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Abstract
The system architecture of contemporary supercomputers

is growing increasingly intricate with the ongoing evolution
of system-wide network and storage technologies, making it
challenging for application developers and system administra-
tors to manage and utilize the escalating complexity of super-
computers effectively. Moreover, the limited experience of ap-
plication developers and system administrators in conducting
insightful analyses of diverse High-Performance Computing
(HPC) workloads and the resulting array of resource utiliza-
tion characteristics exacerbate the challenge. To address this
issue, we undertake a comprehensive analysis of six years’
worth of 40 TB data (comprising I/O performance data and
job running information) from Sunway TaihuLight, boasting
41508 nodes and currently ranked as the world’s 11th-fastest
supercomputer. Our study provides valuable insights into op-
erational management strategies for HPC systems (i.e., job
hanging caused by heavy-load benchmark testing, job starva-
tion caused by aggressive scheduling policies) and I/O work-
load characteristics (i.e., getattr operations spiking caused by
massive access to grid files, a large number of files accessed
by many applications in a short period), shedding light on
both challenges and opportunities for improvements in the
HPC environment. This paper delineates our methodology,
findings, and the significance of this study. Additionally, we
discuss the potential of our research for future studies and
practice within this domain.

1 Introduction

As high-performance computing (HPC) technology advances
rapidly, supercomputers have made tremendous leaps in com-
putational power, ushering in a new era. However, the ac-
companying complexity in their architecture [21, 54, 83] is
undeniable. Moreover, HPC systems are inherently highly
shared environments, often accommodating numerous appli-
cations running together. HPC systems’ complexity, applica-
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tions’ diversity, and workloads’ dynamic nature collectively
pose substantial challenges for application developers and
system administrators to analyze and understand HPC work-
loads and resource utilization characteristics. This knowledge
is pivotal for enhancing parallel system and software design
and optimization [50], and the absence of such knowledge not
only hinders applications from obtaining optimal performance
but also acts as a significant barrier to effectively managing
and utilizing supercomputers’ precious resources.

To this end, numerous efforts have been made in the past
to address the issue from many aspects, such as studying job
running behaviors [50, 58], analyzing applications’ I/O char-
acteristics [40, 41, 49], performing controlled experiments on
large-scale supercomputers [42,73], and incorporating probes
into storage systems to predict system load trends [34, 38].
Nonetheless, a knowledge gap remains due to the continuous
development of HPC applications and systems. For example,
accurately analyzing I/O data to comprehend the character-
istics of applications and systems is still challenging [9, 59].
The above factors make it difficult to utilize supercomputer
resources efficiently to serve various HPC applications.

Recently, more efforts have advanced in scalable data
collection [4, 55, 77], making it possible to observe the
production-run large-scale supercomputers from a multi-
source and holistic perspective, which supports identifying
the relationships between applications and the back-end stor-
age systems and uncovering the performance bottlenecks and
management issues. For example, Shah et al. [61] explored
the I/O interference caused by file-access patterns, and Gu-
nawi et al. [24] uncovered the fail-slow factors for distributed
storage systems. Nevertheless, a comprehensive and enduring
perspective on the operations of large-scale supercomputers
and their storage systems remains absence.

To address this challenge, we perform a measurement and
systematic analysis of around six years’ worth of I/O activity
data and job running information from TaihuLight [21], cur-
rently the world’s No.11 supercomputer (formerly first-ranked
from June 2016 to November 2017). The data, collected by the
Beacon monitoring system [76] from April 2017 to December
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2022, encompasses information from 40,960 compute nodes
(over ten million cores), 240 forwarding nodes, 304 storage
nodes, 3 metadata nodes, and 1 job scheduling node, amassing
around 40 TB data. This extensive data set empowers us to
investigate temporal and spatial patterns from both applica-
tion and system perspectives, facilitating the identification
of nuanced relationships between diverse HPC applications’
characteristics and system components over time. This work’s
primary contributions are as follows:

• We conduct a comprehensive and detailed analysis of the
system and job characteristics on a cutting-edge comput-
ing system from the National Supercomputing Center in
Wuxi, TaihuLight. To our best knowledge, our in-depth
characterization study is the largest and longest of its
kind, analyzing nearly 6-year system and job data on
the current world’s No. 11 supercomputer, including
more than 6 million jobs from 1077 users that consume
4 billion compute core hours. We explain our findings
from multiple perspectives, such as operation and main-
tenance, system scheduling, job I/O characteristics, etc.

• Our study uncovers and explains many previously undis-
covered and unquantified insights into how system and
application characteristics evolve, revealing previously
unnoticed problems, such as job hanging caused by
heavy-load benchmark testing, job starvation caused by
overly aggressive scheduling policies, getatrr operations
spiking caused by massive access to grid files and Lustre
prefetching mechanism, etc. Notably, our study confirms
some previous work and conjectures, such as small-scale
jobs consuming less than 1% of total core hours and the
average job waiting time being usually long.

• We suggest optimizations or improvements based on our
experience and experimental testing, such as improv-
ing the default job scheduling strategy, incorporating
application hang detection into administrators’ periodic
benchmark testing and conducting it during the low-load
period to relieve job hanging issue, employing Symbolic
Links instead of deep directory structures to accelerate
the index, etc.

2 Background

2.1 Sunway TaihuLight’s architecture
To begin, we introduce TaihuLight, currently ranked as No.11
according to the Top 500 list of November 2023, which serves
as this study’s primary platform for data collection and analy-
sis. Figure 1 illustrates the current architecture of TaihuLight,
consisting of three layers: compute nodes, I/O forwarding
nodes, and storage nodes The left side of the figure shows
40,960 compute nodes, totaling an impressive 10,649,600
cores. The theoretical peak performance of these nodes can
reach up to 125 PFlop/s. Notably, every 256 compute nodes

are grouped to form a supernode. Within each supernode,
the nodes are fully connected, and they are further linked
to a quarter-cropped Fat-tree network via dual-rail FDR In-
finiBand (IB) connections to establish communication with
other supernodes. Additionally, each supernode maintains a
connection to the storage system (Icefish) through an IB line.

