
This paper is included in the Proceedings of the
2024 USENIX Annual Technical Conference.

July 10–12, 2024 • Santa Clara, CA, USA
978-1-939133-41-0

Open access to the Proceedings of the
2024 USENIX Annual Technical Conference

is sponsored by

CyberStar: Simple, Elastic and Cost-Effective
Network Functions Management

in Cloud Network at Scale
Tingting Xu, Nanjing University; Bengbeng Xue, Yang Song, Xiaomin Wu, Xiaoxin Peng,

and Yilong Lyu, Alibaba Group; Xiaoliang Wang, Chen Tian, Baoliu Ye,
and Camtu Nguyen, Nanjing University; Biao Lyu and Rong Wen, Alibaba Group;

Zhigang Zong, Alibaba Group and Zhejiang University; Shunmin Zhu, Alibaba Group
and Tsinghua University

https://www.usenix.org/conference/atc24/presentation/xu-tingting

CyberStar: Simple, Elastic and Cost-Effective Network Functions Management
in Cloud Network at Scale

Tingting Xu†⋄, Bengbeng Xue‡⋄, Yang Song‡, Xiaomin Wu‡, Xiaoxin Peng‡, Yilong Lyu‡,
Xiaoliang Wang†∗, Chen Tian†, Baoliu Ye†, Camtu Nguyen†, Biao Lyu‡, Rong Wen‡

Zhigang Zong‡§∗ and Shunmin Zhu‡¶∗
†Nanjing University ‡Alibaba Group §Zhejiang University ¶Tsinghua University

Abstract
Network functions (NFs) facilitate network operations and

have become a critical service offered by cloud providers. One
of the key challenges is how to meet the elastic requirements
of massive traffic and diverse NF requests of tenants. This
paper identifies the opportunity by leveraging cloud elastic
compute services (ECS), i.e. containers or virtual machines, to
provide the cloud-scale network function services, CyberStar.
CyberStar introduces two key designs: (i) resource pooling
based on a newly proposed three-tier architecture for scalable
network functions; and (ii) on-demand resource assignment
while maintaining high resource utilization in terms of both
tenant demands and operation cost. Compared to the tradi-
tional NFs constructed over bare-metal servers, CyberStar can
achieve 100Gbps bandwidth (6.7×) and scale to millions of
connections within one second (20×).

1 Introduction

Cloud network offers customers not only transportation but
rich network functions (NFs), e.g., network address translation
(NAT), load balancers (LB), firewall (FW) [25, 41, 54, 61, 65,
66,68]. Conventionally, these network functions are deployed
on bare-metal server clusters to maintain good performance
[45, 63, 74]. However, with the rapid growth of enterprises
that migrate their business to the cloud [27, 49, 68, 70], the
bare-metal server-based network functions cannot meet the
flexible scalability demand. For example, during the period of
shopping festivals (e.g., Double-11 [3]) or live broadcasting,
the traffic can increase by 100 times or even 1000 times in a
very short time, which needs a large number of NFs, like load
balancers, NATs, etc. Therefore, in practice, cloud network
operators must reserve a large number of bare-metal servers
for emergency events. To reduce the high operational costs
and long setup times associated with this approach, cloud
networking service providers are seeking elastic solutions
that can dynamically respond to changing business demands.

⋄Co-first authors ∗Co-corresponding authors

A natural solution for the network function service is lever-
aging the cloud-native elastic compute/container services
(ECS), e.g., virtual machines (VMs), containers [2, 6, 7]. This
approach offers multiple benefits for NFs deployment: (i) "in-
finite" computation resource. It allows the NF platform to
scale using the vast and virtually limitless resources provided
by cloud service providers. We can apply the "infinite" ECS
resource which mitigates the impact of the long setup time of
bare-metal servers. (ii) "pay-as-you-go" price model. Cloud
ECS eliminates the need for users to pay for over-provisioned
resources, resulting in significant cost savings. (iii) high avail-
ability against infrastructure failure, planned downtime and
software upgrades to minimize the impact on customers.

Therefore, we aim to develop an elastic cloud-native NF
management platform over ECSs. Elasticity in this context
means that the system’s capacity can continuously align with
real-time load fluctuations. Building such an elastic NF plat-
form involves pursuing several key objectives: rapid scal-
ability, high resource utilization, and easy management. (i)
Scalability of the NF platform is the system’s ability to rapidly
scale up to handle millions of simultaneous connections for
individual tenants and scale out to serve cloud-scale tenants.
Notice that, the scalability of NFs is not solely confined by
ECS scalability but by its intricate internal execution logic and
state consistency requirement. (ii) Maintaining high resource
utilization is crucial for operators to reduce their operational
costs. However, it is challenging because the traffic distribu-
tion among tenants demonstrates considerable variation and
difference. (iii) Ease of management is crucial for the NF
platform. In the diverse realm of cloud network resources,
the multitude of ECS configuration options and the inherent
delays and constraints in resource allocation pose significant
challenges in ECS selection, requiring meticulous considera-
tion of performance, cost and availability.

We propose CyberStar, a three-tier NFs management plat-
form that leverages ECS to achieve high elasticity, cost-
effectiveness and flexibility. We notice it is not a good option
to directly apply the architectures designed for individual
NFs, such as monolithic NF instances or two-tier architec-

USENIX Association 2024 USENIX Annual Technical Conference 227

tures [10, 44, 70]. Installing a monolithic VNF in one ECS
instance suffers from shortcomings like high configuration
complexity of ECSs, hard-to-realize hardware optimization,
low resource utilization across different NFs and variable traf-
fic. Two-tier architectures proposed by pioneer elastic scaling
works [44, 70] extract the state from the NFs to achieve free
scalability of the stateless components. However, the stateful
components cannot scale out well and states maintained re-
motely introduce non-negligible overhead, including latency
inflation, extra CPU cycles, and bandwidth consumption dur-
ing the access of the remote state.

By investigating the operations of various NFs and the cor-
responding optimization approaches [25, 47, 57, 72], we ob-
serve that different NFs follow the same match-action pipeline
structure in the data path, even though they implement dif-
ferent match-action operations. Therefore, we decompose
the packet processing pipeline into multiple NF-independent
match-action units, allowing the assembly of these units to
various NF types (§4.2). This design offers several benefits. (i)
High scalability: the match-action unit only caches rules that
indicate how to process packets, eliminating the necessity of
maintaining state consistency. (ii) High utilization: the match-
action is NF-independent, so it can be shared by different NFs,
leading to high resource utilization. (iii) High performance:
the design of function independence avoids redundant deploy-
ment and optimization efforts on packet processing across
different NFs. It also facilitates processing acceleration using
heterogeneous hardware resources in the cloud.

After determining the NF-independent packet processing,
the remaining NF-specific parts are placed in the service
computation (SC) plane, which is responsible for computing
rules based on NF-specific state and logic. However, such
stateful components hinder scalability. We observe that the
NF-specific state can be partitioned at a fine granularity, allow-
ing SC to scale effectively when deployed across numerous
instances. Based on this observation, we design a scaling-
in and scaling-out mechanism for the SC plane, eliminating
traffic halting due to waiting for state synchronization (§4.1).

Both the PP and SC planes consist of numerous lightweight
instances deployed on ECSs. However, the connections be-
tween PP and SC nodes are still tightly coupled. Each PP
instance must record the information of requests, NF types,
and the location of corresponding SC instances. When the
SC plane scales (i.e., membership changes), this information
must be notified to the relevant PP nodes to ensure the correct
routing of requests. Similarly, when the PP plane scales, any
changes to PP nodes must be communicated to the relevant
SC nodes. To decouple the scaling, we introduce the Fabric
Master (FM), which manages the connections between the SC
and PP planes (§5). The FM shields the scaling of the PP and
SC plane from each other by taking over the responsibility of
delivering requests to the appropriate SC instances.

To this end, CyberStar introduces the architecture with
loosely coupled components to support network functions

NFs

Tenant A Cloud Service

Tenant B

NAT

LB

VPN

PVL

...

vSwitch
ECS

Cloud
Gateway Internet

Cloud Network

3rdNF
Storage

Compute... server

Figure 1: NFVs in cloud networks

including packet processing, fabric master, and service com-
putation (§4 and §5). Built on the three-tier architecture, Cy-
berStar facilitates the management of heterogeneous hard-
ware resources in the cloud to accelerate packet processing
(§6). CyberStar achieves high resource utilization by shar-
ing resources across tenants, network functions, and traffic,
and employs an auto-scaling mechanism based on Deep Rein-
forcement Learning (DRL) for optimal long-term resource use
(§7.1). For reliability, CyberStar uses Shuffle Sharding [67]
and local rate management to avoid the impact of shared ma-
licious nodes (§7.2).

We deploy CyberStar in a cloud-scale production network
for years, verifying its capability to meet the diverse demands
of tenants and handle high traffic volumes. Compared to tra-
ditional NFs deployed in dedicated zones, CyberStar demon-
strates rapid scalability to serve cloud-scale tenants and traffic.
In terms of performance, CyberStar maintains a throughput
of 26 packets per second (∼ 6.7×) compared to native ECS-
based solutions, and can process millions of connections per
second (20×) for a single tenant instance. To the best of our
knowledge, this work is the first to systemically address the
challenges and opportunities to build a network functions
management system through cloud ECS service. Though Cy-
berStar is designed for network functions management, its
insights and designs are valuable for building other cloud-
native applications as well.

2 Background and Motivation
2.1 Background

Figure 1 shows the panorama of network services in the cloud.
In addition to the basic communication service, cloud net-
works provide advanced network functions, such as Network
Address Translation (NAT), Private Link (PVL), Virtual Pri-
vate Network (VPN), Load Balancer (LB), etc. These network
functions play an important role for the connections among
(1) Tenant Virtual Private Clouds (VPCs); (2) Customers’
VPCs and their on-premise data centers; and (3) Internet
users and Cloud service. For example, a private link bridges
a tenant VPC to cloud computation and storage service with
high bandwidth and secure connection. For Cloud-to-Internet

228 2024 USENIX Annual Technical Conference USENIX Association

NFs Capability
NAT 2 million connections; 100 thousand CPS;
LB 100 million connections; 1 million CPS; 100 thousand QPS

IPSec VPN 5∼ 200 Mbps bandwidth

Table 1: Requests of one tenant in the cloud. (CPS: Connec-
tions Per Second, QPS: Queries Per Second)

communication, the Source NAT (SNAT) offers the ability to
access the Internet for virtual machines (VMs). The Destina-
tion NAT (DNAT) allows the traffic from the Internet to reach
VPC. Specifically, customers can also define and place their
own NFs (3rd NF) in the cloud.

With the increasing migration of businesses to the cloud,
the demand for robust network solutions has surged [1, 4, 14].
These network functions need to be rapidly provided and iter-
ated upon by cloud vendors to meet evolving requirements.
Traditional, closed, and standard hardware middleboxes can-
not keep pace with these dynamic cloud network demands
due to the long development cycle, limited customization and
lack of programmability. Cloud vendors are widely adopt-
ing Virtualized Network Function (VNF) technology. VNF
employs general-purpose x86 servers to build network func-
tions, which greatly improves flexibility, manageability, and
cost-efficiency [9, 27, 33, 55]. It has shown that the software
middleboxes are able to offer equivalent functionalities as
the corresponding hardware implementations [29, 39]. The
advance of software-defined networking (SDN) further facili-
tates the deployment of the software middleboxes running in
the cloud [27, 33, 41, 68].

However, the typical online cycle of x86 servers is inad-
equate for addressing unpredictable business demands. The
conventional process of constructing new bare-metal clusters,
which involves purchasing, constructing, configuring and veri-
fying, can take months. This lengthy preparation period poses
challenges, especially during critical periods like shopping
festivals, where there are demands for advanced planning. For
unpredictable events without advanced plans, this approach
proves to be inadequate. Cloud service providers can estab-
lish large resource pools to handle peak demands for busi-
ness emergencies. However, the cost of maintaining such a
large amount of infrastructure remains a significant challenge.
Therefore, relying on a fixed bare-metal resource pool is not
a sustainable long-term solution.

