
This paper is included in the Proceedings of the
2024 USENIX Annual Technical Conference.

July 10–12, 2024 • Santa Clara, CA, USA
978-1-939133-41-0

Open access to the Proceedings of the
2024 USENIX Annual Technical Conference

is sponsored by

mmTLS: Scaling the Performance
of Encrypted Network Traffic Inspection

Junghan Yoon, Seoul National University; Seunghyun Do and Duckwoo Kim, KAIST;
Taejoong Chung, Virginia Tech; KyoungSoo Park, Seoul National University

https://www.usenix.org/conference/atc24/presentation/yoon

mmTLS: Scaling the Performance of Encrypted Network Traffic Inspection

Junghan Yoon† Seunghyun Do# Duckwoo Kim# Taejoong Chung‡ KyougSoo Park†

Seoul National University† KAIST# Virginia Tech‡

Abstract
Modern network monitoring TLS middleboxes play a crit-

ical role in fighting against the abuse by encrypted network
traffic. Unfortunately, operating a TLS middlebox often in-
curs a huge computational overhead as it must translate and
relay encrypted traffic from one endpoint to the other. We
observe that even a simple TLS proxy drops the throughput
of end-to-end TLS sessions by 43% to 73%. What is worse
is that recent security enhancement TLS middlebox works
levy an even more computational tax.
In this paper, we present mmTLS, a scalable TLS mid-

dlebox development framework that significantly improves
the traffic inspection performance and provides a TLS event
programming library with which one can write a TLS mid-
dlebox with ease. mmTLS eliminates the traffic relaying cost
as it operates on a single end-to-end TLS session by secure
session key sharing. This approach is not only beneficial
to performance but it naturally guarantees all end-to-end
TLS properties except confidentiality. To detect illegal con-
tent modification, mmTLS supplements a TLS record with a
private tag whose key is kept secret only to TLS endpoints.
We find that the extra overhead for private tag generation
and verification is minimal when augmented with the first
tag generation. Our evaluation demonstrates that mmTLS
outperforms the nginx TLS proxy in the split-connection
mode by a factor 2.7 to 41.2, and achieves 179 Gbps of traffic
relaying throughput.

1 Introduction

Transport Layer Security (TLS) [18, 19] is increasingly pop-
ular in the modern Internet. According to a recent mea-
surement study [49], 76% of the top one million Web sites
support TLS and 63% of them support the latest version, TLS
1.3. TLS is often enabled by default not only for private Web
browsing but even for large content transfer such as video
streaming [4, 14, 15, 26, 28]. Encrypted network transfer in
the Internet has become ubiquitous.

TLS/TCP handshake
TLS/TCP handshake

Middlebox 1
Middlebox 2

Encrypt
Relay
DPI

Decrypt

Application data

Encrypt
Relay
DPI

Decrypt

Application data Application data

TLS/TCP handshake

Client Server

Key 1 Key 2 Key 3

custom
root certificate

Figure 1: TLS middlebox operation with split-connection

While TLS ensures end-to-end private communication, it
complicates security monitoring of network traffic at enter-
prises1. To gain the visibility into the encrypted traffic, an
enterprise TLS middlebox intentionally operates as a man in
the middle (MITM) – it impersonates as any site that a client
intends to visit and inspects the stream while it relays the
encrypted traffic between the two endpoints. This imper-
sonation is commonly achieved by installing a custom root
certificate on the client’s system. Consequently, the client
blindly trusts any site certificate signed by the custom root
certificate managed by the TLS middlebox [35, 42, 46, 47].
Unsurprisingly, the status quo severely undermines the

security of a TLS session as it does not guarantee end-to-end
authentication nor content integrity. To address the prob-
lem, existing works [51, 57, 58] propose that the endpoints
authenticate the middleboxes explicitly and thatmiddleboxes
should participate in the key exchange or session-key shar-
ing process. They divide the middleboxes into "read-only"
and "read-write" ones, and allow the endpoints (and/or mid-
dleboxes) to detect illegal modification by non-privileged at-
tackermiddleboxes. Unfortunately, these approaches present
two problems. First, if a legitimate read-write middlebox gets
compromised, an endpoint receiver has no way to tell if the
modification is illegal. Even running them in trusted execu-
tion environments (TEE) [41,57,63,68] is not entirely bullet-

1In this paper, we refer to any small ISP network operated by a school,
a government, a hospital, a company, etc., as an "enterprise" network.

USENIX Association 2024 USENIX Annual Technical Conference 631

proof as the original software may have its own vulnerabili-
ties or operators or developers can make a mistake [39,60,72].
Thus, we argue that employing read-write TLS middleboxes
on the client side incurs a significant security issue. Sec-
ond, they employ different session keys per each network
path segment, so they should operate by split-connection
as shown in Figure 1. However, the split-connection archi-
tecture is very costly as the middlebox not only relays the
traffic between two TCP connections but it must translates
the encrypted content from one endpoint to the other. We
observe 54% to 71% throughput degradation when a TLS
middlebox splits the connection between two endpoints.

We tackle this problemwithmmTLS, a highly-scalable TLS
traffic monitoring architecture without connection termina-
tion. Our key observation is that modern security inspection
middleboxes on the client side (or enterprise side) are pre-
dominantly read-only [30,58,66]. Intrusion detection/preven-
tion systems (IDSes/IPSes) [21, 23, 29], virus scanning [5, 6],
parental filtering [8, 10], and data loss prevention (DLP) sys-
tems [11, 20, 25] typically run deep packet inspection (DPI)
without content modification. Traditional read-write middle-
boxes for client-side, transparent Web caching and network
traffic deduplication for general Web traffic2 have largely dis-
appeared thanks to the significant improvement in network
bandwidth and its cost. Tracker/ad-blockers had been sup-
ported by middleboxes, but the functionality has moved to
3rd-party applications on clients since middleboxes could not
catch up with fine-grained blocking [55]. Thus, in a typical
enterprise environment where only read-only middleboxes
are deployed, we do not need to support trustworthy content
modification, and more importantly, we can significantly im-
prove the performance of the monitoring middlebox if clients
share the session keys with it. Then, the TLS middlebox sim-
ply forwards the packets between the endpoints without
re-encryption. For security monitoring, it reassembles the
encrypted packets in a flow, decrypts them, and monitors
the plaintext traffic. The only extra tax beyond packet for-
warding would be managing an out-of-band TLS session for
session key delivery from a client as well as the key deliv-
ery overhead. However, one can minimize this overhead by
leveraging SmartNIC as a scalable session key deliverer.
Session key sharing is trivially simple, and it naturally

ensures end-to-end authentication even with in-network
middleboxes. However, end-to-end content integrity can
be compromised as all TLS middleboxes share the session
keys – if compromised, they can modify the content without
notice by the endpoints. As TLS 1.3 mandates authenticated
encryption with additional data (AEAD) [19], one can en-
crypt the data and generate a tag with the same key. To
address this problem, we propose using a second tag (called
a private tag) whose key is kept secret only to endpoints.

2We see that the data deduplication market for storage backup is strong,
but that does not require deploying transparent TLS middleboxes.

This requires every TLS record to include two tags – one for
original message authentication and the other for detecting
illegal content modification in the middle. While private tag
generation would incur extra overhead at the sender, aug-
menting it with original tag generation substantially reduces
the overhead to as small as 2% to 5% of the original cost. We
show this scheme is directly applicable to AES-GCM, the
most popular symmetric cipher for TLS 1.3 [49], as well as
other popular ciphers in TLS 1.3.
Our evaluation demonstrates that mmTLS improves the

TLS traffic monitoring performance by 2.4x to 4.6x over the
split-connection architecture when they use persistent TLS
connections. When all TLS connections are ephemeral, the
performance benefit is even larger despite the higher key
delivery cost– mmTLS achieves 63.5x throughput improve-
ment for 1KB object download with ephemeral connections.
This is because an extra TLS handshake in the split connec-
tion dominates the overhead, which makes the session key
delivery overhead negligible.
The contribution of our work is summarized as follows.

First, we analyze the performance overhead of existing TLS
middleboxes. The primary reason for poor performance lies
in the split connection and re-encryption, which degrades the
performance by up to 71% over end-to-end TLS connections.
Second, we propose mmTLS, a scalable TLS traffic monitor-
ing framework on a single TLS/TCP connection with secure
session key sharing. mmTLS also provides a TLS event pro-
gramming library with which one can write a TLS middlebox
with ease. The TLS event library is implemented by extend-
ing mOS [45], a high-performance TCP event monitoring
stack on DPDK. Third, we present a set of optimization
techniques that significantly improve the performance. This
includes delivering the session keys via SmartNIC for multi-
core scalability as well as generating the private tag with a
minimal overhead from the first tag generation.

2 Background and Motivation

We present a brief background on TLS and explain the secu-
rity and performance implications of TLS middleboxes.

2.1 TLS and TLS middleboxes

TLS ensures the following three security properties for end-
to-end network communication. First, the network traffic
between two endpoints should be private only to them (con-
fidentiality). Second, an endpoint receiver should be able
to detect if the content is delivered intact or modified in the
middle (content integrity or data authentication). Third,
an endpoint should be able to verify the identity of the other
end of communication (endpoint authentication). While
the growing demand for private network transfer has mainly
driven the adoption of TLS, commodity hardware support for

632 2024 USENIX Annual Technical Conference USENIX Association

13

197 197

11

143

8

69

98

6
39

62

0

50

100

150

200

1K 4K 16K 64K 256K 1M 4M

Th
ro

ug
hp

ut
 (G

bp
s)

Requested object size (byte)

E2E-TCP
E2E-TLS
split-TCP
split-TLS

Figure 2: Comparison of throughputs of end-to-end (E2E) TLS
connections vs. nginx TLS proxy with persistent connections

crypto operations like AES-NI [43] or Intel QAT [44] makes
the deployment a lot more practical.

However, TLS fundamentally conflicts with existing mid-
dlebox operations at enterprises. Enterprise networks often
employ TLS middleboxes (e.g., IDSes/IPSes [21, 23, 29], virus
scanning [5, 6], data loss prevention systems [11, 20, 25]) to
inspect the plaintext content of network traffic to stop mali-
cious content or to prevent leakage of corporate secrets. In
older days, they ran network traffic deduplication or trans-
parent Web caching middleboxes to save the costly network
bandwidth. These middleboxes must break the confidential-
ity between the TLS endpoints while read-write middleboxes
do not ensure end-to-end content integrity.
Unfortunately, the way that enterprise middleboxes op-

erate stays at a stopgap – a TLS middlebox impersonates
the other endpoint so that it can retrieve the session keys
to decrypt the traffic. To enable this, the current practice
installs custom root CA certificates at clients, which wreaks
havoc on the assumptions and security guarantees by TLS.
Due to impersonation, one endpoint cannot authenticate
the other endpoint. Also, an endpoint cannot check if the
TLS middlebox modifies the content in the middle. In fact,
today’s MITM-based TLS middleboxes fail to provide any of
the end-to-end security guarantees of TLS [35, 37, 53, 61, 69].

