
This paper is included in the Proceedings of the
2024 USENIX Annual Technical Conference.

July 10–12, 2024 • Santa Clara, CA, USA
978-1-939133-41-0

Open access to the Proceedings of the
2024 USENIX Annual Technical Conference

is sponsored by

KEPC-Push: A Knowledge-Enhanced Proactive Content
Push Strategy for Edge-Assisted Video Feed Streaming

Ziwen Ye, Peng Cheng Laboratory and Tsinghua Shenzhen International Graduate
School; Qing Li, Peng Cheng Laboratory; Chunyu Qiao, ByteDance; Xiaoteng Ma,

Tsinghua Shenzhen International Graduate School; Yong Jiang, Peng Cheng Laboratory
and Tsinghua Shenzhen International Graduate School; Qian Ma and Shengbin Meng,

ByteDance; Zhenhui Yuan, University of Warwick; Zili Meng, HKUST
https://www.usenix.org/conference/atc24/presentation/ye-ziwen

KEPC-Push: A Knowledge-Enhanced Proactive Content Push Strategy for
Edge-Assisted Video Feed Streaming

Ziwen Ye
Peng Cheng Laboratory, Tsinghua Shenzhen

International Graduate School

Qing Li
Peng Cheng Laboratory

Chunyu Qiao
ByteDance

Xiaoteng Ma
Tsinghua Shenzhen International

Graduate School

Yong Jiang
Peng Cheng Laboratory, Tsinghua Shenzhen

International Graduate School

Qian Ma
ByteDance

Shengbin Meng
ByteDance

Zhenhui Yuan
University of Warwick

Zili Meng
HKUST

Abstract
Video Feed Streaming (e.g., TikTok, Reels) is increasingly
popular nowadays. Users will be scheduled to the distribution
infrastructure, including content distribution network (CDN)
and multi-access edge computing (MEC) nodes, to access the
content. Our observation is that the existing proactive con-
tent push algorithms, which are primarily based on historical
access information and designed for on-demand videos, no
longer meet the demands of video feed streaming. The main
reason is that video feed streaming applications always push
recently generated videos to attract users’ interests, thus lack-
ing historical information when pushing. In this case, push
mismatches and load imbalances will be observed, resulting
in degraded bandwidth cost and user experience. To this end,
we propose KEPC-Push, a Knowledge-Enhanced Proactive
Content Push strategy with the knowledge of video content fea-
tures. KEPC-Push employs knowledge graphs to determine
the popularity correlation among similar videos (with similar
authors, contents, length, etc.) and pushes content based on
this guidance. Besides, KEPC-Push designs a hierarchical
algorithm to optimize the resource allocation in edge nodes
with heterogeneous capabilities and runs at the regional level
to shorten the communication distance. Trace-driven simu-
lations show that KEPC-Push saves the peak-period CDN
bandwidth costs by 20% and improves the average download
speeds by 7% against the state-of-the-art solutions.

1 Introduction

Video feed streaming service (e.g., TikTok, Reels, Kuaishou)
is becoming increasingly popular [9]. In video feed streaming
applications, users keep scrolling down and the applications
will recommend users with videos of users’ interests [16]. As
shown in Figure 1, to improve user experience and reduce
bandwidth cost, upon the traditional content delivery network

Corresponding Author: Yong Jiang (jiangy@sz.tsinghua.edu.cn), Qing
Li (liq@pcl.ac.cn)

Figure 1: Architectures of CDN and CDN-Edge systems

(CDN), content providers nowadays adopt hierarchical CDN-
Edge architectures [3, 15, 45]. Deploying cache servers at the
edge of CDN can further bring the popular contents closer to
users, saving the traffic cost and reducing the delay for users.

However, video feed streaming poses new challenges to
which videos to cache in the CDN-Edge architecture. To uti-
lize the bandwidth during idle time, existing CDN-Edge archi-
tecture usually predicts the peak-period popularity of videos
based on historical access data [36,46], and pushes the popular
ones to edge cache servers in advance [12,14,15,26,47]. How-
ever, for video feed streaming applications, content providers
need to push the freshest videos to attract users’ interests,
where historical data is inaccessible. For example, in our mea-
surements, as shown in Figure 2, we use web crawlers to
retrieve preferentially recommended videos across different
platforms, targeting hundreds of generic keywords, and an-
alyze the publishing time of these videos. As we can see,
the median time between video upload by the creator and
distribution to the users is around 20 hours in the video feed
streaming, which is not enough to even gather the historical in-
formation from one day before, while for Video-On-Demand
(VoD), the time could be days to weeks. In this case, the ab-

USENIX Association 2024 USENIX Annual Technical Conference 321

Figure 2: Time interval from video uploads to user viewing.
Video feed streaming (Douyin and Kuaishou) has a shorter in-
terval of orders of magnitudes than video-on-demand stream-
ing (Bilibili, YouTube, and iQIYI).

sence of historical data can lead to imprecise push, which
in turn leads to observed load imbalances and mismatches,
as shown in the edge-assisted CDN network of Figure 1. As
a result, users’ requests have to traverse longer to reach the
correct node, which ultimately degrades both bandwidth cost
and user experience.

To address the problems outlined above, our main insight
is that knowledge derived from the content features of video
files can help with the decision of video push. Figure 3 illus-
trates the knowledge graph constructed from the file content
features. It includes features such as video category and du-
ration, which provide additional information for determining
video popularity trends during the cold-start phase. Impor-
tantly, these features are obtained at the time of video creation
and do not rely on historical data. With the help of knowl-
edge, edge load fluctuation can be effectively reduced by
precisely pushing the video files to the most appropriate edge
nodes. Therefore, we propose a Knowledge-Enhanced Proac-
tive Content Push (KEPC-Push) strategy, aimed at improving
the user’s experience and bandwidth cost.

However, it is challenging to capture effective informa-
tion from auxiliary knowledge to guide the load-balanced
proactive push for heterogeneous edge nodes. The features
of one video file are multi-dimensional, including creators,
categories, publication times, and so on. KEPC-Push needs
to select suitable features and extract valuable knowledge
from them. Meanwhile, the processing capacity of edge nodes
varies a lot, and some of them might only handle the parallel
transmission of dozens of videos [10, 47]. Our measurements
in production (§2.2 and §2.3) further confirm that the diverse
popularity of video files and the heterogeneous capacity of
edge nodes drastically affect the user experiences. KEPC-
Push needs to carefully consider the heterogeneity of nodes
to avoid overloads. Moreover, it is also challenging to de-
sign a fine-grained and lightweight scheduling scheme for
large-scale fresh video feed streaming services. For example,
applications such as Douyin [2] and Kuaishou [1] have hun-
dreds of millions of monthly active users scattered across vast

Figure 3: An illustration of video file knowledge graph

regions, requiring the strategy to be lightweight and scalable.
In response, we introduce two modules respectively to ad-

dress the challenges. (1) a File Feature Embedding (FFE)
module. As a first step, the FFE uses a knowledge graph
embedding algorithm to identify the underlying popularity
correlation among files. Additionally, a collaborative filtering
embedding algorithm is introduced to supplement the repre-
sentations of new files constantly created during the proactive
push process. As a result, the continuously updated represen-
tation library will be used to guide the deployment of files
to optimal edges in subsequent tasks. (2) a File Deployment
Scheduling (FDS) module. The FDS first solves the allocation
imprecision problem by implementing a region-level alloca-
tion mechanism, which dynamically configures the appropri-
ate number of to-be-pushed replicas and the replaceable cache
space for different regions, achieving precise file scheduling.
Next, to alleviate the load imbalance problem, a clustering-
based deployment mechanism is designed to make timely
load-balanced push decisions with the representation library.

To demonstrate the performance of KEPC-Push, we com-
pare it with several state-of-the-art proactive content push
algorithms through comprehensive experiments using real
video traces collected from Douyin, a leading video content
provider in China. Experimental results show that: (i) KEPC-
Push significantly optimizes the bandwidth cost and user ex-
perience, saves the peak-period CDN bandwidth by 20%,
and improves request download speeds by 7%; (ii) The pro-
posed load-balanced push mechanism effectively copes with
load fluctuations caused by potential popularity bursts, de-
creases the ratio of overloaded edges by 19%, and improves
the overall bandwidth utilization of the edge network by 22%;
(iii) The proposed region-level allocation mechanism opti-
mizes the request scheduling, reduces the cross-region request
ratio by 10%, and reduces the repeated deployment of files.

The contributions of this paper are as follows:

• We propose a knowledge-enhanced proactive content
push strategy for edge-based fresh video feed streaming
systems, called KEPC-Push (§3);

• We design a file feature embedding (FFE) module that
captures the underlying popularity correlation of files
and provides guidance for subsequent deployment (§4);

• We propose a file deployment scheduling (FDS) module
that allocates resources at the regional level, achieving

322 2024 USENIX Annual Technical Conference USENIX Association

Figure 4: Change in bandwidth cost ratio
and saving ratio within a day

Figure 5: Change in core indicators of the
edge network within a day

Figure 6: The heterogeneous distribution
of user requests across regions

lightweight and load-balanced proactive push (§5);
• Comprehensive experiments through production traces

demonstrate that both bandwidth cost and user experi-
ence are significantly optimized (§7).

2 Background and Motivation

In this section, we explain the background (§2.1), existing
problems (§2.2), and root causes (§2.3) in the video feed
streaming through large-scale measurement, and we summa-
rize the challenges of addressing the problem (§2.4).

2.1 Edge-assisted Video Streaming System
To further optimize the user’s experience, the CDN-Edge-
hybrid content delivery architecture is replacing the CDN
architecture. As shown in Figure 1, instead of users directly
accessing the CDN node, users now will be scheduled to a
series of edge nodes nearby. Edge nodes can be in the gateway
of a campus or a building, which are much closer to the users.
In this way, the access latency can be further improved by at
least a half [6] to the level of 10-20 ms [28–30].

