAN bus. Its
major contributions are summarized as follows:

(1) We use the attack-free data from an actual car running
on the road, but there is a lack of real-world data for at-
tacks. To address this challenge, we build a simulation
system to generate attack datasets, including those for
DoS, fuzzy, spoofing, replay and delete attacks. The de-
sign of the simulation system is based on analyzing the
CAN ID distribution of these common attack types. Our
observation is that the time-series data of CAN message
IDs is correlated to the function of the in-vehicle system.
For example, after an ECU sends a message over the CAN
network, the receiving ECU will only be able to process
and possibly respond by sending another message (with
a different ID) after a certain amount of delay. Usually,
this dependency makes the distribution of CAN IDs in a
relatively stable state.

1050 2024 USENIX Annual Technical Conference USENIX Association

(2) The MULSAM is developed to analyze large volumes
of real-time CAN data and to optimize network per-
formance. The multi-dimensional concept and the self-
attention mechanism are adopted to make the MULSAM
tiny and parallel, which is suitable for deployment on an
FPGA-embedded device. The role of the self-attention
layer is to convert the input data into an intermediate se-
mantic representation, making its characteristic informa-
tion more evident and easy to be distinguished, which can
be regarded as an encoding process. It can enhance MD-
LSTM cells’ depth and temporal computation, which is
capable of processing multi-dimensional CAN data with
attack features. The safety of networked systems can be
improved by real-time, efficient processing at the edge
device in the vehicle. New IDS based on deep learning
and the data flow-driven paradigm can perform better by
harnessing the real-time CAN data.

(3) The Stacked LSTM, MD-LSTM, and our MULSAM
model are designed and implemented on the FPGA-
embedded device (Ultra96-V2 board). The FPGA-
embedded platform, which has the advantage of parallel
processing and the ability to customize hardware algo-
rithms, can quickly and flexibly implement our deep learn-
ing model. It is appropriate for application scenarios that
require high real-time performance. In this article, the
matrix multiplication operation of the dynamic matrix is
presented for the self-attention mechanism computation to
improve the internal throughput of the MULSAM model.
A data flow-based design paradigm is also provided for the
FPGA-based implementation of the MD-LSTM cell. Ex-
periments show that FPGA-based MULSAM has a higher
energy efficiency than the CPU platform. Compared with
other LSTM-related deep learning models, it also has a
higher detection accuracy and lower latency.

2 Related Works

From the perspective of detection approaches, the design of
IDS can be divided into Rule-Based and Machine Learning
(ML)-Based categories.

2.1 Rule-Based IDS
The rule-based IDS is a simple system, which uses some in-
ternal logic relationships of CAN data to perform anomaly
analysisn. For instance, Hoppe et al.[10] studied the regularity
of data sent by a specific ECU in the CAN bus and proposed
an IDS based on the strategy of abnormal signals. However,
this method has great limitations and poor flexibility because
it needs to study the data characteristics of the ECUs in depth.
Vuong et al. [31] designed an attack detection method based
on decision trees for cyber-physical systems and evaluated
the model against various scenarios involving DoS, command
injection, and two malware attacks. However, the proposed

method approximately has a detection latency of 1s, which is
too large for ICVs. Ling and Feng [20] combined the CAN
IDs with their occurrence frequency and counted the number
of CAN messages that belong to the given CAN ID for detect-
ing malicious CAN messages. Although simple, the algorithm
has limited capability to detect attacks with small-batch. Cho
and Shin[3] extracted and estimated transmitter’s clock skews,
which are fingerprints of transmitter ECUs, to solve the lin-
ear parameter identification problem in IDS. However, this
method can detect attacks only for periodic messages and the
attacker can manipulate the frame data to bypass it [4].

2.2 Machine Learning-Based IDS
The ML-Based IDS is able to process more complex data
with multi-dimensional features, but it is also harder to train
than Rule-Based IDS besides posing higher deployment cost.
BTMonitor [42] extracted nine essential features in the time
and frequency domain as the fingerprint features of ECUs
and completed classification tasks to identify intrusive ECUs
through the Multilayer Perceptron (MLP). VoltageIDS [4] ex-
tracted the essential features from the message signal and used
the multi-class classifier to classify the CAN ID of the mes-
sage. It also can distinguish between errors and bus-off attacks.
Unfortunately, for both BTMonitor and VoltageIDS, the tem-
perature and the electromagnetic environment significantly
influence the detection accuracy. CANet [7] proposed an un-
supervised learning approach which combined with LSTM
and autoencoder to train the time series of CAN messages.
However, the independent LSTM input model for each ID in
CANet is complicated and hard to deploy in the in-vehicle
system. Hossain et al. [11] generated three attack datasets
based on the attack-free traffic from a real car, and proposed
an LSTM-based IDS to detect and mitigate the CAN bus net-
work attacks, including DoS, fuzzy, spoofing attacks, but did
not consider the delete attack that disables a vehicular func-
tion, which is common in vehicle bus-attack. Xie et al. [36]
proposed an enhanced GAN network to detect whether elabo-
rate CAN message blocks are threatened by data tampering.
However, the deep learning GAN model is unable to identify
the concrete type of attack and is difficult to train.

Note. Since the vehicular electronic system is in a mobile
state during driving, there are strict restrictions on the energy
consumption of hardware resources, which brings challenges
to deploy a ML-based IDS into the actual vehicular system.
In addition, once the functionality of the CAN bus is cracked,
the intruder can launch different types of attack with small-
batch, which are characterized by their small attack scale and
concealed attack patterns, posing difficulty to identify and a
significant threat to the driving safety. Therefore, the power
consumption and the detection of small-batch attacks are vital
issues for vehicular IDS, whereas the previous works fail to
address from the embedded system perspective as a holistic
solution. Correspondingly, we present an enhanced ML-based

USENIX Association 2024 USENIX Annual Technical Conference 1051

CAN ID feature vector
!! !! !! !!

⊕ ⊕ ⊕ ⊕
" ""tanh

⨀

⊕

!! "!
⨀
tanh

⨀

ℎ!"#
ℎ!"#$

ℎ!
ℎ!$

$!"#
$!"#$

$!
$!$MD-LSTM cell

1×1 kernel

feature maps (X)

1×1 kernel

1×1 kernel

⨂

⨂

self-attention
feature maps (X′)transpose

Q

K

V

Conv(X)

Conv(X)

Conv(X)

attention maps

"

… MD- LSTM

1×1	kernel

Conv(A) Softmax

FC layer

ℎ!
ℎ!$

MD-LSTM MD-LSTM MD-LSTM

MD-LSTM MD-LSTM

!% !# !&

…

…

output

concat

MD-LSTM model

MD-LSTM

$! %!

Wfc

Wix Wgx Wfx Wox

WohWih Wgh Wfh

Figure 2: The architecture of MULSAM.

IDS with efficient design and implementation on the FPGA
platform for actual vehicular system.

3 Overview of MULSAM System

Given the advantage of LSTM to track temporal dependencies,
a tiny, novel system is proposed, which adapts its benefits and
extends its structure by MD-LSTM specifically to process the
CAN time-series data. Moreover, a self-attention mechanism
is added to strengthen the correlation between time series
data. As shown in Fig. 2, the input data is first transformed
into the processed data after the self-attention layer in the
proposed system. Then the processed data is transmitted to
MD-LSTM in time steps to obtain the output of hidden layers
in two dimensions. Thirdly, the outputs of MD-LSTM are
concatenated to fuse distinct features of different dimensions.
Finally, the classification result is obtained through a fully
connected layer and the Softmax activation function.