Figure 1: Overview of TaihuLight

The back end of Icefish is a popular shared file system,
Lustre [7] Icefish is configured and deployed as three inde-
pendent and non-overlapping file systems: Online1, Online2,
and Online3. Each file system is configured with two MDSs
in a master-standby strategy (one MDS is in use, and the
other MDS is on standby). Online1, the default file system for
regular users, has 144 Lustre Object Storage Servers (OSSs)
and 432 Lustre Object Storage Targets (OSTs). However, due
to the failure of a RAID disk array in July 2020, the admin-
istrator upgraded Online1 by replacing the original Sungon
disk arrays with the newly purchased DDN disk arrays. The
new disk array reconfigured a new Lustre file system with
12 OSSs and 12 OSTs, which we refer to as the “New On-
line1”. Online2 and Online3 are the reserved file systems for
“VIP” users. There are 144 OSSs and 432 OSTs for Online2
back-end storage and 4 OSSs and 12 OSTs for Online3 back-
end storage. The OSSs currently run the Lustre parallel file
system version 2.10, 2.5, and 2.12 for Online1, Online2, and
Online3, respectively. Moreover, to keep from slowing the
overall system performance when creating and opening these
files, Icefish are configured to use a 1 MB stripe size and a
stripe count of 1, just like other systems [37, 39].

Between the compute node and the storage node is a global-
shared layer, consisting of 240 I/O forwarding nodes and is
positioned in the middle layer to connect the front-end com-
pute nodes to the back-end storage nodes. Each I/O forward-
ing node plays a dual role, both as a LWFS server [16] to
the compute nodes and client to the Lustre back end, and is
responsible for forwarding I/O requests from the compute
node to the back-end Luster. Eighty forwarding nodes are
used for daily service, while the remaining 160 nodes act as
backup systems. The compute nodes are statically mapped
to the forwarding nodes in a 512:1 ratio. Note that an I/O
forwarding node can provide a bandwidth of 2.5 GB/s, aggre-
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gating to 600 GB/s for the entire forwarding layer. However,
limited by the back-end service capabilities and static system
configuration policies, Icefish has been empirically measured
to provide approximately 200 GB/s of aggregated bandwidth
for both read and write operations.

2.2 Data collection tool
TaihuLight embraces an end-to-end monitoring tool, termed
as Beacon [76], to collect multi-layer performance data. Fig-
ure 2 shows the current deployments of Beacon (The second
version of Beacon, we also call it Beacon+) on the Taihu-
Light supercomputer and its main components, including the
monitoring, storage, and analysis components.

Figure 2: Beacon deployments and its main components

Figure 3: Detailed data format collected by Beacon

Beacon performs I/O monitoring at six different parts of
TaihuLight, and the detailed data format can be seen in Fig-
ure 3. For the LWFS client, data was collected on the compute
nodes to reconstruct the fine-grained application I/O behavior.
For the forwarding layer, data were collected simultaneously
from the LWFS server and the Lustre client to describe the
load status of the forwarding layer. For the storage nodes, data
was gathered from the Lustre OSTs to describe the applica-
tion’s I/O behavior on the back end. Metadata request infor-
mation was collected from the metadata nodes to describe the
overall metadata load. Finally, job running information was
collected from the job scheduling node to analyze the running
status of jobs on the HPC system.

Beacon’s storage component is primarily deployed on 85
part-time storage nodes, each equipped with a Logstash [67]
and a Redis [56] for temporary data buffering. Real-time data
analysis is conducted on a dedicated analysis node, delivering

instantaneous diagnostic analysis to application developers
and system administrators. Simultaneously, the raw data is
preserved in JSON [8] format files for permanent storage.
Notably, Beacon’s overhead is very low, with less than 1%
impact on the application and less than 0.1% CPU usage by
the collection daemons, so it has been deployed on TaihuLight
since April 2017, collecting data for six years.

3 Dataset overview

Since its deployment on TaihuLight, Beacon has diligently
collected vast amounts of I/O performance data and job run-
ning information, amassing approximately 40 TB of data
from April 2017 to December 2022. This dataset encom-
passes 6,256,017 jobs, consuming around 4 billion compute
core hours. Among them, 2,793,938 jobs exhibited a parallel
scale exceeding 16 processes, consuming over 99% of the
total core hours, aligning with prior findings on the NSERC
clusters [58]. Consequently, the main focus of this paper is
on jobs with a parallel scale greater than 16 processes. Be-
sides, 662,405 jobs featuring non-trivial I/O (I/O volume over
200MB) have been analyzed to reveal HPC applications’ I/O
workload, constituting 23.7% of jobs exceeding 16 processes.
In the following, we analyze the dataset from three perspec-
tives: long-term overall system workload analysis, job running
information analysis, and job I/O characteristics analysis.

4 Long-term overall workload analysis

4.1 Compute node utilization analysis
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Figure 4: Utilization rate of the compute nodes from April
2017 to December 2022

First, we conduct a six-year statistical analysis of load varia-
tions on TaihuLight’s compute nodes, with Figure 4 depicting
the utilization rates. The utilization rate denotes the actual
core-hour consumption of compute nodes within a day relative
to the maximum core hours consumed by all compute nodes
in that day. Notably, the red ellipses in the figure represent
instances of zero utilization, occurring five times, aligning
with scheduled downtimes for maintenance lasting from two
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to four days. Meanwhile, the green boxes highlight periods
characterized by exceptionally low utilization.
Observation 1. Between 2019 and 2021, low-utilization pe-
riods exhibited a periodicity, recurring approximately every
6-7 months. In particular, the fifth instance of low utilization
in October 2021 also occurred after a similar interval since
the fourth scheduled maintenance downtime.

