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Abstract
Recent advancements in training large-scale models have cen-
tered on optimizing activation strategies and exploring various
parallel training options. One research avenue focuses on en-
hancing activation-related operations, such as offloading and
recomputing. However, there is room for further refinement
in these strategies to improve the balance between computa-
tion and memory utilization. Another line of work explores
different training parallelisms, which often require extensive
parameter tuning and achieve suboptimal combinations of
parallel options.

To tackle these challenges, this paper introduces a novel
method for losslessly accelerating the training of large lan-
guage models. Specifically, two efficient activation remate-
rialization strategies are proposed: Pipeline-Parallel-Aware
Offloading, which maximizes the utilization of host mem-
ory for storing activations, and Compute-Memory Balanced
Checkpointing, which seeks a practical equilibrium between
activation memory and computational efficiency. Additionally,
the paper presents an extremely efficient searching method
for optimizing parameters for hybrid parallelism, considering
both offloading and checkpointing to achieve optimal perfor-
mance. The efficacy of the proposed method is demonstrated
through extensive experiments on public benchmarks with
diverse model sizes and context window sizes. For example,
the method significantly increases Model FLOPs Utilization
(MFU) from 32.3% to 42.7% for a 175B Llama-like model
with a context window size of 32,768 on 256 NVIDIA H800.

1 Introduction

Large language models (LLMs) [3, 5, 27, 28] have emerged
as powerful tools capable of transforming various domains,
including natural language processing, machine translation,
and conversational AI applications. These models, however,
require extensive computational resources and memory, par-
ticularly during training, necessitating the development of
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Figure 1: Overview of our system. Hybrid parallel variables t,
c, p, d stand for tensor, context, parallel, and data parallelism
sizes. Variables under model-related and cluster-related prim-
itive information are defined in Table 7. Model primitives
can be measured with a single layer and cluster primitives
can be obtained with only a few nodes. The configuration
generated from our system gives optimal performance in real
large distributed training runtime.

strategies to accelerate the training process. Existing work
has focused on optimizing various activation strategies and
exploring different parallel training options.

In the realm of checkpointing, methods such as [4, 13]
have been designed to save memory by swapping computing
resources, thus minimizing memory usage on a single GPU.
However, these methods are either limited to networks with
residual connections due to the linearization assumption or
suffer from high search complexity and sensitivity to parallel
configurations, resulting in high search overhead and difficulty
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in direct application to large models.
Current approaches to hybrid parallelism tuning for large

models can be categorized into two main strategies. One
strategy [12, 32, 36] employs mathematical modeling and
optimization techniques, such as dynamic programming or
integer linear programming, to identify the optimal parallel
configuration. This method assumes a direct proportionality
between computational costs and the amount of computa-
tion or communication, which may not always be accurate.
The other strategy [8] involves a brute-force enumeration
of parallelism parameters. While this approach circumvents
the complexities of modeling, it is resource-intensive due to
the extensive experimentation needed to evaluate numerous
parameter combinations.

To address these challenges, this paper introduces a novel
approach to losslessly accelerate the training of large lan-
guage models by optimizing activation strategies and explor-
ing optimal hybrid parallel training, as shown in Figure 1.
Specifically, we propose two efficient activation rematerial-
ization strategies: Pipeline-Parallel-Aware Offloading, which
maximizes the utilization of host memory for storing activa-
tions, and Compute-Memory Balanced Checkpointing, which
seeks a practical equilibrium between activation memory and
computational efficiency.

Our Pipeline-Parallel-Aware Offloading algorithm ad-
dresses the challenge of efficiently managing the organization
of activations. It operates on the principle that the host-to-
device bandwidth may be a limiting factor in offloading, and
thus, it carefully schedules offloading and reloading of ac-
tivations to minimize performance overhead. It follows a
scheduling granularity of “pipeline stages”, ensuring that the
time to finish both offloading and computing is determined
by the slower process, allowing for efficient overlap.