2.2 Motivation and Challenges
Cloud-native technologies significantly simplify both devel-
opment and operations for tenants. A straightforward ap-
proach to building the NFs platform involves replacing bare-
metal servers with cloud ECS resources. This transformation
presents both opportunities and challenges. We aim to build
a general NFs platform over ECS in practice, achieving the
following objects:

Elastic Scalability. Achieving elastic scalability requires the
NF platform to seamlessly and rapidly adapt to both increas-

ing and fluctuating demands. To accommodate growing de-
mands, the platform must scale out to serve cloud-scale ten-
ants and scale up to handle millions of simultaneous con-
nections for individual tenants. For instance, as illustrated in
Table 1, a tenant may require millions of simultaneous con-
nections for NAT and generate 1 million new connections per
second for LB. Responding rapidly to dynamic demands in-
volves more than just resource allocation. NF scalability is in-
fluenced not only by resource availability but also by complex
internal execution logic and state consistency requirements.
These constraints become more apparent when addressing
fluctuating workloads. Therefore, the key to enhancing NF
scalability lies in strategically decoupling the packet process-
ing from state management. This entails ensuring that each
NF component deployed in an ECS is independent and capa-
ble of scaling on demand.

High Resource Utilization. The NF platform serves cloud-
scale users, necessitating the utilization of a substantial num-
ber of ECS resources. However, the low utilization of cloud
ECS has become a key problem of today’s cloud providers
[5,11,24,26,31,37,52,61,77]. The average CPU utilization of
60% VMs in Azure is less than 20% [24]. The average CPU
utilization of Alibaba cluster is between 20% to 50% in the
majority of times [37]. Keeping long-term efficient resource
utilization is critical in effectively reducing operational costs.

The challenge in improving resource utilization lies in the
significant variations of traffic distribution among different
users, as well as the large fluctuations in traffic for individual
users. In the dimension of tenants, one tenant may have mod-
est traffic of 30 Mbps distributed across 300K routes, while
another tenant experiences substantial traffic of 200 Gbps
on just 7 routes [4]. If we distribute a tenant’s traffic across
multiple ECS instances, in the former scenario, a single ECS
instance is sufficient to support the traffic. However, in the
latter scenario, multiple instances would be required to handle
the tenant’s traffic, while each ECS instance needs to manage
an average of 30 Gbps with regard to 7 instances. In the time
dimension, instance provisioning typically aligns with peak
bandwidth usage. However, we have observed that peak-to-
average bandwidth demands can fluctuate significantly, some-
times by up to a factor of 100. This variation poses a challenge
in efficiently provisioning instance capacity. Therefore, a fine-
grained scheduling approach is necessary to process tenant
workloads in a shared manner, reducing the overall peak-to-
average ratio of the load.

Low Management Complexity. Scaling an NF platform to
serve cloud-scale tenants involves the effective management
of numerous instances with diverse resource configurations.
Regarding the diverse realm of cloud resources, the multitude
of configuration options can actually pose challenges in ECS
selection, cost, and availability. It requires cloud providers to
meticulously consider and balance multiple factors since it is
hard to estimate the resource consumption of NFs belonging

USENIX Association 2024 USENIX Annual Technical Conference 229

NAT
processing

VPN
processing

NAT state

P1: Limited Scalability

P2: Remote Access Overhead

VPN state

(a) Typical NF Architecture

state
SC

state
SC

PP PP PP
M/A
PP

miss

hit

VPNNAT

state
SC

(b) 1st Generation of CyberStar

NF Orchestration

Fabric Master

PP PP PP PP

state
SC

state
SC

state
SC

(c) 2nd Generation of CyberStar

Figure 2: NF architectures. (a) Typical NF architecture. Prior efforts [44, 70] extracted state from NF instances to improve the
scalability of packet processing. (b) To improve the scalability of stateful components and reduce the overhead of state fetching,
the 1st generation of CyberStar puts the state into a distributed service computing (SC) plane and adapts network-independent
packet processing (PP). (c) The 2nd generation of CyberStar introduces a fabric master, decoupling the packet processing and
service computing.

to a specific tenant. Moreover, the process of creating new re-
sources on large public clouds introduces inherent delays and
constraints in resource allocation. For example, provisioning
virtual machines that surpass vCPU quotas may entail waiting
times ranging from several hours to a day. To simplify man-
agement, the straightforward approach is to apply a few types
of prevalent and low-configured ECS instances in clouds.

Reliability and Transparency. A general cloud NFs plat-
form must seamlessly avoid interruptions caused by customer
workloads affecting each other. This shared platform demands
high reliability to ensure isolation, preventing the malicious
traffic of one tenant from impacting another. Additionally, the
implementation details and placement of network functions
in the cloud environment must be transparent to tenants. This
transparency does not conflict with customization. Users can
still customize their NF services through the orchestration of
NF chains, tailoring the platform to meet their requirements
without needing to know the implementation details.

3 CyberStar

3.1 Design Rationale
Elastic Scalability using Disaggregated Architecture. The
pioneer elastic scaling works of network functions [10,44,70]
extracted the state from the NFs to achieve free scalability of
the stateless components, as shown in Figure 2a. However,
we cannot directly apply the two-tier architectures for two rea-
sons: (i) The stateful component itself cannot scale out well
under the cloud-scale traffic. (ii) States maintained remotely
introduce non-negligible overhead, including increased la-
tency, extra CPU cycles and higher bandwidth consumption
during the access of the remote components.

Addressing the scalability for cloud-scale traffic and mul-
tiple tenants necessitates the partitioning of NF state and
operation into lightweight components and distributing them
across the massive ECS instances. By investigating the archi-

tecture of various NFs and the corresponding optimization
approaches [25, 47, 57, 72], we observe that NF execution
can be separated into NF-independent packet processing, NF-
specific logic operation, and NF-specific state. Due to the
reliance on NF-specific logic execution on NF state, they
should be placed together for fast state access.

To this end, the first generation of CyberStar is proposed,
whose architecture is shown in Figure 2b. It partitions the NFs
into two components: high-speed packet processing (PP) and
service computations (SC). The PP plane is NF-independent,
focusing on providing high-speed packet processing. The SC
plane is NF-specific, performing service computations based
on NF-specific state and logic, and generating rules that direct
PP on how to process packets. The stateless PP plane only
caches rules rather than maintaining state. The NF-specific
state is locally maintained by the SC plane for fast access, but
this hinders scalability. We observe that NF-specific states
can be partitioned at a fine granularity, allowing SC to be
divided into numerous instances. Based on state partitioning,
the state on different SC instances does not need to maintain
constant consistency. State synchronization of the SC plane
is only triggered during scaling events, and the process does
not involve halting traffic.

The connections between PP and SC nodes affect the scal-
ability of PP and SC planes. Each PP instance must identify
the tenant requests, type of NF and addresses of SC instances.
When the SC plane scales (i.e., membership changes), this
alteration must be notified to the corresponding PP nodes so
that they can route requests correctly. Similarly, when the
PP plane scales, any changes to PP nodes must be communi-
cated to the relevant SC nodes. To decouple the scaling, we
introduce the Fabric Master (FM) in the 2nd generation of
CyberStar as shown in Figure 2c. The Fabric Master manages
the connections between the SC and PP planes, taking respon-
sibility for dispatching requests from the PP plane to the SC
plane, thereby shielding the effects of membership changes
on SC and PP during scaling.

230 2024 USENIX Annual Technical Conference USENIX Association

Function-Independent Packet Processing. Different NFs
may implement various match-action operations in their data
paths, but they typically adhere to the same pipeline match-
action structure. Our key insight is that we can place a parser-
match-action unit to an ECS, and the packet processing of a
dedicated NF can be realized by orchestrating those match-
action units [13, 15]. Specifically, since the match-action unit
is NF-independent, it can be shared by multiple NFs and
multiple tenants. As shown in Figure 2b, VPN and NAT can
share the same action of revising the packet header. We can
further manage the pipeline of these units to fulfill: i) NFs
chain, e.g., FW-NAT; ii) complex NFs e.g., IPSec VPN.

Furthermore, to stay at the cutting edge, modern cloud
infrastructure adopts heterogeneous devices, including ECS
based on Intel and ARM architecture, DPUs/SmartNICs, and
other advanced hardware accelerators. Based on the mod-
ular packet processing design, we can leverage the widely
deployed DPU/SmartNIC devices to accelerate packet pro-
cessing efficiently.

High Utilization with Resource Sharing and Auto-Scaling.
Achieving high resource utilization is crucial for service
providers to reduce costs, especially in the context of cloud-
scale workloads and increasing NF instances [5, 11, 24, 26,
31, 37, 52, 61, 77]. With regard to the disaggregated design
of the NFs platform, we can achieve high resource utiliza-
tion by effectively sharing the resource in three dimensions:
Tenants, Network Functions, and Traffic. However, conven-
tional manual management of resource scaling can be less
effective given the scale of cloud workloads. CyberStar em-
ploys an auto-scaling mechanism with a global view, based on
Deep Reinforcement Learning (DRL), to optimize long-term
resource utilization.

Reliability based on Shuffle Sharding and Rate Manage-
ment. CyberStar needs to minimize the impact of malicious
traffic to improve reliability. On the one hand, CyberStar
adopts Shuffle sharding [67], an effective method for segregat-
ing tenants’ workloads by distributing traffic across multiple
instances with minimal overlap. On the other hand, CyberStar
incorporates local rate management at each instance to ensure
fair sharing and work conservation among tenants.

3.2 Architecture
Figure 2c illustrates the 2nd generation architecture of Cyber-
Star, which consists of an NF Orchestration and three-plane
network functions.

NF Orchestration. NFs orchestration is the service-oriented
interface for users to describe their demand through carefully
designed API and realize cost-effective network function auto-
scaling through a scheduler.
Network functions are divided into three planes:

Service Computing (SC): SC plane generates rules for in-
structing how the packet is processed based on the service

logic of NFs, local NF-specific states, and customer prefer-
ence. For a specific NF, multiple SC nodes constitute a reli-
ability group (referred to as SCG) and synchronize the NF
state to prevent state loss in case any SC node fails. It ensures
the consistency and portability of the state in a SCG by redi-
recting the packet of rule requests to traverse all the SC nodes
to synchronize states. We call this synchronization method
packet-pass-through. Based on the operational experience,
three nodes are sufficient for processing the state read request
of a normal tenant.

Packet Processing (PP): The PP plane receives and processes
packets based on rules generated by the SC plane. Each PP
unit includes a parse-match-action table, which caches rules
to instruct the PP on how to handle packets. The PP unit
caches rules on-demand, ensuring quick readiness for scaling
up and failover. When an incoming packet matches a rule,
the PP node processes the packet according to the action. If
no matching rule is found, the packet is forwarded to the SC
plane. The rule consists of matching fields and actions with
parameters. Matching fields specify which packet fields are
used for matching and matching what value. If a flow matches
with the value, it performs actions using parameters on packets
of this flow. For example, in the case of Source NAT, the match
fields of the rule are <Source IP, Source Port, Destination IP,
and Destination Port>, and the action is modifying the source
IP and port with substitutes. This design allows us to flexibly
construct the processing pipeline by orchestrating PP units
along the traffic path.

Fabric Master (FM): The FM plane is responsible for man-
aging the interconnection between SC and PP instances, as
well as facilitating communication among PP nodes. It avoids
direct communication between any two nodes of the SC and
PP planes. FM dispatches rule requests to SC nodes and re-
turns the generated rules to PP nodes. When a new request
arrives, it is initially forwarded to any arbitrary FM node. Sub-
sequently, FM routes this request to the relevant SC nodes.
After the decision-making process, which involves computing
the rule, both the request and its corresponding rule are re-
turned to the FM plane. Finally, they are delivered back to the
originating PP node. Additionally, FM caches replicas of rules
for incoming requests to alleviate the burden on the SC plane
caused by repeated requests. For instance, if PP nodes crash,
they will reboot and re-request the rules for active flows. Sim-
ilarly, when a new PP node joins, some existing flows may be
reassigned to this new node to distribute the workload evenly,
triggering re-requests to SC. The rule storage in FM reduces
the burden on SC by handling these repeated requests.