We further analyze this phenomenon and identify system
anomalies as the primary cause. Instances such as back-end
system node anomalies or network switch failures can lead
to the simultaneous abnormal termination of numerous jobs.
Moreover, these anomalies or failures frequently last for tens
of hours, resulting in prolonged idle periods for the compute
nodes and, thus, a significant drop in utilization. Subsequently,
we examine the system anomalies reported by Beacon, with
Figure 5 showing anomalies on TaihuLight’s I/O forwarding
and storage nodes. Different colors represent the different
recovery intervals after the abnormality occurs.
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(a) On the I/O forwarding nodes
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(b) On the storage nodes

Figure 5: Changes in ncumberulative values of system anoma-
lies identified by Beacon(i.e., the number of anomalies in
2018 includes the number of anomalies in 2017)

The number of anomalies exhibits a clear upward trend,
with potential causes including node performance degrada-
tion, RAID reconstruction, abnormal shutdowns due to fail-
ures, etc. Of course, administrators have invested a consid-
erable effort in system fault tolerance, which is evident in
the system’s ability to recover from numerous short-term
anomalies swiftly, minimizing their impact on overall utiliza-
tion. However, persistent issues like fail-slow (i.e., nodes with
performance degradation) can stay for an extended period,
posing challenges for detection. Although these instances
might not significantly affect overall utilization, they can de-
grade the quality of service, adversely impacting application
performance. Notably, the increased rate of OST anomalies
observed post-2020 has considerably slowed down, mainly
due to the replacement of new storage systems, as mentioned
in Section 2.1.
Lessons. System anomalies pose challenges not only at
the user level but also at the system level, impacting overall
utilization and quality of service. Our findings also demon-
strate prior research that abnormal rates increase with both

prolonged run time and larger scale [44, 60]. Notably, cur-
rent anomaly detection methods, particularly for fail-slow
issues [24], heavily rely on administrators utilizing bench-
mark testing offline, which is expensive and may disrupt run-
ning applications. With the growing scale of post-E-class era
machines, traditional operational methods, including regular
maintenance and benchmark detection, are proving insuffi-
cient for administrators. To address this, additional strategies
such as online anomaly detection with low overhead, fault
prediction, and migration become essential for mitigating the
impact of anomalies and enhancing system utilization.
Observation 2. 2022’s utilization rate dropped significantly.

We attribute the observed trend to the emergence of the new-
generation Sunway supercomputer, prompting the migration
of multiple applications. To delve into this, we analyze the top
10 primary applications spanning from 2017 to 2022, includ-
ing CESM [31], WRF [52], GKUA [36], FBA [30], Incom-
pact3d [5], GRAPES [15], VASP [25], KRPs [29], WW3 [66],
and COAWST [71]. Here, primary applications refer to those
utilizing significant compute resources on TaihuLight, consti-
tuting approximately 75% of the total. As anticipated, core
hours consumed by most primary applications (CESM, WRF,
GKUA, FBA, Incompact3d, GRAPES, VASP) decreased by
over 90% in 2022 compared to the period from 2017 to 2021,
signaling a substantial decline in TaihuLight’s utilization in
2022 due to application migrations. Nevertheless, the resource
utilization of a few applications has not decreased signifi-
cantly, prompting an analysis of the primary applications’
running status. Table 1 presents the results, where Common
parallelism indicates the most frequently used running scale,
Successful rate denotes the probability of applications com-
pleting normally, and Performance fluctuation reflects the
variance in I/O performance across multiple runs under typi-
cal configurations.

Table 1: 10 primary applications from 2017 to 2022

Application
Common

parallelism
Successful

rate
Performance
fluctuation

CESM 1024 40.3% 22.84
WRF 1024 54.0% 52.5

GKUA 512 15.4% 17.9
FBA 2000 32.0% 43.4

Incompact3d 1024 43.6% 40.1
GRAPES 256 43.0% 18.7

VASP 200 41.0% 28.1
KRPS 1000 81.1% 4.3
WW3 500 76.7% 10.4

COAWST 1024 78.7% 2.9

Observation 3. Most applications run on a relatively modest
parallel scale in daily business operations. Pursuing larger
parallel scales or higher computational power may not be
a major factor in application migration. Furthermore, jobs
with high successful rates and relatively small performance
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fluctuations tend not to change runtime platforms easily.

We investigate the factors contributing to the notably high
success rates and relatively low-performance fluctuations ob-
served in applications like KRPs, WW3, and COAWST and
find that these applications run with relatively modest I/O
loads and often utilize exclusive supernodes and I/O forward-
ing nodes, contributing to the stability of their operational
environments.
Lessons. With the advent of new supercomputers, especially
those with similar architectures, established supercomputing
centers face the risk of user attrition. On the one hand, migrat-
ing applications to supercomputers with similar architectures
only entails little cost. On the other hand, applications can
achieve better performance. However, our analysis indicates
that not all applications prioritize larger scales or stronger
computational power. A crucial factor influencing user reten-
tion is the stability of the environment provided by the su-
percomputing center. Instances of high running interruptions,
low successful completion rates, and significant performance
fluctuations can lead to user dissatisfaction and attrition. For
a supercomputing center aspiring to long-term operation, ma-
chine upgrades are one facet of maintaining user engagement.
Equally important is the provision of a stable environment.
We recommend that administrators implement proactive mea-
sures, including interrupt detection, resource isolation, and
dynamic configuration, to ensure user applications’ consistent
and stable operation. These steps are paramount for fortifying
user loyalty and sustaining the development of supercomput-
ing centers in the long run.

4.2 Storage system utilization analysis
Next, we analyze the long-term load of the back-end storage
system over nearly six years. Figure 6 shows the Cumulative
Distribution Function (CDF) of Lustre OST and MDS usage.
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Figure 6: CDF of storage system usage

Observation 4. In contrast to the compute nodes, the load
on the back-end storage nodes remained consistently low
throughout most of the observed period.

This observation aligns with findings from another super-
computer, Titan [3,37] (marked as the blue line in Figure 6(a)).