From Fig. 2, it is essential to notice that the MULSAM pro-
posed in this paper utilizes the self-attention mechanism for
making up for the loss caused by reducing the dimension
of the MD-LSTM. Thus, MULSAM can more effectively
process the time series of CAN data with multidimensional
features. Therefore, for anomaly detection in the CAN bus
network, the accuracy of the MULSAM model is consistently
better than other machine learning models.

4 Attack Model and Datasets

This paper focuses on five types of attack: DoS, fuzzy, spoof-
ing, replay, and delete. The DoS, fuzzy, and spoofing attacks
have the characteristic of flooding injection, while replay and
delete attacks have the attribute of small-batch. Compared to
flooding attacks, small-batch attacks have much less impact
on the network payload and are much harder to detect.

DoS attack. Once attackers invade the CAN bus network,
and they will continue to send the highest priority CAN data
frame to the CAN bus network, thus occupying the data trans-
mission time window of other normal ECUs. This results in
the CAN bus being in a congested state, which may cause the
in-vehicle system to be paralyzed, and endangers the safety
of the vehicle.

Fuzzy attack. The attackers can quickly launch the fuzzy at-
tack without knowing the specific information of the ECUs on
the CAN bus of the vehicle system. The difference between
the DoS attack is that fuzzy attack injects randomness data.
Because of the randomness of CAN IDs and the characteris-
tics of mass injection, it has a certain probability to coincide
with the ECU’ CAN ID existing in the vehicle network. In
this case, it will be possible to deceive the vehicle system.

Spoofing attack. In a spoofing attack, an intruder listens to
the CAN bus but does not decipher the CAN bus function. It

1052 2024 USENIX Annual Technical Conference USENIX Association

launch an attack?

the target CAN ID?

inject attack frame
messages and flags

inject normal frame
and flag

delete the frame

inject the normal
data and flag,
and reset flag

mark the next frame to
the flag of delete

…

CAN dataset

read a frame, extract
timestamp and CAN ID (a) DoS, fuzzy, spoofing, replay attack process

(b) delete attack process

Y

Y

N

N

(a) The generation process of five attacks (b) The distribution of attacks’ CAN ID

Figure 3: Attack Generation.

eavesdrops on CAN message and then injects many of the
same CAN data, which drive the ECUs to receive outdated
messages and misjudge.

Replay attack. The intruder can listen to the CAN bus and
decipher the CAN signal, which enables more precise replay
attacks, such as accelerations or changes in driving direction.

Delete attack. When an intruder invades the CAN bus net-
work, it may cause a legitimate, important ECU to lose the
function of sending data to the CAN bus network. In this case,
the CAN ID corresponding to the ECU will not appear in the
CAN bus network, which is called the delete attack.

4.1 Generation of Attack
We uses the open-source CAN bus dataset from the
4TU.ResearchData (an international data repository for sci-
ence, engineering, and design) [5]. The dataset was collected
from the actual car while driving. The five types of attack
CAN data are generated as shown in Fig. 3 (a) . First, a frame
message is read from the original dataset, and the timestamp
and CAN ID are extracted. For DoS, fuzzing, spoofing and re-
play attacks, the time stamp of the first frame of data is used as
the starting time to calculate the time of launching the attack,
and compare the attack time with the current extracted time
stamp to determine whether to launch an attack. If an attack
is initiated, an attack frame and an attack flag are injected. If
no attack is initiated, a normal frame and a normal flag are in-
jected. For delete attack, it is only necessary to judge whether
the current extracted CAN ID is the target and whether to
launch an attack. If an attack is launched, delete the frame
and mark the next message as a delete attack. If no attack
is launched, normal frame and normal marker are injected.
The flags of 0, 1, 2, 3, 4, 5 represent normal state, DoS attack,

fuzzing attack,spoofing attack, replay attack and delete attack,
respectively. Through the above attack methods, this paper
generates five anomalous datasets with attack characteristics.
Fig. 3 (b) shows the distribution of CAN ID characteristics in
the normal state and in five attack datasets.

From Fig. 3 (b), the difference between the characteristics of
DoS, fuzzy, and spoofing attack with the normal data state
can be seen clearly due to their flooding features. However,
the characteristics of replay and delete attack are not evident,
which means that small-batch attack is more difficult to distin-
guish because it is similar to the benign state. The experiment
in Section 6 also proves this assumption.

4.2 Preprocessing
The input data usually need to be normalized to speed up the
training network fit in the deep learning training progression.
If the CAN ID is directly used as the input feature, it will
cause the accuracy of the input data to decrease because the
FPGA design needs to perform quantization processing. To
avoid this situation, we convert the CAN ID to the bit features
and use 0 or 1 as the input feature.

First, the original CAN ID is expressed in a hexadecimal
system, which occupies 2 bytes, where only the lower 11
bits are valid. Eq. (1) can calculate the 11bit features in the
original CAN ID data.

xi =

(
0, can_id & (1 << i) = 0,
1, can_id & (1 << i)> 0.

i 2 (0,1, ...,10) (1)

where can_id represents the original CAN ID, i represents
the bit position to be extracted, xi is the i-th bit value, &
represents bitwise AND operation, and << represents left
shift operation. By extracting the bit feature of the CAN ID as

USENIX Association 2024 USENIX Annual Technical Conference 1053

the input series, normalizing the input value can be avoided.
Since the input value is only 0 or 1, we can use 1 bit data wide
for storage in an FPGA device, which can greatly reduce the
resource overhead without extra computing consumption.

5 MULSAM Design

This paper proposes a MD-LSTM architecture with the front
Self-Attention Mechanism (MULSAM). The MULSAM
model can be divided into two primary parts, including a
self-attention layer and a MD-LSTM network. First, the self-
attention layer, which is widely used in the Transformer
model [30], is utilized to enhance the correlation between
the time-series data and easily distinguish attack features. The
self-attention layer can reduce dependence on external infor-
mation and better capture the internal correlation of features.
Second, the rear part of the model is a MD-LSTM network,
which can extract deeper characteristics from the time-series
data.

5.1 Neural Network Design
5.1.1 Self-Attention Layer in MULSAM

The intention of the self-attention layer can be considered as
preprocessing the input data by allocating different weight
values. As shown in Fig. 4 (left), the typical architecture of
the self-attention layer uses a fully connected network to get
the internal Q, K, and V matrices and the Softmax function
as the internal activation function. To simplify the internal
calculation of the self-attention layer and slash the volume
of network parameters, the fully connected network in our
MULSAM is replaced with the convolutional network, and the
Softmax activation function is modified to the logic sigmoid
activation function as shown in Fig. 4 (right). This scheme
also benefits the model algorithm design based on the FPGA
platform to execute better parallelly.

MatMul

Q K V

Conv2D

Sigmoid

MatMul

Conv2D

Inputs

Outputs

MatMul

Q K V

Linear

Softmax

MatMul

Linear

Inputs

Outputs

Figure 4: The typical self-attention (left) and its enhanced
architecture (right).