Based on the disaggregated architecture, NF developers
only need to design and program the service logic, generating
the processing ruleset using the API provided by CyberStar.
This ruleset can then be installed into PP nodes. This approach
simplifies the development process, as developers focus solely
on the service logic, while CyberStar handles the deployment

USENIX Association 2024 USENIX Annual Technical Conference 231

and execution of the ruleset across the lifecycle of the NF.

4 Elastic Scalability

4.1 Scalability of SC Plane
In the SC plane, we execute NF-specific service logic. Given
the exponential growth in traffic and tenant demands, intro-
ducing multiple SCGs for service computation can signifi-
cantly improve overall processing capacity and guarantee ser-
vice quality. However, service computation needs NF-specific
states locally for fast access, and the state consistency across
all SCGs is crucial for correct rule generation. Any state
modification triggered by an arriving request should be syn-
chronized among multiple SCGs. With the increase of SCGs,
the task of state synchronization can slow down service com-
putation and limit the scalability of the SC plane. Therefore,
we focus on how to realize effective state partition and state
synchronization among SCGs.

State Partition. It is notable that the state can be partitioned
based on the tenants because tenants are independent from
each other in practice. This insight allows the partition of
states into numerous SCGs for support cloud-scale traffic. By
partitioning the state, consistency is maintained within each
SCG using packet-pass-through as introduced in §3.2, and
synchronization among SCGs is only required during scal-
ing events. We further categorize NF state into two types:
per-flow state and shared state. The per-flow state is only
accessed by the packets of one flow. The shared state con-
sists of structures or objects that are accessed or modified by
multiple flows. Shared states with commutative properties1

can be effectively partitioned. For instance, operations such
as removing elements from a set can exhibit commutativity
under specific conditions2. Taking Source NAT as an example,
the available source address-port pool serves as a shared state,
utilizing a set structure, with entries like <114.114.1.2, 1024 -
4096>. By partitioning the set into subsets like <114.114.1.2,
1024 - 2048> and <114.114.1.2, 2049 - 4096>, we can dis-
tribute them into two SCGs. Requests can also be dispatched
across these two SCGs using hashing. This allows each SCG
to independently allocate address-port pairs to incoming re-
quests, ensuring efficient and independent operation. During
the scaling-in event, the two sets can be merged back together.

State Synchronization during Scaling. State partitioning
and merging can align with scaling-out and scaling-in opera-
tions, respectively. During a scaling-out event, the shared state
can be partitioned and distributed across multiple instances.

1Commutativity refers to a property of operations where the order of
applying the operations does not affect the final outcome. In other words,
if two operations h and g are commutative, then applying h followed by g
yields the same result as applying g followed by h. Mathematically, this can
be expressed as h(g(x)) = g(h(x)) for any input x.

2Specifically, when the elements to be removed are distinct and present
in the set, the removal operations are commutative.

FM: f1_, f2_

SCG1 SCG2
B''

fin

fin

st

f1st f2

B' Cf1A
B''

B'' Df2

(a) Scale out

FM: f1_, f2_, f3_

SCG1 SCG2
C

finf3st

C st C
F

D Ef3
fin

(b) Scale in

Figure 3: Example of scaling event in SCG. The capitals, e.g.,
A, B, C, represent shared state values. "fx" signifies a request
set, while "fx_" indicates the corresponding returned rules.

After partitioning, the state can be updated independently.
During a scaling-in event, these partitions can be merged and
integrated into one state, even if each partition has been mod-
ified. The scaling event is a collaborative effort between SCG
and FM, involving both scaling out and scaling in procedures.
Scaling out is triggered when requests exceed the computa-
tion capacity of SC instances, and scaling in occurs when
resources can be released. An example process is demon-
strated in Figure 3. At the beginning of scaling out, FM sends
a start signal (st) to SCG1. Upon receiving "st", SCG1 parti-
tions state A into B′ and B′′ based on partition strategy (e.g.,
bipartition for a set), moving state B′′ to SCG2. At SCG1, the
following arrived requests set (f1) can update its correspond-
ing state B′. After receiving state B′′, SCG2 sends "fin" to
inform both SCG1 and FM that the state is ready. FM then
dispatches new requests to SCG2, and SCG1 can delete state
B′′. In the case of scaling in, when it is determined that SCG1
needs to be released, the scaling in event is triggered. At
the beginning of scaling in, FM sends a signal "st" to SCG1,
instructing it to start to synchronize its states with SCG2.
Meanwhile, FM forwards all following requests (f3) to SCG2.
SCG1 receives "st" and synchronizes state C to SCG2. SCG2
receives state C, merges it with state E (D updated based on
f3), and sends a "fin" signal to notify FM and SCG1 that
synchronization is complete. Finally, SCG1 can be released.

During the procedures of both scaling out and scaling in,
arrival requests can be processed continually with no need
to wait for the complementation of state synchronization. Re-
quests can be classified into two categories: requests arrived
before scaling is triggered and newly arrived requests. For
requests that arrive before scaling is triggered, we apply the
rule cached in FM, as explained in §3.2, to process the re-
quests. The cached rules minimize the impact of SC scaling.
Specifically, for the scaling of PP plane, though the same re-
quests might arrive repeatedly, FM can still respond based on
the corresponding cached rules. For newly arrived requests
during scaling our/in events, FM forwards the new requests to
an SCG responsible for state partitioning/merging. All state
modifications, including partitioning, merging, and updates
caused by incoming requests, are completed within a single
SCG. This approach ensures consistency by avoiding state
write operation across different SCGs, eliminating the need

232 2024 USENIX Annual Technical Conference USENIX Association

to pause request processing.

4.2 Elastic PP Plane

In PP Plane, we provide high-speed packet processing shared
by multiple NFs and tenants.

Modular Packet Processing. We introduce modular packet
processing to unify the management of NFs. Since NFs fol-
low the same pipeline match-action structure, the packet pro-
cessing can be constructed as a pipeline built on a series of
match-action units. Each match-action unit is defined as 1)
Parse: extracting the key from the packet header based on
protocols; 2) Match: looking up a flow table based on the
key (flow-id or tenant-id) using wildcards; 3) Action: modify-
ing/forwarding/dropping packet and/or updating local statis-
tics. We deploy the match-action unit at one independent ECS
instance. By doing so, we can flexibly construct the process-
ing pipeline by organizing PP nodes. Instances are added
along the traffic path to extend the pipeline depth. Meanwhile,
each stage of the pipeline is separately scaled out by adding
new instances. Due to states being maintained at the SC plane,
PP instances only request rules on demand for arrival flows.
This prevents traffic from halting to wait for large chunks of
state migration during scaling events.

Rapid Scaling of PP Plane. The subsequent challenge in-
volves enabling tenants to rapidly access new PP instances
during scaling operations. Initially, we review how tenant
traffic is directed to the PP plane. NFs and the applications of
cloud tenants are deployed in different VPCs. Tenants access
NFs based on the general VPC-to-VPC (Inter-VPC) communi-
cation mode. Given a task of accessing NFs, ECS creates and
manages an Elastic Network Interface (ENI) [8, 21–23, 66],
which represents the IP address and tenant id of the ECS
instance used for network communications at the host level.
For instance, if VPC a requires communication with VPC
b, ECS within VPC b should create an ENI with an address
(e.g., 192.168.10.3/24) and this address belongs to VPC a
subnet (e.g., 192.168.10.0/24). Then, ECS within VPC a
can send traffic to ECS within VPC b by taking the address
192.168.10.3 as the destination.

CyberStar leverages ENI-bonding to allow ECS instances
of a tenant to access multiple PPs. ENI-bonding is a tech-
nology that enables ENIs attached to multiple ECS instances
(in this context, PPs) to share a primary IP address. During
establishing ENI-bonding, an ECMP group is generated that
uses the primary IP as the destination and includes all ENI
members in the ENI group as nexthops. The ECMP rout-
ing entries corresponding to these ENIs are loaded into the
vSwitch where the tenants’ ECS instances reside. This en-
sures tenant traffic can be directed to multiple PPs. By adding
more ENIs connected to PPs into the ENI-bonding group,
traffic can be redirected to new members, allowing the PP
plane to scale out efficiently.

PP PP

PPPP

m ENIs

VPC

... n nexthops
O(mn)

Inter-VPC Intra-VPC

Service

Service

Fabric Master

Inter-VPC

w/o fabric

Fabric

Figure 4: The fabric bridges the client VPC to Service by
setting up the connection between two PP instances. Before
introducing "Fabric", the number of clients who can access
Service is constrained to O(mn) as shown in the dotted box.

5 Fabric Master
The intricate interconnections between SCs and PPs, as well
as cloud-based connections, affect scalability. We introduce
the plane of Fabric Master to decouple the SC and PP planes.

5.1 Untangle Scaling of SC and PP
Problem. In the 1st Generation of CyberStar, PP instances re-
quest rules from different SC instances. For reliable requests,
each PP node must establish multiple long-term, one-to-one
connections with various SCGs. Consequently, each PP node
needs several connections to dispatch requests to different SC
instances. These connections tightly couple the SC plane and
PP plane, resulting in inefficient scaling and failover of SCG.
For scaling events, several connections should be established
when new instances join and released when they leave. In the
case of failover, the PP node needs to be aware of both primary
and backup nodes within a SCG and perform a fast migration
of connections from the primary to the backup node. Both the
establishment of connections and migration processes cause
high complexity of management and non-negligible wait time
for the traffic involved.

Decouple SC and PP with Fabric Master. Fabric Master
(FM) serves as the intermediary connecting the SC plane
and PP plane which shields distributed SC structure for PP
plane. Both SC instances and PP instances establish connec-
tions with FM. FM maintains connectivity and sessions so
that members of the SC and PP planes can change and only
requires to notifying FM. For SCGs scaling, PP instances
remain unaware of any changes in the SC plane. During PP
plane scaling, the process involves establishing or closing
connections with FM without interrupting the SC plane.

5.2 Improve Tenants Accessing
Problem. CyberStar operates in cloud environments and dis-
tributes NF instances across high-density deployed ECSs3. In
the 1st generation of CyberStar, tenants access cloud services

3A computation server can host a substantial number of containers for
commonly used configurations, reaching up to O(103) [7, 50].

USENIX Association 2024 USENIX Annual Technical Conference 233

through NFs along the following path: tenants’ VPC to PP in-
stance to cloud service, as illustrated in the left dotted box of
Figure 4. Each ECS instance can support only up to m ENIs,
where m is no more than 100 [8, 21–23, 66], so the number
of tenants who can simultaneously access cloud services is
no more than 100. Even though a cloud service can connect
to up to n PPs no more than 64 [61, 68] in our cloud, these
one-hop connections only support O(mn) tenants accessing a
cloud service through PP plane4.

However, this limitation cannot be resolved by merely in-
creasing the number of ENIs supported by ECSs due to the
requirements of searching tables. The virtual switch (vSwitch)
running within the hypervisor has a limited buffer size, which
restricts the size of tables, including route tables of different
VPCs and mapping tables from ECS to physical machines.
If the number of ECS hosted on each physical machine is
i, and each ECS is attached to m ENIs, with n next hops to
a destination, the routes maintained by vSwitch are O(imn).
The size of these route tables impacts route lookup efficiency,
memory consumption, and the time required for migrating
ECSs, which further limits the scale of tables. Therefore, in-
creasing the number of ENIs is an impractical solution for
improving tenant access to cloud services.

Fabric Abstraction for Interconnection of PP Instances.
We introduce an abstraction of "Fabric" based on ECSs, which
is an effective solution for improving the tenants accessing
capability through CyberStar. As shown in Figure 4, Fabric
is a virtual full mesh connection built on PP nodes. Based on
Fabric, tenants can access cloud services by accessing any PP
nodes. The connections of inter-PPs are not thus confined be-
cause ECS instances belonging to the same VPC can connect
without the requirement of extra ENI.

Fabric is managed by FM. Fabric can be implemented
by extending with a forwarding entry in the PP unit which
records the next hop of a PP node. Since PP nodes should
be stateless, the routes among PP nodes are maintained and
updated by FM. If there is no route at the ingress PP when
the packet of a flow arrives, the packet is sent to one of FM
nodes to be forwarded to the next hop PP. Meanwhile, the
corresponding route is installed into the PP node, indicating
how to forward the following packets of this flow.