However, low storage system load does not necessarily trans-
late to easily achieving good application performance. As
demonstrated in many previous works [26,48,77], the I/O wall
problem plagues many HPC applications. The contradiction
between low system load and low application performance is
a critical issue in current HPC systems, and load imbalance
is one of the main reasons [81]. As anticipated, we also find
an obvious load imbalance on TaihuLight.
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Figure 7: CoV of OST load surrounding July 2020

Figure 8: Sample TaihuLight 6-week load summary in 2021,
showing the peak load level by the hour across sampled 100
I/O forwarding nodes, including the 80 nodes for daily use

Figure 7 shows the Coefficient of Variation (CoV), calcu-
lated as the standard deviation of load divided by the average
load, for all OSTs in three months surrounding July 2020. A
CoV closer to zero indicates a more balanced load distribu-
tion. Before July 2020, TaihuLight featured 384 OSTs, reveal-
ing a significant load imbalance and ineffective utilization of
back-end storage nodes. Post-July 2020, the CoV of OSTs sig-
nificantly decreased, potentially attributed to changes in the
daily storage system, reducing the number of commonly used
OSTs to 12. Additionally, performance optimization tools
proposed by Yang et al. [78] contribute to load balancing
among system nodes. Figure 8 shows the load status of sam-
pled random I/O forwarding nodes, presenting hourly peak
loads on each node. The 100 I/O forwarding nodes, including
80 commonly used ones, exhibit varying darkness levels, rep-
resenting the achieved maximum bandwidth during that hour.
"High," "medium," "low," and "idle" labels correspond to the
maximum values in the >60%, 30-60%, 10-30%, and 0-10%
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Table 2: Job running information statistics on TaihuLight from April 2017 to December 2022, with a parallel scale greater than
16 processes

Type 2017 2018 2019 2020 2021 2022
Number of jobs 308202 231153 118040 1971152 139708 25677
Avg. core hours 2107.0 3457.8 7273.8 486.7 4732.1 1603.8
Avg. parallelism 1432.8 1764.9 1724.8 2864.5 1299.6 1175.2
Avg. running time 21185.9 27203.5 17392.9 728.3 17647.9 8620.3
Avg. waiting time 639.1 3869.1 524.6 61.6 279.4 118.3

intervals, respectively, relative to each forwarding node’s peak
bandwidth baseline.

Observation 5. Load imbalance may occur not only on the
back-end storage nodes but also on nodes of other storage
tiers, such as I/O forwarding nodes.

Ji and Yang’s research [26,76] underscores that applications
frequently suffer I/O interference due to resource competition
along the I/O paths, while some applications require addi-
tional I/O resources to enhance their performance. This high-
lights the inadequacy of existing resource allocation strategies
in meeting diverse application requirements, contributing sig-
nificantly to the suboptimal utilization and load imbalance of
I/O nodes (forwarding nodes, storage nodes).
Lessons. Load imbalance remains a critical issue in cur-
rent HPC systems and will occur on all storage tiers [45, 51].
Commonly used static or fixed resource allocation policies in
the absence of pertinent system operational data exacerbate
this issue. Our observed data highlights that these policies,
while effective in specific scenarios, prove inadequate in ac-
commodating dynamic load changes within real-world su-
percomputing production-run environments. This inadequacy
results in a substantial misallocation of system resources. De-
spite many efforts to mitigate this problem, limitations persist,
such as only working well on newly created files [69] and
lacking a real-time global view to adapt to dynamically chang-
ing loads [35]. Therefore, the future system design should
embrace a more dynamic and flexible allocation strategy tai-
lored to specific application scenarios coupled with real-time
performance monitoring tools.

Observation 6. Metadata usage has a different story: the MDS
load significantly surpasses that of OSTs, with the MDS load
consistently exceeding 40% for approximately 50% of the
total time. Notably, there are instances, accounting for 4% of
the time, where the metadata load exceeds 98%.

Extremely high metadata loads underscore the potential bot-
tleneck caused by metadata access in modern storage systems.
An in-depth analysis of the distribution of various metadata
operations reveals insightful findings, as depicted in Fig 9.
As anticipated, open and close operations constitute around
90% of the total metadata requests, as applications operate
files that must open and close them. Surprisingly, getattr com-
mands contribute nearly 9% to the overall metadata requests.
Examination of periods with heightened Lustre client getattr
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Figure 9: Statistics on metadata operations

requests exposes that applications that access many grid files
(e.g., via NetCDF) exhibit a propensity for invoking sys_stat,
resulting in many getattr requests, was a significant contrib-
utor to this phenomenon. Additionally, Lustre’s readahead
mechanism will prefetch many files at high file concurrency,
also significantly contributing to this phenomenon.
Lessons. Currently, HPC applications exhibit numerous meta-
data demands, making the capabilities of metadata services a
pivotal metric for evaluating storage systems. In light of this,
we recommend that storage system designs take more into ac-
count applications with high metadata requirements and their
metadata access habits (i.e., more open/close/getattr access).
Our in-depth analysis of diverse metadata access behaviors of
applications is expounded upon in Section 6. This exploration
aims to provide comprehensive insights for designing storage
systems that effectively cater to the distinctive needs posed
by high-metadata-demand applications.

5 Job running information analysis

5.1 Job scheduling strategy analysis

In this section, we conduct a comprehensive analysis of the job
running information on TaihuLight over the past six years and
statistic key metrics such as the number of job submissions,
average job parallelism (indicative of the job’s parallel scale),
average job running time, and average job waiting time for
each year spanning from 2017 to 2022. The summarized
results are presented in Table 2.

Observation 7. The year 2020 witnessed the highest volume
of job submissions, but the average core hours consumed by
jobs and the average job running time are very small.
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We then analyze the jobs submitted in 2020 and find two
primary contributing factors. Firstly, a notable proportion, ap-
proximately 10%, are abnormally terminated jobs. Here, “ab-
normally terminated job” refers to jobs that exit unexpectedly
due to various reasons. Secondly, a few users, later identified
as administrators, submitted over a million jobs, seemingly for
testing and debugging purposes (with most jobs concluding in
less than 200 seconds). Given the upgrade in the storage sys-
tem of TaihuLight in July 2020, this submission surge could
be attributed to administrators conducting tests on the new
storage system using specific benchmarks.
Observation 8. The average job waiting time per year is con-
sistently high, typically measured in hundreds of seconds.
Notably, in 2018, the average job waiting time significantly
surpassed that of other years, reaching 3869.1 seconds.