2.2 Existing Works & Performance Penalty

There have been largely two directions that tackle the above
problem. The first approach is to exploit searchable encryp-
tion. For instance, BlindBox [67] or Embark [50] enables
middleboxes to search on the encrypted content. However,
this approach depends on the order-preserving property of
specific crypto algorithms, which limits the type of cipher
suites. The other approach is to extend TLS to explicitly
support middleboxes such as mcTLS [58], mbTLS [57], and
maTLS [51] (called "TLS-extension"). These works suggest
that the middleboxes share the session keys while they use
a separate message authentication code (MAC) key for mod-
ification. They support authenticating endpoints as well as

27 48
86

141
189

55
93

162
242

321

0

100

200

300

400

1 2 4 8 16C
on

ne
ct

io
ns

/s
ec

on
d

(K
/s

)

Number of cores

split-TCP E2E-TCP

(a) TCP

0.6 1.3 2.6
5.0

9.0

1.6 3.2
6.2

12.0

22.5

0

5

10

15

20

25

1 2 4 8 16C
on

ne
ct

io
ns

/s
ec

on
d

(K
/s

)

Number of cores

split-TLS E2E-TLS

(b) TLS
Figure 3: Comparison of throughputs of end-to-end connections
vs. nginx proxy with ephemeral connections. Clients download a
1 KB object at each connection. For E2E, the X-axis represents the
number of cores in the server.

Function (P) CPU Function (E) CPU
SSL_write() 32.2% SSL_do_handshake() 91.6%
SSL_read() 31.6% SSL_write() 1.0%
aesni_gcm_encrypt() 12.5% SSL_read() 0.6%
aesni_gcm_decrypt() 10.4%
Others 13.2% Others 6.8%

Table 1: CPU usage breakdown by the functions of the nginx TLS
proxy with persistent (P) and ephemeral (E) connections

middleboxes if necessary, and they ensure that any illegal
content modification by a non-privileged middlebox is de-
tected at endpoints. While end-to-end confidentiality has to
be breached, this is necessary for correct operation.

TLS-extension works look more promising, but they leave
a few serious obstacles in deployment. First, they require
invasive modification on the TLS handshake protocol. Modi-
fication on the TLS protocol is inevitable as TLS disallows
any 3rd-party middlebox to inspect its traffic. However, ex-
isting proposals overly complicate key negotiation to enable
each read-write middlebox to modify the content with a valid
tag by its own key. Furthermore, any servers must negotiate
the keys for unknown middleboxes at a random enterprise,
which is impractical. Second, existing TLS-extension works
do not alleviate the performance overhead from the MITM
approach. Both approaches require split-connection as a
middlebox employs different session keys for each network
segment [51,57]. Also, key derivation on a middlebox would
be an extra cost for small-content transactions. Given that
Moore’s law for CPU ended [38] and that TLS is becoming
ubiquitous, the increasing computational cost for TLS mid-
dleboxes remains a serious problem.
Figure 2 and 3 compare the throughputs of end-to-end

(E2E) TLS connections (or plaintext TCP connections) with
those of nginx TLS proxy [16] (or plaintext nginx TCP proxy)
with persistent and ephemeral connections, respectively.3
The purpose of the comparison is to understand how much
performance is being wasted due to TLS/TCP-level session

3For more detailed setup, please refer to Section 5.

USENIX Association 2024 USENIX Annual Technical Conference 633

proxying. For persistent connections, a simple TLS proxy
lowers the performance by 43% to 73% from E2E TLS con-
nections. Table 1 shows that 86.8% of the CPU cycles are
spent on TCP I/O and crypto operations for persistent con-
nections. Thanks to the support for AES-NI, the CPU usage
for crypto operations is relatively smaller than that for traffic
relaying. For content size exceeding 64KB, we observe that
removing crypto operations can improve the performance
by about 1.5x. However, if we get rid of the split connection,
the performance boost reaches 3.4x. Unfortunately, one can-
not simply use a zero-copy API like splice() or ktls [56]
as they use different TLS session keys. When the connec-
tions are all ephemeral, TLS proxying results in 58% to 63%
performance loss. In this case, TLS handshake for key ex-
change (SSL_do_handshake()) is the main bottleneck as it
consumes over 90% of the CPU cycles as in table 1. The TLS
proxy needs to do the handshake twice in a serial manner,
which ends up degrading the performance by over a half.

2.3 Read-write Enterprise TLS Middleboxes

The root cause for the complexity in TLS handshake exten-
sion works lies in the support for content modification by
legitimate middleboxes. However, we argue that deploy-
ing read-write TLS middleboxes at an enterprise should be
avoided as it is highly dangerous. A compromised read-write
TLS middlebox can legitimately inject arbitrarily malicious
content into any client at the enterprise. While running them
within the TEE mitigates some risks, it is not entirely safe,
as software bugs or operator/developer mistakes can still
occur [39, 60, 72]. Fortunately, we observe that client-side
read-write middleboxes are becoming rare, largely due to
the reduced cost of network bandwidth. We do not worry
about server-side read-write TLSmiddleboxes such as L7 load
balancers and CDN reverse proxies as they operate as TLS
endpoints with real certificates and they should be treated
equally as origin servers for compromise protection.

Beyond security issues, read-write middleboxes inevitably
incur a serious performance overhead as they adopt the split
connection architecture which runs the TCP protocol be-
tween each network segment, reassembles the flow, decrypts,
and re-encrypts the content at each hop. Our main argument
is that these operations are unnecessary as client-side TLS
traffic inspection suffices to be read-only, which does not
require terminating a TCP/TLS connection.

3 mmTLS System Design

In this section, we present the design of mmTLS, a scalable
TLS traffic monitoring architecture that ensures all end-to-
end TLS properties (i.e., end-to-end authentication/content
integrity) except confidentiality.

Session key
TLS/TCP handshake

Out-of-band, persistent
TLS session

Application dataDecrypt
DPI

Decrypt
DPI

Client Middlebox 1
Middlebox 2

Server

Figure 4: Operations of an mmTLS middlebox

3.1 Operating Assumptions

Our target environment consists of a chain of read-only mid-
dleboxes that transparently inspect the TLS traffic and may
terminate or block a connection if the traffic turns out to
be malicious. Our primary focus is on read-only middle-
boxes employed by enterprise networks. Nonetheless, non-
enterprise or individual users can sign up for similar abuse-
prevention services. These middleboxes can be provisioned
on-premises or provided as online services like in security
as a service (SECaaS) in cloud [9, 63, 66]. We assume that
all traffic to clients cannot circumvent the middlebox with
proper network configuration. We do not provide any spe-
cial middlebox discovery method here as one can leverage
SDN [34, 54, 64] or existing algorithms [57]. Even the server
side can adopt mmTLS for read-only middleboxes such as
packet-level orWeb firewalls [27]. As mentioned, server-side
read-write middleboxes are treated as origin servers as they
run as TLS endpoints with real certificates.
We assume that mmTLS middleboxes are configured not

to send any data to random destinations or that they are con-
stantly monitored if they leak any information to an external
entity. Clients and servers are assumed to be trustworthy —
mmTLS does not detect if they are compromised and securing
them is beyond the scope of this work. A compromised client
may send wrong session keys or incorrect flow information
to the middlebox, but that can be easily detected.

3.2 Overall Architecture

The high level idea of mmTLS is very simple. Read-only
middleboxes in the network path do not need to split an
end-to-end TLS connection – an endpoint that employs the
middleboxes simply need to securely share its session keys
with them. Despite sharing the session keys, mmTLS still
ensures end-to-end content integrity even if some middle-
boxes between the two endpoints get compromised. Also,
we design mmTLS to be incrementally deployable.
Base design. Figure 4 shows the overall operation of an
mmTLS middlebox in the client side. A client first cre-
ates a persistent TLS session with each mmTLS middlebox.
This extra TLS session authenticates the middlebox while it

634 2024 USENIX Annual Technical Conference USENIX Association

Solutions TLS Handshake
Modification

TLS Record
Update

Additional Key
Negotiation Re-encryption

Detection of
Malicious Content

Modification by mbox

Framework Support
for TLS Protocol

Events
SplitTLS no no for each middlebox for each middlebox no no
mcTLS [58] yes

(extensive)
yes

(extensive)

not always
(e.g., modification by

compromised write mbox)
mbTLS [57] for each middlebox for each middlebox no
maTLS [51]

mmTLS no
yes

(limited) no no always
yes

(event-driven APIs)

Table 2: Comparison of protocol modification and operating behavior with existing works. Note that all secure approaches require update
on the TLS record format to monitor encrypted traffic.

socketsocket socket

RECORD RECORD

DMA

TCP

TLS

App

Split-connection mmTLS

mmtls_get_record()SSL_read() SSL_write()

RX TX
RX/TX

DMA memcpyen/decrypt

Figure 5: Performance benefit over split-connection middleboxes

serves as a secure channel for session key sharing. Previous
works [51, 58] suggest that middleboxes should be authenti-
cated by both endpoints, but we believe it is more logical for
only the employer of the middlebox to authenticate them as
the other endpoint might not fully understand what the mid-
dlebox does. Then, the client initiates a TLS handshake with
a server, and both endpoints agree on the session keys by
standard TLS handshake. After the key exchange, the client
sends either real session keys or "null" keys to the middlebox
over the secure channel. The "null" keys indicate that the
middlebox must bypass the traffic as the client thinks that
its plaintext content should not be exposed to even middle-
boxes (e.g., highly-sensitive data like bank account or private
health information). This represents the "inspect-my-own-
data" semantics – it expresses traffic receiver’s (or sender’s)
permission (or refusal) to inspect "my" own incoming (or
outgoing) data 4.
After session key sharing, the TLS traffic flows between

the endpoints without any modification. The middlebox
decrypts the traffic and performs its service while it re-
lays the packets from one endpoint to the other without
re-encryption (as in figure 4). The non-split nature ofmmTLS
is especially beneficial to performance as it eliminates redun-
dant memory copies in stack processing as shown in figure 5.
In case a client or a server sends the application data before
the session keys are delivered to the middlebox, the middle-
box can hold back the data until the keys arrive. Such key
delivery delay could slow down the network communica-

4Operators can configure the TLS middlebox to detect and block clients
if they keep sending null keys for non-sensitive destinations.

tion, but we later show that this extra delay is negligible in
most cases when compared to typical end-to-end delays in
wide-area networks.