6 Deployment Flexibility

To deliver network function services effectively, a significant
challenge is accommodating the diverse requirements of users,
who often demand customized features.

6.1 Adoption of Heterogeneous Hardwares
To remain at the cutting edge, CyberStar allows managing
heterogeneous hardware resources in the cloud to improve per-
formance. We provide two approaches: in-depth integration

4Cloud service connects to n PP instances, and each PP serves m tenants.

NF slow path DPU control path speedup path

 ECS

NF

vSwitchd

DPU

virtio-net

CPUFPGA

Accelerator for NF

Accelerator for host

NF fast path

 ECS ECS

NF NF

Function
Acceleration

Cards

Figure 5: Architecture of hardware/software co-design. For
DPU, the vSwitch and NF match-action (M/A) are offloaded.
For function acceleration cards, the specified features are
offloaded with the help of vSwitch and PP.

for the general accelerator, e.g., DPU, and software/hardware
co-design to accelerate packet processing.

Network Function Acceleration. For the connection-
oriented network functions, e.g., NAT and LB, we can main-
tain high scalability through PP nodes. However, the CPU-
based packet processing has an intrinsic restriction on the
throughput [40, 78]. In the virtualized environment, the
vSwitch in the hypervisor performs packet sending and re-
ceiving among the ECSs and physical devices, occupying
extra physical resources and leading to long latency and low
throughput. The match-action unit has similar semantics with
general-proposed hardware flow tables. Therefore, we seek to
use widely deployed DPU/SmartNIC devices to offload the
match-action unit, achieving ∼10× performance gain.

The routing-oriented network functions, e.g., Layer-7 LB,
are usually computation-sensitive. These network functions
involve the complicated processing of encrypting and decrypt-
ing, key exchange, etc. As shown in Figure 5, to process large
concurrent queries in a short time, we apply the acceleration
cards, which can be deployed in remote machines.

Offloading vSwitch and NF Processing. The challenge is
that DPU is applied for applications running over bare-metal
servers instead of the virtualization domain of ECS [16,17,30].
To this end, we develop vDPU through the virtio device, a
PCIe device following the virtio standard. It consists of two
parts, the frontend in ECS and the backend in DPUs. We adopt
virtio-block device for its compatibility with major operating
systems and can be used by most VMs/containers without
modification. We first offload the full vSwitch forwarding
data plane and control plane into DPU. The offloading lib
supports flow operation interfaces, such as rte_flow for DPDK
and verbs for RDMA. And then, we offload the match-action
processing into DPU.

Our DPU adopts off-path model [51, 76]. As shown in
Figure 5, the software of DPU is a vSwitch management
process (called vSwitchd) running by the embedded CPU
on the DPU, which manages the hardware resources. The

234 2024 USENIX Annual Technical Conference USENIX Association

hardware part is an acceleration engine for the host used as
the vSwitch forwarding data plane. The NF match-action is
offloaded into the acceleration engine for ECS which is the
fast path of ECS-based network function. When encountering
elephant flows, SC node labels the corresponding rules in PP.
The PP node calls the APIs, offloads the rule to vDPU, and
waits for the response from vDPU. If successful, the DPU can
directly process the remaining packets of the flow. It recycles
the resources of network connections by periodically tearing
down idle connections.

6.2 Live Migration
Leveraging heterogeneous hardware resources does not im-
pact the flexibility of CyberStar under live migration tech-
nology. In this context, live migration refers to the process
of moving a tenant’s traffic from one NF instance to another
without disrupting the traffic. We explain how CyberStar real-
izes the live migration between heterogeneous resources for
computation and packet processing. The main idea is to decou-
ple the address related to new hardware devices. To this end,
we apply a virtual ENI as the interface for network functions
to be implemented in the heterogeneous devices. CyberStar
assigns the same virtual ENI for newly deployed devices and
current NF instances. The controller configures and records
the routes to the device in the vSwitch route table. Notably,
the route table is customized by adding a "location" field. The
client accesses the cloud server through NFs by using the
virtual ENI. Once CyberStar identifies that the workload can
be processed by the new hardware, it expands the bonding
ENI to add the hardware-enhanced nodes and then removes
the bonding ENI from the ECS nodes. As a result, during the
process, the flows landed on the ECS nodes do not need to go
through the SC plane, because the ECS nodes already know
how to deal with the flows according to the stored forwarding
actions. The flows landed on the hardware-enhanced nodes
will go through the SC plane to get the action. Therefore, we
can limit the flows that are sent to the SC plane and avoid the
impact of burst traffic.

7 High Resource Utilization and Reliability

CyberStar adopts a hierarchical decision-making approach
to achieve high resource utilization and maintain high relia-
bility. With a global view, the NF orchestration realizes cost-
effective network function auto-scaling by monitoring long-
term resource utilizations, deciding when scaling events are
triggered, and determining how tenants’ traffic is dispatched
into ECSs. In each NF instance, we deploy a rate management,
that achieves local resource-sharing fairness among tenants
and work conservation, effectively utilizing idle resources.

7.1 Global NF Orchestration
Network function auto-scaling is the key for CyberStar man-
agement platform to achieve high resource utilization and

maintain high reliability. For achieving high resource utiliza-
tion, the design of PP units has the potential to achieve effec-
tive resource sharing. Notice that there are three dimensions
of loads: traffic, tenants and network functions. Besides the
well-known dynamic arrival of tenants and their traffic, the
resource consumption of different network functions varies.
For example, VPN is computation-intensive, while NAT and
LB are bandwidth and memory-intensive.

To maintain high reliability, we focus on minimizing the im-
pact of "poison" requests from tenants. If a particular request
happens to trigger a bug that causes the system to failover,
then the caller triggers a cascading failure by repeatedly try-
ing the same request against instance after instance until they
have all fallen over. We adopt Shuffle sharding [67], an effec-
tive method for segregating tenants’ workloads by distributing
traffic across multiple instances with minimal overlap to iso-
late the fault domains.

The NF auto-scaling problem is usually defined as a se-
quential decision problem [12, 53]. Given cloud-scale work-
loads, the corresponding Integer Linear Programming (ILP)
has tens of thousands of variables and constraints. CyberStar
initially apply the heuristic bin packing algorithms [20, 32]
to solve the problems. However, they fail to achieve long-
term low resource utilization because the dynamic requests of
NFs make the problem a multi-stage decision problem rather
than a one-shot decision problem. Moreover, the heuristic
algorithm needs to manually determine the water level of
the maximum ECS resource usage from the (conservative)
operators. To address the problem, we apply a data-driven
Deep Reinforcement Learning (DRL) approach. By using
DRL, we can leverage the historical information of traffic to
optimize long-term utilization of ECS resources effectively
and reduce the reallocation. We also solve the problems when
deploying the algorithm in practice, like large action space
and long validation time of sharding. The details are provided
in Appendix A.

7.2 Local Rate Management
When flows belonging to multiple tenants are aggregated into
a dedicated ECS, resource competition caused by transit flows
is unavoidable and cannot be controlled by global orchestra-
tion. To reduce interference among tenants (ensuring high
reliability) and avoid wasting idle resources (ensuring high
resource utilization), we propose resource-aware rate manage-
ment to achieve both (i) Fairness sharing. The excess resource
consumption by a tenant under heavy load should not exceed
its amount of abdicated resources under light load in the long
term; (ii) Work conservation. Each tenant is permitted to uti-
lize resources beyond its specification to process burst traffic
when other tenants have lower processing demands.

The standard token-bucket (STB) mechanism is a simple
traffic-shaping approach that permits bursts but strictly bounds
them [46]. It ensures that a system or network does not exceed
a specified fixed rate of traffic. In CyberStar, we leverage

USENIX Association 2024 USENIX Annual Technical Conference 235

burst

base

credit
consuming

credit
accumulating

time

(a) Credit variation

Resource ★ : Sufficient ☆ : Intense
Credit + : Positive - : Negative
Load L : Light H : Heavy

 + H

- L

☆ L

★ L
 ★

 H

 ☆
 L

(b) State transformations

Figure 6: (a) The credit varieties with the state changing.
The credit is consumed when Sburst while accumulated when
Smin. Base and burst are thresholds, limiting the traffic arrival
rates at Sbase and Sburst , respectively. (b) State transformation
determined by ECS available resource, the tenant credit, and
tenant traffic load.

the STB mechanism to smooth the tenants’ traffic entering
an ECS. Furthermore, we dynamically transiently the rate
allocated to each tenant so that this rate allocation can fully
utilize available resources, enabling work conservation.

We define the traffic of the tenant can be one of three states:
Smin, Sbase and Sburst . These states represent different traffic
rate control levels for tenants, corresponding to upper bounds
of resource utilization. In other words, each tenant can utilize
the resources according to their workloads as long as the
traffic arrival rate does not exceed the designated threshold for
a specific state. For equal-weighted fair sharing, the threshold
of state Sbase is set as the maximum processing rate divided
by the number of tenants5.

We utilize the credit to evaluate the resource utilization
over time. A tenant’s credit accumulates when it is under-
provisioned and is consumed when it is over-provisioned, as
illustrated in Figure 6a. Specifically, when the traffic arrival
rate exceeds the processing capability of allocated resources
(denoted as base), the tenant is over-using the resource, and
the credit is continuously consumed until its workload de-
creases. Conversely, when the traffic arrival rate does not
exceed the base, the tenant is under-using its resources, and
the credit is continuously accumulated. The credit balance
of a tenant can be negative optionally, allowing the tenant to
go into debt to support heavy loads when there are adequate
remaining resources. If a tenant’s credit is depleted and there
is an intense remaining resource, it will not be allowed to
consume additional resources.

At the beginning of the allocation of an ECS to a tenant, the
tenant is in the state Sbase. The state transformation is shown
in Figure 6b and illustrated as follows:
• In state Sbase, if the tenant’s credit is positive and its work-

load is heavy (i.e., arrival rate exceeds the rate threshold),
the state switches to Sburst , allowing the tenant to use the re-
sources yielded by other tenants. If the remaining resource
is abundant and its workload is light, the state switches to

5Practically, the threshold can be set according to the bandwidth that the
tenant subscribes to.

9 17 37 49 60
Time (min)

0

30

60

90

#C
on

ne
ct

io
ns

 (M
)

active
inactive

Figure 7: Demonstration of the scalability of CyberStar.

0

10

TX
 (M

rp
s)

overall

0 100 200 300 400 500 600
Time(s)

0

1

p0
p1
p2

p3
p4
p5

p6
p7
p8

p9
p10
p11

Figure 8: The transmission rate (TX) of PPs when a scaling
event occurs.

Smin, so the tenant yields the idle resources.
• In state Smin, when the available resource is adequate, the

state can switch to Sbase when the tenant’s traffic is light
(i.e., the arrival rate is no more than the threshold), or to
Sburst when the traffic is heavy.

• In state Sburst , when the tenant’s traffic becomes light, the
state can switch to Smin if the resource is intense, or to Sbase
if its credit is positive.

8 Evaluation

CyberStar has been deployed and is publicly available in our
cloud. In this section, we demonstrate the online performance
of CyberStar and evaluate the proposed algorithms through a
testbed with realistic tenant traffic demands.

8.1 Elasticity
We demonstrate the elasticity based on CyberStar’s produc-
tion deployment.

Scaling Ability. We evaluate the elasticity of CyberStar in
the real system. Taking the load balancer (LB) as an example,
it produces load balancing for the clients’ traffic to access
the cloud service. We show the ability of the supported con-
nections to validate the scalability of CyberStar. We launch
client and service clusters to test the connection establish-
ment ability. Each cluster consists of 35 ECSs, and each ECS
is equipped with 32 vCPUs, 128GB memory, and 15Gbps
network bandwidth. The clients launch the connections with
a speed of 35 thousand connections per second for 60 min-
utes. As shown in Figure 7, the overall active connections
increase to 100 million. During this time, all connections are
successively established and maintained actively.

236 2024 USENIX Annual Technical Conference USENIX Association

0

1

RX
 (M

rp
s) p0 p1 p2 p3 overall

0 250 500 750 1000 1250 1500 1750 2000
Time(s)

0

2

TX
 (M

rp
s)

Figure 9: The arrival rate (RX) and transmission rate (TX) at
a cluster with four PPs.