The Compute-Memory Balanced Checkpointing algorithm
tackles the challenge of balancing memory cost and compu-
tational efficiency. It identifies the minimum computational
expenditure required to reconstruct each activation tensor
while adhering to a specified memory budget. This method fo-
cuses on the size of stored activation, as it is more significant
than temporary memory generated by at most a few layers.
By enumerating the set of stored activations, we derive the
Pareto frontier of memory cost and computation cost, from
which we select a compute-memory balanced solution.

To optimize the vast search space of parallelism parame-
ters, we propose an efficient method that involves measuring
cluster-related primitive information and the model-related
primitive information, such as the forward and backward time
of each transformer layer, the time of pipeline parallel peer-to-
peer communication, the bandwidth of optimizer communica-
tion, and so on. These measurements are then used to build a
performance model that accurately predicts the time of each
iteration, allowing us to exhaustively search for the optimal
combination of parameters that minimize the time of each
iteration while satisfying memory constraints.

The contribution is highlighted as follows:

1. Pipeline-Parallel-Aware Offloading is proposed to sched-
ule offloading and reloading of activations, following the
pipeline parallel schema, fully utilizing host memory to
store activations with negligible overhead.

2. Compute-Memory Balanced Checkpointing is proposed
to balance memory cost and computation cost to achieve
the Pareto optimality.

3. We propose an efficient searching method to find the
optimal hybrid parallelism parameters using the perfor-
mance model measured from cluster-related primitive
information and model-related primitive information.

4. Extensive experiments demonstrate the superiority of the
proposed method. Remarkably, our method significantly
increases Model FLOPs Utilization (MFU) from 32.3%
to 42.7% for a 175B Llama-like model with a context
window size of 32,768 on 256 NVIDIA H800 GPUs.

2 Related Work

2.1 Checkpointing
Activating checkpoints [4, 13] is a strategy designed to save
memory by swapping computing resources, thus minimizing
memory usage on a single GPU. When applied to a sequence
of layers, this method retains only the input of the first layer
for backpropagation. During the backward pass, intermediate
outputs are recomputed as needed for gradient calculations.
This approach significantly reduces the memory consumption
associated with intermediate activations, freeing up memory
to support larger models. Tools such as Rotor [1], Pofo [2],
Checkmate [11], and POET [20] have been developed to au-
tomate the decision-making process of applying activation
checkpoints in training pipelines, optimizing strategies to
achieve the best runtime performance within a memory bud-
get. Activation checkpointing does not involve tensor shard-
ing, which is compatible with other parallelization methods.

2.2 Hybrid Parallelism
Data parallelism Data parallelism [34] is widely adopted
for distributed learning. Each GPU processes its assigned
dataset partition, and gradient synchronization occurs during
the backward pass. Frameworks such as PyTorch Distributed-
DataParallel [16] and Horovod [25] facilitate the incorpo-
ration of data parallel training into existing codebases with
minimal code changes. A critical limitation of data parallelism
is the redundancy in memory usage, as each GPU retains a
full copy of the model weights. To address this issue, Deep-
Speed introduces a series research work on zero-redundancy
optimizer [21, 22, 24, 30] that partitions the optimizer state,
gradients, and model parameters during data-parallel training.
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Tensor parallelism and context parallelism Tensor par-
allelism involves the partitioning of parameters and inputs
within an operator, which is a technique used to distribute the
computational load across multiple devices. In the context of
the Transformer [29], Megatron-LM [26] takes advantage of
the structure of transformer networks to remove a synchroniza-
tion point. Additionally, there are some researches [14,17] that
focus on partitioning along the sequence dimension, which
makes activations further split along the context window. Se-
quence parallelism [14] distributes all activations along tensor
parallel groups, while tensor parallelism only distributes part
of activations. Research [17] distributes activations to a new
kind of parallel groups that are orthogonal to tensor parallel
groups, and this technique is named “context parallelism” in
Megatron-LM.