Unlike CDN, CDN-Edge architecture adopts proactive
push strategies more often due to cost considerations. The
bandwidth in an edge-assisted video streaming system is
charged by the peak-time CDN bandwidth metering (e.g. 95th
percentile bandwidth metering [33]), which can be reduced
by predicting which files will gain the highest peak-period
popularity, and proactively pushing them to the edge network
in advance. For example, 20:00∼22:00 are usually the busy
hours in the day, and pushing replicas at that time will incur
additional CDN bandwidth expenditure. Therefore, on the
server side, during the whole off-peak periods (0:00∼20:00
and 22:00∼24:00), the content provider periodically selects
the files whose access frequency is higher than the preset
access frequency threshold within the latest hour, and pre-
dicts their popularity during the next evening peak period
(20:00∼22:00). Then a certain number of replicas, determined
by the predicted popularity [12], will be proactively pushed to
the edge network. On the client side, users constantly make re-
quests and wait for the service from CDN or the edge network

based on the cache status and workload of edge nodes.
However, the current edge-assisted video streaming system

is inefficient at utilizing edge networks to save bandwidth [47].
We perform an in-depth measurement study over Douyin, one
of the most popular video feed streaming applications. As
illustrated in Figure 4, we record the bandwidth consumption
data over a typical week, and investigate the distribution of
hourly bandwidth consumed on CDN and edge networks to
the total daily traffic, which is represented by CDN (edge)
bandwidth cost ratio. Apparently, bandwidth costs are highest
during the evening peak period, but bandwidth saving ratios
(proportion of edge bandwidth cost to the total traffic of that
hour) decrease significantly during the peak hours, which
makes it difficult to reduce peak-period CDN bandwidth.

2.2 Observations

To understand the limitation of edge-accelerated streaming
systems, especially for video feed streaming, we have the
following two observations.

Load imbalance limits edge network’s performance.
We investigate the performance of edge nodes and show the
results in Figure 5. As illustrated in the top sub-figure of Fig-
ure 5, the connection failure ratio of requests increases rapidly
during the peak period. This is because many edge nodes are
overloaded and therefore cannot serve more new requests,
and this is even more severe for edge nodes since the capacity
of each edge node is much less than a CDN node. However,
in the bottom sub-figure of Figure 5, which shows the Cu-
mulative Distribution Function (CDF) of edges’ Bandwidth
Utilization (BU), we can see that many idle nodes are not
utilized effectively when other nodes are overloaded. Specif-
ically, during the evening peak period, when the proportion
of edge nodes with high load (BU > 0.8) exceeds 15%, 52%
of edge nodes have low load (BU < 0.4). In summary, the
highly-skewed workload across different edge nodes limits
the utilization of the edge network.

Imprecise resource allocation degrades user’s experi-
ence. In a large-scale online video streaming platform, mas-
sive users and edges are distributed over a wide area, and
the geographical distribution of requests is unbalanced. As a

USENIX Association 2024 USENIX Annual Technical Conference 323

Figure 7: The QoS metrics for same-region
and cross-region scheduling

Figure 8: The impact of file popularity on
bandwidth utilization

Figure 9: The impact of node capability on
bandwidth utilization

practical example, we randomly select two video files from
our production traces and present their heterogeneous user
distribution in the top sub-figure of Figure 6. We can see that
most users of File-A are from region-4 (about 42%), while
dominant users are from region-1 (about 48%) for File-B.
Furthermore, the bottom sub-figure of Figure 6 shows that
current inaccurate resource allocation results in about half
of all requests requiring cross-region scheduling. Compared
with same-region scheduling, cross-region user requests will
degrade the user’s QoS (e.g. download speed, RTT and packet
loss rate), which is shown in Figure 7. Whenever the down-
load speed of a user request is insufficient, the content delivery
task will be taken over by the CDN with a faster download
speed to guarantee smooth playback of the video. Therefore,
we should allocate resources appropriately across regions to
reduce distances between users and sources, so that both CDN
bandwidth and user experience can be improved.

The current proactive push strategy based on historical in-
formation will bring about the above-mentioned problems that
need to be solved urgently, so it is not suitable for fresh video
feed streaming services. Allocation imprecision problems
are caused by ignorance of imbalanced request distribution,
whereas the root causes of load imbalance problems are more
complex and will be elaborated below.

2.3 Causes of Unbalanced Workload

To investigate what leads to the highly-skewed workload, we
analyze the monitoring data of edge nodes and present the
results in Figure 8 and Figure 9.

The first cause of the imbalance workload is the diverse
popularity among video files. We count the bandwidth utiliza-
tion of one thousand edge nodes and the popularity of cached
files in these nodes during the evening peak period. As illus-
trated in Figure 8, we present how the bandwidth utilization
varies with the ratio of cached popular and unpopular files
by drawing scatter points and corresponding linear regression
lines, in which (un)popular files are those with popularity falls
within the top (bottom) 40%. We can see that as the propor-
tion of cached popular files increases, edge nodes are more
likely to be in a state of high load, while the trend is reversed

for the unpopular files (their Pearson correlation coefficients
are around ±0.3). This is because storing a large number of
popular files means the edge node might handle more requests
in parallel, thus improving bandwidth utilization.

The second cause of the imbalance workload is heteroge-
neous edge capacity. As illustrated in Figure 9, we divide all
edge nodes into three groups based on their bandwidth utiliza-
tion, and calculate the CDF of their normalized upload/storage
capability (i.e. upload bandwidth per unit of storage space).
The results demonstrate that the edge nodes with lower capa-
bility are more likely to suffer heavy loads. Because upload
bandwidth capability is decreased, the edge node’s transmis-
sion bottleneck is reduced, and storage space is increased,
more tasks can be handled simultaneously by the edge node.

Based on the above conclusions, we should not cache ex-
cessive files with high peak-period popularity on the same
edge node, especially the edge with weak capability.

2.4 Challenges

In light of the data-driven insights above, we can develop
an intuitive strategy that comprehensively considers the pre-
dicted popularity of cached files, the heterogeneous edge ca-
pabilities, and the geographical distribution of requests. By
balancing edge workloads and allocating resources geograph-
ically, the peak-period CDN bandwidth and user experience
can be improved. However, a practical proactive push mecha-
nism still faces the following challenges.

Challenge-1: How to achieve load-balance proactive
push for heterogeneous edge nodes without sufficient his-
torical information. In video feed streaming services, it is
difficult to accurately predict the peak-period popularity of
to-be-pushed videos. On the one hand, fresh videos are al-
ways quickly deployed to the edge network, so there is only
sparse historical information. On the other hand, the proac-
tive push mechanism makes decisions periodically during the
whole off-peak period, which means file popularity needs to
be predicted over a long period of time. Since the accuracy
of prediction declines significantly with the loss of historical
information and the increase of forecast time span [35], the
prediction results are not credible. Moreover, heterogeneous

324 2024 USENIX Annual Technical Conference USENIX Association

Figure 10: The system overview of KEPC-Push

edge capabilities further disrupt file deployment decisions.
Challenge-2: How to ensure that the scheduling scheme

can satisfy systematic requirements for large-scale video
streaming services. First of all, in order to achieve precise
proactive push, a flexible allocation mechanism that can dy-
namically adjust the number of replicas for files and the re-
placeable cache space for edge nodes should be designed at
the regional level. In addition, at each proactive push deci-
sion, tens of thousands of files need to be pushed to the edge
network, the delay of which will degrade the users’ Quality
of Experience (QoE) and increase bandwidth cost. Therefore,
a lightweight scheduling scheme is necessary to ensure that
the system can run in real-time.

3 The KEPC-Push Framework

To address the challenges outlined above, we propose the
KEPC-Push, a knowledge-enhanced proactive push strategy.
Figure 10 illustrates the system overview of KEPC-Push,
which can mitigate the load imbalance and allocation impre-
cision problems by introducing auxiliary knowledge derived
from the content features of video files. Specifically, two mod-
ules are designed to address the two challenges respectively.

First, to cope with the problem of insufficient historical
information, we propose the file feature embedding (FFE)
module (§4). The FFE module extracts the underlying pop-
ularity correlation of files from the content features and col-
laborative behaviors by utilizing Knowledge Graph (KG) and
Collaborative Filtering (CF) algorithms, respectively. The
auxiliary information enhances the ability of KEPC-Push to
learn the diversity of video files. And the acquired representa-
tion library will be used to guide the deployment of files to
optimal edge nodes in subsequent tasks.

Second, to design a fine-grained and lightweight schedul-
ing scheme for large-scale video feed streaming services, we
propose the file deployment scheduling (FDS) module (§5).
The FDS module allocates resources at the regional level and

(a) Created by the same author (b) Belonging to the same video

Figure 11: The radiation effect of the file popularity

reduces the complexity of the proactive push problem. In
detail, it dynamically configures the number of replicas and
the size of replaceable cache space for different regions, and
designs a clustering-based deployment mechanism to assist
the deployment of files based on the learned representation
vectors, achieving a load-balanced proactive push.

Furthermore, we also define the proactive push problem
in Appendix §A, where the load imbalance and allocation
imprecision issues that we need to address are formulated in
detail. However, since the problem is NP-hard, it is necessary
to propose our heuristic-based solution, namely, KEPC-Push.

4 File Feature Embedding

In this section, we introduce the file feature embedding mod-
ule, which solves three sub-problems in capturing the underly-
ing patterns of files from the knowledge data, namely, which
content features are related to popularity trends, how to use
these features as a guide for the file deployment, and how to
handle constantly published new files during the push process.

4.1 Content Feature Selection
In the video streaming system, contents are delivered in the
format of files rather than videos. This is because, due to dif-
ferences in resolution, codec type and other content features,
one video may be encoded into multiple files in advance to
quickly respond to user requests. Our data analysis uncovers
some useful phenomena and identifies the content features
that determine the popularity correlation between files.