0

Cr
ed

it credit

0 10 20 30 40
Time(s)

0

1

2

Ra
te

 (M
rp

s) RX TX

1200 credit
accumulation

burst = 1.7

credit
consumption

base = 0.6

Figure 10: Rate limitation based on variation of credits.

Scaling Efficiency. We collect statistics from ten scaling
events to evaluate the scaling efficiency of CyberStar in the
production environment. The time is counted when the scaling
signal is received and stops when the traffic arrives at the new
ECSs as shown in Figure 8. The scaling events are completed
within a few seconds, and it is not correlated to the group
size of new ECSs. Furthermore, we collect the throughput
of a group that consists of 12 PP (marked as p0, ...,p11) to
demonstrate the procedure of scaling. As shown in Figure 8,
each node of this group reports its throughput to the monitor
every 10 seconds. At first, this group has 10 PP nodes, and the
scaling event is triggered at ∼400s. The scaling is completed
within 30 seconds, and the PP p10 and p11 receive the requests.
With the p10 and p11 joining in, the cluster is extended to 12
members and can process more traffic.

Burst Processing. To evaluate the capacity to process burst,
we collect realistic traces of 36 minutes four PPs from a
cluster. As shown in Figure 9, the requests arriving rate at the
cluster is about 0.5 Mrps (requests per second). The maximal
request arrival rate bursts up to 2× compared to the arrival
rate. The packets in three observed bursts and other small
bursts are absorbed efficiently.

To verify the efficiency of rate management, we analyze
the credit variation with requests’ arrival as shown in Figure
10. The base and burst requests process rates are 0.6 Mrps
and 1.7Mrps, respectively. The credit is accumulated from
2s to 15s as the PP request arrival rate is lower than its base
rate. The credit is consumed from 15s to 29s during the burst
arrives. Meanwhile, the burst is suppressed under the burst
rate and the state is in Sburst when the credit is sufficient.
The credit is run out starting from 29s, and the tenant’s state

0 100 200 300 400 500 600
Time(s)

20

40

60

Th
ro

ug
hp

ut
(k

pp
s) Tenant A Tenant B

Figure 11: Traffic rate of tenants facing ECS failure.

NAT En/Decap En/Decrypt
0

10

20

Th
ro
ug

hp
ut
(M

pp
s)

PP vDPU

(a) Throughput of different actions

1 1k 10k 100k 1M 4M
0

10

20

Th
ro
ug

hp
ut
(M

pp
s)

PP vDPU

(b) Throughput with different number
of flows

Figure 12: Performance of vDPU acceleration.

switches to Smin, allowing its sending rate not to exceed its
base rate. Based on this, the credit can efficiently evaluate and
control resource utilization by counting the arrival traffic.

Failure Recovery Efficiency. CyberStar can handle the ECS
instance failure. When a PP node fails, the user traffic can be
dispatched to the other healthy nodes. To assess the failure on
tenants’ traffic and validate the failure recovery efficiency, we
collect workload traces of VNF requests in an available zone
that encountered failover of one of their ECSs. As shown
in Figure 11, the failover of one ECS happened at ∼390s,
and the PPS of two tenants A and B slightly dropped and
recovered in a short time. The result shows that CyberStar
can seamlessly handle the redirected traffic from the failed
ECS without causing disconnection of the workflow. We also
evaluate the failure recovery in a cluster of four PPs. A PP p1
crashed at ∼273s as shown in Figure 9. The overall received
requests rate is reduced slightly for this PP crashing. After a
few seconds, the traffic is dispatched to healthy nodes and the
received and transmitted requests rate reverts.

8.2 Hardware Acceleration

The NFs deployed in ECSs offer throughput and latency that
are comparable to those deployed directly on single bare-
metal machines, thanks to the introduction of new trends in
bare-metal cloud, which achieves native CPU and memory
performance, along with para-virtualized I/O with minimal
overhead [76]. In CyberStar, we leverage multiple ECS host-
ing different physical machines to split the processing burden
and complement overall throughput equal to or even higher
than single bare-metal machines achieved. The throughput of
a single flow and the processing latency are determined by the
computation power of a single entity. Therefore, we evaluate

USENIX Association 2024 USENIX Annual Technical Conference 237

the single-core performance of ECS with and without vDPU
acceleration to check whether the vDPU can complement
processing latency and throughput. The baseline is the PP
performance, where all packets go through the NF slow path.

Latency. We measure one-way latency between the traffic
generator and PP by sending 1 million 64-byte packets se-
quentially over active TCP connections. When all packets
go through vDPU, it achieves an average delay as low as
20.587µs, with a P99.9 delay ∼22.401µs and tail latency of
46.801µs. The latency diminishing is a benefit of the shorter
processing path and high-speed hardware.

Throughput. We evaluate the performance gain through
DPU offloading for network functions. In the experiment,
we perform the actions of NAT, encapsulation/decapsulation,
and encrypt/decrypt as they are basic operations of deployed
NFs. First, we offload a rule into vDPU to evaluate the pro-
cessing efficiency for different actions. As shown in Figure
12a, the throughput of vDPU performing NAT and encapsula-
tion/ decapsulation actions is 6.6× and 7.8× in comparison
with ECS, respectively. For the compute-intensive actions
encrypt/decrypt, its throughput improves by 43.48×. Then
we test the performance with the increasing number of flows.
As shown in Figure 12b, the throughput decreases with the
increasing flow table size. The flow table size affects the per-
formance of CPU-based PP for the lookup operation while
always maintaining stable performance for vDPU.

8.3 Resource Utilization
In the experiment, we use realistic traffic demands, reliability
strategies, and price models from production networks. We
collect three data sets with different scales, i.e., A, B and C,
listed in the ascending order of the number of tenants. A and
B contain traffic records from hundreds of tenants while C
contains traffic records from over 1000 tenants. The number
of available ECSs is set to 100 for each test, and the ECS
utilization threshold is set to 50%. Each data set contains
traffic records from the realistic cloud for several weeks.

We compare our algorithm with the enhanced version of
the First-Fit algorithm (FF), which is an online algorithm for
the multi-dimensional vector bin packing problem [32] [20],
and a specific weighted Best-Fit (BF) algorithm initially used
in the production network. As shown in Figure 13a, compared
with the FF and BF algorithm, the DRL-Base algorithm can
achieve ∼15%-25% lower cost. This result verifies that the
DRL algorithm can effectively utilize historical information
to learn delayed rewards. The DRL agent can automatically
explore the search space without the need to manually design
and tune heuristics with human experts. Compared with the
DRL algorithm without traffic prediction, the DRL agent
combined with traffic prediction can achieve ∼5%-10% lower
cost. This result shows that traffic prediction can effectively
help the DRL agent to make better decisions.

As depicted in Figure 13b, we conducted a performance

A B C
0.0

0.5

1.0

No
rm

al
ize

d
Co

st

FF
BF

RL-Base
RL-Prediction

(a) DRL performance under different
traffic distribution

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.8

1.0

1.2

1.4

1.6

1.8

No
rm

al
ize

d
Co

st

RL
BF-1

BF-2
BF-3

(b) DRL performance under mixed
NF loads

Figure 13: DRL outperforms FF/BF under different traffic
loads and traffic prediction can improve DRL performance.

evaluation of both the DRL algorithm and BF algorithms us-
ing varying combinations of mixed NF requests. The datasets
employed in this experiment comprised requests for two dif-
ferent NFs, namely NAT and SLB. We systematically adjusted
the percentage of NAT requests from 10% to 90% and ran-
domly modified the weights of the BF algorithms ten times
(Figure 13b only displays three out of ten iterations with bet-
ter results). None of them managed to outperform the DRL
approach. This further underscores the challenge of tuning
BF weights to consistently yield superior and stable results,
especially when dealing with diverse types of NF requests.

9 Experiences and Lessons

Challenges in Meeting Customized Demands. Before the
integration of multiple NF services into CyberStar, each type
of NF service operated independently under separate depart-
ments. They provide their own NF service to users but those
NF services lack much collaboration or information sharing
among others. While each NF service may have been op-
timized within its domain, the combined NF service chain
presented to users is not the most efficient or effective. From
a user’s perspective, selecting the proper NF services from
a diverse range of options to meet their specific application
demands can be challenging without expert guidance.

A real-world example highlights these challenges. Enter-
prise customers often choose NF services from different re-
gions for the lowest prices, especially when they lack expertise
in specific areas. A customer establishes a service chain of
firewall-NAT-load balancer, but it chooses a firewall and a
NAT at Region R1, and a load balancer at Region R2. This
could result in user traffic taking roundabout routes through
different regions (R1-R2-R1), leading to significant delays.
However, since no service in the chain is aware of the com-
plete forwarding path, they cannot take any action to elimi-
nate these roundabout routes. When users complained about
poor performance, each service would independently trou-
bleshoot its own issues but find nothing wrong. Eventually,
the root cause of the traffic roundabout was manually dis-
covered through traffic tracing, and the ultimate solution is
guiding users to purchase the services in appropriate regions

238 2024 USENIX Annual Technical Conference USENIX Association

with the help of experts.
CyberStar provides a global view for customized demands.

Integrating NF services into a unified management platform
provides service providers with a comprehensive view of ser-
vice implementation and deployment, eliminating the barriers
that existed before. In the case mentioned earlier, CyberStar
establishes a closed-loop monitoring system, enabling end-to-
end performance optimization and ensuring the best service
quality. From a long-term perspective, with a wide range of
NF services integrated into CyberStar, it becomes possible to
intelligently generate specific plans for each user according
to their customized demands or provide the global view and
concise interfaces for users to select their preferred services.

Why Not Deploy on Kubernetes? The distinctions between
Kubernetes (k8s) and CyberStar can be delineated based on
several key aspects. First, k8s cannot deliver multi-tenant ser-
vices, as each pod in k8s serves only one tenant, whereas
CyberStar is explicitly designed to accommodate multiple
tenants simultaneously. Secondly, for services with state per-
sistence and synchronization requirements, k8s uses databases
to store and synchronize states. However, using a database for
state storage and synchronization may not meet the through-
put and latency demands of business logic processing. Net-
work function states need to be stored in memory. CyberStar
leverages the packet-pass-through method to achieve fast state
synchronization.

ECS Selection Perference. We structure the NF platform into
three tiers to leverage cloud elastic resources, enabling rapid
scaling with a few types of ECSs. However, efficiency and
reliability necessitate specific preferences in ECS selection.
We deploy loosely coupled network function components on
ECSs with varying configurations to match specific demands
for computational, memory, and networking resources. Given
the distinct software suites used in SC, FM, and PP, we deploy
SC and FM instances on compute-optimized ECSs, while PP
instances are deployed on network-enhanced ECSs. Compute-
optimized instances are optimized for applications requiring
high-performance processors, making them suitable for SC,
which handles service logic computing, and FM, which man-
ages the connections among SC and PP instances. Network-
enhanced general-purpose instances significantly improve net-
work throughput and packet forwarding rates, making them
ideal for the PP plane, which requires high-speed processing
and forwarding.

10 Related Work

Network Function Virtualization. Network function virtual-
ization has been widely studied in the last decade [42–44,71],
e.g., LB [56], VXLAN gateway [61], IPSec VPN [69]. Some
studies on NF virtualization mainly focus on the design of
specified functions [25, 57, 72]. However, addressing the di-
verse and extensive demands of network services often ne-

cessitates the creation of isolated clusters for each type of
network function. This approach is cost-ineffective due to
the lack of resource aggregation. Some efforts [34, 35, 44, 58,
60, 70] aimed to establish a more generalized NFV frame-
work. They either categorize NFs as monolithic instances
[58, 59] or additionally decouples NFs into two-tier architec-
tures [15, 44, 64, 70]. Monolithic VNFs suffer from shortcom-
ings like redundant development and optimization efforts on
common tasks across different NFs. Works [35, 44, 64, 70]
introduced state management mechanisms to improve scaling
performance. Other two-tier works [15, 19] depart common
processing from NFs to ease the management of separate NFs.
CyberStar mainly focuses on factors that limit the scalability
of cloud-native NF management including state, connection
complexity and tenant accessing cloud service through NFs.