Pipeline parallelism Pipeline parallelism partitions a
model by its layers, distributing different layers across various
devices for concurrent execution. This approach can introduce
“bubbles” due to load imbalance and idle periods. To address
the issue of bubbles in pipeline parallelism, numerous stud-
ies [9,15,18,35] have explored solutions from the perspective
of asynchronous updates. However, this approach can lead to
issues with model performance. In this work, we employ an
interleaved schedule [19], which offers improvements over
the basic schedule [7,10,18] approach in terms of both bubble
size and memory consumption.

Hybrid parallelism tuning The current landscape of dis-
tributed parameter search for large models can be broadly cat-
egorized into two main approaches. One approach [12,32,36]
involves modeling static compute graph and then employ-
ing some search algorithms, such as dynamic programming
or integer linear programming, to identify the optimal solu-
tion. The other approach [8] involves enumerating distributed
parameters and selecting the best solution based on empir-
ical performance comparisons. However, the first approach
has its limitations. It assumes that computational or com-
munication costs are directly proportional to the amount of
computation or communication, which may not always hold
true. More critically, it struggles to accurately model the im-
pact of hardware-specific computations that are overlapped
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Figure 2: Structure of Llama series of models.

Table 1: Notation table.
Notations of model Notations of hybrid parallelism
L # transformer layers t tensor parallel size
h hidden dimension size c context parallel size
H intermediate size p pipeline parallel size
a # attention heads d data parallel size
g # query groups v # pipeline stages per GPU
V vocabulary size l # layers per stage
B global batch size b micro-batch size
s sequence length

by communication [23]. The second approach, which relies
on exhaustive enumeration and empirical measurements, cir-
cumvents the modeling difficulties encountered by the first
approach. However, this method can be time-consuming and
costly due to the need to experiment with a large number of
possible parameter combinations.

3 Preliminaries

Model definition A large language model usually consists
of an embedding layer, L transformer layers, and a head layer.
Figure 2 gives the structure of the Llama series of models.
The dimension of hidden state of transformer layer is denoted
h. The dimension of outputs of activation functions in feed-
forward networks is named “intermediate size” and denoted
H. See Table 1 for more notations that define the model.

Hybrid parallel groups During the hybrid parallel training,
GPUs in a cluster are partitioned into a Cartesian product of
tensor-parallel group, context-parallel group, pipeline-parallel
group, and data-parallel group, of which the group sizes are
denoted t, c, p, and d respectively, thus #GPUs = tcpd.

Memory footprint Memory consumption on each device
can be categorized into the following four parts. Terms in the
polynomials that are two or more orders of magnitude smaller
than the others are omitted.

1) Model weights and gradients. The weight of each trans-
former layer is denoted to

P =

(
2+

2g
a

+
3H
h

)
h2 (1)

In hybrid parallelism, L transformer layers are split by in-
terleaved pipeline parallelism. Each device holds v stages
and each stage includes l transformer layers, thus L = pvl.
Then weights and gradients are distributed to t devices along
tensor-parallel group. The size on each device is

Mm =
6
t

(
vlP+V h ·1rpp∈{0,p−1}

)
(2)

where 1 is known as indicator function and rpp is defined as
pipeline parallel rank. The coefficient 6 = 2+4 consists of
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BF16 weights and FP32 gradients. Change the coefficient if
other data precision formats are specified.

2) Optimizer states and main weights. Optimizer is fur-
ther distributed in data-parallel groups, whose size on each
device is

Mo =
12
tcd

(
vlP+V h ·1rpp∈{0,p−1}

)
(3)

where the coefficient 12 = 4+4+4 is the sum of FP32 main
weights and two FP32 Adam states.