First, the input data is defined as X = (x0,x1,x2, ...,xn), where
X is the input vector, n is the time step of one input data, and
xn represents a CAN ID with 11 dimensions.

The internal calculation process of the self-attention layer can
be expressed as follows:

(Q,K,V) = Conv2D(X ,(1,1),Hidden_Dim⇤3) (2)

Ã = s(KQT) (3)

Attn(Ã,V) = Conv2D(ÃV,(1,1),Out put_Dim) (4)

where the Hidden_Dim stands for the number of output chan-
nels of an internal matrix (Q, K, or V). The value of the output
matrix of Eq. (2) is dimensional evenly divided into three
parts, namely Q, K, V. Then, the attention maps are calculated
after activation through Eq. (3), and the output of the self-
attention layer is got according to Eq. (4). The Out put_Dim
represents the number of final output channels, and the size of
the input will be equal to that of the output when Out put_Dim
is set to 1.

5.1.2 MD-LSTM in MULSAM

Unlike the traditional Stacked LSTM, the MD-LSTM network
[16], as shown in Fig. 5, adds LSTM cells along the depth
dimension and the temporal dimension of the network. This
architecture gives the depth dimension the same gradient
channeling properties available along the temporal dimension,
which mitigates the vanishing gradient problem in networks
and extract deeper features.

MD-
LSTM

!!"#!

ℎ!"#!

!$%#! ℎ$%#!

MD-
LSTM

!!"

ℎ!"

!$%#! ℎ$%#!

MD-
LSTM

!!"#!

ℎ!"#!

!$% ℎ$%

MD-
LSTM

!!"

ℎ!"

!$% ℎ$%

!!"&!

ℎ!"&!

!!"&!

ℎ!"&!

!$%&! ℎ$%&! !$%&! ℎ$%&!
Depth

Time

Figure 5: The architecture of MD-LSTM.

The weight of different dimensions in the MD-LSTM net-
work can be individual or be shared in the storage. When the
different dimensions are independent, the calculation process
of each dimension can be parallel, which is beneficial to the
performance of the FPGA device. Thus, the design strategy
of independent dimension is followed in this paper, and the
MD-LSTM cell can be split into two LSTM cells.

1054 2024 USENIX Annual Technical Conference USENIX Association

Each LSTM cell in a different dimension uses a hidden state
together with a memory cell to communicate to the next. The
computation of LSTM cell at each step is updated as follows:

gt = tanh(Wgxxt +Wghht�1 +bg)

it = s(Wixxt +Wihht�1 +bi)

ft = s(Wf xxt +Wf hht�1 +b f)

ot = s(Woxxt +Wohht�1 +bo)

ct = gt � it + ct�1 � ft
ht = tanh(ct)�ot

(5)

where s is the sigmoid function, Wgx,Wix,Wf x,Wox are
the recurrent weight matrices of the input vector, and
Wgh,Wih,Wf h,Woh are the recurrent weight matrices of the
hidden vector. The functional LSTM(·,·,·,·,·) is used as short-
hand for Eq. (5) as follows:

(ht ,ct) = LSTM(xt ,ht�1,ct�1,Wi,Wh) (6)

Unlike the computation of LSTM, a MD-LSTM block re-
ceives an input of two hidden vectors and two memory vectors
from the depth and temporal dimensions. The computation is
concise and proceeds as follows:

(h1
t ,c

1
t) = LSTM(xt ,h1

t�1,c
1
t�1,W

1
i ,W

1
h)

(h2
t ,c

2
t) = LSTM0(xt ,h2

t�1,c
2
t�1,W

2
i ,W

2
h)

(7)

Each dimension has different weight matrices that correspond
to the standard LSTM mechanism. Then these output hidden
vectors are concatenated into a new vector H as the final
output vector of MD-LSTM as follows:

H =
⇥
h1

N ,h
2
N
⇤

(8)

where N in Eq. (8) is the total number of time steps.

5.2 FPGA-based Model Design
How to improving the data locality of matrix structures is
a crucial problem for maximizing the performance of the
machine learning model. An automated caching mechanism
is used to improve the data locality in CPUs and GPUs,
while FPGAs allow the developer to allocate data structure
resources[28]. To implement MULSAM application deploy-
ment at the edge device, we analyze the internal parallelism of
the algorithm, and the hardware circuit is realized by Vivado
high-level synthesis (HLS) [27]. As the Neural Network de-
sign above, the FPGA-based network design is also split into
two parts, including the Self-Attention pipeline design and
MD-LSTM pipeline design. By connecting each independent
calculation module through the FIFO resources, the whole
calculation process can be streamlined.

5.2.1 Self-Attention Pipeline Design

For CPUs or GPUs, each step of the computation of the self-
attention layer, as shown in Fig. (4) (right), requires waiting
for the completion of the previous step. For example, The
KQT operation in Eq. (4) can be computed when the Q and
K matrices are fully completed. The algorithm needs to be
refactored because each module’s input and the output stream
are FIFO queues instead of a complete matrix.

(Q, K, V) calculation module design. The Q, K, and V ma-
trices inside the self-attention layer do not have temporal
interdependency, so they can be combined and calculated si-
multaneously, no matter whether it is in the CPU, GPU, or
FPGA architecture. Thus, a module is built for the internal
calculations of Q, K, and V, where the input stream data is
a time series of CAN ID bit features, and the output streams
are Q, K, and V streams transformed from the matrices. The
Alg. 1 shows the whole process of this module.

Algorithm 1 (Q,K,V) calculation
Require: time series of CAN ID (X)
1: for x[i] in X do
2: for j = 0 to 10 do
3: if x[i] & (1 << j) = 0 then
4: b[i⇥n+ j] = 0
5: else
6: b[i⇥n+ j] = 1
7: end if
8: for h = 0 to (H - 1) do
9: q[h][i⇥n+ j] = b[i⇥n+ j]⇥W q

h
10: k[h][i⇥n+ j] = b[i⇥n+ j]⇥W k

h
11: v[h][i⇥n+ j] = b[i⇥n+ j]⇥W v

h
12: end for
13: end for
14: end for
Ensure: Q, K, V

Activation calculation module design. Since the Q, K matri-
ces are calculated sequentially, then KQT in Eq. (4) cannot
be fully calculated at one time. The calculation expression of
the element of KQT is as follows:

ai,m =
11⇥N�1

Â
j=0

ki, jq j,m i,m 2 (0,1, ...,H �1) (9)

where ai,m is an element of the result of KQT , and H corre-
sponds to the number of output channels of a feature matrix
(Q, K, V). Based on the structure of data flow transmission,
an optimized matrix calculation process is designed. When
the qi, j and ki, j are read from the Q, K FIFO queues, ki, jq j,i
to ai,i can be added because qi, j are q j,i in QT . And as shown
in Eq. 10, the q j,i and ki, j are also used to get the product with
the cached K and Q elements, respectively. And the result is
added to the elements at the corresponding positions of the
KQT matrix. Due to the matrix of Q, K being dynamically
generated, the calculation process is not static, and we call it

USENIX Association 2024 USENIX Annual Technical Conference 1055

the dynamic matrix multiplication in FPGA.

az,i+= kz, jq j,i, z 2 (0,1, ..., i�1)
ai,w+= ki, jq j,w, w 2 (0,1, ..., i�1)

(10)

The essence of Eq. (10) is to split Eq. (9) to make it suitable
for the data flow queue of Q and K. Since the values of the
Q and K matrices are dynamically generated, the activation
results (Ã) in Eq. (3) can not be computed unless obtaining
all data in the Q and K FIFO queues. The Alg. 2 shows the
whole process of this module.