The popularity radiation effect. Files created by the same
author or belonging to the same video are more likely to have
similar popularity trends. As illustrated in Figure 11, we ran-
domly select five thousand files from all the files requested
during the evening peak period, and present the access fre-
quency of each selected file and the average access frequency
of other files created by the same author (or belonging to the
same video). With the increasing access frequency, it is sta-
tistically more likely that the average access frequency of the
other files will be greater than that of all selected files (see red
dashed lines). In other words, when an author (or a video) be-
comes popular, other files created by that author (or belonging
to that video) will also be requested more frequently.

The popularity skewness effect. The popularity of files
can skew significantly in some characteristics, such as cate-

USENIX Association 2024 USENIX Annual Technical Conference 325

Figure 12: The skewed popu-
larity in some characteristics

Figure 13: The distribution of
peak popularity delay

gory, resolution and duration. For demonstration, we calculate
the average access frequency of files with different character-
istics during the evening peak period. As illustrated in the top
sub-figure of Figure 12, we can see a three-fold difference in
the average access frequency between the most popular and
least popular categories among the 56 video categories (e.g.,
“News”, “Movie” and “Game”). Similarly, file popularity is
skewed in terms of resolution and duration.

The peak popularity delay effect. The timing of pop-
ularity is as important as which files will become popular.
Therefore, we collect files created at different hours, and com-
pute the time interval between when a file is created and when
it reaches the popularity peak, which is called the Popular-
ity Peak Delay (PPD). As illustrated in the top sub-figure of
Figure 13, the distribution of the PPD is phased rather than
continuous, because the popularity peaks of files mainly oc-
cur around the noon and evening peak periods. Besides, the
distribution of the PPD varies significantly depending on the
creation hour of files. In detail, we select the files published at
4, 12 and 20 o’clock and present the distribution of PPD in the
bottom sub-figure of Figure 13, showing that they reach their
popularity peaks at different times. For instance, we can see
that most of the files published at 4 o’clock will reach peak
popularity in the next 10∼20 hours, which is the afternoon
and evening of that day, while for files published at 12 o’clock,
it will be the evening of that day and morning of the next day.
Meanwhile, as for the files published at 20 o’clock, they will
dispersedly reach peak popularity over a long period in the
future. This indicates that the files published at the same time
tend to reach peak popularity at similar times, so they should
be stored separately in the edge network.

The above findings indicate that there is a strong correlation
between the file popularity and some key content features,
and the files with the same content features show similar
popularity trends, i.e., they reach popularity peaks at similar
times and are more consistent in their popularity peaks. There-
fore, files with different content features should be mixed and
stored on the same edge node to avoid excessively high or
low workloads in a short period of time.

4.2 Knowledge Graph Embedding
One consequent challenge is how to assess the similarity of
files on the aforementioned content features. Considering

the success of knowledge graphs in understanding mutual
relations, we utilize the Knowledge Graph Embedding (KGE)
method to learn representation vectors for different items.

Knowledge graphs can provide rich side information for
items in content-enriched model [11]. A KG is a heteroge-
neous graph, where nodes represent entities, and edges repre-
sent relations between entities. By mapping items and their
attributes into the KG, a general and compact context can
be provided. As such, the KGE approaches can extract con-
tent features from the KG and accurately capture potential
relations between items. We choose six content features to
construct the knowledge graph, namely Video ID, Author,
Category, Resolution, Duration and Publication Hour. An ex-
ample of the KG is shown in Figure 3. In the KG, each edge
is represented in the form of a triple (head entity, relation, tail
entity), implying the specific relationship between the head
entity and tail entity. For example, (FID-1, Author, Alice) in-
dicates that Alice is the author of FID-1. Finally, the KGE
can map entities and relations into low-dimensional repre-
sentation vectors, in which the graph structure and semantic
information are encoded.

To accurately learn the representation vectors, we choose
TransR [24] method, which models entities and relations in
separate spaces and trains vectors by projecting entities from
entity space to relation space with projection matrices. We
extract all the requested files and their content features within
the last week, and input them into the TransR model.

In TransR, for each relation r, there is a corresponding
projection matrix Mr that projects entities from entity space to
relation space. With the mapping matrix, the projected vectors
of the head entity and tail entity in triple (h,r, t) are defined
as hr = hMr and tr = tMr, respectively. The TransR model
optimizes translation principle hr+t≈ tr to learn embeddings.
As such, the score function of TransR is formulated as follows:

fr(h, t) = ∥hr + r− tr∥2
2 = ∥hMr + r− tMr∥2

2 . (1)

The training of TransR takes both correct triples and in-
correct triples into consideration to encourage their discrimi-
nation, so the object for training is defined as the following
margin-based score function

L = ∑
(h,r,t)∈S

∑
(h′,r,t ′)∈S′

max
(
0, fr(h, t)+ γ− fr

(
h′, t ′

))
, (2)

where γ is the margin, S is the set of correct triples and S′ is
the set of incorrect triples.

After the training process, we can get the representation
vectors of all files, which are stored in a KG-based represen-
tation library KG_library. The distance between two vectors
is inversely proportional to the popularity correlation of two
files, and a stronger correlation means a more similar popu-
larity trend, that is, the two files should be stored separately.

326 2024 USENIX Annual Technical Conference USENIX Association

4.3 CF-based Embedding Supplement

Although the KG-based representation library has been ac-
quired, new files are constantly being created during the proac-
tive push process, and these files do not have corresponding
vectors in the KG_library. Therefore, the KG_library needs
to be updated in real-time to meet the requirements of file
deployment scheduling. However, it is not acceptable to re-
train the entire knowledge graph due to excessive training
overhead, and the training time for millions of files may reach
the day level. To reduce the update cost, we propose an Em-
bedding Supplement Mechanism (ESM) to supplement the
missing representation vectors of new files by introducing
Collaborative Filtering Embedding (CFE) technology [34],
which can capture the implicit relationship between new and
old files from users’ collaborative request behaviors.

Algorithm 1 shows the process of ESM, in which a library
hit ratio threshold ξ is proposed to determine whether the
entire knowledge graph needs to be retrained. There are two
situations in which retraining may occur. First, recall that files
are only proactively pushed to the edge network during the
off-peak period, so there is ample time to update the input data
and construct a new knowledge graph for retraining during the
peak period. Second, if the library hit ratio of the scarce file list
L , which contains all files that are frequently accessed in the
latest hour and need to be pushed, is smaller than the threshold
ξ, the retraining will happen due to excessive omissions.

For other cases, we will use the CFE to obtain a CF-based
representation library CF_library in three steps, which can
be used to supplement representations. Specifically, the files
requested by different users within the last four hours are first
separated into independent sets, and the files accessed by the
same user are considered to have a closer relationship. Next,
we filter out the files whose access frequency is lower than the
preset threshold. Finally, the item2vector method [5] and skip-
gram model [13] are used to train the vector representations
from the extracted sets. After acquiring CF_library, for any
file f that cannot be retrieved in KG_library, we first find out
the files that exist in both KG_library and CF_library from
L . Then we choose the file f ′ that has the closest vector dis-
tance to file f in CF_library from these files, and finally use
the representation vector of f ′ in KG_library to temporarily
supplement the representation vector of f .

There are two reasons for using the KGE to learn repre-
sentation vectors and using the CFE to supplement them. On
the one hand, the meta-data from the video streaming system
is usually sparse and noisy, which means the vast majority
of files are unpopular and lack user interaction information.
In addition, the content features of files are available as soon
as the videos are created. Therefore, we choose to construct
the knowledge graph. On the other hand, the files that ap-
pear in the scarce file list are frequently accessed by users in
the recent period. As such, sufficient collaborative behaviors
can be used to identify which files are less likely to be re-

Algorithm 1: Embedding Supplement Mechanism (ESM)
Input: Scarce file list f ∈ L , Library hit ratio threshold ξ,

KG-based representation library KG_library,
CF-based representation library CF_library.

Output: Updated KG-based representation library
updated_KG_library.

1 Function EmbeddingSupplement():
2 if |L ∩KG_library.keys()| / |L |< ξ then
3 updated_KG_library← KG_training()
4 else
5 CF_library←CF_training()
6 updated_KG_library = KG_library
7 IntersectionSet = KG_library∩CF_library
8 for every file f in L do
9 if f ∈ KG_library.keys() then

10 Continue
11 else
12 Initial MinDistance←+∞

13 for f ′ ∈ IntersectionSet.keys() do
14 Distance = GetDistance

(CF_library[f],CF_library[f ′])
15 if Distance < MinDistance then
16 MinDistance = Distance
17 updated_KG_library[f] =

updated_KG_library[f ′]

18 return updated_KG_library

quested consecutively and guide the embedding supplement,
so the distance relationship among representation vectors in
the KG_library can be maintained.

5 File Deployment Scheduling

In this section, we will introduce the file deployment schedul-
ing module, which solves two sub-problems step by step, and
finally completes the load-balanced proactive push decision.
First of all, we need to determine how many replicas to push
for each video and how much replaceable cache size each
edge node should provide before each round of push. Then,
how to match the to-be-pushed replica with the edge node
based on the obtained representation library in a lightweight
way is another challenge. To this end, we propose a Regional-
level Allocation Mechanism (RAM) and a Clustering-based
Deployment Mechanism (CDM).

5.1 Region-level Resource Allocation
Recall the observations mentioned in §2.2, many files have
skewed geographical distributions of requests. Therefore, to
reduce the ratio of cross-region request scheduling, we should
determine the number of replicas at the regional level. More-
over, since edge nodes have heterogeneous capabilities and

USENIX Association 2024 USENIX Annual Technical Conference 327

fluctuating loads, we also should dynamically configure the
replaceable cache size for different edges. Based on these
facts, we design the region-level allocation mechanism, which
makes independent allocation decisions for each region. And
algorithm 2 summarizes the allocation process of the RAM.