3) Maximum living activation size. Activation is dis-
tributed in both tensor-parallel groups and context-parallel
groups. In this paper, sequence-parallelism is always enabled
whenever t ≥ 2 to ensure activations are fully distributed along
tensor-parallel groups; FlashAttention [6] is adopted to re-
duce the memory overhead of the attention. For convenience,
we use the term “activation block” to refer to all activations
stored by one pipeline stage (which contains l transformer
layers) for one micro-batch. The size of the activation block
is

Mb =
1
tc

(
12+

4g
a

+
8H
h

)
lbsh (4)

In interleaved pipeline-parallelism, the number of forward
steps before the first backward step is (vp+ p− 2rpp − 1).
Thus the maximum living activation size on each device is

Ma = (vp+ p−2rpp −1)Mb (5)

4) Other buffers and overheads. The size of this
part is implementation-dependent, including CUDA context
overhead, memory management fragments, NCCL buffers,
cuBLAS workspaces, and temporary variables. If the buffer
size is not enough during training, an out-of-memory (OOM)
error occurs, or the program may run under borderline condi-
tions (e.g., frequent garbage collection, and frequent device
synchronization).

4 Motivation

4.1 Activation Bottleneck
During the training of large language models, the GPU mem-
ory is faced with significant challenges, particularly in train-
ing models with a long context window. For example, train-
ing Llama-175B with a 32k context window takes at least
Ma = 171.5 GB activation memory on the first rank, regard-
less of the hybrid parallel parameters employed (assuming
tc ≤ 8). The configurations of the models used for the experi-
ments are presented in Table 2.

There are two straightforward methods to address the GPU
memory issue, but they come with considerable side effects.
The first approach to solve this problem is full checkpointing,
but it leads to 1/3 additional computation cost. Another way
to solve this problem is increasing the tensor parallelism or
context parallelism sizes, but it incurs substantial communi-
cation overhead and a reduction in computational intensity.

To illustrate this issue, we present the estimated memory re-
quirements and computation times for various parallelism
configurations in Table 3. Due to practical limitations in GPU
memory capacity for training models with the specified hy-
brid parallel parameters, we initially measured the forward
and backward pass times for a single transformer layer. Sub-
sequently, we approximate the time per iteration based on
Equation (1) of [19]:

Trough = (mv+ p−1)l(TF +TB) (6)

where m = B/(bd) is the number of micro-batches for each
data-parallel group, TF+TB is the forward and backward time
of one transformer layer.

Table 2: The configurations of the models in experiments.

Model L h H a g V

Llama-175B 96 12288 32768 96 96 32005
Llama-65B 80 8192 22016 64 64 32005

Llama2-70B 80 8192 28672 64 8 32005

Table 3: Roughly estimated computation times and memory
requirements for different hybrid parallel parameters. B= 256,
b = 1, l = 2, #GPUs = 256.

Model s t c p Trough Mm +Mo Ma Can
(s) (MB) (MB) run?

175B 4k 8 1 8 10.20 23,750 24,640 ✓
175B 4k 4 1 8 8.91 39,583 49,280 OOM
65B 4k 2 2 8 3.70 26,899 28,200 ✓
65B 4k 2 1 8 3.47 26,899 56,400 OOM
70B 16k 4 4 4 19.51 27,962 27,864 ✓
70B 16k 4 2 4 18.13 27,962 55,728 OOM

4.2 Challenge of Hybrid Parallel Tuning
Problem 1 (Basic problem). Given the model, sequence
length s, global batch size B, and the number of nodes, search-
ing a group of hybrid parallel parameters (t,c, p, l,ckpt) to
minimize the time of each iteration T .
Problem 2 (Throughput-maximization problem). Given
the model, sequence length s, the range of satisfying global
batch size B ∈ [Bmin,Bmax], and a maximum number of nodes,
searching a group of hybrid parallel parameters (t,c, p, l,ckpt)
to maximize throughput Bs/T .

Here is some prior knowledge about reducing the searching
space of performance tuning. The micro-batch size can be
fixed to b = 1 to reduce parallel size thus achieving higher
performance [8]. Cross-node tensor parallelism should be
avoided because the communication size of tensor parallelism
is 20lbsh/c for each pipeline stage on each device, which
is 5lt times larger than the communication size of pipeline
parallelism. Similarly, for models that do not employ grouped
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query attention (GQA), inter-node context parallelism should
also be avoided, as it entails a 12lbsh/t communication size
for each pipeline stage on each device. Our parameter tuning
method can work well without the above constraints; however,
these conditions were determined in the early stages of our
research.