Algorithm 2 Activation calculation
Require: Q, K
1: for i = 0 to (11 ⇥ N - 1) do
2: for h = 0 to (H - 1) do
3: A[h⇥H +h]+ = q[h][i]⇥ k[i][h]
4: for m = 0 to (h - 1) do
5: A[h⇥H +m]+ = q[h][i]⇥ k[i][m]
6: A[m⇥H +h]+ = q[m][i]⇥ k[i][h]
7: end for
8: end for
9: end for

10: for i = 0 to (11 ⇥ N - 1) do
11: Ã[i] = s(A[i])
12: end for
Ensure: Ã = s(A)

Output calculation module design. This module performs
the matrix multiplication of Ã with V and also conducts the
final convolution layer. In this process, the matrix multipli-
cation is much easier than that of calculating the dynamic
matrix due to the matrix V is known.

As shown in Alg. 3, an element ãi, j of the current input Ã is
multiplied by the element v j of the j-th row of V, and then the
result is accumulated to the element ri of the i-th row of the
result matrix. The calculation process is shown in Eq. (11).

ri,m+= ãi, jv j,m, m 2 (0,1, ...,11⇥N �1) (11)

Since the value of the V matrix is completely computed, when
Ã matrix inputs a row of data, a row of data of ÃV can be
calculated as Eq. (12).

so,i =Wo

H�1

Â
j=0

ri, j (12)

where Wo represents the weight value corresponding to the
o-th output channel of the output convolution function, and
so,i is the i-th output value corresponding o-th output channel.
In this paper, the number of output channels is set to be one
so that the input and output series of the self-attention layer
have the same length.

Algorithm 3 Output calculation
Require: Ã,V
1: for i = 0 to (H - 1) do
2: for j = 0 to (H - 1) do
3: for k = 0 to (11 ⇥ N - 1) do
4: Attn_out[k] = Ã [i⇥H + j]

⇥V [k+11⇥N ⇥ j]⇥Wo
5: end for
6: end for
7: end for

Ensure: Attn_out matrix

5.2.2 MD-LSTM Pipeline Design

Following the same design principles as that of the self-
attention mechanism layer design, the design of the MD-
LSTM cell uses the FIFO queue and the data flow to transmit
input values, intermediate results serially, and output values.
So the pipeline of the entire cell calculation process is realized.
By separating the depth dimension and the temporal dimen-
sion of the MD-LSTM cell, these two dimensions’ data flow
is entirely run in parallel. Thus a specified LSTM cell, which
can apply to the calculation process of the two dimensions,
needs to be carefully designed.

First, the calculation process of a single time step of the LSTM
network is analyzed. Since the weights matrix and bias vec-
tors of the fully connected layer inside the LSTM cell are
completely known, to minimize the time delay, the whole
computation does not need to wait for the fully connected
layer to complete its calculation. So, after calculating one
row of the output result, the following calculation step can be
started immediately.

[xt,ht-1]

MVM MVM MVM MVM

! ! tanh !

××

+
×tanh

Enhanced Series (FIFO)

ct-1

ct ht

ht-1
LSTM2

LSTM1

LSTM-MLP

LSTM-Activ

LSTM-Tail

ft gt it ot

Figure 6: A step computation of LSTM cell.

As shown in Fig. 6, the calculation process of the LSTM
cell is restructured into three modules, including LSTM-MLP,
LSTM-Activ, and LSTM-Tail. which are connected through
FIFO resources to realize the task-level pipeline. Various opti-
mization methods of HLS are appropriately used inside each

1056 2024 USENIX Annual Technical Conference USENIX Association

module to reduce computing delay and improve throughput.

LSTM-MLP. The LSTM-MLP module is used to process
Matrix-Vector Multiplication in parallel. In the internal cal-
culation of LSTM, four gate signals are independent, so the
optimization method of loop unrolling in HLS is used to the
for loop of line 3 in Alg. 4 to perform the four MVM paral-
lelly.

Algorithm 4 LSTM-MLP calculation
Require: Attn_out matrix
1: for t = 0 to (N - 1) do
2: for j = 0 to 10 do
3: for k = 0 to (4 ⇥ H - 1) do
4: gi f ot [k]+ =Wx[k]⇥Attn_out[j+ j⇥N]

+Wh ⇥h(t�1)[j]
5: end for
6: end for
7: for j = 11 to (H - 1) do
8: for k = 0 to (4 ⇥ H - 1) do
9: gi f ot [k]+ =Wh ⇥h(t�1)[j]

10: end for
11: end for
12: end for
Ensure: gi f o matrix

LSTM-Activ. The LSTM-Activ module is not time-
dependent so the activation value can be quickly calculated
for the next module. By using lookup table optimization, two
activation functions are implemented in the LSTM-Active
module, including the sigmoid and tanh functions. The Alg. 5
shows the whole process of this module.

Algorithm 5 LSTM-Activ
Require: gi f o matrix
1: for t = 0 to (N - 1) do
2: for k = 0 to (H - 1) do
3: gt [k] = tanh(gi f ot [k])
4: it [k] = s(gi f ot [k+H])
5: ft [k] = s(gi f ot [k+2⇥H])
6: ot [k] = s(gi f ot [k+3⇥H])
7: end for
8: end for

Ensure: gt , it , ft ,ot

LSTM-Tail. The LSTM-Tail module is applied to calculate
the output value of both the final hidden layer unit and the
memory unit. Since the calculation of the hidden unit depends
on that of the memory unit, these two steps of line 3 and line
4 in Alg. 6 cannot be parallelized.

By limiting the module’s interface as a FIFO queue, we only
need to focus on the parallel optimization within the module
in our FPGA-based pipeline design scheme. So, the FPGA-
based model design can be efficiently implemented.

Algorithm 6 LSTM-Tail
Require: it , ft ,gt ,ot
1: for t = 0 to (N -1) do
2: for i = 0 to (H - 1) do
3: ct [i] = gt [i]⇥ it [i]+ ct�1[i]⇥ ft [i]
4: ht [i] = tanh(ct [i])⇥ot [i]
5: end for
6: end for

Ensure: ct ,ht

6 Experiments and Evaluation

We first designed and trained different baseline comparison
models on the PC. Then the computation architecture of MUL-
SAM was redesigned to make them suitable for deployment
on the Ultra96-V2 as an FPGA development board. The PC
(Intel i9-10850K CPU @ 3.6 GHz ⇥ 10, NVIDIA Quadro
RTX 4000 GPU @ 8 Gb) runs Windows 10, while the Ultra96-
V2 (2 GB LPDDR4, UltraScale+ MPSoC) runs PYNQ.

Our evaluation focuses on three aspects of the performance:
different model depths, various machine learning models, and
two above-mentioned models based on the FPGA platform.

6.1 Different Model Depths
In this section, the normal and attack datasets are used, which
contain the original data from the vehicular CAN bus and
the generated attack data, respectively, to evaluate the perfor-
mance of Stacked LSTM, MD-LSTM, and our MULSAM
with different model depths. To compare the performance im-
provement of the self-attention mechanism on the MULSAM,
the structure of the self-attention layer is fixed, and only the
model depth of the MD-LSTM component was changed. The
range of model depth is 10-30, and the step size is 2.