We note that session key sharing is hardly novel as pre-
vious works [33, 40] employ it for different architectures.
However, this simple idea enables a scalable TLS traffic mon-
itoring architecture for client-side middleboxes, which we
will explain later. mmTLS easily supports a chain of monitor-
ing middleboxes without exposing them in the handshake
phase to the other endpoint like [51]. In addition, it natu-
rally supports TLS session resumption since key sharing also
happens after that. We argue that this design would allow
the TLS handshake process to remain simple and to evolve
independently of any middleboxes in the future.
End-to-end content integrity verification. Our base de-
sign poses a problem in case anmmTLSmiddlebox is compro-
mised. A compromised middlebox with the session keys can
modify the content arbitrarily without notice of the endpoint
receiver. This is increasingly more problematic as AEAD is
becoming commonplace (i.e., TLS 1.3 mandates it) – a single
key (per direction) is used for both content encryption and
tag generation.

To remedy the problem, mmTLS slightly extends the TLS
handshake to generate two keys per direction5 – one for the
original session key (k1) and the other (k2) for generating an
extra tag (called private tag) per TLS record. When preparing
a TLS record, the sender not only encrypts the data and
generates an original tag with k1, but also creates a private
tag over the same record with a different key, k2. Note that
k2 is used only for private tag generation and endpoints
should not share it with read-only mmTLS middleboxes. Tag
verification with k2 enables an endpoint receiver to detect
any illegal modification by read-only middleboxes or any
other attackers in the middle of the network path.
Figure 6 shows the process – a middlebox can verify the

original tag with k1, but it cannot modify the data and gen-
erate a correct private tag as it does not own k2. If a com-
promised middlebox with access to k1 makes illegal modifi-
cation of the data, a legitimate middlebox may not detect it.
However, the endpoint receiver can eventually detect it as it

5In real deployment, this part can be implemented as a new TLS exten-
sion, which makes it incrementally deployable.

USENIX Association 2024 USENIX Annual Technical Conference 635

Tag1Tag2Tag2

P-text

Ciphertext

Tag1

C-text

Plaintext P-text

Verify two tagsGenerate two tags

Tag1

Record tag (Tag1)
verification

C-text

Tag2

Session key for record from server
private tag key for record from clientSession key for record from client

Client ServerMiddlebox

Sender Receiver(Read-only)

private tag key for record from server

Tag2Tag1

sharing
session keys

Tag1

Figure 6: Private tag generation for end-to-end content integrity.
Endpoints use a different private tag key per direction.

𝑇 𝑎𝑔 =𝑀𝑆𝐵𝑡(𝐺𝐻𝐴𝑆𝐻 (𝐻,𝐴,𝐶)⊕𝐸(𝐾,𝑌)) where block size 𝑡 = 128

𝐻 = 𝐸(𝐾,0
128

) , 𝐶 = 𝐸(𝐾,𝑃) , and

𝑌 =

{

𝐼𝑉 ||0
31
||1 for 𝑙𝑒𝑛(𝐼𝑉) = 96

𝐺𝐻𝐴𝑆𝐻 (𝐼𝑉 ||0
𝑠
||0

64
||𝑙𝑒𝑛64(𝐼𝑉)) for otherwise

where 𝑠 = (128− (𝑙𝑒𝑛(𝐼𝑉) mod 128)) mod 128

Figure 7: Steps for private tag generation in AES-GCM. Note that
𝑀𝑆𝐵𝑡 refers to 𝑡 most significant bits, 𝐸(𝐾,𝑥) represents encrypting
𝑥 with a key, 𝐾 . Also, 𝐻 , 𝐶, 𝑃 , 𝑌 , and 𝐼𝑉 mean hash key, ciphertext,
plaintext, counter 0, and initial vector, respectively.

always verifies the private tag with k2.
The private tag requires the extension of TLS record for-

mat, but the update is fairly small and it is incrementally
deployable as a standard TLS extension. If a sever does not
support the private tag extension, middleboxes and clients
can roll back to the legacy MITM mode. Even without the
extension, middleboxes would benefit from higher perfor-
mance in the same security level as in today’s deployment.
Table 2 compares the protocol modification and operating
behaviors with existing solutions.

3.3 Efficient Private Tag Generation

Generating a private tag per each TLS record may incur a
high overhead if it has to hash the entire content again. In-
stead, a traffic sender in mmTLS creates the MAC of only the
original tag, which would reduce the overhead substantially.
Figure 7 shows the mathematical steps for tag generation
in AES-GCM which exploits the 𝐺𝐻𝐴𝑆𝐻 () operation. For
the private tag generation, we run the following operations
with a private tag key, 𝐾2.

𝑇 𝑎𝑔2 =𝑀𝑆𝐵𝑡(𝐺𝐻𝐴𝑆𝐻 (𝐻2,𝐴,𝑇 𝑎𝑔)⊕𝐸(𝐾2, 𝑌)), (1)

where 𝐻2 = 𝐸(𝐾2,0
128

) (2)

We believe the same technique as above can be ap-
plied to other TLS 1.3 cipher suites such as AES-CCM or

Client

Core 02 Core 1

Middlebox

NIC
cores1

E2E TLS session with <C-S 4-tuple>, which delivers session data

Secure key channel
to SmartNIC core
w/ <C-NIC 4-tuple>

UDP flow
w/ <C-S 4-tuple>

MQ (S-RSS)

CPU cores

eSwitch

SQ2

1Exists in only option 1
2Exists in only option 2

...

Option 1: SmartNIC

Secure key channel
to dedicated host core
w/ <C-M 4-tuple>

UDP flow
w/ <C-S 4-tuple>

Option 2: Host-only

SQ: Single Queue
MQ: Multiple Queues

Dedicated

① Session keys + session 4-tuple
via key channel (,)

② Make fake UDP packet w/ session 4-tuple,
and send using raw socket

③ Session keys are distributed by S-RSS

①

②

③

Server

Core 2

Figure 8: Key delivery to the right CPU core in the middlebox
using (1) SmartNIC or (2) a dedicated CPU core

ChaCha20Poly1305. For tag verification, the endpoint re-
ceiver should verify the original tag first per each TLS record,
and if it is correct, it should move on to verify the private tag
as well. This two-step verification is necessary as verifying
only the private tag would allow the attackers to plug in arbi-
trary TLS record content with some valid pair of (original tag,
private tag). An mmTLS middlebox verifies only the original
tag as it does not have the key for the private tag. We find
that the cost for private tag generation and verification is
minimal in practice – it incurs only 2∼5% extra overhead
depending on the record size as shown in Section 5.4.

3.4 Scalable TLS Session Key Delivery

An mmTLS middlebox monitors multiple concurrent TLS
sessions in parallel on a multicore system by adopting the
share-nothing architecture. It leverages symmetric receive-
side scaling (S-RSS) [71] as both the upstream and down-
stream flows of a TCP/TLS connection need to map into the
same CPU core. Each CPU core on an mmTLS middlebox
handles only the TLS sessions that are steered to it by S-RSS.
However, one problem arises when a client delivers the

session keys of its own TLS session to the mmTLS middlebox.
Note that the client establishes a separate TLS session with
the middlebox for session key delivery, and the same TLS
session is used for delivering the session keys of multiple
different end-to-end TLS sessions of the client that are moni-
tored by the middlebox. So, blindly applying S-RSS to the key
delivery packet on the mmTLS middlebox would forward it
to a wrong CPU core that does not monitor the target TLS
session operating with the keys. The CPU core that receives

636 2024 USENIX Annual Technical Conference USENIX Association

Event Description
ON_TLS_SESSION_START TLS session initiation
ON_TLS_SESSION_END TLS session termination
ON_TLS_HANDSHAKE_START TLS handshake initiation
ON_TLS_HANDSHAKE_END TLS handshake finish
ON_TLS_NEW_RECORD New TLS record arrival
ON_TLS_ERROR TLS protocol parsing error
Table 3: mmTLS built-in events for TLS session monitoring.

the packet may look up the right CPU core and deliver the
keys to it, but that would require running S-RSS in software
as well as a lock to safely deliver the keys.
mmTLS addresses the problem by re-routing the key-

delivery packet to the right CPU core. When an mmTLS
middlebox receives the key-delivery packet along with the
four tuples of the monitored TLS session, it creates a fake
UDP packet with the same four tuples of the monitored ses-
sion and has it carry the session keys. Then, it sets the
Ethernet address destined to the local NIC. This process
allows the UDP packet to have the same four tuples as those
of the target TLS session so that the packet would end up at
the right CPU core for the session as it is steered by S-RSS on
the NIC hardware. This avoids software S-RSS computation
as well as any lock contention.

Figure 8 illustrates the localhost session key deliverymech-
anism of mmTLS. There are two implementation options.
The first option is to leverage SmartNIC to manage a key
delivery TLS session per client. When SmartNIC receives
the session key information from a client (1), it creates and
sends a UDP packet with the same four tuple to the NIC
of the CPU side (2 and 3). The session key information
includes the "client random" and "server random" strings
exchanged at the handshake to identify the right TLS session
of the keys. The second option is to leverage a dedicated
CPU core that handles only key delivery while the rest of
the CPU cores run end-to-end TLS session monitoring.6 We
assume that the localhost communication on a middlebox is
secure, but if not, one can choose to encrypt the UDP packet
with a symmetric key.

3.5 Event-Driven TLS Traffic Monitoring

mmTLS provides an event-driven TLS application devel-
opment framework for easy app-level customization. This
framework enables developers to focus on high-level custom
logic on the plaintext content rather than handling low-level
TLS protocol parsing or record decryption. The underly-
ing framework parses the TLS protocol and runs TCP flow
reassembly for each session while it forwards the packets
between the two endpoints.
Table 3 lists the current set of mmTLS events for which

one can program a custom event handler. For example, ON_-
6One can even distribute the key delivery TLS sessions across the CPU

cores, but the implementation would be challenging as we use DPDK [12].

1 static void
2 cb_new_record(mmtls_t mmctx, int cid, int side)
3 {
4 int len;
5 uctx *c = mmtls_get_uctx(mmctx, cid);
6 /* get plaintext record */
7 if (mmtls_get_record(mmctx, cid, side,
8 c->buf + c->off, &len) < 0)
9 goto error_case;
10 c->off += len;
11 if (!IsHTTPHdrReceived(c) && ParseHTTPRespHdr(c))
12 len = c->off - c->bodyOff;
13 if (IsHTTPHdrReceived(c)) {
14 /* DPI on the response body */
15 if (DPI(c->dpiCtx,
16 c->buf + c->bodyOff, len) < 0)
17 goto error_case;
18 c->bodyOff += len;
19 }
20 /* monitor only first 10KB of response */
21 if (c->bodyOff > 10000)) {
22 mmtls_pause_monitor(mmctx, cid, side,
23 c->contLen - c->bodyOff);
24 PrepareNewResponse(c);
25 }
26 return;
27 error_case:
28 free_ctx(c);
29 mmtls_reset_session(mmctx, cid);
30 }

Figure 9: Code snippet for a simple TLS middlebox that inspects
the first 10KB of HTTP 1.1 responses. We omit the logic for error
handling and buffer overflow handling for brevity.