Even with the aforementioned prior knowledge to help
shrink the search space, it is still very large, as shown in Ta-
ble 4. Exhaustive searching for Problem 2 by enumerating
combinations of (B,#nodes) will repeatedly invoke the pro-
cedure of Problem 1.

Table 4: Searching space of Problem 1.

#GPUs Llama-175B Llama-65B Llama2-70B
#(t,c) #(t,c, p, l) #(t,c) #(t,c, p, l) #(t,c) #(t,c, p, l)

64 10 141 10 86 14 106
192 10 287 10 86 14 106
240 10 175 10 125 14 141
256 10 160 10 90 22 178
1024 10 160 10 90 30 250
7680 10 310 10 190 34 514

5 Method

This section begins with an exposition of two methods for
rematerializing activations. Subsequently, it presents an ap-
proach capable of identifying optimal hybrid parallel parame-
ters, which are designed to simultaneously take the remateri-
alization of activations into account.

5.1 Pipeline-Parallelism-Aware Offloading
As shown in Figure 3, we take advantage of the flow of inter-
leaved pipeline parallelism [19] according to two principles
to design our offloading scheme: 1) Offloading starts as soon
as possible after the end of each pipeline stage forward. 2)
Reloading starts at the beginning of the previous pipeline
stage backward.

5.1.1 Implementation

Scheduling granularity The granularity of scheduling of-
floading and reloading is “pipeline stages”. In large language
models, all pipeline stages have the same computation time
and activation size (also the same transmission time). Thus
the time to finish both offloading and computing is decided by
the slower one between computation time and transmission
time, and the faster one can be completely overlapped.

Event serialization The timing to serialize offloading
events is worth considering because GPU memory alloca-
tions that are under-transferring cannot be reused. We use
cudaStreamWaitEvent to make each offloading wait for the

previous offloading finishes. This ensures the activation of at
most one pipeline stage is under offloading.

Ping-pong reloading Two buffers are used in reloading:
one is used as the target of reloading, and the other is used by
the current backward step. At the next backward step, the roles
of two buffers are swapped. Activation tensors are in-place
constructed from the previous reloaded buffer.

Bandwidth utilization enhancing To achieve the highest
bandwidth between GPU and host, we bind the Non-Uniform
Memory Access (NUMA) node for each process and use
page-locked memory for CPU buffers.

5.1.2 Memory Size

Additionally, the offload ratio α (0 ≤ α ≤ 1) is used to control
how much activation is offloaded to host memory.

With the offloading schema, on the first pipeline parallel
rank, the maximum number of offloaded activation blocks is
(vp+ p− 3), one activation block is under offloading, one
activation block is generated by the current forward step, and
two buffers are used by reloading. Peak GPU memory usage
is

Mgpu = Mm +Mo +((vp+ p−3)(1−α)+2+2α)Mb (7)

On the host side, there are at most (vp+ p−3) activation
blocks that are offloaded (including one activation block is
under reloading), and one activation block is under offloading.
Peak host memory usage is

Mhost = (vp+ p−2)αMb (8)

We select offload ratio α as less as possible for two reasons:
Memory copy between host and device may slow down com-
putation due to the competition for resources; offloading may
be not completely overlapped by computation. First solve
α using Equation 7 with maximum available GPU memory
size. Then compute Mhost and check whether it is out of host
memory.

5.1.3 Overlap

As long as the offload ratio α increases, offloading may be not
completely overlapped by computation. The pipeline sched-
ule consists of 3 phases: warm-up phase that contains only
forward, steady phase that contains pairs of forward and back-
ward, and cooldown phase that contains only backward. Non-
overlapped offloading/reloading will first occur in the warm-
up phase. The reason is forward is about 2× faster than back-
ward, thus steady phase has 3× time to do offload and reload,
and the cooldown phase has 2× time to do reload.