Table 1: Model Parameters.

Model Parameters Stacked LSTM MD-LSTM MULSAM
Hidden dimension 24 24 24
Output dimension 6 6 6
Recurrent dimension 2 2 2
Self-attention weight matrices N/A N/A 32⇥11
Number of parameters 1720 2500 4996

In our experimental configuration, the Stacked LSTM model
employs two layers of LSTM, the MD-LSTM comprises four
LSTM layers, and the MULSAM integrates four LSTM lay-
ers as well. An increased number of LSTM layers can po-
tentially enhance detection accuracy, yet escalate computa-
tional resource overhead. Our experiments demonstrate that a
four-layer LSTM already achieves a high detection accuracy,
sufficient for practical needs while at the same time with-
out incurring redundant resource overhead. Further increas-
ing LSTM layers yields negligible improvements in detec-
tion accuracy while incurring extra computational resources.

USENIX Association 2024 USENIX Annual Technical Conference 1057

(a) Overall Accuracy (b) Trainning Stability
Figure 7: Performance evaluation on different model depth.

Since MULSAM is based on multi-dimensional LSTM (MD-
LSTM) with self-attention mechanism, we could compare
it with MD-LSTM without self-attention mechanism, and
MD-LSTM was also compared with Stacked LSTM, as the
ablation study. Our model parameters are specified in Tab. 1.

Overall accuracy. Three models, including MD-LSTM,
Stacked LSTM, and MULSAM, are used to test the detection
accuracy. The detection accuracy present is the average value
from multiple experiments to prevent the dropout layer from
affecting the stability of the results. As shown in Fig. 7 (a),
the detection accuracy of MULSAM is 1-2% higher than the
other two models under all depth conditions, and the accu-
racy of all models tends to increase with the increment of the
models’ depth. However, there exists a peak with all models,
which means that the accuracy of models no longer improves
when they reach a certain depth. MULSAM peaks can be
seen at a model depth of 22 and 24 for the other two models.

Training stability. The stability of the training process is
crucial to obtaining a robust model. Fig.7 (b) visualizes the
accuracy of different methods when the number of model
depths is 16, 18, 20, 22, and 24. The MULSAM has an ac-
curacy fluctuation range of about 2-4% at all model depths,
while Stacked LSTM has a range of about 2.4-6%, and MD-
LSTM has a range of about 2.4-5%. A smaller range means
that it’s possible to faster train a model with high accuracy.

Differences in classification. As shown in Fig. 8, the cor-
responding confusion matrices are generated to analyze the
classification differences of the models. In the classification
results of the replay attack, which is the most malicious among
all attacks, all three models have the situation of identifying
the attack as a normal state. However, the number of misiden-
tifications by MULSAM is only 233, which is approximately
half that of MD-LSTM and one-third for Stacked LSTM. The
detection difference in the replay attack may be caused by
the multi-dimensional architecture and the self-attention layer
in MULSAM. This demonstrates that MULSAM will have
a lower false-positive rate and can effectively enhance the
characteristics of small-batch attacks.

6.2 Various Machine Learning Models
Our baseline comparison models include SVM, MLP, CNN,
Stacked LSTM, MD-LSTM and Transformer. The evaluation

metrics of comparison include the overall accuracy, precision,
recall, and F1 score. The details of the metrics are as Eq. (13).

Accuracy =
T P+T N

T P+FN +FP+T N

Precision =
T P

T P+FP

Recall =
T P

T P+FN

F1 =
2 ·Precision ·Recall
Precision+Recall

(13)

Where TP, FP, TN, and FN are four outcomes of the classifica-
tion, representing True Positive, False Positive, True Negative,
and False Negative, respectively.

Table 2: Model Initial Hyper-parameters

Parameters Value
Epochs 100

Early stopping 5
Activation Function Softmax

Learning rate 1e-3
optimizer Adam

Loss Function CrossEntropyLoss
Batch size 128

Steps 32

The cross-entropy loss function, defined as H(p,q) =
�Âx p(x) logq(x), is used as the loss function for all machine
learning models, where p is the expected result, q stands for
the predicted result, and x is the index for both. All the models
are trained on 80 percent of the CAN data and validated on 10
percent, while the remaining 10 percent is used as a testing set.
As Tab. 2 shows, the maximum number of iterations is set to
100, and the initial learning rate is 1e-3. To reduce redundant
training process, the training of each model can automatically
be terminated early by setting the stopping threshold, which
is a hyper-parameter debugged and selected according to the
validation set. The adaptive gradient algorithm (Adam) [15],
which can adjust the learning rate, is used to optimize our
models. To prevent the over-fitting and to reduce the complex-
ity of these models, the dropout technique [26] is used in all
deep learning models. The total steps of the input series is
set to 32, which corresponds to approximately 30ms of CAN
messages.

The performance of various models has been shown in Tab. 3.
As we can see, the SVM, CNN, and MLP perform well in
detecting attacks with flooding properties but perform poorly
on normal state and attacks with small-batch, which cause the
overall accuracy to be less than 90%, while that of LSTM-
related models is more than 97%. For example, since the fea-
ture distribution of normal CAN data and small-batch attack
is very close, the recall of SVM, MLP, CNN are only 26.25%,
54.10%, and 67.11%, respectively. The superior performance

1058 2024 USENIX Annual Technical Conference USENIX Association

(a) Stacked LSTM (b) MD-LSTM (c) MULSAM

Figure 8: Confusion matrix of classification.

Table 3: Performance on Various Models.

Model Accuracy (%) Attack Recall Precision F1

SVM 82.07

normal 0.2623 0.1456 0.1008
DoS 0.9983 0.9953 0.9923
fuzzy 0.9439 0.9650 0.9870
spoofing 0.9814 0.9272 0.8787
replay 0.7428 0.7023 0.6660
delete 0.5968 0.6909 0.8202

MLP 80.08

normal 0.5410 0.7795 0.6387
DoS 0.9988 0.9463 0.9718
fuzzy 0.9754 0.9718 0.9736
spoofing 0.8814 0.9540 0.9163
replay 0.8400 0.6902 0.7577
delete 0.6396 0.4444 0.5244

CNN 87.64

normal 0.6711 0.8083 0.7333
DoS 0.9980 0.9773 0.9875
fuzzy 0.9525 0.9687 0.9605
spoofing 0.9956 0.9787 0.9871
replay 0.8778 0.7312 0.7978
delete 0.8044 0.7900 0.7972

Stacked LSTM 97.07

normal 0.8880 0.9823 0.9328
DoS 1.0000 0.9998 0.9999
fuzzy 0.9932 0.9917 0.9924
spoofing 0.9995 0.9678 0.9834
replay 0.9765 0.8927 0.9327
delete 0.9780 0.9912 0.9845

MD-LSTM 97.91

normal 0.9174 0.9882 0.9515
DoS 1.0000 1.0000 1.0000
fuzzy 0.9932 0.9925 0.9928
spoofing 0.9992 0.9815 0.9902
replay 0.9777 0.9283 0.9524
delete 0.9933 0.9845 0.9889