TLS_NEW_RECORD arises whenever a new TLS record arrives
(i.e., when a full TLS record is collected in the internal buffer).
So, one can write a DPI application by registering an event
handler (via mmtls_register_callback()) for ON_TLS_-
NEW_RECORD. Inside the event handler, the application can
call mmtls_get_record() to retrieve the fully-decrypted
TLS record body or only the record size without decrypt-
ing the content. One can choose to decrypt only select
TLS records as ON_TLS_NEW_RECORD is raised per each new
TLS record and the record body is decrypted only by call-
ing mmtls_get_record(). Furthermore, the application
can skip an arbitrary number of bytes of application-level
content (e.g., skipping the remaining HTTP response) by
mmtls_pause_monitor() without TLS record decryption.
The application developer can also get the detailed TLS ses-
sion information such as the TLS version, the negotiated
cipher suite, the four tuples of the session, etc., with mmtls_-
get_tlsinfo(). With the mmTLS events and APIs (shown
in figure 23 in Appendix), one can write an efficient but
flexible TCP session monitoring application.

When packets arrive at an mmTLS middlebox, the middle-
box runs TCP/TLS protocol parsing with the packets and re-
assembles the flow data for application-level content. Events
are raised while running this task, and registered event han-
dlers are invoked in the order of event generation. In case an

USENIX Association 2024 USENIX Annual Technical Conference 637

event handler detects malicious content in the TLS record (or
over the collected data combined with previous records), the
application can choose to block the packets and terminate
the session (by mmtls_reset_session()). If not, the pack-
ets are forwarded to the other endpoint. Note that packets
arriving out of order in a flow are still forwarded to the other
endpoint without being blocked for full-reassembly of the in-
order data. This is necessary as the mmTLS middlebox does
not terminate the TCP connection and the other endpoint
must send an ACK/SACK properly to inform the sender of
(possibly) lost packets. In fact, this is more efficient than
split TCP connections as all packets are delivered directly to
the other endpoint without getting blocked nor buffered for
later delivery.

A potential concern might be that a part of malicious con-
tent could reach the other endpoint as out-of-order pack-
ets are forwarded without raising the ON_TLS_NEW_RECORD
event. However, this is OK as the TLS standard dictates that
the TLS layer should not deliver a partially-decrypted TLS
record to the upper layer without tag verification [19].7 Later
when a full record is collected, the middlebox would detect
the malicious content and terminate the connection without
forwarding the packets. Thus, the other endpoint would not
have a chance to collect a full TLS record for decryption.

Finally, mmTLS events support ON_TLS_ERRORwhen TLS
protocol parsing fails. Then, the application can check the
type of the error by mmtls_get_error(). Figure 9 shows
an example of application code that runs DPI and pattern
matching on the first 10KB of the response.

4 Implementation

We briefly explain the implementation of the mmTLS frame-
work and porting existing TLS applications.
mmTLS middlebox programming framework. We im-
plement the mmTLS framework with mOS [45] running on
Intel DPDK. mOS enables event-driven TCP flowmonitoring
by allowing the developer to write event handlers for built-in
and user-defined TCP stack events. mmTLS extends mOS to
support TLS events with its built-in TCP events. In addition
to TCP connection setup (ON_TLS_SESSION_START) and
teardown events (ON_TLS_SESSION_END), mmTLS supports
TLS handshake events to closely monitor the handshake pro-
cess (ON_TLS_HANDSHAKE_START andON_TLS_HANDSHKE_-
END). mmTLS supports ON_TLS_NEW_RECORD by leverag-
ing the MOS_ON_CONN_NEW_DATA event of mOS. While
MOS_ON_CONN_NEW_DATA is generated for new arrival of in-
ordered data of a flow, mmTLS ensures to raise ON_TLS_-
NEW_RECORD for each fully-collected TLS record. mmTLS ex-
ploits MOS_ON_PACKET_IN of mOS to stall application-level
TLS packets until the keys for the TLS session arrive.

7The endpoint receiver must terminate the connection with a bad_-
record_mac alert if tag verification fails.

The current mmTLS implementation supports all cipher
suites8 of TLS 1.3 and all AEAD symmetric ciphers sup-
ported by TLS 1.2. Supporting symmetric ciphers is simple in
mmTLS as it actively follows the TLS handshake process. For
fair performance comparison with mcTLS [58], we added
support for AES-CBC with TLS 1.2 as well. mmTLS opti-
mizes the existing mOS implementation by benefiting from
TCP segmentation offload (TSO) and Large Receive Offload
(LRO) for better TCP flow processing performance. It shares
the DMA buffer for packet RX and TX operations to avoid
memory copy in packet forwarding. The mmTLS middle-
box programming framework consists of 2,330 lines of C
code. We also implement a simple DPI application using
Hyperscan [70], which requires 696 lines of C code.
Session key forwarder. The mmTLS framework receives
session keys from each client, and delivers them to the right
CPU core that monitors the end-to-end TLS session. We
implement it as an epoll-based OpenSSL server that uses
sendmmsg() to send multiple keys over different UDP pack-
ets to the right CPU cores. It consists of 750 lines of C code,
and the same code runs on both SmartNIC and dedicatedCPU
core as shown Figure 8. mmTLS uses a dedicated RX queue
per core for UDP packets delivering session keys to avoid
any packet loss due to interference by regular TLS traffic. For
SmartNIC implementation, we use NVIDIA Bluefield-2 [17],
but the system can run on stripped-down SmartNIC as well.
mmTLS clients. We port Chromium Web browser [7] and
two HTTP benchmark tools (h2load [59] and ab [31]) to
support mmTLS. For session key sharing, we use an exist-
ing OpenSSL API, SSL_CTX_set_keylog_callback(), to
extract the session keys at TLS handshake. For key deriva-
tion in the client, we use HMAC-based Extract-and-Expand
Key Derivation Function (HKDF) [13] and Pseudorandom
Function (PRF) [24], for TLS 1.3 and 1.2, respectively. For
the session key delivery TLS session, we use TLS_ECDHE_-
RSA_WITH_AES_256_GCM_SHA384 of TLS 1.3 as the ci-
pher suite, and conduct middlebox authentication at each
session. We build the above functions into a common library
of 630 lines that client applications link to for easy porting.
Private tag generation. We update OpenSSL 3.2.0 to reflect
the extra tag generation/verification cost into TLS record
en/decryption. The update includes 1) adding aesni_set_-
encrypt_key() and aesni_encrypt() to tls13_set_-
crypto_state() for initializing 𝐻 = 𝐸(𝐾,0

128
) and 𝐸(𝐾,𝑌)

during TLS handshake, and 2) adding gcm_ghash_avx(),
which performs xor and field multiplication (gcm_gmult_-
avx()) with initialized 𝐻 , to tls13_cipher() for addi-
tional 𝐺𝐻𝐴𝑆𝐻 () operation which generates/verifies private
tag upon en/decrypting each record. The update requires 141
extra lines of code. We link nginx to the updated OpenSSL
library to reflect the cost on an endpoint server.

8AES-GCM, AES-CCM, and ChaCha20-Poly1305.

638 2024 USENIX Annual Technical Conference USENIX Association

17

141

179

7
68

159

6
39 62

4 18 23
5 15 17

0

50

100

150

200

1K 4K 16K 64K 256K 1M 4M

Th
ro

ug
hp

ut
 (G

bp
s)

Requested object size (byte)

mmTLS
mmTLS
split-TLS
split-TLS
mcTLS

(②)

(②)
(②)

(①)

(①)

① ECDHE-RSA-AES-256-GCM-SHA384
② DHE-RSA-AES-256-CBC-SHA256

Figure 10: Comparison of throughputs for persistent connections

5 Evaluation

We evaluate mmTLS on the following aspects – performance
benefit over existing solutions, delay overhead for out-of-
band session key delivery, multicore scalability and private
tag generation overhead. We also evaluate if mmTLS im-
proves the performance of real-world applications, and how
easy it is to develop an TLS application.

5.1 Experiment Setup

Comparison target. We compare the performance of an
mmTLS middlebox against existing solutions. For a base-
line MITM middlebox, we use the nginx TLS proxy (version
1.24.0), and we call it split-TLS. We also compare the perfor-
mance with mcTLS [58], an TLS-extension-based middlebox
architecture. We could not compare with mbTLS [57] nor
maTLS [51] as the source code of the former is unavailable
and the latter supports only a single TLS handshake with
a content that is represented in a single TLS record. For
gauging the performance overhead incurred by a middlebox,
we compare with the performance of direct end-to-end TLS
connections (E2E-TLS) as well.
Test setup and scenario. We use TLS 1.3 with TLS_-
ECDHE_RSA_WITH_AES_256_GCM_SHA384 as a default
cipher suite for evaluation, as it is currently the most pop-
ular [49]. For comparison with mcTLS [58], we use TLS_-
DHE_RSA_WITH_AES_256_CBC_SHA256 of TLS 1.2. We
configure mcTLS to use a read-only context, which makes an
mcTLS middlebox verify a reader tag for each record. Unless
mentioned otherwise, all experiments decrypt each record
but do not run DPI (or pattern matching) on the plaintext
content to focus on the performance by different architec-
tures. The middlebox platform has a 16-core Xeon Gold 6326
CPU @ 2.90GHz CPU with a Bluefield-2 dual-port 100GbE
NIC, which is used for session key forwarding by default.
For servers, we use two machines equipped with 24-core
Xeon Gold 6342 CPU @ 2.80GHz, and 16-core Xeon Gold
6326 CPU @ 2.90GHz, respectively. Both servers employ

0.68
4.49

0.10 1.60 0.97

13.04

40.00

0

10

20

30

40

50

C
on

ne
ct

io
ns

/s
ec

on
d

(K
/s

) A: mcTLS (1 core, ②)
B: mcTLS (16 cores, ②)
C: split-TLS (1 core, ②)
D: split-TLS (16 cores, ②)
E: split-TLS (1 core, ①)
F: split-TLS (16 cores, ①)
G: mmTLS (1 core, ①, ②)

① ECDHE-RSA-AES-256-GCM-SHA384
② DHE-RSA-AES-256-CBC-SHA256

A B C D E F G

Figure 11: Comparison of throughputs for ephemeral connections
for downloading a 1KB object per connection

0
20
40
60
80

100

0 2 4 6 8 10 12 14 16 18 20 22 24
C

D
F

(%
)

Stall delay (us)

Dedicated-core SmartNIC

34% in 0us
50% in 4us

90% in 19us93% in 0us

Figure 12: Stall delay of key arrival in mmTLS middlebox when
download 1KB object

a dual-port ConnectX-6 100GbE NIC. We use HTTP/1.19
nginx web server (version 1.24.0) for the endpoint servers.
For clients, two machines equipped with two 22-core Xeon
E5-2699 v4 CPUs @ 2.20GHz and the other two machines
equipped with a 16-core Xeon E5-2683 v4 CPU @ 2.10GHz.
All client machines are equipped with a ConnectX-5 100GbE
NIC. On clients, we run h2load [59] for persistent connection
tests, and ab [31] for ephemeral connection tests. For test
scenarios, clients request fixed-sized objects from the nginx
servers in HTTPS/1.1.