The number of replicas is calculated in two steps. First,
the popularity prediction model based on XGBoost [7] will
forecast the peak-period popularity of file f in region g, which
is defined as v f ,g. The reason for predicting at a regional level
is that different regions have different user bases and thus be
interested in different content. To train the XGBoost for each
region, which models the non-linear relationship between file
features and regional peak-period access frequency, we use
dynamic contextual features that will vary within a short time
(e.g., the historical number and regional distribution of user
requests) and constant semantic features that can be encoded
into one-hot vectors (e.g., codec type, resolution, bitrate, au-
thor, number of followers, category, duration and publication
time). Second, to ensure that each request can be responded
by at least η edge nodes in parallel to guarantee the QoE, the
required number of to-be-pushed replicas, defined as n f ,g, can
be calculated based on the network cache information x f ,e,
which represents whether file f is stored on the node e.

After calculating the total size of the scarce file list, we
need to assign different replaceable cache sizes to heteroge-
neous edge nodes. If an edge’s bandwidth utilization is higher
than the preset threshold µ in the previous proactive push
iteration, it will not be assigned new deployment tasks. Other-
wise, for those edge nodes with low load, the ones with larger
cache space or lower bandwidth utilization will be allocated
larger replaceable cache sizes, which helps to evenly share
the workload on different edge nodes.

The proposed region-level allocation mechanism solves
the allocation imprecision problem and offers two benefits.
On the one hand, a precise replica allocation improves the
download speed by increasing the number of same-region
scheduling, while a reasonable replaceable space allocation
helps to dynamically adjust the workload. On the other hand,
accurate scheduling and balanced load can improve the overall
network utilization, reducing the incorrect cache eviction of
valuable files. Therefore, the number of replicas deployed
repeatedly can be reduced. As a result, the two benefits feed
off one another in a virtuous cycle.

5.2 Load-Balanced Proactive Push Decision

After determining the number of to-be-pushed replicas for
scarce files and the replaceable cache size for edge nodes, an-
other challenge is to achieve a lightweight and load-balanced
push by completing appropriate push pairing between replicas
and edges. To tackle this problem, we propose a clustering-
based deployment mechanism, which is shown in algorithm 3.

At the beginning of each proactive push decision, we first
supplement KG_library through algorithm 1 and use algo-

Algorithm 2: Region-level Allocation Mechanism (RAM)
Input: Geographical regions g ∈ G and corresponding

scarce file list f ∈ Lg, edge node set e ∈ Eg; File size
s f , edge bandwidth utilization Ue, edge cache space
Ce and cache state x f ,e; Minimum number of
connections η; Bandwidth utilization threshold µ;

Output: Replaceable cache size RCe ∈ R C for e; Number
of replicas n f ,g ∈N for f in g.

1 Function RegionAllocation():
2 for every geographical region g ∈ G do
3 // Compute the number of replicas
4 for every scarce file f ∈ Lg do
5 v f ,g← XGBoostPopularityPredict()
6 n f ,g = max{η · v f ,g−∑e∈Eg

x f ,e,0}

7 // Compute the size of all replicas
8 Sg = ∑ f∈Lg

(s f ·n f ,g)

9 // Compute replaceable cache size
10 for every cache node e ∈ Eg do
11 if Ue ≥ µ then
12 RCe = 0
13 else
14 RCe = Sg · Ce·(µ−Ue)

∑e∈Eg Ce·(µ−Ue)
+

15 R C = {RCe | e ∈ E}, N = {n f ,g | g ∈ G , f ∈ Lg}
16 return R C ,N

rithm 2 to allocate resources. Then, we will execute indepen-
dent file deployment decisions for each region. According to
the acquisition method of representation vectors, we know
that files with close vector distances have similar popularity
trends, which means they need to be stored separately to bal-
ance the load. Theoretically, we should maximize the vector
distance of all cached files in each edge node during the push
process, but it is impractical due to the extremely high compu-
tational complexity. Therefore, we propose a heuristic-based
solution to make it run in a real-time way.

In our solution, with the help of the representation vectors
stored in KG_library, files in each region’s scarce file list
Lg are first clustered into K different clusters by K-means
clustering strategy. Then we initialize a K × |Eg| matrix
called DistanceMatrix, in which DistanceMatrix[k][e] stores
the distance between the center vector of cluster k and the
mean vector of all cached files in node e. To prioritize the
deployment of popular files, we sort files in Lg according to
their predicted popularity and push them in order. For file f ,
we first use the function GetMaxDistanceCacheNodes() to
find the number of ε ·n f ,g candidate nodes in DistanceMatrix.
These candidate nodes have the top-ε ·n f ,g farthest distance
from the center vector of the cluster where f is located and
have enough replaceable cache size to store f , which are de-
fined as E f ,g. Finally, we sort the edge nodes in E f ,g by their
upload/storage capabilities, and the top-n f ,g nodes with the
strongest capability Ie are selected to store f . In this way, we

328 2024 USENIX Annual Technical Conference USENIX Association

Algorithm 3: Clustering-based Deployment Mechanism (CDM)
Input: Geographical regions g ∈ G and corresponding

scarce file list f ∈ Lg, edge node set e ∈ Eg; Edge
cache space Ce, edge upload bandwidth bottleneck
Be, edge cache file set De, predicted file popularity
v f ,g and number of replicas n f ,g; Number of clusters
K; Search amplification factor of candidate nodes ε.

Output: Proactive push decision P D.
1 Function ProactivePush():
2 KG_library← EmbeddingSupplement()
3 R C ,N ← RegionAllocation()
4 for every geographical region g ∈ G do
5 // Perform K-means clustering
6 Clusters← KMC(Lg,K,KG_library)
7 Initial DistanceMatrix← [][]
8 for k ∈ K do
9 for e ∈ Eg do

10 DistanceMatrix[k][e]← GetDistance
(Clusters[k].center,KG_library[De].mean)

11 // Select edge nodes to cache files
12 Sort files f in Lg by their popularity v f ,g
13 for every file f in Lg in order do
14 E f ,g← GetMaxDistanceCacheNodes

(DistanceMatrix[f .cluster],ε ·n f ,g,R C)
15 Sort nodes e in E f ,g by Ie = Be/Ce
16 Extract the top-n f ,g nodes to cache f and

record the result in P D
17 Update the replaceable cache size in R C

18 return P D

achieve both lightweight and load-balanced proactive push.
In the CDM, to accelerate file deployment decisions, we

simplify the calculation of DistanceMatrix to reduce the
computation costs. And the computational complexity of
each DistanceMatrix is reduced from O(|Lg| · |Eg| · |De| ·d2)
to O(K · |Eg| · d2), where d is the embedding size. Actu-
ally, the average vector distance between each scarce file
and all cached files in each node should be recorded in
DistanceMatrix. However, based on the principle of trian-
gle inequality [8], the simplified result can still represent the
lower bound of the actual distance, which can also provide a
guide for file deployment.

6 Experiment Setup

6.1 Dataset
The dataset is collected with the help of Douyin, a leading
online video-sharing platform, and it consists of three compo-
nents: client requests, file features and device information.

The client request data contains 60 million client traces
spanning three weeks in September 2022, in which each trace
represents a responded user request consisting of four key

fields (e.g., “Client ID”, “File ID”, “Device ID” and “Times-
tamp”). A total of 13 million files are requested by 80 thou-
sand unique users from six different regions, and these re-
quests are served by 500 edge devices. The file feature data
records files’ content features that are used to construct the
knowledge graph and predict the peak-period popularity (e.g.,
“Resolution”, “Duration”, “Category”, “Publish Hour”, “Au-
thor ID”, “Video ID”, “Bitrate” and “Codec Type”). And the
device information data records the inherent capabilities and
service information of all edge nodes (e.g., “Upload Band-
width Bottleneck” (mean: 25.65 Mbps; std: 29.62 Mbps),
“Storage Space” (mean: 131.61 GB; std: 113.80 GB), “Used
Bandwidth”, “Used Cache Size”, and “Cache Information”),
which can be collected from the service monitors.

6.2 Trace-driven Simulation

Implementation. To verify the performance of our proposed
method, we build a trace-driven experiment platform, which
can simulate parallel user requests based on the prepared
traces. The hardware and software setup of the experimen-
tal platform is described in Appendix §B. In order to keep
KEPC-Push and other baselines consistent with the online de-
ployment environment, we set 5 minutes as a decision-making
cycle, and replicas are pushed to the edge network only be-
tween 0:00 and 20:00. In the experiment, a central monitor is
used to record the cache file list and access request list of all
edge nodes in each cycle, which are updated in real-time and
used for performance evaluation. The server-side and client-
side workflows are the same as mentioned in §2.1, in which
the preset access frequency threshold is five requests per hour.
Additionally, the edge devices adopt the Least Recently Used
(LRU) algorithm [22] to implement cache replacement. For
those parameters used in KEPC-Push, sensitivity analyses are
conducted to determine the optimal settings, and we discuss
this further in Appendix §C. Ultimately, we empirically set
[ξ,η,µ,ε,K] = [0.9,5,0.9,3,16].

Training. In the KGE training, we extract all the files re-
quested within the last week for every training, and construct
the knowledge graph with their content features. During the
training, the dimension of entity embedding and relation em-
bedding are both set to 128. As for the CFE training, we
extract the user request sets from the client traces within the
last four hours according to the strategies mentioned in §4.3,
then input them into the skip-gram model for training, in
which the size of the hidden layer is set to 128. Besides, we
set one hour as the time period for popularity prediction, and
we predict the peak-period popularity based on the data from
the past 12 time periods (fill missing values with 0). Since we
need the data of two-week length to train XGBoost models
for each region, we use the last one-week data for evaluation.