Transformer 98.26

normal 0.9273 0.9906 0.9684
DoS 1.0000 0.9998 0.9999
fuzzy 0.9932 0.9946 0.9951
spoofing 0.9993 0.9886 0.9934
replay 0.9953 0.9438 0.9556
delete 0.9982 0.9911 0.9903

MULSAM 98.98

normal 0.9535 0.9932 0.9729
DoS 1.0000 0.9998 0.9999
fuzzy 0.9997 0.9973 0.9985
spoofing 0.9995 0.9937 0.9966
replay 0.9924 0.9605 0.9762
delete 0.9956 0.9945 0.9951

of LSTM-related models might be that the structure of LSTM
is suitable for processing the data with time correlation[9],
while the form of SVM, MLP, CNN fail to do. MULSAM has
a recall of 95.35% on the detection of the normal state, while
Stacked LSTM is only 88.80% and MD-LSTM is 91.74%,
which means that MULSAM can provide a more credible
basis for vehicle to make decision. In the detection of the
spoofing attack with the flooding feature, MULSAM has a
precision of 99.37%, while Stacked LSTM is only 96.78%
and MD-LSTM is 98.15%. The performance of the three
LSTM-related models is close, and all exceed 99% in the
detection of DoS and fuzzy attacks. In addition to having a
slight drop in the results of the DoS attack, the MULSAM
has a higher recall, precision and F1 than other LSTM-based
models.

Before we deployed models on FPGA, we also compared
MULSAM with Transformer [30], which is a seq2seq model
using multi-head attention structures for time series process-
ing. We found that Transformer is better than our MULSAM
on recall score for replay attack and delete attack, but MUL-
SAM presents very close performance to Transformer on the
metric and better results on other metrics. In addition, MUL-
SAM outperforms Transformer on all metrics for other attack
types (DoS, fuzzy, spoofing). Considering that multi-head
attention structure to realize the simultaneous input of data
in Transformer makes the computational complexity of the
model reach O(n2), and at the same time has a memory bot-
tleneck problem when inputting long sequences, it is hard to
run Transformer on the resource-constrained Ultra96-V2 we
used as an embedded FPGA development board. In addition,
because MULSAM has presented better performance in gen-
eral than Transformer on PC as shown in Tab. 3, it is also not
necessary to compare MULSAM with Transformer on the
FPGA platform.

6.3 Performance on Hardware Acceleration
We also present the results of the implementations of three
LSTM-related models, including Stacked LSTM, MD-LSTM,
and MULSAM. Due to the advantages of the modular design
approach, the programming of the LSTM cell in MULSAM

USENIX Association 2024 USENIX Annual Technical Conference 1059

(a) Throughput Rate (b) Power (c) Energy efficiency

Figure 9: The comparison of different accelerators between FPGA and TX2 platforms.

Table 4: The Selected Depth and Corresponding Accuracy.

Model Depth Accuracy (%)
Stacked LSTM 24 97.07
MD-LSTM 24 97.91
MULSAM 22 98.98

can be conveniently reused by Stacked LSTM and MD-LSTM.
The model depth of Stacked LSTM, MD-LSTM, and MUL-
SAM are selected corresponding to the highest accuracy in
Fig. 7 (a) for the accelerated model design on the FPGA plat-
form. The depth selection and the corresponding accuracy of
the three test models are shown in Tab. 4.

6.3.1 Comparison between FPGA and TX2

To compare FPGA-based embedded system security with
GPU-based embedded platform, we designed and trained dif-
ferent baseline models on Jetson TX2 as the Commercial-
Off-The-Shelf GPU-based embedded platform. The Jetson
TX2 is a embedded computing device equipped with 56-core
NVIDIA Pascal GPU architecture with 256 NVIDIA CUDA
cores and dual-core NVIDIA Denver2 + quad-Core ARM
Cortex-A57. Both Ultra96-V2 and TX2 run PYNQ.

Throughput rate. Fig. 9 (a) shows the throughput rate of dif-
ferent LSTM-related accelerators in different platforms. The
same models running on different platforms have the same
network topology and weight parameters. We can see that the
throughput rate of the FPGA platform is larger than that of
the TX2 platform due to its powerful computing performance.
In the throughput rates of the FPGA platform, MD-LSTM
has that of 1316.56 MFLOP/s because the two independent
dimensional LSTM layers inside the MD-LSTM utilize a
parallel design methodology.

Power and energy efficiency. From Fig. 9 (b), the power
consumption of all three models exceeds 5 W on the TX2,
while that in the FPGA platform is only about 2 W. In terms
of energy efficiency, the FPGA-based implementation still
has a great advantage, which can be seen from Fig. 9 (c). For

Stacked LSTM models, the FPGA hardware accelerators are
about twenty-one times as energy-efficient as the TX2. The
energy efficiency of MULSAM is 145 MLOP/(s·W), which
is much higher than the 11 MLOP/(s·W) of the TX2 platform.
Although MULSAM has the lowest energy efficiency among
the three FPGA-based accelerators, its energy efficiency is
still higher than TX2 which is the mainstream GPU platform
for embedded computing.

Therefore, these performance evaluation results on through-
put rate, power and energy efficiency have verified that our
FPGA-based implementation can achieve practical intrusion
detection and prevention deployment on embedded platform
to tackle hardware acceleration and hardware security at
the same time. The multi-dimensional concept and the self-
attention mechanism adopted in MULSAM make it tiny and
parallel, with inherent nature tailored for deploying on FPGA
platform. In comparison with the mainstream Jetson TX2
which is GPU-based embedded platform and assisted with
ARM TrustZone [33], our embedded AI running on FPGA is
obviously more efficient and effective for intrusion detection
on vehicular CAN bus.

6.3.2 Models on the Move

We conducted testing experiments on an Ultra96-v2 embed-
ded device installed in actual vehicle as an FPGA-enabled
gateway for intrusion detection on vehicular CAN bus, as
shown in Fig. 10. The embedded experiments for Stacked
LSTM, MD-LSTM and MULSAM are run based on their
trained models from above-mentioned attack datasets and
tested in the real-world driving scenario to guarantee that the
vehicle can prevent malicious navigation from small-batch
attacks which usually happen in this case, and handle corre-
sponding attacks in short time.

Resource overhead. The resource overhead has been visual-
ized after the model has been synthesized to RTL (Register
Transfer Level) code, as shown in Fig. 11 (a). It can be seen
from Fig. 11 (a) that MULSAM uses the most resources be-
cause of its complex internal structure. A MD-LSTM cell
contains two-dimensional LSTM, so the resource overhead

1060 2024 USENIX Annual Technical Conference USENIX Association

Ultra96-v2

Power

UART

USB

CAN data collector

Model Training

Model Deployment Model Testing

CGI-410 Integrated
Navigation

Figure 10: FPGA device during testing.

of MD-LSTM is approximately twice that of Stacked LSTM
of the same model depth. As we can see, all three acceler-
ators are very resource-efficient, which helps reduce power
consumption in FPGA.