We then further analyze the waiting time of all jobs from
April 2017 to December 2022 and find that 2.8% of the jobs
experienced exceptionally long waiting times, with some sur-
passing 80,000 seconds. Here, we reveal a problem, job star-
vation, which indicates that jobs experience prolonged periods
without scheduling. Upon excluding these abnormal jobs, we
re-evaluated the waiting time for the remaining jobs. The re-
sults, illustrated in Figure 10, indicate that the waiting time
for most jobs is within 100 seconds. To delve deeper into
the factors contributing to the extended waiting times of cer-
tain jobs, we scrutinize a subset of 3,620 jobs running within
the same job queue between March 1, 2018, and March 7,
2018. Employing job scheduling simulations, we evaluate the
impact of four distinct scheduling policies on waiting times:

Figure 10: Distribution of job waiting time

• DSP (Default Scheduling Policy), also known as "small-
scale job priority scheduling," is the inherent scheduling
policy adopted by the TaihuLight scheduler and other
supercomputers [80]. This policy assigns higher priority
to jobs with fewer nodes.

• FCFS (First-Come, First-Served) [43] is the simplest job
scheduling policy, which schedules jobs in the order they
are submitted.

• The Backfilling policy [20] allows subsequent jobs to oc-
cupy the gaps created by the first blocked job in the wait-
ing queue, as long as they do not cause delays in the ex-
pected start times of the blocked jobs in the queue. This

approach enhances system utilization by filling these
gaps while preventing starvation by allocating reserva-
tions to the blocked jobs.

• VPS (Variable Priority Scheduling) is our designed incre-
mental scheduling policy based on DSP. Its key idea is
to place small jobs (jobs that use fewer node resources)
at the front of the queue for priority execution. However,
if a job’s wait time exceeds a predetermined threshold,
the system will promote the job to the top of the queue
to ensure the job can be run as quickly as possible.
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Figure 11: Evaluation on four scheduling policies

Figure 11(a) shows the average waiting time of jobs across
four different scheduling policies, accompanied by the end
time of the last job. Note that the smaller the total end time,
the higher the resource utilization. DSP, VPS, and Backfilling
exhibit superior performance by optimizing the order of job
submissions, leading to reduced resource idle time and shorter
job completion periods. In contrast, FCFS, constrained by its
inability to alter job execution order, yields comparatively
inferior results. Noteworthy is that the DSP results presented
in Figure 11(a) emanate from simulation, closely matching
the real collected job running information. This congruence
attests to the accuracy of our simulation methodology. How-
ever, the above evaluation methods cannot reveal the problems
caused by job starvation. We additionally use MWBS (Mean
Weighted Bounded Slowdown) to evaluate these scheduling
policies, as shown in Figure 11(b). MWBS are used to eval-
uate user-aware performance in parallel job scheduling [82].
Formulas 1 and 2 show the calculation flow of the MWBS.

Slowdown =
Waitingtime+max(Runtime,X)

max(Runtime,X)
(1)

MWBS =
∑

N
j=1(Slowdown j ·Parallelsim j)

∑
N
j=1 Parallelism j

(2)

In HPC systems, we pay more attention to large-scale par-
allel jobs, so we use MWBS and regard jobs’ parallelism as a
weight. Moreover, we set X to 10 to minimize the impact of
jobs that immediately exit due to some errors after submission.
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The experimental results show that although DSP guarantees
resource utilization and has advantages in terms of average
job waiting time and total end time, it has the highest MWBS
and is prone to starvation, reducing users’ satisfaction. In
contrast, VPS retains the idea of prioritizing small-scale jobs
and ensures that large-scale jobs do not have to wait long, so
it performed well in all of our tests.
Lessons. Numerous supercomputers commonly implement
the small-scale job priority scheduling policy as their default
choice, aiming to enhance resource utilization. Our findings,
however, reveal a potential issue, job starvation, associated
with this policy. Job starvation can increase user-aware perfor-
mance. For example, jobs usually running for a day may be
extended to three or more days due to scheduling delays. We
suggest that administrators should pay attention to this prob-
lem because the prolonged waiting time diminishes user satis-
faction and poses the risk of user attrition, adversely affecting
the supercomputing center. To mitigate this problem, we pro-
pose a novel scheduling algorithm designed to minimize the
occurrence of starved jobs while concurrently maximizing
compute node utilization.

5.2 Users’ job submission habits analysis

In this section, we analyze job submissions from the user-
level perspective, counting the number of job submissions
and the average job core hourly consumption at an hourly
granularity (each time period records all job submissions in
the corresponding time period on each day for nearly six
years). Figure 12 shows the results. The blue bar represents
the number of job submissions for different time periods, and
the red line represents the average core hour consumption per
submission for different time periods.

Observation 9. User activity is notably concentrated during
the on-duty period, with the highest volume of job submis-
sions occurring between 9 a.m. and 5 p.m., excluding the
noon-hour break (12 p.m. and 1 p.m.). Interestingly, many job
submissions persist during the off-duty period, from 6 p.m. to
8 a.m. the following day.
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Figure 12: Number of job submissions and the average core-
hour consumption per submission at different time periods

More jobs submitted during the on-duty period align with
our expectations, so we will focus on jobs that run during the

0

1000

2000

3000

4000

5000

6000

7000

A
v

e
ra

g
e

 c
o

re
-h

o
u

r 
c

o
n

s
u

m
p

ti
o

n

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Time (hour)

0

2

4

6

8

10

12

14

N
u

m
b

e
r 

o
f 

jo
b

s

10
4

Number of jobs
avg. core-hour consumption

Figure 13: Number of abnormally terminated jobs and the av-
erage core-hour consumption per job at different time periods

off-duty period. Figure 13 shows the number of abnormally
terminated jobs during different time periods.

Observation 10. A large proportion of jobs are abnormally
terminated, and large-scale and long-running jobs tend to
exit abnormally between 8 a.m. and 9 a.m.