5.2 Throughput and Delay Performance
Persistent connections. We compare the throughputs with
persistent connections for delivering contents whose size
ranges from 1KB to 4MB. We assume that TLS middleboxes
decrypt the first 64 KB of the content for inspection as many
IDSes limit the region for DPI. We employ 4096 concurrent
TLS sessions for the experiments, and we confirm that all
16 cores of the middlebox platform are fully utilized. Figure
10 shows that the mmTLS middlebox achieves 170+ Gbps
for contents larger than 64KB with AES-GCM 256-bit keys.
It outperforms split-TLS (1⃝) by 2.7x ∼ 4.6x while it out-
performs mcTLS (2⃝) by 1.5x ∼ 9.6x. mmTLS (2) achieves
much higher throughput for larger files because the mid-
dlebox decrypts only the first 64 KB of the response10. The

9nginx currently does not support HTTP/2 for backend connections.
10 2 ’s performance should be similar to that of 1 for 64+ KB files, but

our testbed could not make the mmTLS middlebox a bottleneck with 2 due
to the bottleneck of endpoint servers.

USENIX Association 2024 USENIX Annual Technical Conference 639

4 4 4 4 5 7
14

4 4 4 4 5 7
14

10 10 11 11 12
18

32

0

10

20

30

40

1K 4K 16K 64K 256K 1M 4M

R
es

po
ns

e
tim

e
(m

s)

Requested object size (byte)

E2E-TLS mmTLS split-TLS

(a) ECDHE-RSA-AES-256-GCM-SHA384

27 27 28 28 31 37 49 28 29 28 29 31 37 55 66 66 67 68 71
83

113

35 35 36 37 44
61

133

0
20
40
60
80

100
120
140

1K 4K 16K 64K 256K 1M 4MR
es

po
ns

e
tim

e
(m

s)

Requested object size (byte)

E2E-TLS mmTLS split-TLS mcTLS

(b) DHE-RSA-AES-256-CBC-SHA256
Figure 13: Comparison of delay performance for LAN connections with two cipher suites

33 39
56 62

87

34 40
58 64

88

46 50
68 74

111

0

50

100

150

R
es

po
ns

e
tim

e
(m

s)

E2E-TLS mmTLS split-TLS

A B C D E

A: www.usatoday.com B: www.bbc.com C: www.nytimes.com
D: edition.cnn.com E: www.washingtonpost.com

Figure 14: Comparison of response times for popular news sites

performance benefit reflects the architectural difference –
nginx and mcTLS adopt split TCP connections, so they have
to reassemble the flow data from one endpoint, decrypt and
re-encrypt the data, and send it to the other endpoint. mcTLS
suffers from poorer performance as it forks a process for
each TLS session. In contrast, mmTLS reassembles the flow
data without blocking the packets nor re-encrypting the data.
Ephemeral connections. mmTLS uses explicit key sharing
via secure out-of-band channel, so one may wonder if asyn-
chronous key delivery impacts the performance. To answer
it, we evaluate the throughput of ephemeral connections
with a small content. In this experiment, clients request
1KB objects but they perform a TCP connection setup and a
TLS handshake for every request. We measure the peak TLS
handshake throughput when the CPU of a middlebox is fully
saturated. Figure 11 shows the results. The peak through-
put of mmTLS is 41.2x larger than that of split-TLS when
they both employ a single CPU core with the cipher suite
1⃝. The split-TLS throughput is only 970 TCP/TLS sessions
per second as it needs to perform the TLS handshake twice
in sequence. In contrast, mmTLS achieves a much higher
throughput as it simply forwards the handshake packets be-
tween the two endpoints. In fact, even the 1-core throughput
of an mmTLS middlebox is 3.1x larger than that of 16-core
with split-TLS. The throughput gap from mcTLS with 2⃝ is
even larger, as mcTLS uses DHE as the key exchange algo-
rithm, which is much slower than ECDHE. ECDHE employs
elliptic curve cryptography that operates on a smaller key
size while DHE suffers from heavyweight modular exponen-
tiation. The CBCmode that mcTLS adopts is also slower than
the GCM mode as its encryption is serialized per each block.
Also, mcTLS suffers from the fork() overhead per connec-
tion. As a result, mmTLS outperforms mcTLS by 58.8x as
the throughput of mmTLS does not change. mmTLS out-

performs split-TLS by 400.0x with 2 as split-TLS with 2 is
much slower than with 1 .

Our evaluation confirms that the extra TLS handshake by
split-TLS or mcTLS is substantially more heavyweight than
the asynchronous session key delivery by mmTLS. Figure 12
shows the distribution of stall delays of application-level
packets due to key delivery. It shows that mmTLS with
SmartNIC does not delay the application packets at all for
34% of the time, and the median and 90𝑡ℎ% stall delays are
4 us and 19 us in our setup, which would minimally affect
the end-to-end latency in the WAN. When using a dedicated
core as the session key forwarder, the stall delay becomes
even smaller but at the cost of throughput loss by one core.
Response Time. We compare the response times for down-
loading objects of various sizes. In our testbed, the average
RTTs are 83us (between a client and a middlebox) and 40us
(between a middlebox and a server), respectively. We report
the average response time for downloading 100 times. Fig-
ures 13a and 13b show that the response times of E2E-TLS
and mmTLS are almost the same with object size up to 1 MB
(with at most 2 ms extra delay) regardless of the cipher suites.
The 6 ms latency blowup for 4MB objects reflects the extra
packet forwarding overhead by the mmTLS middlebox. In
contrast, split-TLS suffers from 2.3∼2.8x and 2.2∼2.4x larger
response times for each cipher suite, respectively. We ob-
serve that mcTLS outperforms split-TLS as key exchanges
for the middlebox are converged into one E2E handshake.
However, the response time becomes much worse when the
content size grows up to 4 MB.

The delay blowup for a small object in split-TLS andmcTLS
is mainly due to the extra key exchange process. When we
chain multiple middleboxes, split-TLS adds 5∼7 ms of ex-
tra delay per each middlebox for ephemeral connections.
For persistent connections, the per-hop delay of split-TLS is
0.5∼0.6 ms per middlebox due to content re-encryption and
TCP operations. In contrast, we can see that an mmTLS mid-
dlebox incurs less than 0.2 ms of extra delay per middlebox
regardless of ephemeral or persistent connections.

We run the same experiments for five popular news sites
in the real world as shown in figure 14. The content sizes
of the target objects are 204KB, 230KB, 638KB, 1.94MB, and
2.06MB (from A to E in figure 14), respectively. The round
trip times to the sites are 5.6ms, 5.5ms, 5.2ms, 5.5ms, and

640 2024 USENIX Annual Technical Conference USENIX Association

4 6 14 22 40
9 19 39

78

141

0

50

100

150

200

1 2 4 8 16Th
ro

ug
hp

ut
 (G

bp
s)

Number of cores

split-TLS

mmTLS

(a) Multi-core scalability

143

197

11 29 70

179

0
50

100
150
200

Th
ro

ug
hp

ut
 (G

bp
s)

Requested object size (byte)

E2E-TLS

mmTLS

(b) Performance penalty
Figure 15: Comparison of multi-core scalability over split-TLS and
and performance penalty over E2E TLS on the same spec machine
with an endpoint server.

3.5ms, respectively. They all use ECDHE with X25519 curve
for key exchange, and RSA for authentication. For a sym-
metric cipher, E uses AES_256_GCM_SHA384 while all the
other sites use AES_128_GCM_SHA256. Figure 14 shows a
similar trend as our earlier experiments.11 We see that the
extra delays by split-TLS over E2E-TLS forWAN connections
are similar to those in the LAN for similar object sizes. While
split-TLS incurs at least 11 ms of extra delay over E2E-TLS,
the extra delay by mmTLS is at most 2 ms.

5.3 Scalability & Middlebox Overhead

Multicore performance scalability. We evaluate the per-
formance scalability over multiple CPU cores. In this exper-
iment, clients request 64KB objects with 4096 concurrent,
persistent connections. From figure 15a, we observe that the
throughputs of both mmTLS and split-TLS middleboxes scale
to the number of employed CPU cores, but the single-core
performance of mmTLS is 2.5x larger than that of split-TLS,
achieving 141 Gbps at 16 cores. We could not measure the
throughput of ephemeral connections as we do not have
enough client-server machines to saturate many CPU cores
of an mmTLS middlebox. Instead, we report that the session
key forwarder on SmartNIC (or on a dedicated CPU core)
can handle 338K (or 298K) connections per second, which
would be the bottleneck in the ephemeral-connection case.
We believe we can improve the performance of the forwarder
further by switching to AF_XDP [2] for UDP packet creation
and sending.
Overhead by an mmTLS middlebox. We evaluate if
an mmTLS middlebox limits the throughput that can be
achieved by a server running on the same hardware platform.
Figure 15b compares the E2E-TLS performance with that of
the same server when an mmTLS middlebox is deployed for
persistent connections. The figure shows that the mmTLS
middlebox does not constrain the performance of the server
up to 64KB. If the content size exceeds 64KB, the mmTLS
middlebox becomes a bottleneck due to internal flow data
reassembly operations.

11We could not compare with mcTLS as the server needs to be updated.