Baseline Algorithms. To evaluate the performance of our
KEPC-Push, we choose some existing algorithms modified
to proactive push strategies. (1) Origin-Push: This method

USENIX Association 2024 USENIX Annual Technical Conference 329

Figure 14: Evaluation of the evening peak-
period CDN bandwidth saving

(a) Average Download Speed (b) Connection Failure Ratio

Figure 15: Evaluation of the user experience improvement

selects a certain number of edge devices with low bandwidth
utilization to push replicas that are predicted to be scarce,
which is consistent with the online deployment environment.
(2) Proactive-Push [47]: This method pushes scarce files
with higher predicted peak-period popularity to edge devices
with stronger upload capability, taking into account the hetero-
geneity of edge device capacities. (3) Raven-Push [17]: This
method replaces the original LRU cache policy of Proactive-
Push with a Belady-guided approach, which learns and evicts
the cached content with the farthest arrival time, optimizing
the performance of reactive caching. (4) MagNet-Push [31]:
This method utilizes collaborative filtering to capture the un-
derlying patterns of historical traces that guide pushes and
requests, where user collaborative behaviors serve as key in-
formation to enhance the push strategy. The more detailed
algorithm differences are shown in Table 1 in Appendix §D.

Performance Metrics. We use several metrics to validate
performance improvement and challenge resolution.

• Bandwidth Cost (Goal-1): Bandwidth Saving Ratio
records the ratio of bandwidth saved by edge networks;

• User Experience (Goal-2): The Average Download
Speed, Packet Loss Rate, RTT and the Connection
Failure Ratio (the percentage of requests not served due
to overloaded edge nodes) of user requests are measured;

• Load Imbalance Problem (Challenge-1): The Ratio of
Overloaded Nodes, Overall Bandwidth Utilization
of all edge nodes, and average Number of Concurrent
Requests per node are recorded to reflect load balancing;

• Allocation Imprecision Problem (Challenge-2): The
Cross-region Request Ratio (the ratio of requests sched-
uled across regions) and Number of Pushed Replicas
are used to reflect the accuracy of resource allocation.

7 Performance Evaluation

7.1 Saving in CDN Bandwidth Consumption
We first evaluate the CDN bandwidth saving ratio during the
evening peak period to observe the performance of different
algorithms in reducing peak-time bandwidth consumption.

As we can see in Figure 14, on the basis of Origin-Push, the
other four algorithms all further reduce the CDN bandwidth
consumption, which is expected, because they deploy repli-
cas in the appropriate nodes by optimizing the proactive or
reactive caching. In this way, load imbalance and allocation
imprecision problems are mitigated to varying degrees, so
that more peak-period traffic can be offloaded by the edge
network. Furthermore, KEPC-Push saves the most CDN band-
width among them. Specifically, KEPC-Push improves the
bandwidth saving ratio by 6.9%, 8.4%, 13.2%, and 20.5%
compared with MagNet-Push, Raven-Push, Proactive-Push
and Origin-Push, respectively. This indicates that KEPC-Push
achieves excellent bandwidth saving performance through the
knowledge-enhanced proactive content push strategy.

7.2 Improvements in User Experience

To verify the user experience improvements of KEPC-Push,
we measure the average download speed and connection fail-
ure ratio of user requests, which are shown in Figure 15.

First of all, KEPC-Push significantly improves the average
download speed of user requests. Figure 15(a) shows that the
introduction of KEPC-Push leads to an increase in the average
download speed (by about 7%). This is because the regional
resource allocation effectively reduces the communication
distance, which also benefits the RTT and packet loss rate
(discussed in Appendix §E). The improvement of average
download speed is extremely important, not only to ensure the
smoothness of user viewing, but also to avoid requests being
redirected to CDN due to insufficient transmission capability.

Besides, KEPC-Push enables users to suffer less connec-
tion interruption. As shown in Figure 15(b), we can observe
that KEPC-Push reduces connection failure ratio by 2.6%,
3.2%, 4.8% and 6.5% compared with MagNet-Push, Raven-
Push, Proactive-Push and Origin-Push, respectively. Since
KEPC-Push uses knowledge graphs and collaborative filter-
ing technologies to extract the popularity correlation, it stores
files with similar popularity trends separately, avoiding ex-
cessive requests guided to the same node. In contrast, other
algorithms perform unsatisfactorily. MagNet-Push ignores

330 2024 USENIX Annual Technical Conference USENIX Association

(a) Ratio of Overloaded Nodes (b) Overall Bandwidth Utilization (c) Number of Concurrent Requests

Figure 16: Evaluation of the load balancing performance in the edge network

(a) Cross-Region Request Ratio (b) Number of Pushed Replicas

Figure 17: Evaluation of the resource allocation performance in the edge network
Figure 18: Evaluation of the evening peak-
period cache hit performance

the utilization of auxiliary knowledge about content features,
which is especially important in the cold-start phase with only
sparse user access behaviors. Besides, the performance of
Raven-Push and Proactive-Push relies heavily on the predic-
tion results of file popularity and arrival patterns, which are
often not accurate enough during the off-peak period.

7.3 Load Balancing Performance Evaluation
Figure 16 summarizes the optimization performance of all
methods on the load imbalance problem in the edge network.

First, we compute the proportion of edge nodes that have
reached an overloaded state at any hour within a day. As
shown in Figure 16(a), KEPC-Push significantly reduces the
ratio of overloaded nodes, especially during the evening peak
period. Specifically, KEPC-Push decreases the peak-period
overloaded node ratio by 6.2%, 8.1%, 13.6% and 18.9% com-
pared with MagNet-Push, Raven-Push, Proactive-Push and
Origin-Push, respectively. In this case, the edge network’s
transmission pressure can be distributed more evenly.

Then, to evaluate the impact of load balancing optimization
on the entire edge network, we compute the overall bandwidth
utilization of all edge nodes. As illustrated in Figure 16(b),
the overall bandwidth utilization of KEPC-Push is higher
than other algorithms during the whole day. This is because
KEPC-Push pushes files with similar popularity trends to
different edge nodes, keeping the access traffic of each node
within an acceptable range. Therefore, edge nodes are not

only less likely to become overloaded, but also more likely to
effectively utilize their bandwidth.

Additionally, Figure 16(c) depicts the concurrent request
counts at the 90th percentile and 10th percentile among all
edges during the evening peak period. KEPC-Push exhibits
the least number of requests at the 90th percentile, while hav-
ing the highest number of requests at the 10th percentile. This
also demonstrates that KEPC-Push achieves the transfer of
access traffic from high-load nodes to low-load nodes through
appropriate cache configuration.

7.4 File Allocation Performance Evaluation
As shown in Figure 17, we analyze the optimization perfor-
mance of all methods on the allocation imprecision problem.

Figure 17(a) shows the cross-region request ratio achieved
by different algorithms in one week, from which we can ob-
tain the following conclusions. By comparing KPEC-Push
to other baselines, it can reduce the cross-region request ra-
tio by about 8%, which means that more user requests can
be served by edge nodes in the same region, shortening the
communication distance. And it is an important reason for
the increase in average download speed. Besides, KPEC-Push
achieves precise geographical resource allocation through the
region-level allocation mechanism, so that more requests are
scheduled within the same region.

In addition, Figure 17(b) shows the number of video repli-
cas proactively pushed to the edge network during the off-

USENIX Association 2024 USENIX Annual Technical Conference 331

Figure 19: Temporal variation of evening
peak-period bandwidth utilization

Figure 20: Boxplot graph of evening peak-
period bandwidth utilization

Figure 21: The average efficient runtime of
edge nodes during the evening peak period

peak period within one day. Obviously, KEPC-Push can signif-
icantly reduce the number of replicas pushed, because precise
resource allocation increases the cache lifetime of valuable
files, reducing the number of replicas deployed repeatedly. Be-
sides, Raven-Push also reduces deployment overhead by using
an advanced Belady-guided cache replacement algorithm.

7.5 Cache Hit Performance Evaluation
As illustrated in Figure 18, KEPC-Push improves the covered
request ratio (the percentage of the requested files for which
there are enough replicas in the edge network) by about 2%,
which means KEPC-Push’s cache hit performance consis-
tently outperforms other algorithms in different situations.

Actually, there are two main reasons for the performance
improvement in the covered request ratio. On the one hand,
KEPC-Push achieves a more precise allocation of scarce re-
sources by introducing geographical information in the pop-
ularity prediction. Therefore, users can find more available
replicas for their requests within the same region. On the other
hand, due to the aforementioned reason, KEPC-Push reduces
incorrect cache eviction of valuable files, thereby improving
the coverage request ratio and reducing CDN bandwidth cost.

7.6 Ability to handle potential popularity burst
To intuitively demonstrate how KEPC-Push handles potential
popularity bursts and improves overall bandwidth utilization,
we select a typical edge node and count its bandwidth utiliza-
tion every five minutes during the evening peak period.

Figure 19 shows the temporal variation of bandwidth uti-
lization for the same edge node during the two-hour evening
peak period (20:00∼22:00) when deploying different proac-
tive push strategies. It can be seen that among all strategies,
KEPC-Push does not maintain optimal bandwidth utiliza-
tion at all times, but its bandwidth utilization fluctuates less
and its performance is more stable, which is what we expect.
Origin-Push and Proactive-Push do not consider the popular-
ity correlation between cached resources, which will cause
edge nodes to be overloaded or only have low bandwidth
utilization in some periods. Raven-Push and MagNet-Push

utilize patterns of historical traces to capture the potential
correlation between user requests, thereby optimizing con-
tent push and request guidance, thus mitigating fluctuations
in bandwidth utilization. However, the enriched information
contained in the content features of files is ignored in Raven-
Push and MagNet-Push, while KEPC-Push effectively uses
them to construct the knowledge graph and complete further
performance optimization. Figure 20 shows the boxplot graph
that can reveal the distribution of bandwidth utilization. Com-
pared to other solutions, KEPC-Push can handle the potential
popularity bursts and maintain a stable and higher peak-period
bandwidth utilization, thus achieving better performance.