Performance Optimization. A large number of works focus
on improving the performance of VNFs through different
optimization points. One is packet delivery acceleration like
Intel DPDK [39], ClickOS [55], NetVM [38, 75] that opti-
mize the packet delivery from NICs to VMs and between
VMs. Another line is hardware acceleration, e.g., FPGA,
GPU, and P4 switch [28, 48, 63, 73]. Generally, hardware-
based accelerators focus on NF characteristics to boost the
performance [18, 42, 43, 56, 61, 62]. APUNet [36] and G-
Net [74] make use of batching processing of GPU to enhance
the throughput for NFs. ClickNP [48] designs the FPGA-
based modular data plane to implement NFs quickly. Flow-
Blaze [63] uses the FPGA to accelerate the stateful NF data
plane. The design of the match-action unit can be accelerated
by the hardware flow table. CyberStar offloads the match-
action units in the shared hardware accelerator, optimizing
NFs and minimizing the involvement of the host CPU.

11 Conclusion
With the trend of migrating applications to the cloud, the
traditional NF architecture based on the bare-metal server
cluster is challenging to meet the elasticity requirements and
low costs. We introduce CyberStar, a cloud-native network
functions management platform to achieve high elasticity. We
describe the architecture of CyberStar, which leverages the
loosely coupled pooling resource to enable on-demand allo-
cation for packet processing, service computation, as well as
interconnection management through fabric abstraction. Cy-
berStar has been deployed for over four years and is publicly
available in our cloud.

Acknowledgments
We thank the anonymous reviewers for their insightful com-
ments and constructive feedback. This research is supported
by the National Key R&D Program of China under Grant num-
ber 2022YFB2901502, National Natural Science Foundation
of China under Grant No. 62172204, 62325205, 62072228,
and Key R&D Program of Zhejiang Province 2023R5202.

USENIX Association 2024 USENIX Annual Technical Conference 239

References

[1] Satyajeet Singh Ahuja, Vinayak Dangui, Kirtesh Patil,
Manikandan Somasundaram, Varun Gupta, Mario A.
Sánchez, Guanqing Yan, Max Noormohammadpour,
Alaleh Razmjoo, Grace Smith, Hao Zhong, Abhinav
Triguna, Soshant Bali, Yuxiang Xiang, Yilun Chen, Prab-
hakaran Ganesan, Mikel Jimenez Fernandez, Petr La-
pukhov, Guyue Liu, and Ying Zhang. Network entitle-
ment: contract-based network sharing with agility and
SLO guarantees. In Proceedings of the ACM SIGCOMM
Conference, 2022.

[2] Alibaba Cloud. Elastic compute service. Elastic Com-
pute Service. https://www.alibabacloud.com/en/
product/ecs?_p_lc=1, 2024.

[3] Alibaba Cloud. How does cloud empower double
11 shopping festival. How Does Cloud Empower
Double 11 Shopping Festival. https://resource.
alibabacloud.com/event/detail?id=1281, 2020.

[4] David A.Maltz. Scaling challenges in cloud networking.
In Microsoft Research Summit, 2021.

[5] Pradeep Ambati, Íñigo Goiri, Felipe Frujeri, Alper Gun,
Ke Wang, Brian Dolan, Brian Corell, Sekhar Pasupuleti,
Thomas Moscibroda, Sameh Elnikety, et al. Providing
SLOs for resource-harvesting VMs in cloud platforms.
In 14th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI), 2020.

[6] AWS. Amazon. Amazon Elastic Container Service.
https://aws.amazon.com/cn/ecs/, 2021.

[7] AWS. Amazon. What is Cloud Native? - Cloud Na-
tive Explained. https://aws.amazon.com/what-is/
cloud-native, 2021.

[8] Azure. How to create a linux virtual machine
in azure with multiple network interface cards.
https://learn.microsoft.com/en-us/azure/
virtual-machines/linux/multiple-nics, 2022.

[9] Hitesh Ballani, Paolo Costa, Thomas Karagiannis, and
Ant Rowstron. Towards predictable datacenter networks.
In Proceedings of the ACM SIGCOMM Conference,
2011.

[10] Deepak Bansal, Gerald DeGrace, Rishabh Tewari,
Michal Zygmunt, James Grantham, Silvano Gai, Mario
Baldi, Krishna Doddapaneni, Arun Selvarajan, Arunk-
umar Arumugam, Balakrishnan Raman, Avijit Gupta,
Sachin Jain, Deven Jagasia, Evan Langlais, Pranjal Sri-
vastava, Rishiraj Hazarika, Neeraj Motwani, Soumya
Tiwari, Stewart Grant, Ranveer Chandra, and Srikanth
Kandula. Disaggregating stateful network functions. In
20th USENIX Symposium on Networked Systems Design
and Implementation (NSDI), 2023.

[11] Yixin Bao, Yanghua Peng, Chuan Wu, and Zongpeng
Li. Online job scheduling in distributed machine learn-
ing clusters. In INFOCOM Conference on Computer
Communications. IEEE, 2018.

[12] Faizul Bari, Shihabur Rahman Chowdhury, Reaz
Ahmed, Raouf Boutaba, and Otto Carlos Muniz Ban-
deira Duarte. Orchestrating virtualized network func-
tions. IEEE Transactions on Network and Service Man-
agement, 13(4):725–739, 2016.

[13] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick
McKeown, Jennifer Rexford, Cole Schlesinger, Dan
Talayco, Amin Vahdat, George Varghese, et al. P4:
Programming protocol-independent packet processors.
ACM SIGCOMM Computer Communication Review,
2014.

[14] Timm Böttger, Ghida Ibrahim, and Ben Vallis. How
the internet reacted to covid-19: A perspective from
facebook’s edge network. In Proceedings of the ACM
Internet Measurement Conference (IMC), 2020.

[15] Anat Bremler-Barr, Yotam Harchol, and David Hay.
Openbox: A software-defined framework for develop-
ing, deploying, and managing network functions. In
Proceedings of the ACM SIGCOMM Conference, 2016.

[16] Brad Burres, Dan Daly, Mark Debbage, Eliel Louzoun,
Christine Severns-Williams, Naru Sundar, Nadav Tur-
bovich, Barry Wolford, and Yadong Li. Intel’s
hyperscale-ready infrastructure processing unit (ipu).
In IEEE Hot Chips 33 Symposium (HCS). IEEE, 2021.

[17] Idan Burstein. Nvidia data center processing unit (dpu)
architecture. In IEEE Hot Chips 33 Symposium (HCS).
IEEE, 2021.

[18] Jian Chen, Xiaoyu Zhang, Tao Wang, Ying Zhang, Tao
Chen, Jiajun Chen, Mingxu Xie, and Qiang Liu. Fidas:
fortifying the cloud via comprehensive FPGA-based of-
floading for intrusion detection: industrial product. In
Proceedings of the 49th Annual International Sympo-
sium on Computer Architecture (ISCA), 2022.

[19] Shihabur Rahman Chowdhury, Haibo Bian, Tim Bai,
Raouf Boutaba, et al. A disaggregated packet pro-
cessing architecture for network function virtualization.
IEEE Journal on Selected Areas in Communications,
38(6):1075–1088, 2020.

[20] Henrik I Christensen, Arindam Khan, Sebastian Pokutta,
and Prasad Tetali. Multidimensional bin packing and
other related problems: A survey. Computer Science
Review, 2016.

240 2024 USENIX Annual Technical Conference USENIX Association

https://www.alibabacloud.com/en/product/ecs?_p_lc=1
https://www.alibabacloud.com/en/product/ecs?_p_lc=1
https://resource.alibabacloud.com/event/detail?id=1281
https://resource.alibabacloud.com/event/detail?id=1281
https://aws.amazon.com/cn/ecs/
https://aws.amazon.com/what-is/cloud-native
https://aws.amazon.com/what-is/cloud-native
https://learn.microsoft.com/en-us/azure/virtual-machines/linux/multiple-nics
https://learn.microsoft.com/en-us/azure/virtual-machines/linux/multiple-nics

[21] Alibaba Cloud. Instance family. https://www.
alibabacloud.com/help/en/doc-detail/25378.
htm?spm=a2c63.p38356.0.0.9c8bbe1avPJfMq#
concept-sx4-lxv-tdb, Sep. 2017.

[22] Google Cloud. Creating instances with multiple network
interfaces. https://cloud.google.com/vpc/docs/
create-use-multiple-interfaces, Sep. 2022.

[23] Tencent Cloud. Use limits overview. https:
//intl.cloud.tencent.com/document/product/
213/15379, Aug. 2022.

[24] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark
Russinovich, Marcus Fontoura, and Ricardo Bianchini.
Resource central: Understanding and predicting work-
loads for improved resource management in large cloud
platforms. In Proceedings of the 26th Symposium on
Operating Systems Principles (SOSP), 2017.

[25] Michael Dalton, David Schultz, Jacob Adriaens, Ahsan
Arefin, Anshuman Gupta, Brian Fahs, Dima Rubinstein,
Enrique Cauich Zermeno, Erik Rubow, James Alexander
Docauer, et al. Andromeda: Performance, isolation, and
velocity at scale in cloud network virtualization. In 15th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2018.

[26] Christina Delimitrou and Christos Kozyrakis. Quasar:
Resource-efficient and qos-aware cluster management.
ACM SIGPLAN Notices, 49(4):127–144, 2014.

[27] Daniel E Eisenbud, Cheng Yi, Carlo Contavalli, Cody
Smith, Roman Kononov, Eric Mann-Hielscher, Ardas
Cilingiroglu, Bin Cheyney, Wentao Shang, and Jin-
nah Dylan Hosein. Maglev: A fast and reliable software
network load balancer. In 13th USENIX Symposium on
Networked Systems Design and Implementation (NSDI),
2016.

[28] Haggai Eran, Lior Zeno, Maroun Tork, Gabi Malka, and
Mark Silberstein. NICA: An infrastructure for inline
acceleration of network applications. In USENIX Annual
Technical Conference (ATC), 2019.

[29] FD.io. VPP. https://wiki.fd.io/view/VPP.

[30] Daniel Firestone, Andrew Putnam, Sambhrama Mund-
kur, Derek Chiou, Alireza Dabagh, Mike Andrewartha,
Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric
Chung, et al. Azure accelerated networking: Smart-
nics in the public cloud. In 15th USENIX Symposium on
Networked Systems Design and Implementation (NSDI),
2018.

[31] Alexander Fuerst, Stanko Novaković, Íñigo Goiri, Go-
har Irfan Chaudhry, Prateek Sharma, Kapil Arya, Kevin

Broas, Eugene Bak, Mehmet Iyigun, and Ricardo Bian-
chini. Memory-harvesting vms in cloud platforms. In
Proceedings of the 27th ACM International Conference
on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2022.

[32] Michael R Garey, Ronald L Graham, David S John-
son, and Andrew Chi-Chih Yao. Resource constrained
scheduling as generalized bin packing. Journal of Com-
binatorial Theory, Series A, 21(3):257–298, 1976.

[33] Aaron Gember, Robert Grandl, Junaid Khalid, and
Aditya Akella. Design and implementation of a
framework for software-defined middlebox networking.
ACM SIGCOMM Computer Communication Review,
43(4):467–468, 2013.

[34] Aaron Gember, Anand Krishnamurthy, Saul St
John, Robert Grandl, Xiaoyang Gao, Ashok Anand,
Theophilus Benson, Aditya Akella, and Vyas Sekar.
Stratos: A network-aware orchestration layer for
middleboxes in the cloud. Technical report, Technical
Report, 2013.

[35] Aaron Gember-Jacobson, Raajay Viswanathan,
Chaithan Prakash, Robert Grandl, Junaid Khalid,
Sourav Das, and Aditya Akella. Opennf: Enabling inno-
vation in network function control. ACM SIGCOMM
Computer Communication Review, 44(4):163–174,
2014.

[36] Younghwan Go, Muhammad Asim Jamshed, Young-
Gyoun Moon, Changho Hwang, and KyoungSoo Park.
Apunet: Revitalizing GPU as packet processing acceler-
ator. In 14th USENIX Symposium on Networked Systems
Design and Implementation (NSDI), 2017.