2.00 2.01 2.00 2.00 2.00

1.22 1.34 1.48 1.63 1.74

1 1 1 1 1
1.03 1.03 1.03 1.02 1.01

0
0.5

1
1.5

2
2.5

1K 2K 4K 8K 16K

R
el

at
iv

e
ov

er
he

ad

Record size (Byte)

Original mmTLS Reusing ciphertext Double tags

Figure 16: Microbenchmark for private tag generation

1.01 1.01 1.01 1.02 1.02 1.01 1.01

0

5

10

15

20

0

0.5

1

1.5

2

1K 4K 16K 64K 256K 1M 4M

Throughput (G
bps)R

el
at

iv
e

ov
er

he
ad

Requested object size (bytes)

Relative overhead Original mmTLS

Figure 17: Throughput of end-to-end TLS with private tag genera-
tion extension on sender side

5.4 Private Tag Generation Overhead
Figure 16 compares the relative private tag generation over-
head over different TLS record sizes in AES-GCMwith 256bit
keys. "Double tags" refers to running the cipher again with
a different key for the extra tag while "reusing ciphertext"
refers to sharing the ciphertext from the original key for
computing the hash value. mmTLS refers to our scheme
while "original" refers to the existing scheme without pri-
vate tag generation. "Original" serves as the baseline. As we
see, our logic incurs only 1∼3% overhead from the original
scheme while "reusing ciphertext" shows 22% to 74% of extra
overhead. This implies that 𝐺𝐻𝐴𝑆𝐻 () incurs more overhead
than encryption for large records while the overhead by our
logic is minimal as the input size is small (16B).
We measure the relative overheads and the throughputs

of E2E-TLS connections with and without the private tag
generation extension. Figure 17 shows that the relative over-
head on the server is at most 2%. This is because the portion
of the private tag generation computation becomes smaller
due to other operations. Note that our logic provides the
same benefit to an endpoint receiver as well since the cost
for private tag verification is the same as the generation.

5.5 Real-world Application Performance
Page Load Time with Chromium. We measure the page
load times (PLTs)12 of the front page at five popular news sites
with mmTLS-ported Chromium in our campus and compare
with E2E-TLS. Figure 18 shows that the PLTs range from 1.58
to 4.11 seconds, but the difference from E2E-TLS is at most

12Unlike in benchmark tests, page load time in the browser includes
parsing DOM, executing scripts, and downloading embedded objects.

USENIX Association 2024 USENIX Annual Technical Conference 641

2.642
1.584

2.536
1.859

4.111

2.645
1.585

2.538
1.860

4.114

0
1
2
3
4
5

Pa
ge

 L
oa

d
Ti

m
e

(s
)

E2E-TLS mmTLS

A: www.usatoday.com B: www.bbc.com C: www.nytimes.com
D: edition.cnn.com E: www.washingtonpost.com

A B C D E

Figure 18: Comparison of page load times for WAN connections

83 112 184
343

615

83 113 186
345

617

119 154 274
513

897

0
200
400
600
800

1000

10 20 50 100 200

Pa
ge

 lo
ad

 ti
m

e
(m

s)

Number of embedded resources

E2E-TLS mmTLS split-TLS

Figure 19: Comparison of page load time for LAN connections

3 ms. We could not measure the PLT with split-TLS as the
setup by Chromium cannot fetch the objects from multiple
different domains. Instead, we measure the PLT with a single
server in the LAN that serves a page with embedded objects.
Figure 19 compares the PLTs of pages with a different number
of embedded objects whose size is 136 KB. Similar to WAN
experiments, mmTLS exhibits similar PLTs with E2E-TLS,
but we find split-TLS suffers from 38 to 50% larger PLTs.
Snort ruleset matching. We compare the DPI perfor-
mance with a popular Snort ruleset of 10K entries (Snort3-
community-rules) [22]. We implement multi-string pattern
matching with Hyperscan [70] for an mmTLS middlebox as
well as for the nginx TLS proxy. We use the same exper-
iment setup as 1⃝ in figure 10, and have each connection
request 1MB objects. We control the amount of content for
DPI from 16KB to 128KB as typical IDSes do not inspect the
entire content. Figure 20 shows the results where mmTLS
achieves 2.7x to 3.1x higher throughputs over the split-TLS
architecture. This confirms that a DPI application benefits
from the architectural efficiency of mmTLS.

5.6 Popular TLS Cipher Suites
The mmTLS events and APIs are simple and flexible, so one
can easily use it to measure the properties of TLS sessions
as well. We write a simple mmTLS middlebox that records
the cipher suite chosen by a server site. One can get the
information in the event handler of ON_TLS_HANDSHAKE_-
END as shown in figure 22. The entire source code is only 62
lines. Figure 21 shows the distribution of TLS cipher suites
for 1000 sites listed at the Alexa Top 1M list [3]. We see
that 81.7% of the sites use TLS 1.3 and 99.8% of the sites use
AES-GCM, which confirms the dominant symmetric cipher
employed in practice. 72.1% of the sites that use AES-GCM
use 128-bit keys rather than 256-bit keys.

173 163 152
123

56 54 51 45

0
50

100
150
200

16K 32K 64K 128K

Th
ro

ug
hp

ut
 (G

bp
s)

Amount of content for DPI (Bytes)

mmTLS split-TLS

Figure 20: Comparison of throughput of DPI applications

569

248
151

23 4 3 2
0

100

200

300

400

500

600 A: TLS_AES_128_GCM_SHA256 (TLS v1.3)
B: TLS_AES_256_GCM_SHA384 (TLS v1.3)
C: TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
D: TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
E: TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
F: TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
G: TLS_CHACHA20_POLY1305_SHA256 (TLS v1.3)

TLS v1.3
TLS v1.2

A B C D E F G
Figure 21: Counts of cipher suites and TLS version among 1000
available HTTPS web sites from Alexa top 1M.

6 Related Work

We briefly explain the related works here.
Analysis of MITM middleboxes. A number of studies
have consistently raised security issues with the MITM mid-
dleboxes. Carnavalet et al. [35] and Waked et al. [69] present
frameworks to analyze and evaluate vulnerabilities of TLS
proxies. Huang et al. [42] and Durumeric et al. [37] present
methods to detect MITM attacks, and HTTPS interceptions,
respectively. Mani et al. [53], and O’Neill et al. [61] conduct
measurement studies on open proxies, and TLS proxies in
terms of security issues, respectively. Carnavalet et al. [36]
also present extensive survey and analysis on MITM middle-
box and TLS interception.
Frameworks for high performance middleboxes.
mOS [45] and microboxes [52] provide a highly scalable
and flexible framework for developing TCP connection
monitoring middleboxes. Both frameworks support TCP
flow reassembly, but they do not support easy development
of TLS middleboxes for monitoring encrypted traffic.
MiddleClick [32] extends Click [48] to allow monitoring and
modifying individual TCP packets without terminating a
TCP connection. However, the framework does not support
reassembly of TCP packets, so one has to implement it in
the upper layer to monitor the content over multiple packets
especially if they arrive out of order.
Secure TLS middlebox architecture. There has been a
long thread of works that endeavor to enhance the secu-
rity and accountability of TLS middleboxes. For instance,
mcTLS [58] aims to impose restrictions on the behavior of
middleboxes by introducing two additional MAC keys for
read and write operations, which ensures that only au-
thorized middleboxes can utilize one of these keys for their
permitted access. This context-dependent access control

642 2024 USENIX Annual Technical Conference USENIX Association

1 static void
2 cb_handshake_end(mmtls_t mmctx, int cid, int side)
3 {
4 session_info info;
5 uctx *c = mmtls_get_uctx(mmctx, cid);
6 mmtls_get_tls_info(mmctx, cid, &info,
7 SNI|VERSION|CIPHER_SUITE);
8 fprintf(c->logfile,
9 "server name:%s version:%d cipher:%d\n",
10 info.sni, info.version, info.cipher_suite);
11 }

Figure 22: Code snippet for a simple TLSmiddlebox that logs server
name, TLS version, and negotiated cipher suite for each session.

mechanism enables the endpoints to be aware of the pres-
ence of middleboxes and empowers them to detect any unau-
thorized modifications made to the transmitted content.13
mbTLS [57] was proposed to facilitate interoperability with
legacy TLS endpoints while safeguarding session data from
untrusted middleboxes through the use of Intel SGX technol-
ogy. However, its implementation necessitates an additional
in-band secondary handshake between the endpoint and
each middlebox for every end-to-end session. This intro-
duces computational overhead and can potentially create a
bottleneck within the middlebox infrastructure. maTLS [51]
introduces middlebox certificates to enable middleboxes to
participate in the TLS session, thus enhancing visibility and
auditability. However, like mcTLS and mbTLS, it increases
overhead during the handshake and end-to-end response
time by splitting the TLS connection into multiple segments.
In common, these extensions focus on security issues in

the middleboxes using split-connection method. However
split-connection method has a fundamental issue in terms
of performance. Also, since they consider the general use
cases of middleboxes including read-write middleboxes that
usually lie on the server-side network, there is no opportu-
nity to improve the performance of read-only middleboxes
that are usually used for traffic monitoring in the client-side
network. In addition, they all require intrusive modification
on the existing TLS protocol, so lower the deployability.
Session key sharing. Similar to TLS-extension works,
the IETF key-share extension [1] proposes in-band session
key sharing with TLS middleboxes. However, in-band ses-
sion key sharing is not only invasive, but it incurs a high
overhead as middleboxes must participate in the handshake.
mmTLS avoids the issue by out-of-band session key shar-
ing. LOCKS [33] also adopts out-of-band key sharing with
Bro [62], but it does not ensure content integrity nor supports
a generic TLS middlebox platform. EndBox [40] proposes
running TLS middleboxes on a client with shared keys from
their modified TLS libraries. However, their middleboxes
are based on Click [48] that does not support TCP flow re-

13There is a standardized specification driven by ETSI, named Middlebox
Security Protocol (MSP) [65]. It extends mcTLS to support AEAD, and other
operations such as delete.

assembly, so it would be challenging to verify TLS records if
packets are lost or delivered out of order. Likewise, it fails
to support general DPI applications that inspect the content
spanning over multiple packets. In summary, we note that
key sharing itself is not our contribution, but none of the
existing works propose a high-performance TLS traffic mon-
itoring framework that allows easy middlebox development.
Searchable encryption. BlindBox [67] and Embark [50]
focus on a monitoring middlebox that mainly locates in the
client-side network. They present such a novel method for
pattern matching: instead of decrypting the traffic to be
inspected, they encrypt the patterns and send them to moni-
toring middleboxes via secondary secure channel. Because
the monitoring middleboxes are read-only, and unaware of
session keys, they can be run on the public clouds. However,
since these kinds of method are tied to specific encryption
algorithms, such as order-preserving encryption, they are
also not practical to be used in real world.

7 Conclusion

We have presented mmTLS, a novel TLS monitoring mid-
dlebox framework that scalably inspects the traffic without
splitting the TLS/TCP connection. While existing solutions
improve the security aspect of MITM middleboxes, they suf-
fer from poor performance due to redundant TLS handshakes,
content reassembly and relaying over two connections, and
content re-encryption. mmTLS breaks away from the con-
straints and operates with event-driven programming library
that allows developers to focus on the core logic of con-
tent monitoring rather than dealing with low-level TLS/TCP
protocol parsing and encryption. We have demonstrated
that mmTLS outperforms split-TLS by up to 4.6x, achieving
179 Gbps of throughput with a popular TLS 1.3 cipher suite.
It also improves the TLS handshake performance by 41.2x
over split-TLS as it avoids participating in the handshake
process. We have shown that porting a popular browser
to using mmTLS is not difficult, and that a DPI application
with a real-world ruleset on mmTLS achieves 100+ Gbps. We
believe that mmTLS is incrementally deployable and we plan
to release the source code of mmTLS for practical use.