This observation reveals a problem in current supercom-
puters: job hanging, where a job, due to factors like storage
system stalls, network disruptions, or node connectivity prob-
lems, becomes stuck and unable to progress in its computation
but still occupies compute nodes. Users typically check the
status of their jobs submitted the previous day upon returning
to work and kill any abnormal jobs. Notably, large-scale and
long-running jobs tend to terminate abnormally between 8
a.m. and 9 a.m. Jobs with abnormal terminations during this
timeframe consumed a substantial 469,537,688.3 core hours,
constituting around 11.6% of the total core hours expended
by all applications over six years on TaihuLight. This under-
scores the critical nature of job hanging in HPC, leading to
the wastage of valuable compute resources. Besides, the cu-
mulative core hours of all abnormally terminated jobs surpass
that of normally completed jobs, prompting us to conduct
a deeper analysis. We explore the correlation between the
abnormally terminated rate and some job characteristics and
find that jobs’ parallelism and I/O bandwidth are the two most
relevant parameters. Figure 14 presents the results.
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Figure 14: Relationship between the abnormally terminated
rate and jobs’ parallelism and I/O load

The trend in the figure reveals that large-scale jobs and
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those with high I/O loads exhibit significantly higher rates
of abnormal termination compared to others with smaller-
scale and lower I/O loads, aligning with our conjectures. Re-
markably, the abnormal termination rates soar to 70% and
90% for jobs with processes exceeding 30,000 and an aver-
age I/O bandwidth surpassing 16 GB/s, respectively. Further
analysis suggests that this anomaly might be attributed to
high-load benchmarks executed by system administrators.
Administrators routinely employ such benchmarks during
presumed low system loads, typically during off-duty periods,
to detect anomalies in some nodes or system components
(Also mentioned in Section 4.1). These benchmarks, charac-
terized by high load (e.g., network or storage system detec-
tion benchmarks), can amplify and capture abnormal system
issues such as unstable network links or storage system per-
formance degradation. These problems, in turn, significantly
impact large-scale, high-load jobs submitted by users during
off-hours, leading to job hanging.
Lessons. Job hanging is a critical problem in HPC [19, 63],
leading to a significant waste of valuable compute resources
(over 10%) and necessitating more attention. This issue is
particularly pronounced during off-duty periods, where large-
scale and long-running job hangs can severely impede su-
percomputer utilization. While regular benchmark testing by
administrators serves to detect system issues, it can inad-
vertently exacerbate problems, leading to application hangs.
We advise incorporating application hang detection into pe-
riodic benchmark testing to mitigate this issue. It is crucial
to note that effective job hanging detection often requires
tight integration with applications, such as periodic logging
by applications. We encourage users to bolster their applica-
tions’ fault tolerance mechanisms. Simultaneously, we are
actively engaged in detection efforts at the system level and
are collaborating with system administrators to develop an
automatic detection tool. This involves routine sampling of
applications’ communication and I/O behavior through Bea-
con. Applications with prolonged periods of inactivity will
trigger alerts, enabling timely communication with users and
taking measures to address potential issues.

Furthermore, we also analyze the relationship between
users’ job submission habits and storage system load, and
Figure 15 shows the average OST load analysis in hourly
granularity.

Observation 11. Bars in Figure 12 and Figure 15 have similar
trends, implying that the average load of the storage system is
directly proportional to the number of job submissions during
the same time period.

We speculate that the observed phenomenon is linked to the
program execution process, where compute nodes must read
the executable file from the storage node. In the case of large-
scale applications, this operation involves reading substantial
data, potentially reaching hundreds of gigabytes. To illustrate,
if Application1 runs with a parallel scale of 10,000 processes

and the executable file is 10MB, the compute nodes must
read around 100GB of data before program execution. This
substantial load, arising from retrieving extensive executable
files, contributes to the rise in average back-end storage load
with an increasing number of job submissions.
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Figure 15: Average OST load per hour

Further investigation into the sizes of applications’ executa-
bles on TaihuLight reveals a noteworthy trend—they are often
huge. This can be attributed to the inherent complexity of sci-
entific computing applications, which frequently involve in-
tricate multi-mode coupling, resulting in a substantial amount
of code. A case in point is CESM [31], boasting millions of
lines of code and consequently yielding excessively large ex-
ecutable files. Additionally, it is noteworthy that applications
on TaihuLight tend to use static linking. While this practice
aids in minimizing link library overhead during runtime and
enhancing overall speed, it concurrently leads to increased
disk usage and memory overhead due to the nature of static
linking.
Lessons. Static linking, while beneficial for faster running
speed, can introduce challenges in handling substantial data
reads from the back-end storage system during the execution
of large-scale applications, causing a significant impact on the
file system and increasing application startup overhead. Dy-
namic linking, while slightly sacrificing time, offers enhanced
space efficiency and flexibility. In light of these considera-
tions, we advocate for a judicious evaluation of the trade-offs
by application developers. Specifically, we recommend using
dynamic linking for large applications where space efficiency
is critical and adopting static linking for smaller applications
where the emphasis is on speed optimization and the impact
on storage and startup overhead is comparatively low.

6 Job I/O characteristics analysis

In this section, we perform a statistical analysis for the I/O
characteristics of jobs that feature non-trivial I/O. Figure 16
shows the I/O volume and I/O time for read-dominant and
write-dominant jobs, respectively, and each dot in the figures
represents a job. The colors of the different points represent
different jobs’ I/O ratios (I/O ratio refers to the percentage of
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I/O time to the total running time of a job ), and the darker the
color, the higher the I/O ratio. We can see that many jobs have
a high I/O ratio, both for read-dominant and write-dominant
jobs. However, the average I/O bandwidth is relatively low,
less than 100 MB/s. Combined with the storage system load
analysis in Figure 6(a), this shows that I/O is still a problem
even when the storage system load is very low, confirming
the current "I/O wall" problem in HPC.
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Figure 16: The I/O volume and I/O time of jobs with non-
trivial I/O from April 2017 to December 2022

Observation 12. Most jobs are gathered on several straight
lines of the coordinate axis.

By calculating the ratio of I/O volume to I/O time, we
can get the slope of these lines, which also represents the
average I/O bandwidth of these jobs. We further analyze the
jobs on the same line. In conjunction with the average IOPS
of the jobs, we find that for read, the average I/O request
size of the jobs marked by the red boxes in Figure 16(a) is
128KB. For write, the average I/O request size of the jobs
marked by the blue boxes in Figure 16(b) is 512KB, which
also matches the previous work finding [76], mainly due to the
limitation of the FUSE file system (As mentioned above, the
storage system on TaihuLight consists of fuse-based LWFS
and Lustre). To improve the performance of these applications
with large I/O requests, system developers introduced the
kernel bypass method instead of the original FUSE file system.
However, there are many other jobs with small I/O volumes
but very long I/O times, and most have small I/O requests.
According to our statistics, jobs’ average I/O requests below
4KB accounted for more than 16%. Here, our experiments
demonstrate that kernel bypass is not always optimal and that
we sometimes need kernel back.