Moreover, Figure 21 illustrates the average effective run-
time (0.7≤ BU ≤ 0.95) of all edge nodes during the evening
peak period for different schemes. Evidently, the more stable
performance prevents edge nodes from experiencing overload
or idle states, bringing more efficient runtime.

7.7 Ablation Experimental Evaluation

In the KEPC-Push strategy, we propose two modules (namely
FFE and FDS) to respectively address the load imbalance
and allocation imprecision problems. To validate the role of
each module, we design the ablation study by replacing the
FFE and FDS modules with other alternative solutions and
assessing the performance. In Figure 22, we conduct seven
experiments using one-week data and record the differences
(mean/maximum/minimum) in overall bandwidth utilization
and cross-region request ratio under different scenarios.

In the FFE module, KEPC-Push adopts a combination of
knowledge graph and collaborative filtering to train and sup-
plement the representation library, and measures the similarity
of files based on this. Correspondingly, we propose two alter-
native mechanisms, including (1) performing label encoding
on six content features separately and calculating similarity
based on label differences, and (2) performing one-hot encod-
ing on all classifications of different features and calculating
similarity using Euclidean distance. As for the FDS module
that completes resource allocation at the regional level, we
use the global resource allocation mechanism as an alternative
to validate the necessity of region-level resource allocation.

332 2024 USENIX Annual Technical Conference USENIX Association

Figure 22: Ablation experiment of modules in KEPC-Push

As illustrated in Figure 22, among all the combination
schemes, KEPC-Push (FFE+FDS) exhibits the best perfor-
mance, with the highest overall bandwidth utilization and the
lowest cross-region request ratio, demonstrating the impor-
tant roles of the FFE and FDS modules. The reasons why
the KEPC-Push strategy achieves the best performance are
multifaceted. Firstly, in the file feature embedding dimen-
sion, although the representations of files can be easily ob-
tained using label encoding and one-hot encoding, and there
is no need to supplement the missing representation, their
performance in file similarity measurement is unsatisfactory
compared with the FFE module. On the one hand, it is chal-
lenging to precisely define the weight relationships between
different feature dimensions. On the other hand, accurately
quantifying the differences within the same feature dimen-
sion is inseparable from graph networks that contain implicit
information such as feature quantity and interconnected re-
lationships. However, the FFE module that adopts KGE and
CFE can more effectively capture mutual relationships and
improve the overall bandwidth utilization. Secondly, in the
file deployment scheduling dimension, compared to global
resource deployment, the FDS module significantly reduces
the cross-region request ratio, which can not only help shorten
the user request span, but also improve various QoS metrics.

8 Related Work

Edge-assisted Content Delivery. To alleviate the CDN band-
width consumption, reactive and proactive edge caching mech-
anisms have been widely deployed in video content deliv-
ery [18, 41]. Reactive caching policies [10, 20, 43] determine
whether to cache the requested content by analyzing historical
traces and video features. However, the caching decision oc-
curs after the user has already requested the content, which is
not timely to alleviate the traffic pressure. Proactive caching
policies [4, 46, 47] predict the files with high peak-period
popularity and proactively push them to the edge network
in advance. In this way, the bandwidth consumption can be
significantly reduced during the peak periods, but we have

extensively analyzed the existing problems in §2.2.
Load Balancing Strategy. To balance the workload in a
multi-cache network, many cooperative edge caching mech-
anisms have been proposed [19, 37]. In centralized caching
solutions [21, 32, 38, 44], one or more central nodes are uti-
lized to synchronize information and schedule requests, which
brings the central nodes excessive pressure. In decentralized
caching solutions [27, 31, 39, 40], each node interacts local
cache status with others and formulates its own caching policy
in a distributed way, however, due to high computational com-
plexity or excessive request hops, they cannot be practically
utilized in weak edges. Furthermore, none of them introduce
auxiliary knowledge data to guide global file deployment,
instead optimizing decisions in existing caching scenarios.
Video Recommendation. With the rapid development of the
internet, the volume of videos has grown exponentially [11].
To help users pick out what interests them among massive
choices, recommender systems have been applied. Recom-
mendation models can be divided into collaborative filtering
models and content enriched models [42], both of which re-
veal potential relationships between videos, and the relations
can also be used to guide proactive content cache [23, 25].

9 Conclusion

In this paper, we analyze the challenges of proactive push
solutions for edge-assisted video feed streaming, and propose
a knowledge-enhanced proactive content push strategy named
KEPC-Push. The KEPC-Push has two innovative modules.
The first part is the file feature embedding module, which
utilizes the knowledge graphs and collaborative filtering tech-
nologies to capture the underlying popularity relations of
files from the content features and collaborative behaviors,
and the obtained relations can be used to guide the deploy-
ment of files to optimal edges. The second part is the file
deployment scheduling module, which achieves precise re-
source allocation and load-balanced proactive push by us-
ing a region-level allocation mechanism and a lightweight
clustering-based deployment mechanism, respectively. The
trace-driven simulation has proven that KEPC-Push outper-
forms existing algorithms through extensive experiments, as
it can further save the peak-period CDN bandwidth costs by
20%, increase the overall bandwidth utilization of the edge
network by 21%, and improve the download speeds by 7%.

10 Acknowledgement

This work is supported by the Major Key Project
of PCL under grant No. PCL2023A06-4, the National
Key Research and Development Program of China un-
der grant No. 2022YFB3105000, and the Shenzhen Key
Lab of Software Defined Networking under grant No.
ZDSYS20140509172959989.

USENIX Association 2024 USENIX Annual Technical Conference 333

References
[1] Number of daily and monthly active users of

kuaishou from 2017 to 2022 | statista. https:
//www.statista.com/statistics/1239708/
kuaishou-daily-and-monthly-active-user-numbers/.

[2] Number of monthly active users of douyin in china
from november 2021 to december 2022 | statista.
https://www.statista.com/statistics/1361354/
china-monthly-active-users-of-douyin-chinese-tiktok/.

[3] ADHIKARI, V. K., GUO, Y., HAO, F., VARVELLO, M., HILT, V.,
STEINER, M., AND ZHANG, Z.-L. Unreeling netflix: Understand-
ing and improving multi-cdn movie delivery. In 2012 Proceedings
IEEE INFOCOM (Orlando, FL, May 2012).

[4] BACCOUR, E., ERBAD, A., BILAL, K., MOHAMED, A., AND
GUIZANI, M. Pccp: Proactive video chunks caching and processing
in edge networks. Future Generation Computer Systems 105 (2020),
44–60.

[5] BARKAN, O., AND KOENIGSTEIN, N. Item2vec: Neural item em-
bedding for collaborative filtering. In 2016 IEEE 26th International
Workshop on Machine Learning for Signal Processing (MLSP) (Vietri
sul Mare, Italy, September 2016).

[6] CHARYYEV, B., ARSLAN, E., AND GUNES, M. H. Latency compari-
son of cloud datacenters and edge servers. In GLOBECOM 2020-2020
IEEE Global Communications Conference (Taipei, Taiwan, December
2020).

[7] CHEN, T., AND GUESTRIN, C. Xgboost: A scalable tree boosting
system. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (New York, NY,
USA, August 2016).

[8] ELKAN, C. Using the triangle inequality to accelerate k-means. In
Proceedings of the 20th international conference on Machine Learning
(ICML-03) (Palo Alto, California, March 2003).

[9] GRECE, C. Trends in the vod market in eu28. Strasbourg: European
Audiovisual Observatory. https://rm. coe. int/trends-in-the-vod-market-
in-eu28-final-version/1680a1511a (2021).

[10] GUAN, Y., ZHANG, X., AND GUO, Z. Caca: Learning-based content-
aware cache admission for video content in edge caching. In Proceed-
ings of the 27th ACM International Conference on Multimedia (New
York, NY, USA, October 2019).

[11] GUO, Q., ZHUANG, F., QIN, C., ZHU, H., XIE, X., XIONG, H., AND
HE, Q. A survey on knowledge graph-based recommender systems.
IEEE Transactions on Knowledge and Data Engineering 34, 8 (2020),
3549–3568.

[12] GUO, Y., ZHANG, Y., YANG, Z., BIAN, K., TUO, H., AND DAI, Y.
Atdps: An adaptive time-dependent push strategy in hybrid cdn-p2p vod
system. In 2018 IEEE International Conference on Communications
(ICC) (Kansas City, MO, USA, May 2018).

[13] GUTHRIE, D., ALLISON, B., LIU, W., GUTHRIE, L., AND WILKS,
Y. A closer look at skip-gram modelling. In Proceedings of the
fifth international conference on language resources and evaluation
(LREC’06) (Genoa, Italy, May 2006).

[14] HAN, S., SU, H., YANG, C., AND MOLISCH, A. F. Proactive edge
caching for video on demand with quality adaptation. IEEE Transac-
tions on Wireless Communications 19, 1 (2019), 218–234.

[15] HAN, S., TAN, X., QI, K., YANG, C., MOLISCH, A. F., LU, Y.,
ZHENG, J., AND LI, Y. Rethinking the gain of multicasting and proac-
tive caching for vod service. IEEE Wireless Communications 27, 5
(2020), 133–139.

[16] HE, J., HU, M., ZHOU, Y., AND WU, D. Liveclip: Towards intelligent
mobile short-form video streaming with deep reinforcement learning.
In Proceedings of the 30th ACM Workshop on Network and Operating
Systems Support for Digital Audio and Video (New York, NY, USA,
June 2020).