Acknowledgments

We appreciate the insightful feedback and suggestions from
USENIX ATC 2024 reviewers. This work is in part supported
by the ICT Research and Development Program of MSIT/I-
ITP, Korea, under [2022-0-00531, Development of in-network
computing techniques for efficient execution of AI applica-
tions], [RS-2024-00349594, Development of networked sys-
tems technologies leveraging SmartNIC], [Next-generation
Cloud-native Cellular Network Center] and the New Faculty
Startup Fund from Seoul National University.

USENIX Association 2024 USENIX Annual Technical Conference 643

References

[1] A Method for Sharing Record Protocol Keys with a
Middlebox in TLS. https://www.ietf.org/archi
ve/id/draft-nir-tls-keyshare-02.txt.

[2] AF_XDP – the Linux kernel documentation. https:
//docs.kernel.org/networking/af_xdp.html.

[3] Alexa Top Websites - Last Save. https://www.expi
reddomains.net/alexa-top-websites/.

[4] Amazon Prime. https://www.amazon.com/amazo
nprime.

[5] Avast. https://www.avast.com/c-router-malwa
re.

[6] AVG. https://www.avg.com/en/signal/remove
-router-virus.

[7] Chromium. https://www.chromium.org/chromiu
m-projects/.

[8] Circle. https://meetcircle.com/.

[9] Cloud-Native Network Firewall Service. https://ww
w.fortinet.com/products/public-cloud-sec
urity/cloud-native-firewall.

[10] ConnectSafely. https://www.connectsafely.or
g/parentalcontrols/.

[11] CrowdStrike. https://www.crowdstrike.com/.

[12] DPDK: Data Plane Development Kit. https://www.
dpdk.org/.

[13] HMAC-based Extract-and-Expand Key Derivation
Function RFC. https://tools.ietf.org/htm
l/rfc5869.

[14] Hulu. https://www.hulu.com/.

[15] Netflix. https://www.netflix.com/.

[16] NGINX Docs – NGINX Reverse Proxy. https://do
cs.nginx.com/nginx/admin-guide/web-serve
r/reverse-proxy/.

[17] Nvidia BlueField DPU. https://www.nvidia.com
/en-us/networking/products/data-processin
g-unit/.

[18] RFC 5246. https://www.ietf.org/rfc/rfc5246
.txt.

[19] RFC 8446. https://www.rfc-editor.org/rfc/rf
c8446.

[20] SentinelOne. https://www.sentinelone.com/.

[21] Snort. https://www.snort.org/.

[22] snort3-community-rules. https://www.snort.org/
downloads/community/snort3-community-rul
es.tar.gz.

[23] Suricata. https://suricata.io/.

[24] The Transport Layer Security (TLS) Protocol Version
1.2. https://tools.ietf.org/html/rfc5246.

[25] Trellix. https://www.trellix.com/.

[26] Twitch. https://www.twitch.tv/.

[27] What Is a Web Application Firewall (WAF)? https:
//www.akamai.com/glossary/what-is-a-waf.

[28] Youtube. https://www.youtube.com/.

[29] Zeek. https://zeek.org/.

[30] Amer AlGhadhban and Ahmad Showail. SALMA: A
Novel Middlebox Infrastructure System Based on Inte-
grated Subnets. Systems, 10(5), 2022.

[31] Apache. ApacheBenchmark. https://httpd.apac
he.org/docs/2.4/programs/ab.html.

[32] Tom Barbette, Cyril Soldani, and Laurent Mathy. Com-
bined stateful classification and session splicing for
high-speed NFV service chaining. IEEE/ACM Transac-
tions on Networking, 29(6):2560–2573, 2021.

[33] Michael Bierma, Aaron Brown, Troy DeLano,
Thomas M. Kroeger, and Howard Poston. Locally
Operated Cooperative Key Sharing (LOCKS). In Pro-
ceedings of the International Conference on Computing,
Networking and Communications (ICNC), 2017.

[34] Martin Casado, Michael Freedman, Justin Pettit, Jiany-
ing Luo, Nick McKeown, and Scott Shenker. Ethane:
taking control of the enterprise. In Proceedings of the
ACM Special Interest Group on Data Communication
(SIGCOMM), 2007.

[35] Xavier de Carné de Carnavale andMohammadMannan.
Killed by Proxy: Analyzing Client-end TLS Intercep-
tion Software. In Proceedings of Annual Network and
Distributed Systems Security (NDSS), 2016.

[36] Xavier de Carné de Carnavalet and Paul C. van
Oorschot. A Survey and Analysis of TLS Interception
Mechanisms and Motivations: Exploring How End-to-
End TLS is Made “end-to-Me” for Web Traffic. ACM
Comput. Surv., 55(13s), jul 2023.

644 2024 USENIX Annual Technical Conference USENIX Association

https://www.ietf.org/archive/id/draft-nir-tls-keyshare-02.txt
https://www.ietf.org/archive/id/draft-nir-tls-keyshare-02.txt
https://docs.kernel.org/networking/af_xdp.html
https://docs.kernel.org/networking/af_xdp.html
https://www.expireddomains.net/alexa-top-websites/
https://www.expireddomains.net/alexa-top-websites/
https://www.amazon.com/amazonprime
https://www.amazon.com/amazonprime
https://www.avast.com/c-router-malware
https://www.avast.com/c-router-malware
https://www.avg.com/en/signal/remove-router-virus
https://www.avg.com/en/signal/remove-router-virus
https://www.chromium.org/chromium-projects/
https://www.chromium.org/chromium-projects/
https://meetcircle.com/
https://www.fortinet.com/products/public-cloud-security/cloud-native-firewall
https://www.fortinet.com/products/public-cloud-security/cloud-native-firewall
https://www.fortinet.com/products/public-cloud-security/cloud-native-firewall
https://www.connectsafely.org/parentalcontrols/
https://www.connectsafely.org/parentalcontrols/
https://www.crowdstrike.com/
https://www.dpdk.org/
https://www.dpdk.org/
https://tools.ietf.org/html/rfc5869
https://tools.ietf.org/html/rfc5869
https://www.hulu.com/
https://www.netflix.com/
https://docs.nginx.com/nginx/admin-guide/web-server/reverse-proxy/
https://docs.nginx.com/nginx/admin-guide/web-server/reverse-proxy/
https://docs.nginx.com/nginx/admin-guide/web-server/reverse-proxy/
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://www.ietf.org/rfc/rfc5246.txt
https://www.ietf.org/rfc/rfc5246.txt
https://www.rfc-editor.org/rfc/rfc8446
https://www.rfc-editor.org/rfc/rfc8446
https://www.sentinelone.com/
https://www.snort.org/
https://www.snort.org/downloads/community/snort3-community-rules.tar.gz
https://www.snort.org/downloads/community/snort3-community-rules.tar.gz
https://www.snort.org/downloads/community/snort3-community-rules.tar.gz
https://suricata.io/
https://tools.ietf.org/html/rfc5246
https://www.trellix.com/
https://www.twitch.tv/
https://www.akamai.com/glossary/what-is-a-waf
https://www.akamai.com/glossary/what-is-a-waf
https://www.youtube.com/
https://zeek.org/
https://httpd.apache.org/docs/2.4/programs/ab.html
https://httpd.apache.org/docs/2.4/programs/ab.html

[37] Zakir Durumeric, Zane Ma, Drew Springall, Richard
Barnes, Nick Sullivan, Elie Bursztein, Michael Bailey,
J. Alex Halderman, and Vern Paxson. The security im-
pact of https interception. In Proceedings of the Annual
Network and Distributed Systems Security (NDSS), 2017.

[38] Hadi Esmaeilzadeh, Emily Blem, Renée St. Amant,
Karthikeyan Sankaralingam, and Doug Burger. Dark
silicon and the end of multicore scaling. In Proceed-
ings of ACM/IEEE Annual International Symposium on
Computer Architecture (ISCA), 2011.

[39] Shufan Fei, Zheng Yan,Wenxiu Ding, andHaomeng Xie.
Security Vulnerabilities of SGX and Countermeasures:
A Survey. ACM Computing Surveys, 54(6), 2021.

[40] David Goltzsche, Signe Rüsch, Manuel Nieke, Sébastien
Vaucher, Nico Weichbrodt, Valerio Schiavoni, Pierre-
Louis Aublin, Paolo Cosa, and Christof Fetzer. End-
Box: Scalable Middlebox Functions Using Client-Side
Trusted Execution. In Proceedings of the IEEE/IFIP In-
ternational Conference on Dependable Systems and Net-
works (DSN), 2018.

[41] Juhyeng Han, Seongmin Kim, Jaehyeong Ha, and
Dongsu Han. SGX-Box: Enabling Visibility on En-
crypted Traffic using a Secure Middlebox Module. In
Proceedings of the Asia-Pacific Workshop on Networking
(APNet), 2018.

[42] Lin Shung Huang, Alex Rice, Erling Ellingsen, and
Collin Jackson. Analyzing forged ssl certificates in
the wild. In Proceedings of the IEEE Symposium on
Security and Privacy (IEEE SP), 2014.

[43] Intel. AES-NI. https://www.intel.com/conten
t/www/us/en/developer/articles/technical
/advanced-encryption-standard-instruction
s-aes-ni.html.

[44] Intel. Intel QAT. https://github.com/intel/QAT
_Engine.

[45] Muhammad Jamshed, YoungGyoun Moon, Donghwi
Kim, Dongsu Han, and KyoungSoo Park. mOS: A
Reusable Networking Stack for Flow Monitoring Mid-
dleboxes. In Proceedings of the USENIX Conference on
Networked Systems Design and Implementation (NSDI),
2017.

[46] Jeff Jarmoc. SSL/TLS Interception Proxies and Transi-
tive Trust. 2012.

[47] Adrian Kingsley-Hughes. Gogo in-flight Wi-Fi serving
spoofed SSL certificates. ZDNet, 2015.

[48] Eddie Kohler, RobertMorris, Benjie Chen, John Jannotti,
and M. Frans Kaashoek. The Click Modular Router.

ACM Transactions on Computer Systems, 18(3):263–297,
August 2000.

[49] F5 Labs. The 2021 TLS telemetry report. https:
//www.f5.com/labs/articles/threat-intelli
gence/the-2021-tls-telemetry-report.