We evaluate the performance of FUSE and kernel bypass
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Figure 17: Performance comparison with or without FUSE

in handling various I/O request sizes with the MPI-IO bench-
mark of 16 computing nodes (64 processes). Figure 17 shows
the results. When the I/O request size is less than 4KB, due
to the kernel cache mechanism, the performance of FUSE
will be better than that of kernel bypass. However, when the
I/O request size increases, kernel bypass will show extremely
high-performance scalability.
Lessons. FUSE and kernel bypass represent two prevalent
methods adopted by numerous file systems; each has its own
applicable scenarios. Our real-world data analysis and experi-
mental tests reveal that, despite FUSE often facing criticism
for its lower performance, it can exhibit commendable results
in certain circumstances. Particularly, when the supercom-
puting system is oriented to applications with mostly read
and write small blocks, FUSE can deliver satisfactory perfor-
mance. Coupled with its simple and convenient development
process, it still has good use value. Owing to space limits and
the primary focus of this paper, we refrain from conducting
more intricate tests on the FUSE and kernel bypass methods.

(a) In occupied core hours (b) In I/O volume

Figure 18: Distribution of commonly used I/O libraries

We then analyze the primary I/O libraries utilized on Tai-
huLight, with applications relying on these libraries consti-
tuting a dominant percentage, surpassing 90%. Figure 18
presents the outcomes of this analysis, including PIO [18],
NetCDF [57], POSIX [10], HDF5 [33], and MPI-IO [65].

Observation 13. Traditional scientific computing applications
and the self-describing format I/O libraries they use still
occupy a major position.
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When statistics in terms of core hours, applications employ-
ing PIO constitute over 50% of the total core hours because
PIO-dependent applications like CESM [31] consume lots
of compute resources on TaihuLight. However, when statis-
tics are in units of I/O volume, the proportion of NetCDF
experiences a notable increase. This shift is attributed to
NetCDF-based production applications such as WRF [52]
and GRAPES [15], contributing significantly to the overall
I/O volume.
Lessons. Traditional scientific computing applications still
occupy a major position on TaihuLight. However, the tradi-
tional I/O libraries they use have been challenging to meet the
needs of application development, resulting in I/O overhead
gradually increasing, and cannot effectively exert the storage
system’s performance. Therefore, for I/O optimization of sci-
entific computing applications, especially application-level
optimization methods, to promote the optimization method,
the compatibility of API interfaces is essential.

Subsequently, we focus on the file access characteristics of
jobs, delving into the analysis of more than 700,000 jobs with
over 10 million files. Notably, 50% of these files are shared
resources accessed by multiple distinct jobs. Figure 19(a)
shows the number of files accessed by various jobs.
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Figure 19: Statistics on files accessed by jobs

Observation 14. Most jobs only access less than 1024 files,
accounting for around 90%, but a minority of jobs can access
an extensive number of files, even exceeding 262,144.

We focus on jobs that access a significant number of files
because extensive file operations, especially for small files,
can easily cause application performance bottlenecks. Further
analysis reveals that most jobs belong to artificial intelligence

applications, which frequently operate small files. Given the
growing prevalence of AI, it is anticipated that the propor-
tion of AI applications will continue to rise, intensifying the
demand for metadata. This trend has prompted various su-
percomputers, including TaihuLight, equipped with only one
metadata server, to undergo upgrades [1, 2]. Additionally, we
analyze file path lengths and file access intervals by jobs, with
the results presented in Figure 19(b) and Figure 19(c).

Observation 15. Most files’ path lengths range from 10 to 12,
accounting for 50%, but still, a notable portion of files have
lengths surpassing 12, extending up to 19. In addition, files
with access intervals within 1 hour occupy a majority.

Lessons. The I/O characteristics of applications play a crucial
role in the design, management, and optimization of HPC stor-
age systems. Our findings offer valuable insights for system
designers and administrators, enabling them to comprehend
application I/O characteristics and trends. This understand-
ing facilitates designing better systems or taking measures to
improve application I/O performance and overall system uti-
lization. For instance, addressing long path lengths is essential
to prevent performance issues and boost file system efficiency.
Administrators can advise users to routinely clean up unnec-
essary files, merge small files to reduce the overall count or
employ Symbolic Links instead of deep directory structures
that map certain deep-level directory structures to shallower
ones through symbolic links to simplify paths. Moreover, the
frequent simultaneous access of shared files by multiple jobs
within a short timeframe presents an opportunity to leverage
emerging storage technologies, such as Burst Buffer [27, 64].

7 Discussion

It should be acknowledged that the conclusions of this paper
are partially but not fully applicable to other supercomput-
ing systems due to the special architecture and other reasons.
However, the analytical methodology employed and the key
findings presented herein can offer valuable insights applica-
ble to diverse systems. For example, our analysis of schedul-
ing policies, job hanging, and system anomalies can serve
as benchmarks for other systems to assess the presence of
similar issues and implement corresponding improvements.
Our in-depth analysis of applications’ I/O behaviors, such as
metadata access patterns, file access patterns, and I/O trends,
provides valuable guidance for the HPC community in design-
ing and improving storage systems to accommodate diverse
application needs better. Below, we give more discussions.

Suggestions for supercomputing operations and mainte-
nance. Administrators typically perform system management
holistically from the perspective of the entire system, which
may inadvertently neglect the impact on individual jobs. Our
research has uncovered many issues caused by operational and
scheduling strategies, such as job hangings and job starvation,
which can substantially waste valuable compute resources
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and diminish user satisfaction. Notably, fault tolerance re-
mains an important issue that is difficult to address at the
user or administrator level alone, necessitating collaborative
efforts between users and administrators. Moreover, we pro-
pose proactive solutions to address these challenges and hope
this research can help HPC system administrators improve
the overall quality of operations and maintenance practices.