There are vp−1 steps in the critical path of the warm-up
phase. The first forward step overlaps nothing, and the second
to the p-th steps overlaps TembF + lTF, where TembF is forward
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Device 1 1 2 3 4 1 2 3 4 5 6 7 1 8 2 5 3 6 4 7 1 8 2 3 4 5 6 7 8 5 6 7 8

1 2 3 4 1 2 3 4 5 6 7 8 5 6 7 8
1 2 3 4 1 2 3 4 5 6 7 8 5 6 7 8

Device 2 1 2 3 4 1 2 3 4 5 1 6 2 7 3 8 4 5 1 6 2 7 3 8 4 5 6 7 8 5 6 7 8

1 2 3 4 1 2 3 4 5 6 7 8 5 6 7 8
1 2 3 4 1 2 3 4 5 6 7 8 5 6 7 8

Device 3 1 2 3 4 1 2 3 1 4 2 5 3 6 4 7 1 8 2 5 3 6 4 7 5 8 6 7 8 5 6 7 8

1 2 3 4 1 2 3 4 5 6 7 8 5 6 7 8
1 2 3 4 1 2 3 4 5 6 7 8 5 6 7 8

Device 4 1 2 3 4 1 1 2 2 3 3 4 4 5 1 6 2 7 3 8 4 5 5 6 6 7 7 8 8 5 6 7 8

1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8

Forward Backward Offload Reload

Figure 3: Schedule of pipeline-parallelism-aware offloadding and reloading. The pipeline parallel size is 4, each device has 2
virtual pipeline stages. Dark blocks are corresponding to the first virtual pipeline stage, light blocks are corresponding to the
second virtual pipeline stage.

time of the embedding layer. Other vp− p−1 steps overlaps
lTF. The overhead at the warm-up phase is

(p−1)max(0,αMb/BWDtoH −TembF − lTF)︸ ︷︷ ︸
overlapped by 2nd to p-th forwards

+

(vp− p−1)max(0,αMb/BWDtoH − lTF)︸ ︷︷ ︸
overlaped by next forwards

(9)

where BWDtoH is the device to host memory copy bandwidth
when all GPUs do the same memory copy in parallel. The
overhead at the steady phase and cooldown phase can be
calculated similarly, see Appendix B.3 for equations.

In summary, although we can make use of host memory,
there is some overhead if offload too many activations. The
activation size will be reduced in the next section.

5.2 Compute-Memory Balanced Checkpoint-
ing

In this section, we initially determine the minimum computa-
tional expenditure for each enumerated memory budget. We
then deploy a checkpointing strategy that balances computa-
tional requirements and memory constraints, functioning on
the Pareto optimal frontier. This strategy aims to introduce
massive memory savings while incurring negligible incremen-
tal computational costs.

5.2.1 Overview

Several works [1, 2, 11, 20] have been devoted to designing
strategies to minimize the memory consumption of the entire
model or to optimize the computational cost within a defined

memory budget. In pursuit of high accuracy, these studies
carefully evaluate the cost associated with temporary tensors
per operator, which not only increases the cost of individual
computations but also renders previous solutions obsolete
due to changes in parallel configurations. Most critically, in
hybrid parallel scenarios, determining the optimal parallel
configuration requires a large number of trials, resulting in
unacceptable solution overhead for existing methods.

However, in the field of pipeline parallelism, the scope
of checkpoints is often limited to a maximum of l layers
rather than encompassing the entire model. Furthermore, the
size of stored activation size should be focused, as on-the-
flying temporary memory is generated by at most l layers,
while stored activations are generated by at most (vp+ p−2)l
layers.

We propose a compute-memory balanced solution on the
Pareto Frontier that is insensitive to parallel configurations
given a specified memory budget.