[17] HU, X., RAMADAN, E., YE, W., TIAN, F., AND ZHANG, Z.-L. Raven:
Belady-guided, predictive (deep) learning for in-memory and content
caching. In Proceedings of the 18th International Conference on
Emerging Networking EXperiments and Technologies (New York, NY,
USA, November 2022).

[18] JEDARI, B., PREMSANKAR, G., ILLAHI, G., FRANCESCO, M. D.,
MEHRABI, A., AND YLÄ-JÄÄSKI, A. Video caching, analytics, and
delivery at the wireless edge: A survey and future directions. IEEE
Communications Surveys & Tutorials 23, 1 (2021), 431–471.

[19] KHAN, M. A., BACCOUR, E., CHKIRBENE, Z., ERBAD, A., HAMILA,
R., HAMDI, M., AND GABBOUJ, M. A survey on mobile edge com-
puting for video streaming: Opportunities and challenges. IEEE Access
10 (2022), 120514–120550.

[20] KIRILIN, V., SUNDARRAJAN, A., GORINSKY, S., AND SITARAMAN,
R. K. Rl-cache: Learning-based cache admission for content delivery.
In Proceedings of the 2019 Workshop on Network Meets AI & ML (New
York, NY, USA, August 2019).

[21] LARBI, A., BOUALLOUCHE-MEDJKOUNE, L., AND AISSANI, D. Im-
proving cache effectiveness based on cooperative cache management in
manets. Wireless Personal Communications 98, 3 (2018), 2497–2519.

[22] LEE, D., CHOI, J., KIM, J.-H., NOH, S. H., MIN, S. L., CHO, Y.,
AND KIM, C. S. Lrfu: A spectrum of policies that subsumes the least
recently used and least frequently used policies. IEEE transactions on
Computers 50, 12 (2001), 1352–1361.

[23] LI, Z., GAO, X., LI, Q., GUO, J., AND YANG, B. Edge caching
enhancement for industrial internet: A recommendation-aided approach.
IEEE Internet of Things Journal 9, 18 (2022), 16941–16952.

[24] LIN, Y., LIU, Z., SUN, M., LIU, Y., AND ZHU, X. Learning entity
and relation embeddings for knowledge graph completion. In Twenty-
ninth AAAI conference on artificial intelligence (Austin, Texas, USA,
February 2015).

[25] LIU, Z., SONG, H., AND PAN, D. Distributed video content caching
policy with deep learning approaches for d2d communication. IEEE
Transactions on Vehicular Technology 69, 12 (2020), 15644–15655.

[26] MA, M., WANG, Z., SU, K., AND SUN, L. Understanding the
smartrouter-based peer cdn for video streaming. international con-
ference on computer communications and networks (2016).

[27] MA, M., WANG, Z., YI, K., LIU, J., AND SUN, L. Joint request
balancing and content aggregation in crowdsourced cdn. In 2017
IEEE 37th International Conference on Distributed Computing Systems
(ICDCS) (Atlanta, GA, USA, June 2017).

[28] MENG, Z., KONG, X., CHEN, J., WANG, B., XU, M., HAN, R., LIU,
H., ARUN, V., HU, H., AND WEI, X. Hairpin: Rethinking packet loss
recovery in edge-based interactive video streaming. In 21st USENIX
Symposium on Networked Systems Design and Implementation (NSDI
24) (Santa Clara, CA, USA, April 2024).

[29] MENG, Z., WANG, T., SHEN, Y., WANG, B., XU, M., HAN, R., LIU,
H., ARUN, V., HU, H., AND WEI, X. Enabling high quality {Real-
Time} communications with adaptive {Frame-Rate}. In 20th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
23) (BOSTON, MA, USA, April 2023).

[30] MOHAN, N., CORNEO, L., ZAVODOVSKI, A., BAYHAN, S., WONG,
W., AND KANGASHARJU, J. Pruning edge research with latency shears.
In Proceedings of the 19th ACM Workshop on Hot Topics in Networks
(Virtual Event USA, November 2020).

[31] PENG, J., LI, Q., MA, X., JIANG, Y., DONG, Y., HU, C., AND CHEN,
M. Magnet: Cooperative edge caching by automatic content congre-
gating. In Proceedings of the ACM Web Conference 2022 (New York,
NY, USA, April 2022).

[32] QIAO, G., LENG, S., MAHARJAN, S., ZHANG, Y., AND ANSARI,
N. Deep reinforcement learning for cooperative content caching in
vehicular edge computing and networks. IEEE Internet of Things
Journal 7, 1 (2020), 247–257.

334 2024 USENIX Annual Technical Conference USENIX Association

https://www.statista.com/statistics/1239708/kuaishou-daily-and-monthly-active-user-numbers/
https://www.statista.com/statistics/1239708/kuaishou-daily-and-monthly-active-user-numbers/
https://www.statista.com/statistics/1239708/kuaishou-daily-and-monthly-active-user-numbers/
https://www.statista.com/statistics/1361354/china-monthly-active-users-of-douyin-chinese-tiktok/
https://www.statista.com/statistics/1361354/china-monthly-active-users-of-douyin-chinese-tiktok/

[33] STANOJEVIC, R., LAOUTARIS, N., AND RODRIGUEZ, P. On eco-
nomic heavy hitters: shapley value analysis of 95th-percentile pricing.
In Proceedings of the 10th ACM SIGCOMM Conference on Internet
Measurement (New York, NY, USA, November 2010).

[34] SU, X., AND KHOSHGOFTAAR, T. M. A survey of collaborative
filtering techniques. Advances in Artificial Intelligence 2009 (2009).

[35] TAN, J., LIU, W., WANG, T., ZHAO, M., LIU, A., AND ZHANG, S.
A high-accurate content popularity prediction computational modeling
for mobile edge computing using matrix completion technology. Trans-
actions on Emerging Telecommunications Technologies 32, 6 (2021),
e3871.

[36] TANG, S., LI, Q., MA, X., GAO, C., WANG, D., JIANG, Y., MA,
Q., ZHANG, A., AND CHEN, H. Knowledge-based temporal fusion
network for interpretable online video popularity prediction. In Pro-
ceedings of the ACM Web Conference 2022 (New York, NY, USA, April
2022).

[37] TIAN, A., FENG, B., ZHOU, H., HUANG, Y., SOOD, K., YU, S.,
AND ZHANG, H. Efficient federated drl-based cooperative caching for
mobile edge networks. IEEE Transactions on Network and Service
Management (2022), 1–1.

[38] UGWUANYI, E. E., GHOSH, S., IQBAL, M., DAGIUKLAS, T., MUM-
TAZ, S., AND AL-DULAIMI, A. Co-operative and hybrid replacement
caching for multi-access mobile edge computing. In 2019 European
Conference on Networks and Communications (EuCNC) (Valencia,
Spain, June 2019).

[39] WANG, F., WANG, F., LIU, J., SHEA, R., AND SUN, L. Intelligent
video caching at network edge: A multi-agent deep reinforcement
learning approach. In IEEE INFOCOM 2020 - IEEE Conference on
Computer Communications (Toronto, ON, Canada, July 2020).

[40] WANG, X., LI, R., WANG, C., LI, X., TALEB, T., AND LEUNG, V.
C. M. Attention-weighted federated deep reinforcement learning for
device-to-device assisted heterogeneous collaborative edge caching.
IEEE Journal on Selected Areas in Communications 39, 1 (2021), 154–
169.

[41] WU, H., FAN, Y., WANG, Y., MA, H., AND XING, L. A compre-
hensive review on edge caching from the perspective of total process:
Placement, policy and delivery. Sensors 21, 15 (2021), 5033.

[42] WU, L., HE, X., WANG, X., ZHANG, K., AND WANG, M. A survey on
accuracy-oriented neural recommendation: From collaborative filtering
to information-rich recommendation. IEEE Transactions on Knowledge
and Data Engineering (2022), 1–1.

[43] YAN, G., AND LI, J. Rl-bélády: A unified learning framework for con-
tent caching. In Proceedings of the 28th ACM International Conference
on Multimedia (New York, NY, USA, October 2020).

[44] ZHANG, F., HAN, G., LIU, L., MARTINEZ-GARCIA, M., AND PENG,
Y. Joint optimization of cooperative edge caching and radio resource
allocation in 5g-enabled massive iot networks. IEEE Internet of Things
Journal 8, 18 (2021), 14156–14170.

[45] ZHANG, R.-X., YANG, C., WANG, X., HUANG, T., WU, C., LIU, J.,
WU, C.-G., AND AGGCAST, L. S. . Aggcast: Practical cost-effective
scheduling for large-scale cloud-edge crowdsourced live streaming. In
Proceedings of the 30th ACM International Conference on Multimedia
(New York, NY, USA, October 2022).

[46] ZHANG, Y., BIAN, K., TUO, H., CUI, B., SONG, L., AND LI, X.
Geo-edge: Geographical resource allocation on edge caches for video-
on-demand streaming. In 2018 4th International Conference on Big
Data Computing and Communications (BIGCOM) (Chicago, IL, USA,
August 2018).

[47] ZHANG, Y., GAO, C., GUO, Y., BIAN, K., JIN, X., YANG, Z., SONG,
L., CHENG, J., TUO, H., AND LI, X. Proactive video push for optimiz-
ing bandwidth consumption in hybrid cdn-p2p vod systems. In IEEE
INFOCOM 2018 - IEEE Conference on Computer Communications
(Honolulu, HI, USA, April 2018).

USENIX Association 2024 USENIX Annual Technical Conference 335

A Proactive Push Problem Definition

In the network model of the online video streaming ser-
vices, given a proactive push scheme A , a file set F =
{1, · · · , f , · · · ,F}, a cache set E = {1, · · · ,e, · · · ,E}, a client
set U = {1, · · · ,u, · · · ,U} and a geographical region set
G = {1, · · · ,g, · · · ,G}, we define s f as the size of file f , de-
fine Rt

f as the number of requests for file f at the time slot t,
and use rt

f ,i to represent the i-th user request for file f at the
time slot t.