Accuracy and latency. The experiment data includes 1600
evenly distributed samples, randomly extracted from the test
datasets and the corresponding labels. Fig. 11 (b) shows the
latency and the accuracy of different FPGA-based accelera-
tors. Compared with the accuracy of the full-precision models
in Tab. 4, the fixed-point quantization in the FPGA-based
accelerators results that of Stacked LSTM, MD-LSTM, and
MULSAM in 0.38%, 1.41%, and 0.17% reduction, respec-
tively. MD-LSTM has the largest loss of accuracy, which is
likely that the multi-dimensional architecture of MD-LSTM
causes its performance to be more sensitive to the weight pa-
rameters. However, MULSAM also has a multi-dimensional
architecture. Still, it has the lowest drop of accuracy (98.81%),
which is likely that the self-attention mechanism reduces the
dependency of MULSAM on the weight parameters.

It is worth noting that the total time step of the test data in the
experiment is 32 steps, which corresponds to about 30 ms of
CAN data on the CAN bus network. Therefore, the latency
performance of all models (maximum 1.88 ms) is far less than
the generated time of CAN data, which positively impacts the
deployment of embedded FPGA devices. Specifically, since
the step length of our MULSAM model is 32, it can process
32 CAN messages at a time. Given that the calculation time
for one iteration of MULSAM is 1.88ms as the maximum
duration, and assuming each CAN message is 110 bits in size
according to CAN standard, the approximate amount of data
that MULSAM can process per second is 1000ms/1.88ms⇥
32⇥110bit = 1.78Mbit. This translates to a data processing
rate of 1.78 Mb/s for MULSAM, which is significantly higher
than the rate of a saturated CAN bus (e.g. 250 Kb/s to 1
Mb/s). Therefore, our proposed solution can monitor a nearly
saturated CAN bus in real time.

(a) Resource Overhead (b) Accuracy and Latency

Figure 11: The performance evaluation on FPGA device.

7 Conclusion

The development of automotive intelligence has also brought
more security threats, affecting the benign message transmis-
sion of the in-vehicle CAN bus communication network. For
this problem, an enhanced intrusion detection technology is
developed based on MD-LSTM and Self-Attention Mecha-
nism (MULSAM). First, five attack datasets are generated
based on the attack-free time-series data by extracting the
CAN ID field in the CAN message. Our proposed model
can detect the type of attack with the small-batch, whereas
the previous machine learning models fail to do so. Second,
to deploy our model on the vehicle edge, the computation
process of MULSAM is reconstructed by adopting multiple
parallel methods and implemented based on the FPGA plat-
form. The experiment proved that the lightweight reduction
of the weights of the recurrent neural network did not im-
pact the detection accuracy. In the future, we will work on
a real-time online detection system and run more real-world
tests to evaluate the performance of MULSAM accelerator
in autonomous driving scenarios. Additional attacks includ-
ing emerging ones designed for vehicular CAN bus will be
verified as well if it is necessary.

Acknowledgments

We thank the anonymous reviewers for their constructive com-
ments and insightful suggestions. This work was partially sup-
ported by the National Natural Science Foundation of China
under Grant No. 61972145 and 61932010, the Key R&D Pro-
gram of Hunan Province under Grant No. 2022GK2069, and
the Fundamental Research Funds for the Central Universities.

References
[1] Omid Avatefipour and Hafiz Malik. State-of-the-art

survey on in-vehicle network communication (can-
bus) security and vulnerabilities. arXiv preprint
arXiv:1802.01725, 2018.

[2] Minkyung Baek, Frank DiMaio, Ivan Anishchenko,
Justas Dauparas, Sergey Ovchinnikov, Gyu Rie Lee,
Jue Wang, Qian Cong, Lisa N. Kinch, R. Dustin

USENIX Association 2024 USENIX Annual Technical Conference 1061

Schaeffer, Claudia Millán, Hahnbeom Park, Carson
Adams, Caleb R. Glassman, Andy DeGiovanni, Jose H.
Pereira, Andria V. Rodrigues, Alberdina A. van Dijk,
Ana C. Ebrecht, Diederik J. Opperman, Theo Sagmeis-
ter, Christoph Buhlheller, Tea Pavkov-Keller, Manoj K.
Rathinaswamy, Udit Dalwadi, Calvin K. Yip, John E.
Burke, K. Christopher Garcia, Nick V. Grishin, Paul D.
Adams, Randy J. Read, and David Baker. Accurate
prediction of protein structures and interactions using
a three-track neural network. Science, 373(6557):871–
876, 2021.

[3] Kyong-Tak Cho and Kang G Shin. Fingerprinting elec-
tronic control units for vehicle intrusion detection. In
25th USENIX Security Symposium (Security), pages 911–
927, 2016.

[4] Wonsuk Choi, Kyungho Joo, Hyo Jin Jo, Moon Chan
Park, and Dong Hoon Lee. Voltageids: Low-level com-
munication characteristics for automotive intrusion de-
tection system. IEEE Transactions on Information
Forensics and Security, 13(8):2114–2129, 2018.

[5] Guillaume Dupont, Alexios Lekidis, J. (Jerry) den Har-
tog, and S. (Sandro) Etalle. Automotive controller area
network (can) bus intrusion dataset v2, Nov 2019.

[6] Ilias Giechaskiel, Kasper Bonne Rasmussen, and Jakub
Szefer. C3apsule: Cross-fpga covert-channel attacks
through power supply unit leakage. In IEEE Symposium
on Security and Privacy, pages 1728–1741, 2020.

[7] Markus Hanselmann, Thilo Strauss, Katharina Dormann,
and Holger Ulmer. Canet: An unsupervised intrusion de-
tection system for high dimensional can bus data. IEEE
Access, 8:58194–58205, 2020.

[8] Yuze He, Li Ma, Jiahe Cui, Zhenyu Yan, Guoliang Xing,
Sen Wang, Qintao Hu, and Chen Pan. Automatch: Lever-
aging traffic camera to improve perception and local-
ization of autonomous vehicles. In ACM SenSys, pages
16–30, 2022.

[9] Sepp Hochreiter and Jürgen Schmidhuber. Long short-
term memory. Neural computation, 9(8):1735–1780,
1997.

[10] Tobias Hoppe, Stefan Kiltz, and Jana Dittmann. Apply-
ing intrusion detection to automotive it-early insights
and remaining challenges. Journal of Information As-
surance and Security (JIAS), 4(6):226–235, 2009.

[11] Md Delwar Hossain, Hiroyuki Inoue, Hideya Ochiai,
Doudou Fall, and Youki Kadobayashi. Lstm-based in-
trusion detection system for in-vehicle can bus commu-
nications. IEEE Access, 8:185489–185502, 2020.

[12] Tianxiang Huang, Jianying Zhou, and Andrei Bytes.
Atg: An attack traffic generation tool for security testing

of in-vehicle can bus. In Proceedings of the 13th In-
ternational Conference on Availability, Reliability and
Security, pages 1–6, 2018.

[13] Hyo Jin Jo, Jin Hyun Kim, Hyon-Young Choi, Won-
suk Choi, Dong Hoon Lee, and Insup Lee. Mauth-can:
Masquerade-attack-proof authentication for in-vehicle
networks. IEEE transactions on vehicular technology,
69(2):2204–2218, 2019.

[14] Karl Henrik Johansson, Martin Törngren, and Lars
Nielsen. Vehicle applications of controller area net-
work. In Handbook of networked and embedded control
systems, pages 741–765. Springer, 2005.

[15] Pooria Joulani, Andras Gyorgy, and Csaba Szepesvári.
Delay-tolerant online convex optimization: Unified anal-
ysis and adaptive-gradient algorithms. In Proceedings
of the AAAI Conference on Artificial Intelligence, vol-
ume 30, 2016.