[37] Jing Guo, Zihao Chang, Sa Wang, Haiyang Ding, Yihui
Feng, Liang Mao, and Yungang Bao. Who limits the
resource efficiency of my datacenter: An analysis of
alibaba datacenter traces. In Proceedings of the Interna-
tional Symposium on Quality of Service, 2019.

[38] Jinho Hwang, K. K Ramakrishnan, and Timothy Wood.
Netvm: High performance and flexible networking using
virtualization on commodity platforms. IEEE Transac-
tions on Network and Service Management, 12(1):34–
47, 2015.

[39] Intel. Data plane development kit, 2014.

[40] Intel. Receive-side scaling (rss). http:
//www.intel.com/content/dam/support/us/
en/documents/network/sb/318483001us2.pdf,
2016.

USENIX Association 2024 USENIX Annual Technical Conference 241

https://www.alibabacloud.com/help/en/doc-detail/25378.htm?spm=a2c63.p38356.0.0.9c8bbe1avPJfMq#concept-sx4-lxv-tdb
https://www.alibabacloud.com/help/en/doc-detail/25378.htm?spm=a2c63.p38356.0.0.9c8bbe1avPJfMq#concept-sx4-lxv-tdb
https://www.alibabacloud.com/help/en/doc-detail/25378.htm?spm=a2c63.p38356.0.0.9c8bbe1avPJfMq#concept-sx4-lxv-tdb
https://www.alibabacloud.com/help/en/doc-detail/25378.htm?spm=a2c63.p38356.0.0.9c8bbe1avPJfMq#concept-sx4-lxv-tdb
https://cloud.google.com/vpc/docs/create-use-multiple-interfaces
https://cloud.google.com/vpc/docs/create-use-multiple-interfaces
https://intl.cloud.tencent.com/document/product/213/15379
https://intl.cloud.tencent.com/document/product/213/15379
https://intl.cloud.tencent.com/document/product/213/15379
https://wiki.fd.io/view/VPP
http://www.intel.com/content/dam/support/us/en/documents/network/sb/318483001us2.pdf
http://www.intel.com/content/dam/support/us/en/documents/network/sb/318483001us2.pdf
http://www.intel.com/content/dam/support/us/en/documents/network/sb/318483001us2.pdf

[41] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon
Ong, Leon Poutievski, Arjun Singh, Subbaiah Venkata,
Jim Wanderer, Junlan Zhou, Min Zhu, et al. B4: Expe-
rience with a globally-deployed software defined wan.
ACM SIGCOMM Computer Communication Review,
43(4):3–14, 2013.

[42] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster,
Jeongkeun Lee, Robert Soulé, Changhoon Kim, and Ion
Stoica. Netchain: Scale-free sub-rtt coordination. In
15th USENIX Symposium on Networked Systems Design
and Implementation (NSDI), 2018.

[43] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé,
Jeongkeun Lee, Nate Foster, Changhoon Kim, and Ion
Stoica. Netcache: Balancing key-value stores with fast
in-network caching. In Proceedings of the 26th Sympo-
sium on Operating Systems Principles (SOSP), 2017.

[44] Murad Kablan, Azzam Alsudais, Eric Keller, and Franck
Le. Stateless network functions: Breaking the tight cou-
pling of state and processing. In 14th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI), 2017.

[45] Georgios P Katsikas, Tom Barbette, Dejan Kostic, Re-
becca Steinert, and Gerald Q Maguire Jr. Metron:nfv
service chains at the true speed of the underlying hard-
ware. In 15th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI), 2018.

[46] Jayakrishna Kidambi, Dipak Ghosal, and Biswanath
Mukherjee. Dynamic token bucket (dtb): a fair band-
width allocation algorithm for high-speed networks.
Journal of High Speed Networks, 9(2):67–87, 2000.

[47] Neeraj Kulkarni, Feng Qi, and Christina Delimitrou. Pli-
ant: Leveraging approximation to improve datacenter
resource efficiency. In 2019 IEEE International Sym-
posium on High Performance Computer Architecture
(HPCA), 2019.

[48] Bojie Li, Kun Tan, Layong Luo, Yanqing Peng, Ren-
qian Luo, Ningyi Xu, Yongqiang Xiong, Peng Cheng,
and Enhong Chen. Clicknp: Highly flexible and high
performance network processing with reconfigurable
hardware. In Proceedings of the ACM SIGCOMM Con-
ference, 2016.

[49] Defang Li, Peilin Hong, Kaiping Xue, et al. Virtual net-
work function placement considering resource optimiza-
tion and sfc requests in cloud datacenter. IEEE Transac-
tions on Parallel and Distributed Systems, 29(7):1664–
1677, 2018.

[50] Zijun Li, Jiagan Cheng, Quan Chen, Eryu Guan, Zizheng
Bian, Yi Tao, Bin Zha, Qiang Wang, Weidong Han,
and Minyi Guo. RunD: A Lightweight Secure Con-
tainer Runtime for High-density Deployment and High-
concurrency Startup in Serverless Computing. In
ATC’22, pages 53–68. USENIX Association, 2022.

[51] Ming Liu, Tianyi Cui, Henry Schuh, Arvind Krishna-
murthy, Simon Peter, and Karan Gupta. Offloading dis-
tributed applications onto smartnics using ipipe. In
Proceedings of the ACM SIGCOMM Conference, 2019.

[52] David Lo, Liqun Cheng, Rama Govindaraju,
Parthasarathy Ranganathan, and Christos Kozyrakis.
Heracles: Improving resource efficiency at scale.
In Proceedings of the 42nd Annual International
Symposium on Computer Architecture (ISCA), 2015.

[53] Marcelo Caggiani Luizelli, Leonardo Richter Bays, Lu-
ciana Salete Buriol, Marinho Pilla Barcellos, and Lu-
ciano Paschoal Gaspary. Piecing together the nfv pro-
visioning puzzle: Efficient placement and chaining of
virtual network functions. In IFIP/IEEE International
Symposium on Integrated Network Management (IM).
IEEE, 2015.

[54] Colm MacCarthaigh. Multi-tier stateful network flow
management architecture, June 12 2018. US Patent
9,998,955.

[55] Joao Martins, Mohamed Ahmed, Costin Raiciu,
Vladimir Olteanu, Michio Honda, Roberto Bifulco,
and Felipe Huici. Clickos and the art of network
function virtualization. In 11th USENIX Symposium on
Networked Systems Design and Implementation (NSDI),
2014.

[56] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun
Lee, and Minlan Yu. Silkroad: Making stateful layer-4
load balancing fast and cheap using switching asics. In
Proceedings of the ACM SIGCOMM Conference, 2017.

[57] Rashid Mijumbi, Joan Serrat, Juan-Luis Gorricho, Niels
Bouten, Filip De Turck, and Raouf Boutaba. Network
function virtualization: State-of-the-art and research
challenges. IEEE Communications surveys & tutori-
als, 18(1):236–262, 2015.

[58] Open Source MANO. https://osm.etsi.org, 2023.

[59] OPNFV Project. https://www.opnfv.org, 2020.

[60] Shoumik Palkar, Chang Lan, Sangjin Han, Keon Jang,
Aurojit Panda, Sylvia Ratnasamy, Luigi Rizzo, and Scott
Shenker. E2: A framework for nfv applications. In Pro-
ceedings of the 24th Symposium on Operating Systems
Principles (SOSP), 2015.

242 2024 USENIX Annual Technical Conference USENIX Association

https://osm.etsi.org
https://www.opnfv.org

[61] Tian Pan, Nianbing Yu, Chenhao Jia, Jianwen Pi, Liang
Xu, Yisong Qiao, Zhiguo Li, Kun Liu, Jie Lu, Jianyuan
Lu, et al. Sailfish: Accelerating cloud-scale multi-tenant
multi-service gateways with programmable switches. In
Proceedings of the ACM SIGCOMM Conference, 2021.

[62] Boris Pismenny, Haggai Eran, Aviad Yehezkel, Liran
Liss, Adam Morrison, and Dan Tsafrir. Autonomous nic
offloads. In Proceedings of the 26th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2021.

[63] Salvatore Pontarelli, Roberto Bifulco, Marco Bonola,
Carmelo Cascone, Marco Spaziani, Valerio Bruschi, Da-
vide Sanvito, Giuseppe Siracusano, Antonio Capone,
Michio Honda, et al. Flowblaze: Stateful packet pro-
cessing in hardware. In 16th USENIX Symposium on
Networked Systems Design and Implementation (NSDI),
2019.

[64] Shriram Rajagopalan, Dan Williams, Hani Jamjoom,
and Andrew Warfield. {Split/Merge}: System support
for elastic execution in virtual middleboxes. In 10th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2013.

[65] Brandon Schlinker, Hyojeong Kim, Timothy Cui, Ethan
Katz-Bassett, Harsha V Madhyastha, Italo Cunha, James
Quinn, Saif Hasan, Petr Lapukhov, and Hongyi Zeng.
Engineering egress with edge fabric: Steering oceans
of content to the world. In Proceedings of the ACM
SIGCOMM Conference, 2017.

[66] Amazon Web Services. Elastic network interfaces.
https://docs.aws.amazon.com/AWSEC2/latest/
UserGuide/using-eni.html#AvailableIpPerENI,
Mar. 2017.

[67] Amazon Web Services. Shuffle sharding:
Massive and magical fault isolation. http:
//www.awsarchitectureblog.com/2014/04/
shuffle-sharding.htm, Sep. 2017.

[68] Hua Shao, Xiaoliang Wang, Yuanwei Lu, Yanbo Yu,
Shengli Zheng, and Youjian Zhao. Accessing cloud
with disaggregated software-defined router. In 18th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2021.

[69] Jeongseok Son, Yongqiang Xiong, Kun Tan, Paul Wang,
Ze Gan, and Sue Moon. Protego: Cloud-scale mul-
titenant ipsec gateway. ATC. USENIX Association,
2017.

[70] Shinae Woo, Justine Sherry, Sangjin Han, Sue Moon,
Sylvia Ratnasamy, and Scott Shenker. Elastic scaling
of stateful network functions. In 15th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI), 2018.

[71] Kok-Kiong Yap, Murtaza Motiwala, Jeremy Rahe, Steve
Padgett, Matthew Holliman, Gary Baldus, Marcus Hines,
Taeeun Kim, Ashok Narayanan, Ankur Jain, et al. Tak-
ing the edge off with espresso: Scale, reliability and
programmability for global internet peering. In Proceed-
ings of the ACM SIGCOMM Conference, 2017.

[72] Bo Yi, Xingwei Wang, Keqin Li, Min Huang, et al. A
comprehensive survey of network function virtualiza-
tion. Computer Networks, 133:212–262, 2018.

[73] Yifan Yuan, Yipeng Wang, Ren Wang, and Jian Huang.
HALO: Accelerating flow classification for scalable
packet processing in NFV. In 2019 ACM/IEEE 46th
Annual International Symposium on Computer Architec-
ture (ISCA). IEEE, 2019.

[74] Kai Zhang, Bingsheng He, Jiayu Hu, Zeke Wang, Bei
Hua, Jiayi Meng, and Lishan Yang. G-net: Effective
GPU sharing in NFV systems. In 15th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI), 2018.

[75] Wei Zhang, Guyue Liu, Wenhui Zhang, Neel Shah,
Phillip Lopreiato, Gregoire Todeschi, KK Ramakrish-
nan, and Timothy Wood. Opennetvm: A platform for
high performance network service chains. In Proceed-
ings of the workshop on Hot topics in Middleboxes and
Network Function Virtualization, pages 26–31, 2016.

[76] Xiantao Zhang, Xiao Zheng, Zhi Wang, Hang Yang,
Yibin Shen, and Xin Long. High-density multi-tenant
bare-metal cloud. In International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems (ASPLOS), 2020.

[77] Yanqi Zhang, Weizhe Hua, Zhuangzhuang Zhou, G Ed-
ward Suh, and Christina Delimitrou. Sinan: Ml-based
and qos-aware resource management for cloud microser-
vices. In Proceedings of the 26th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2021.