The optimization objective of the proactive push problem
is to find an appropriate push scheme A to minimize the peak-
time traffic from CDN servers, which is defined as PT T :

PT T = max
t

 ∑
f∈F

∑
e∈E

pt
f ,e · s f + ∑

f∈F
∑

1≤i≤Rt
f

qt
f ,i · s f

, (3)

where pt
f ,e indicates whether file f is proactively pushed to

edge node e at the time slot t, qt
f ,i indicates whether the user

request rt
f ,i is redirected to CDN servers, and both of them

are influenced by the proactive push scheme A .
The first part of PT T is the amount of the CDN bandwidth

consumed by proactively pushing files, and the second part
represents the CDN bandwidth generated by redirecting re-
quests from edge to CDN due to cache miss, overloaded node
and insufficient download speed. In detail, qt

f ,i is defined as

qt
f ,i = 1− xt

f · yt
f ,i · zt

f ,i, (4)

where xt
f represents whether there are enough candidate nodes

that cache file f in the edge network, yt
f ,i represents whether

there are enough non-overloaded nodes among the candidate
nodes to serve the request rt

f ,i, zt
f ,i represents whether the

selected nodes can provide a sufficient download speed to
meet the requirement of the user, and they are all 0/1 variables.

We define E(rt
f ,i) as the set of edge nodes that cache

file f when processing the request rt
f ,i, and use EO(rt

f ,i)

and EN(rt
f ,i) to indicate the subsets of overloaded and non-

overloaded nodes in E(rt
f ,i), respectively. They are given by

E
(
rt

f ,i
)
=
{

e
∣∣ xt

f ,e = 1, e ∈ E
}
, (5)

EO (
rt

f ,i
)
=
{

e
∣∣ Ue ≥ µ, e ∈ E

(
rt

f ,i
)}

, (6)

EN (
rt

f ,i
)
=
{

e
∣∣ Ue < µ, e ∈ E

(
rt

f ,i
)}

, (7)

where xt
f ,e represents whether file f is stored on the node e at

the time slot t, Ue represents the current bandwidth utilization
of node e, and we define µ as the threshold to distinguish
overloaded nodes from non-overloaded nodes.

Therefore, xt
f and yt

f ,i are given by

xt
f = I

(∣∣E (
rt

f ,i
)∣∣≥ η

)
, (8)

yt
f ,i = I

(∣∣∣EN (
rt

f ,i
)∣∣∣≥ η

)
, (9)

where η represents the least number of edge nodes that a
client must connect to in parallel to guarantee the QoE.

In addition, we use ds(rt
f ,i) to indicate the download speed

at which the user downloads file f from the edge network
when processing the request rt

f ,i. In the edge-assisted CDN,
the request rt

f ,i is split into η subrequests which will be
sent to different edge nodes, and the download speed of
each subrequest is mainly determined by the distance be-
tween the user and the edge node. Therefore, we use the
triplet (request,client,node) to represent it, such as the triple
(rt

f ,i, j,u(r
t
f ,i),e(r

t
f ,i, j)) for the subrequest rt

f ,i, j. And ds(rt
f ,i)

can be given by

ds(rt
f ,i) = ∑

1≤ j≤η

ds
(
rt

f ,i, j,u
(
rt

f ,i
)
,e
(
rt

f ,i, j
))

. (10)

As such, zt
f ,i can be written as

zt
f ,i = I

(
ds(rt

f ,i)≥ ds f
)
, (11)

where ds f is the minimum download speed required to ensure
that video file f can be played smoothly.

In summary, we can formally formulate the proactive push
problem that aims to optimize the peak-time traffic as follows:

argmin
A

: PT T

subject to : (4), (5), (6), (7), (8), (9), (10) and (11)
(12)

Problem (12) is an Integer Linear Programming (ILP) prob-
lem. As the problem is NP-hard, it is extremely challenging to
solve the problem optimally within polynomial time. There-
fore, we propose a heuristic-based solution for load balancing
and resource allocation, named Knowledge-Enhanced Proac-
tive Content Push (KEPC-Push).

B Hardware and Software Platforms

Our simulations and model training run on a server with
two Intel(R) Xeon(R) E5-2620 v4 @ 2.10GHz CPUs, four
NVIDIA GeForce RTX 2080 Ti GPUs, and 64G mem-
ory. The motherboard of the hardware platform is Huawei
BC11HGSA0 (Version: V100R003). As for the software, the
OS is Ubuntu 18.04.5 LTS, and the kernel is Linux 4.15.0-
200-generic.

C Searching for the Appropriate Parameters

In this experiment, we find that the settings of two parameters
in the clustering-based deployment mechanism have a signif-
icant impact on the performance of KEPC-Push, that is, the
number of clusters K and the search amplification factor of

336 2024 USENIX Annual Technical Conference USENIX Association

Table 1: Baseline algorithm comparison
Scheme Origin-Push Proactive-Push Raven-Push MagNet-Push KEPC-Push

Predicting Peak-period Popularity
Considering Edge Heterogeneity

Belady-guided Cache Policy
User Behavior Collaborative Filtering
Utilizing Content Feature Knowledge
Allocating Resources Geographically

Figure 23: Effect of setting different parameters K (number
of clusters)

candidate nodes ε. To search for appropriate parameters, we
test the bandwidth saving ratio and running time with differ-
ent parameter settings, and the results are shown in Figure 23
and Figure 24.

As illustrated in Figure 23, the bandwidth saving ratio in-
creases with the increase of K, but the time consumption
increases as well. This indicates that although the increase
of K improves the accuracy of vector distance calculation, it
also brings additional computing burdens. For comparison,
we present the time consumption and bandwidth saving ratios
of the proactive push decision processes achieved by other
baselines. To obtain an appropriate parameter K with the com-
petitive bandwidth saving ratio and time consumption, we
finally set K = 16.

We demonstrate the impact of the search amplification
factor on the bandwidth saving ratio in Figure 24, varying ε

from 1 to 8. It is clear that the bandwidth saving ratio reaches
the maximum value when ε = 3, and gradually decreases
when ε is greater or smaller. This is because ε determines
the trade-off between finding the edge node with the furthest
vector distance and the node with the strongest individual
capability. If ε is too small, it is difficult to choose nodes with
strong capability from the candidate nodes to cache those
scarce replicas with higher priority. On the contrary, if ε is
too large, the results of clustering-based distance calculation
cannot be used effectively, and the decision-making process
will be similar to Proactive-Push.

Figure 24: Effect of setting different parameters ε (search
amplification factor)

D Algorithm Design Differences

Table 1 shows five different proactive push strategies used
in the experiments and their design differences, which are
mainly divided into the following six parts:

• Predicting Peak-period Popularity: All five strategies
use the XGBoost model for peak-period popularity pre-
diction before the proactive push. The training and test-
ing data include the dynamic contextual features (e.g.,
the historical number and regional distribution of user re-
quests) and constant semantic features (e.g., codec type,
resolution, bitrate, author, number of followers, category,
duration and publication time).

• Considering Edge Heterogeneity: This metric indi-
cates whether the proactive push strategy takes into ac-
count the heterogeneity of edge nodes’ capabilities when
making push decisions, which is crucial for effectively
improving the utilization of different edges.

• Belady-guided Cache Policy: This metric indicates
whether the proactive push strategy employs the Belady-
guided cache policy as the cache replacement algorithm
within the edge nodes. By default, the LRU cache re-
placement algorithm is adopted.

• User Behavior Collaborative Filtering: This metric
indicates whether the proactive push strategy utilizes col-
laborative filtering algorithms to analyze users’ collabo-
rative access behavior, assisting in content deployment

USENIX Association 2024 USENIX Annual Technical Conference 337

Figure 25: Evaluation of the average first packet RTT

Figure 26: Evaluation of the average packet loss rate

decisions.
• Utilizing Content Feature Knowledge: This metric in-

dicates whether the proactive push strategy introduces
knowledge by leveraging file content features to con-
struct a knowledge graph, enabling targeted handling of
the video feed streaming service’s cold-start phase.

• Allocating Resources Geographically: This metric in-
dicates whether the proactive push strategy combines
geographical information to achieve regional resource
allocation. By default, resource allocation is global.

E Improvements in RTT and Packet Loss Rate

Figure 25 and Figure 26 respectively illustrate the first packet
RTT and packet loss rate of user requests under different
proactive push strategies. It can be observed that, similar to
the video download speed discussed in §7.2, KEPC-Push also
optimizes the RTT and packet loss rate to a certain extent due

to the use of regional resource allocation. This shows that
KEPC-Push can change some user requests originally sched-
uled for cross-region scheduling into same-region scheduling
by optimizing push matching, thus optimizing QoS metrics.

338 2024 USENIX Annual Technical Conference USENIX Association

	Introduction
	Background and Motivation
	Edge-assisted Video Streaming System
	Observations
	Causes of Unbalanced Workload
	Challenges

	The KEPC-Push Framework
	File Feature Embedding
	Content Feature Selection
	Knowledge Graph Embedding
	CF-based Embedding Supplement

	File Deployment Scheduling
	Region-level Resource Allocation
	Load-Balanced Proactive Push Decision

	Experiment Setup
	Dataset
	Trace-driven Simulation

	Performance Evaluation
	Saving in CDN Bandwidth Consumption
	Improvements in User Experience
	Load Balancing Performance Evaluation
	File Allocation Performance Evaluation
	Cache Hit Performance Evaluation
	Ability to handle potential popularity burst
	Ablation Experimental Evaluation

	Related Work
	Conclusion
	Acknowledgement
	Proactive Push Problem Definition
	Hardware and Software Platforms
	Searching for the Appropriate Parameters
	Algorithm Design Differences
	Improvements in RTT and Packet Loss Rate