[16] Nal Kalchbrenner, Ivo Danihelka, and Alex Graves.
Grid long short-term memory. arXiv preprint
arXiv:1507.01526, 2015.

[17] Kyounggon Kim, Jun Seok Kim, Seonghoon Jeong, Jo-
Hee Park, and Huy Kang Kim. Cybersecurity for au-
tonomous vehicles: Review of attacks and defense. Com-
puters & Security, page 102150, 2021.

[18] Sekar Kulandaivel, Shalabh Jain, Jorge Guajardo, and
Vyas Sekar. Cannon: Reliable and stealthy remote shut-
down attacks via unaltered automotive microcontrollers.
In IEEE Symposium on Security and Privacy, pages
195–210, 2021.

[19] Shuheng Li, Ranak Roy Chowdhury, Jingbo Shang, Ra-
jesh K. Gupta, and Dezhi Hong. Units: Short-time
fourier inspired neural networks for sensory time series
classification. In ACM SenSys, pages 234–247, 2021.

[20] Congli Ling and Dongqin Feng. An algorithm for de-
tection of malicious messages on can buses. In 2012
national conference on information technology and com-
puter science. Atlantis Press, volume 10. Citeseer, 2012.

[21] Guifu Ma, Manjiang Hu, Xiaowei Wang, Haoran Li,
Yougang Bian, Konglin Zhu, and Di Wu. Joint partial
offloading and resource allocation for vehicular feder-
ated learning tasks. IEEE Transactions on Intelligent
Transportation Systems, 2024.

[22] Minghua Ma, Shenglin Zhang, Junjie Chen, Jim Xu,
Haozhe Li, Yongliang Lin, Xiaohui Nie, Bo Zhou, Yong
Wang, and Dan Pei. Jump-starting multivariate time
series anomaly detection for online service systems. In
USENIX ATC 2021, pages 413–426, 2021.

[23] Ratul Mahajan, Jitendra Padhye, Sharad Agarwal, and

1062 2024 USENIX Annual Technical Conference USENIX Association

Brian Zill. High performance vehicular connectivity
with opportunistic erasure coding. In USENIX ATC
2012, pages 237–248, 2012.

[24] Mirco Marchetti and Dario Stabili. Anomaly detection
of can bus messages through analysis of id sequences. In
2017 IEEE Intelligent Vehicles Symposium (IV), pages
1577–1583. IEEE, 2017.

[25] Ishtiaq Rouf, Robert D Miller, Hossen A Mustafa, Travis
Taylor, Sangho Oh, Wenyuan Xu, Marco Gruteser, Wade
Trappe, and Ivan Seskar. Security and privacy vulner-
abilities of in-car wireless networks: A tire pressure
monitoring system case study. In USENIX Security
Symposium, volume 10, 2010.

[26] Mehdi Sajjadi, Mehran Javanmardi, and Tolga Tasdizen.
Regularization with stochastic transformations and per-
turbations for deep semi-supervised learning. Advances
in neural information processing systems, 29:1163–
1171, 2016.

[27] Benjamin Carrion Schafer and Zi Wang. High-level
synthesis design space exploration: Past, present, and
future. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 39(10):2628–2639,
2020.

[28] Marco Siracusa and Fabrizio Ferrandi. Tensor opti-
mization for high-level synthesis design flows. IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 39(11):4217–4228, 2020.

[29] Rebecca Smith and Scott Rixner. Surviving peripheral
failures in embedded systems. In USENIX ATC 2015,
pages 125–137, 2015.

[30] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In
Advances in Neural Information Processing Systems,
volume 30, pages 5998–6008, 2017.

[31] Tuan Phan Vuong, George Loukas, and Diane Gan. Per-
formance evaluation of cyber-physical intrusion detec-
tion on a robotic vehicle. In 2015 IEEE International
Conference on Computer and Information Technology;
Ubiquitous Computing and Communications; Depend-
able, Autonomic and Secure Computing; Pervasive Intel-
ligence and Computing, pages 2106–2113. IEEE, 2015.

[32] Jie Wang, Yuewu Wang, Lingguang Lei, Kun Sun, Jiwu
Jing, and Quan Zhou. Trustict: an efficient trusted in-
teraction interface between isolated execution domains
on arm multi-core processors. In ACM SenSys, pages
271–284, 2020.

[33] Jinwen Wang, Ao Li, Haoran Li, Chenyang Lu, and
Ning Zhang. Rt-tee: Real-time system availability for

cyber-physical systems using arm trustzone. In IEEE
Symposium on Security and Privacy, pages 352–369,
2022.

[34] Di Wu, Qiang Liu, Yong Li, Julie A. McCann, Amelia C.
Regan, and Nalini Venkatasubramanian. Adaptive
lookup of open wifi using crowdsensing. IEEE/ACM
Transactions on Networking, 24(6):3634–3647, 2016.

[35] Di Wu, He Xu, Zhongkai Jiang, Weiren Yu, Xuetao Wei,
and Jiwu Lu. Edgelstm: Towards deep and sequential
edge computing for iot applications. IEEE/ACM Trans-
actions on Networking, 29(4):1895–1908, 2021.

[36] Guoqi Xie, Laurence T Yang, Yuanda Yang, Haibo Luo,
Renfa Li, and Mamoun Alazab. Threat analysis for
automotive can networks: A gan model-based intrusion
detection technique. IEEE Transactions on Intelligent
Transportation Systems, 2021.

[37] Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Au-
gustus Odena. Self-attention generative adversarial net-
works. In International conference on machine learning,
pages 7354–7363. PMLR, 2019.

[38] Rui Zhang and Cynthia Sturton. Transys: Leveraging
common security properties across hardware designs.
In IEEE Symposium on Security and Privacy, pages
1713–1727, 2020.

[39] Yan Zhang, Yi Zhu, Zihao Liu, Chenglin Miao, Foad
Hajiaghajani, Lu Su, and Chunming Qiao. Towards
backdoor attacks against lidar object detection in au-
tonomous driving. In ACM SenSys, pages 533–547,
2022.

[40] Youqian Zhang and Kasper Rasmussen. Siraj: A unified
framework for aggregation of malicious entity detectors.
In IEEE Symposium on Security and Privacy, pages
507–521, 2022.

[41] Zhi Zhang, Yueqiang Cheng, Minghua Wang, Wei He,
Wenhao Wang, Surya Nepal, Yansong Gao, Kang Li,
Zhe Wang, and Chenggang Wu. Softtrr: Protect page
tables against rowhammer attacks using software-only
target row refresh. In USENIX ATC 2022, pages 399–
414, 2022.

[42] Jia Zhou, Prachi Joshi, Haibo Zeng, and Renfa Li. Bt-
monitor: Bit-time-based intrusion detection and attacker
identification in controller area network. ACM Transac-
tions on Embedded Computing Systems (TECS), 18(6):1–
23, 2019.

[43] Yi Zhu, Chenglin Miao, Foad Hajiaghajani, Mengdi
Huai, Lu Su, and Chunming Qiao. Adversarial attacks
against lidar semantic segmentation in autonomous driv-
ing. In ACM SenSys, pages 329–342, 2021.

USENIX Association 2024 USENIX Annual Technical Conference 1063