[78] Peng Zheng, Arvind Narayanan, and Zhi-Li Zhang. A
closer look at nfv execution models. In Proceedings of
the 3rd Asia-Pacific Workshop on Networking, 2019.

A Details of NF orchestration

A.1 Problem Formulation
We define the problem as the VNF placement problem target-
ing minimizing the overall ECS cost. The notations are listed
in Table 2 and the formulation is described as follows.

USENIX Association 2024 USENIX Annual Technical Conference 243

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html#AvailableIpPerENI
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html#AvailableIpPerENI
http://www.awsarchitectureblog.com/2014/04/shuffle-sharding.htm
http://www.awsarchitectureblog.com/2014/04/shuffle-sharding.htm
http://www.awsarchitectureblog.com/2014/04/shuffle-sharding.htm

Client Traffic
Demand

ECS Resource
Information

Reliability
Policy Cost Model Scheduling

Decision

Environment Evaluator

DRL Agent Expert-knowledge Algorithm
ECS Scores

ActionState and Reward

Figure 14: Workflow of NFs scheduler

Symbol Description
V Set of VNF types
D Set of VNF requests from tenants
E Set of ECSs
U Threshold in shuffle sharding
O Maximum number of shared ECSs allowed by two tenants
Gi Number of ECSs to which the tenant requests i to be deployed
ke Cost of purchasing ECS e
xi

e Binary variable indicates whether request i is placed on ECS e.
ye Binary variable indicates whether ECS e is purchased
bi,ci,mi Bandwidth, computing and memory resource required by tenant request i
UBe,UCe,UMe Bandwidth, computing and memory utilization of ECS e
Be,Ce,Me Bandwidth, computing and memory resource capacity of ECS e

Table 2: Notations for problem formulation

Objective. The objective is to minimize the total cost of used
ECSs, which is determined by the price of all ECSs used
to handle VNF requests of tenants, shown as Eq. (1). Each
ECS is bought as a package of resources (CPU, memory, and
bandwidth), and its specification determines the ECS price.

min
ye

∑
e∈E

keye (1)

∑
i∈D

bi

Gi xi
e ≤UBeye, ∀e ∈ E (2)

∑
i∈D

ci

Gi xi
e ≤UCeye, ∀e ∈ E (3)

∑
i∈D

mi

Gi xi
e ≤UMeye, ∀e ∈ E (4)

Gmin ≤ Gi ≤ Gmax, ∀i ∈ D (5)

∑
e∈E

xi
ex j

e ≤ O, ∀i, j ∈ D, i ̸= j (6)

The constraints in Eq. (2)-(6) are explained below.

• Resource capacity constraints (Eq. (2), (3), (4)): The
percentage of ECS physical resources reserved by all re-
quests on it should not exceed the predetermined thresh-
old U for each type of resources.

• ECS allocation constraint: (Eq. (5)): Gi indicates the
number of ECSs used by tenant i, which can be formally
defined as ∑e xi

e =Gi, i∈D. This value ranges from Gmin
to Gmax to control the incidence caused by user "poison"
requests at shuffle-sharding algorithm [67].

• ECS overlap constraint (Eq. (6)): The number of shared
ECSs between two tenants should not exceed O. The
value of O is determined by operators.

Note that Eq.(2), (3) and (4) are used to capture multi-
dimensional resource attributes, while Eq.(5) and (6) are used
to capture reliability attributes.

A.2 DRL Approach
The VNF placement problem can be defined as a sequential
decision problem, where the agent needs to select a set of
ECSs for tenant requests sequentially. For each tenant, the
agent takes action, i.e., allocating ECSs for the tenant request,
so as to maximize the long-term reward that can be inferred
from Eq. (1). Note that the selection for the i-th tenant de-
pends on the allocation for (i-1) previous tenants due to the
constraints Eq. (2)-(6). Such sequential decision problems are
often formulated using Markov Decision Process (MDP).

Markov decision process is a tuple of (S ,A ,P ,R ,γ) where
S is the state space, A is the action space, P is the tran-
sition function, R is the reward function, and γ ∈ [0,1] is
the discount factor. After taking action At on state St , the
agent will observe the new state St+1 according to the transi-
tion function, and the corresponding reward Rt according to
the reward function. The objective is to find a policy π(s,a)
of selecting an action given a state so that we can obtain
the long-term reward, that is the total sum of discounted
rewards going forward Gt = ∑

∞
k=0 γkRt+k+1. Alternatively,

we can learn estimates for the optimal value of each action
Qπ(s,a) = Eπ[Gt |St = s,At = a] (the action-value function),
which is the expected future reward if taking action a at state
s and following the optimal policy. The optimal policy can
be easily found by taking the highest value of action-value
function Q(s,a) at state s.

For the VNF placement problem, the next state and reward
can be obtained using an environment emulator as shown
in Figure 14. The concrete definition of states, actions, and
rewards for our VNF placement problem is given as follows.

• State: The i-th state encapsulates available ECSs and the
resources required by the i-th tenant. Formally, Si =<
B,C ,M ,bi,ci,mi >∈ R3×|E|+3, where B ∈ R|E|, C ∈ R|E|,
M ∈ R|E| are vectors indicating the bandwidth, computing
and memory resources currently available on each ECS.

• Action: At the i-th state, the action is to select a set of ECSs
to assign to the i-th tenant. As a result, the action space
contains all possible combinations (of size from Gmin to
Gmax) of available ECS at the i-th state.

• Reward: We design the reward so that it will guide our
training algorithm to find an optimal policy for selecting an
action given a state. In other words, if following the optimal
policy for all the tenants, we can get the optimal long-term
reward, which has minimum cost on ECS. Specifically, the
reward for each action is set: 1) if the action contains Gnew

244 2024 USENIX Annual Technical Conference USENIX Association

Algorithm 1 Training Process
Require: S : State; N: Number of epochs; ε: The parameter of ε−greedy

strategy.
Ensure: The trained Q-network Q(s,a,θ)

Main routine
1: Initialize θ,θ′ parameters for the Q-network and the target network

respectively
2: Initialize replay buffer, and the tenant set T to be empty.
3: for episode = 1,2,3, ...N do
4: T =U pdatetenant()
5: for Each tenant Request t ∈ T do
6: St = GetState(t)
7: Generate a random number β ∈ [0,1].
8: if β < ε then
9: Select available ECSs with probability ε.

10: else
11: At = FilteringAlgorithm(Q(St ,a,θ)∀a), At is a set of ECS
12: end if
13: Execute action At in emulator and observe reward Rt and new

state St+1.
14: Store experiences (St ,at ,Rt ,St+1) for each ECS at ∈ At into the

replay buffer.
15: Select a minibatch of experiences from the replay buffer
16: Update the parameters for the Q-network using gradient decent

based on the minibatch to minimize the loss in Eq. (7).
17: After every C steps, save the Q-network as the target network.
18: end for
19: end for

Subroutines

• Updatetenant(): Update the tenant set containing the tenants
needed to be scheduled currently.

• GetState(i): Get the state S from environment about ECSs and
request i.

• RandomAction(): Randomly explore the action space until find-
ing an action that satisfies all the constraints.

• FilteringAlgorithm is shown in Algorithm 2

Algorithm 2 Filtering Algorithm
Require: Z: The score of each ECS; Gmin,Gmax: The minimum and max-

mum number of ECSs allowed to shuffle sharding; k: The parameter
trades off complexity and feasibility.

Ensure: A: The set of ECSs.
1: Resort ECSs in descent score;
2: Select top k actions in Z as the candidate ECSs set Z′;
3: Obtain all the combination ECSs O in Z′ with length in [Gmin,Gmax];
4: Remove the combination ECSs A′ ∈ O violate the constraints;
5: Calculate the reward of each A′ ∈ O denoted as RA′ ;
6: A = argmaxA′∈O RA′ ;

new ECS e, then R = −∑e∈Gnew ke, where the negative
value means higher cost and lower reward. 2) if the action
distributes the request to already used ECSs, the reward will
be computed based on the water level of used ECSs as R =

∑e∈Gnew(UBe +UCe +UMe)
−1. The reward is normalized

so that it falls in the range of [-1, 1].

Reinforcement learning (RL) learns the optimal policy
π(S,a) through episodes of interactions with the environ-

ment, where an episode is a sequence of state and action
(S1,A1,S2,A2, ...,ST ,AT) and T is the number of current ten-
ant requests. RL is particularly appealing for sequential de-
cision problems in dynamic environments such as the VNF
placement problem. Unfortunately, one challenge as men-
tioned above is the combination complexity of the action
space. Furthermore, it is difficult to design a reward that could
lead to a solution satisfying all the constraints in Eq. (2)-(6).
To handle these issues, we simplify an action for our VNF al-
location MDP corresponds to selecting only one ECS instead
of a set of ECSs. Since each action corresponds to an ECS, the
values for all actions Q(s, a) given a state s form the ranking
of ECSs for the tenant request of the state s. The combinations
of ECSs within top-k highest values are filtered further by a
Filtering Algorithm to select a set of suitable ECSs satisfying
constraints in Eq. (2) - (6). By doing so, we effectively reduce
the action space of our MDP, and the Filtering Algorithm only
needs to work with a constant number (k) of most potential
ECSs produced by Q(s,a).

In this paper, we modify the Double Deep Q-Network
(DDQN) algorithm to integrate our Filtering Algorithm. The
main idea of DDQN lies in three folds: 1) it represents Q(s,a)
as a deep neural network parameterized by θ and denoted by
Q(s,a,θ). Here we use Multilayer Perceptron (MLP) to repre-
sent our Q-network Q(s,a,θ); 2) it uses a replay buffer U(D)
of (St ,At ,Rt ,St+1) to save experiences and improve the data
efficiency; and 3) Q(s,a,θ) is saved periodically to a target
network Q(s,a,θ′). The parameter θ is learned by optimizing
the following loss:

L(θ) = E(St ,At ,Rt ,St+1) U(D)[(Rt + γ∗Zt −Q(St ,At ,θ)]
2 (7)

where Zt = Q(St+1,At+1,θ
′) is the target value calculated by

the target Q-network (θ′) for the state St+1 and the action
At+1. Here, the action At+1 is drawn from the set of suitable
actions (ECS) selected by the Filtering Algorithm. This is
different from the standard DDQN where At+1 is drawn from
the Q-network Q(s,a,θ) instead of the Filtering Algorithm.
Offline Training. The parameter θ is updated using gradient
descent by drawing sample tuples from the memory reply
U(D). Our Training algorithm and the Filtering Algorithm
are displayed in Appendix A Algo.1, and 2. The workflow
of the scheduling system in Figure 14 summarizes the main
components and the interactions between them in our RL
approach.

Online Running. The online running of Algo.1 is triggered
by three events, including new tenant arrival, ECS scaling
down, and scaling up. The DRL agent accepts VNF requests
from new tenants in real time and calculates the allocation
result. The scaling down and scaling up events are detected by
regularly checking the utilization of ECSs. Once the utiliza-
tion of some ECSs is larger than the upper bound threshold,
we need to scale up and reallocate resources to compensate
for extra traffic. On the other hand, scaling down is needed

USENIX Association 2024 USENIX Annual Technical Conference 245

when the utilization falls under the lower-bound threshold,
indicating the low utilization of some ECSs. As a result, VNF
instances will be reallocated and unnecessary ECS can be
freed. The DRL agent periodically obtains state information

of all ECSs from the platform. It stores each state transition,
corresponding action and reward to periodically update the
DQN model.

246 2024 USENIX Annual Technical Conference USENIX Association

	Introduction
	Background and Motivation
	Background
	Motivation and Challenges

	CyberStar
	Design Rationale
	Architecture

	Elastic Scalability
	Scalability of SC Plane
	Elastic PP Plane

	Fabric Master
	Untangle Scaling of SC and PP
	Improve Tenants Accessing

	Deployment Flexibility
	Adoption of Heterogeneous Hardwares
	Live Migration

	High Resource Utilization and Reliability
	Global NF Orchestration
	Local Rate Management

	Evaluation
	Elasticity
	Hardware Acceleration
	Resource Utilization

	Experiences and Lessons
	Related Work
	Conclusion
	Details of NF orchestration
	Problem Formulation
	DRL Approach