[50] Chang Lan, Justine Sherry, Raluca Ada Popa, Sylvia
Ratnasamy, and Zhi Liu. Embark: Securely Outsourc-
ing Middleboxes to the Cloud. In Proceedings of the
USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2016.

[51] Hyunwoo Lee, Zach Smith, Junghwan Lim, Gyeongjae
Choi, Selin Chun, Taejoong Chung, and Ted “Taeky-
oung” Kwon. maTLS: How to Make TLS middlebox-
aware? In Proceedings of Annual Network and Dis-
tributed Systems Security (NDSS), 2019.

[52] Guyue Liu, Yuxin Ren, Mykola Yurchenko, K. K. Ra-
makrishnan, and Timothy Wood. Microboxes: High
Performance NFV with Customizable, Asynchronous
TCP Stacks and Dynamic Subscriptions. In Proceedings
of the ACM Special Interest Group on Data Communica-
tion (SIGCOMM), 2018.

[53] Akshaya Mani, Tavish Vaidya, David Dworken, and
Micah Sherr. An Extensive Evaluation of the Internet’s
Open Proxies. In Proceedings of the Annual Computer
Security Applications Conference (ACSAC), 2018.

[54] Nick McKeown, Tom Anderson, Hari Balakrishnan,
Guru Parulkar, Larry Peterson, Jennifer Rexford, Scott
Shenker, and Jonathan Turner. OpenFlow: enabling
innovation in campus networks. ACM SIGCOMM Com-
puter Communication Review, 38(2):69–74, 2008.

[55] Georg Merzdovnik, Markus Huber, Damjan
Buhov, Nick Nikiforakis, Sebastian Neuner, Mar-
tin Schmiedecker, and Edgar Weippl. Block Me If You
Can: A Large-Scale Study of Tracker-Blocking Tools.
In Proceedings of the IEEE European Symposium on
Security and Privacy (EuroSP), 2017.

[56] Mikhail Isachenkov and Timo Stark. Improving NGINX
Performance with Kernel TLS and SSL_sendfile(). F5
NGINX Blog News, 2021. https://www.nginx.com/
blog/improving-nginx-performance-with-ker
nel-tls/.

[57] David Naylor, Richard Li, Christos Gkantsidis, Thomas
Karagiannis, and Peter Steenkiste. And Then There
WereMore: Secure Communication forMore Than Two
Parties. In Proceedings of the International Conference
on Emerging Networking EXperiments and Technologies
(CoNEXT), 2017.

USENIX Association 2024 USENIX Annual Technical Conference 645

https://www.intel.com/content/www/us/en/developer/articles/technical/advanced-encryption-standard-instructions-aes-ni.html
https://www.intel.com/content/www/us/en/developer/articles/technical/advanced-encryption-standard-instructions-aes-ni.html
https://www.intel.com/content/www/us/en/developer/articles/technical/advanced-encryption-standard-instructions-aes-ni.html
https://www.intel.com/content/www/us/en/developer/articles/technical/advanced-encryption-standard-instructions-aes-ni.html
https://github.com/intel/QAT_Engine
https://github.com/intel/QAT_Engine
https://www.f5.com/labs/articles/threat-intelligence/the-2021-tls-telemetry-report
https://www.f5.com/labs/articles/threat-intelligence/the-2021-tls-telemetry-report
https://www.f5.com/labs/articles/threat-intelligence/the-2021-tls-telemetry-report
https://www.nginx.com/blog/improving-nginx-performance-with-kernel-tls/
https://www.nginx.com/blog/improving-nginx-performance-with-kernel-tls/
https://www.nginx.com/blog/improving-nginx-performance-with-kernel-tls/

[58] David Naylor, Kyle Schomp, Matteo Varvello, Ilias Leon-
tiadis, Jeremy Blackburn, Diego Lopez, Konstantina
Papagiannaki, Pablo Rodriguez Rodriguez, and Peter
Steenkiste. Multi-Context TLS (mcTLS): Enabling Se-
cure In-Network Functionality in TLS. In Proceedings of
the ACM Special Interest Group on Data Communication
(SIGCOMM), 2015.

[59] nghttp2. H2load. https://nghttp2.org/document
ation/h2load-howto.html.

[60] Alexander Nilsson, Pegah Nikbakht Bideh, and Joakim
Brorsson. A Survey of Published Attacks on Intel SGX,
2000.

[61] Mark O’Neill, Scott Ruoti, Kent Seamons, and Daniel
Zappala. TLS Proxies: Friend or Foe? In Proceedings of
the Internet Measurement Conference (IMC), 2016.

[62] Vern Paxson. Bro: A System for Detecting Network
Intruders in Real-Time. In Proceedings of the USENIX
Security Symposium (USENIX Security), 1998.

[63] Rishabh Poddar, Chang Lan, Raluca Ada Popa, , and
Sylvia Ratnasamy. Safebricks: Shielding Network Func-
tions in the Cloud. In Proceedings of the USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI), 2018.

[64] Zafar Ayyub Qazi, Cheng-Chun Tu, Rui Miao Luis Chi-
ang, Vyas Sekar, and Minlan Yu. SIMPLE-fying Middle-
box Policy Enforcement Using SDN. In Proceedings of
the ACM Special Interest Group on Data Communication
(SIGCOMM), 2013.

[65] Tony Rutkowski and Roger Eriksson. Redefining Net-
work Security: The Standardized Middlebox Security
Protocol (MSP). https://www.etsi.org/images/
files/ETSIWhitePapers/ETSI_WP-43-MSP.pdf,
2021.

[66] Justine Sherry, Shaddi Hasan, Colin Scott, Arvind Kr-
ishnamurthy, Sylvia Ratnasamy, and Vyas Sekar. Mak-
ing Middleboxes Someone Else’s Problem: Network
Processing as a Cloud Service. In Proceedings of the
ACM Special Interest Group on Data Communication
(SIGCOMM), 2012.

[67] Justine Sherry, Chang Lan, Raluca Ada Popa, and Sylvia
Ratnasamy. BlindBox: Deep Packet Inspection over
Encrypted Traffic. In Proceedings of the ACM Special In-
terest Group on Data Communication (SIGCOMM), 2015.

[68] Bohdan Trach, Alfred Krohmer, Franz Gregor, Sergei
Arnautov, Pramod Bhatotia, and Christof Fetzer. Shield-
Box: Secure Middleboxes Using Shielded Execution. In
Proceedings of the ACM Symposium on SDN Research
(SOSR), 2018.

[69] Louis Waked, Mohammad Mannan, and Amr Youssef.
To Intercept or Not to Intercept: Analyzing TLS In-
terception in Network Appliances. In Proceedings of
the Asia Conference on Computer and Communications
Security (ASIACCS), 2018.

[70] Xiang Wang, Yang Hong, Harry Chang, KyoungSoo
Park, Geoff Langdale, Jiayu Hu, and Heqing Zhu. Hy-
perscan: A Fast Multi-Pattern Regex Matcher for Mod-
ern CPUs. In Proceedings of the USENIX Symposium on
Networked Systems Design and Implementation (NSDI),
2019.

[71] Shinae Woo, Eunyoung Jeong, Shinjo Park, Jongmin
Lee, Sunghwan Ihm, and KyoungSoo Park. Compari-
son of Caching Strategies in Modern Cellular Backhaul
Networks. In Proceedings of the ACM Conference on
Mobile Systems, Applications, and Services (MobiSys),
2013.

[72] Yahui Zhang, Min Zhao, Tingquan Li, and Huan Han.
Survey of attacks and defenses against SGX. In IEEE 5th
Information Technology and Mechatronics Engineering
Conference (ITOEC), 2020.

646 2024 USENIX Annual Technical Conference USENIX Association

https://nghttp2.org/documentation/h2load-howto.html
https://nghttp2.org/documentation/h2load-howto.html
https://www.etsi.org/images/files/ETSIWhitePapers/ETSI_WP-43-MSP.pdf
https://www.etsi.org/images/files/ETSIWhitePapers/ETSI_WP-43-MSP.pdf

Appendix A

1 /*---*/
2 /* Initialize/destory mmtls variables and memory buffer pools, etc. */
3 int mmtls_init(const char *fname, int num_cpus);
4 int mmtls_destroy();
5 /*---*/
6 /* Create mmtls a thread context for a given CPU core */
7 mmctx_t mmtls_create_context(int cpu);
8 /*---*/
9 /* Wait until an mmtls thread context joins */
10 void mmtls_app_join(mmctx_t mmctx);
11 /*---*/
12 /* Register/deregister an event handler for a given mmtls thread */
13 int mmtls_register_callback(mmctx_t mmctx, event_t event, mmtls_cb cb);
14 int mmtls_deregister_callback(mmctx_t mmctx, event_t event);
15 /*---*/
16 /* Pause/resume the ON_TLS_NEW_RECORD event for a content length */
17 int mmtls_pause_monitor(mmctx_t mmctx, int cid, int side, int len);
18 int mmtls_resume_monitor(mmctx_t mmctx, int cid, int side);
19 /*---*/
20 /* Get a plaintext record, a length, and a record type
21 * If buf is NULL, only the length and type are returned */
22 int mmtls_get_record(mmctx_t mmctx, int cid, int side, char *buf, int *len, uint8_t *type);
23 /*---*/
24 /* Set/get a user context for a session
25 * The context points to an opaque user data structure */
26 int mmtls_set_uctx(mmctx_t mmctx, int cid, void *uctx);
27 void *mmtls_get_uctx(mmctx_t mmctx, int cid);
28 /*---*/
29 /* Reset/terminate the session */
30 int mmtls_reset_session(mmctx_t mmctx, int cid);
31 /*---*/
32 /* Get an error code
33 * Can be called after ON_TLS_ERROR_CALLBACK and mmtls_get_record() */
34 int mmtls_get_last_error(mmctx_t mmctx, int cid);
35 /*---*/
36 /* Get a set of information related to a given session
37 * Information can be determined by bitmask */
38 int mmtls_get_tls_info(mmctx_t mmctx, int cid, session_info *info, uint16_t bitmask);

Figure 23: mmTLS API list

USENIX Association 2024 USENIX Annual Technical Conference 647

	Introduction
	Background and Motivation
	TLS and TLS middleboxes
	Existing Works & Performance Penalty
	Read-write Enterprise TLS Middleboxes

	mmTLS System Design
	Operating Assumptions
	Overall Architecture
	Efficient Private Tag Generation
	Scalable TLS Session Key Delivery
	Event-Driven TLS Traffic Monitoring

	Implementation
	Evaluation
	Experiment Setup
	Throughput and Delay Performance
	Scalability & Middlebox Overhead
	Private Tag Generation Overhead
	Real-world Application Performance
	Popular TLS Cipher Suites

	Related Work
	Conclusion