Suggestions for performance optimization. Performance
optimization methods can be broadly categorized into
application-level and system-level strategies. For application-
level optimization, our study confirms that current HPC appli-
cations still extensively use legacy I/O libraries. If these I/O
libraries are not compatible, it is not easy to generalize the op-
timization approach. For system-level optimization, designers
and administrators confront many issues that impact perfor-
mances, such as load imbalance and interference. To address
these issues, system parameters and scheduling strategies ad-
justment should both be based on the real-world load analysis
results. Moreover, optimizing performance in current specific
HPC scenarios, such as deep directory tree access, extensive
small file operations, and shared file access (especially when
numerous files are accessed frequently within short intervals),
also requires very detailed I/O characteristics of applications
and systems. Our study provides valuable insights for sys-
tem designers and administrators and can offer guidance for
optimizing performance in diverse HPC scenarios.

Challenges and opportunities for future monitoring tools.
Using data collected by Beacon, encompassing multi-layer
I/O data and job running information, we have unearthed vari-
ous I/O performance issues and shed light on operational and
management challenges. However, it is crucial to note that
certain issues require additional information to investigate
their root causes comprehensively. For instance, a precise un-
derstanding of job hangings requires insights into network
status, CPU load, disk information, etc. As supercomputing
systems evolve in scale and complexity, identifying and di-
agnosing issues are anticipated to become more critical and
intricate. In conclusion, adopting finer granularity and multi-
field data collection can enhance issue discovery and facilitate
understanding of their underlying causes. Nevertheless, it is
imperative to recognize that such data collection strategies
may incur additional costs, and balancing the granularity of
data collection across different fields remains challenging.

8 Related work

Due to the essential nature of data analysis for understanding
the operational status of the system, identifying I/O access
patterns of applications, predicting future load changes, opti-
mizing I/O performance for applications, and solving other
critical tasks, in recent years, many researchers have proposed
different methods for analyzing the I/O characteristics of HPC
applications, storage system load characteristics, and other
information.

I/O monitoring tool. Various techniques and tools have
been proposed to monitor and analyze the I/O performance
in HPC applications and systems. Generally, they can be di-
vided into three categories according to the position of the
collection point. The first category is application-layer col-
lection tools, which mainly start from the application side
and obtain I/O information by instrumenting high-level I/O
libraries, such as Darshan [14], Reflector [4], RIOT [72], etc.
Application-layer collection tools are close to the application
and are suitable for fine-grained analysis of application I/O
behavior. The second category of tools is system-level col-
lection tools aimed at the backend file system. They mainly
describe the system load by collecting file system status infor-
mation, such as Luster RPC and OST information, and typical
tools include LIOProf [75], LMT [22], LustreDu [13] and
so on. System-level collection tools have low overhead and
are easy to deploy on a large scale, but it is challenging to
analyze application behavior effectively. The third category is
cross-layer monitoring tools, which combine the advantages
of application-layer and system-level collection tools, such
as TOKIO [6], Beacon [76], GUIDE [68], and so on. Overall,
due to the widespread deployment of advanced monitoring,
some previously undiscovered problems have gradually been
revealed, effectively supporting application and system per-
formance analysis and optimization.

Application-side analysis. Some works focus on the anal-
ysis of job running information. For example, Rodrigo and
Patel et al. [50, 58] used job running information on several
supercomputers, including running time, core hours, and other
information, and analyzed the primary parallelism of jobs and
job submissions in different time periods, etc. Simakov et
al. [62] also analyzed job running information and uncov-
ered trends in job parallelism that have reduced. Other works
focus on the application’s I/O burst analysis. For example,
Yang et al. [79] analyzed the I/O burst of jobs, found that
I/O bursts widely exist in HPC applications, and found that
applications with similar job names often have similar I/O
behaviors. Some work [17,37,47] clustered the jobs with sim-
ilar features and studied similar periodic I/O burst behaviors.
In addition, many works analyzed I/O interference between
applications, performance variation, and other performance
issues, such as [11,12,28,53]. Unlike the previous works, this
paper analyzes job running information and I/O characteris-
tics on TaihuLight from a long-term perspective. Besides, we
focus on exploring the fine-grained I/O characteristics, such
as the I/O request size and file access offsets. Our analysis
reveals the actual needs of the current application and can
provide data support for system designers and administrators
to service applications well.

System-side analysis. Many works analyzed the system
load, characterized the storage in detail, displayed periods of
idle times, and studied the correlation of I/O bursts among
OSTs [23, 32, 46, 48, 49, 70]. Then, optimization suggestions
are put forward for the resource allocation strategy and system
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parameter configuration based on the storage system analy-
sis. For example, Oral et al. [46] used benchmark suites to
analyze different types and configurations of file and stor-
age systems and then provided recommendations. Wadhwa et
al. [69] analyzed the Lustre OST load and proposed an opti-
mization method for load balance based on the lightweight
I/O monitoring system. Lockwood et al. [38] used probes to
test the file system’s load, but the probes’ overhead was high,
and due to resource allocation problems, it was difficult to
reflect the actual state of the system, which would affect the
analysis results. Xie et al. [74] proposed a statistical bench-
marking methodology to measure write performance across
I/O configurations, hardware settings, and system conditions.
They analyzed the I/O write behaviors of the Titan supercom-
puter and its Lustre parallel file stores under production load
and gave several recommendations for optimization. Unlike
the previous works, we analyze the load of Sunway Taihu-
Light’s multi-level nodes from multiple aspects in terms of
long-term and spatial scales, reveal some problems suffered
during its long-term operation, and propose some optimiza-
tion suggestions. Our experience can be applied by the HPC
community to design better supercomputing systems or oper-
ate and maintain better supercomputing systems to improve
user experience and meet user application needs.

9 Conclusion

We perform a comprehensive and detailed analysis of sys-
tem and job characteristics and their trends on the current
world’s No.11 supercomputer, TaihuLight. Our study con-
firms some previous findings and conjectures, uncovers and
explains many previously undiscovered questions and un-
quantified insights, and proposes some suggestions for the
identified problems. For instance, application performance
fluctuations and multi-layer system node load imbalances per-
sist and demand careful consideration; the waste of resources
due to job hanging, and both users and system administra-
tors need to pay attention to fault tolerance; the design and
optimization of storage systems need to consider some hot
scenarios, such as access to a large number of small files, a
large number of files being accessed by many applications
in a short period, etc. We believe that the HPC community
can apply our experience to design, optimize, and manage
scalable HPC systems to meet the needs of their users.
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