5.2.2 Pareto Frontier

In a transformer layer, the size of activation stored by each
sublayer is shown in Table 5. First, for each activation tensor,
we find the minimum computation cost to reconstruct it. As
is different from previous works, temporary memory can be
ignored in pipeline parallelism, thus we reconstruct activa-
tions layer by layer. During the construction, all activations of
previous layers can be used, no matter whether the previous
activation is stored or reconstructed.

Figure 4(a) shows an example of reconstructing the input of
Attention. Two layers are required to recompute. Figure 4(b)
shows a slightly more complex case. Linear is required to be
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Table 5: Stored activation size of each sublayer in a trans-
former layer for Llama/Llama2 models. The size that is two
or more orders of magnitude smaller than the others is omit-
ted.

# Operation Input Stored activation
sublayer ID size (in bytes)

1 RMSNorm 0† 2bsh/(tc)
2 Linear 1 2bsh/(tc)
3 RoPE 2
4 Attention 2, 3 (4+4g/a)bsh/(tc)
5 Linear 4 2bsh/(tc)
6 Add 0†, 5
7 RMSNorm 6 2bsh/(tc)
8 Linear 7 2bsh/(tc)
9 SiLU 8 2bsH/(tc)

10 Mul 8, 9 4bsH/(tc)
11 Linear 10 2bsH/(tc)
12 Add 6, 11

Total (12+ 4g
a + 8H

h )bsh/(tc)‡

† Sublayer ID 0 refers to the input of the transformer layer.
‡ Attention (#4) and Linear (#5) share one stored activation

tensor of size 2bsh/(tc).

Linear

RoPE

Attention

(a) Reconstruct the input of
Attention. Two layers are

required to recompute.

Linear

SiLU

Mul

(b) Reconstruct the input of
SiLU. The second operand of

Mul is also reconstructed.

Figure 4: Reconstruction cost. Operators recomputed are
marked in gray. Tensors reconstructed are marked in bold.

recomputed when reconstructing the input of SiLU, and the
output of Linear is used by both SiLU and Mul, so recomput-
ing the Linear layer reconstructs both activations.

The computation cost to reconstruct each activation tensor
is shown in Table 6. For example, reconstructing activation#2
(i.e., the activation stored by the second layer in Table 5) is
compute-memory efficient because it saves 2bsh/(tc) mem-
ory by introducing only recomputing of RMSNorm#1, where
the computation cost is only 0.061 ms. In contrast, recon-
structing activation#7 is not efficient because it saves the
same memory size but introduces 1.018 ms recomputing.

By enumerating the set of stored activations, we can get
the Pareto frontier of memory cost and computation cost,
as shown in Figure 5. The granularity of our checkpointing
method is each transformer layer, so reconstructing the input
of a transformer layer by recomputing the last two layers of
the previous transformer layer is not considered. Splitting one

Table 6: Stored activation and corresponding saved recom-
puting. Activation ID is the index of the sublayer that stores
the activation. Recomputing ID is the index of the sublayer.
A check mark indicates the activation is stored in our check-
pointing and the reconstruction time is saved. Activation size
and reconstruction time are measured on Llama-175B, b = 1,
s = 4096, t = 4, c = 1.

Activation Recomputing Balanced
ID size ID time (ms) checkpointing
#1 2bsh/(tc) - - ✓‡

#2 2bsh/(tc) #1 0.061
#4a† 6bsh/(tc) #2 #3 1.432 ✓
#5 2bsh/(tc) #4 0.454 ✓
#7 2bsh/(tc) #5 #6 1.018 ✓
#8 2bsh/(tc) #7 0.061

#9 #10b† 10.7bsh/(tc) #8 2.287 ✓
#10a† 5.3bsh/(tc) #9 0.105
#11 5.3bsh/(tc) #10 0.107

- - #11 #12 1.684 ✓‡

Total 37.3bsh/(tc) 7.209

† #4a is QKV while the other part (#4b) is the output of Attention
(alias to #5). #10a is the first operand of Mul that alias to the
output of SiLU, #10b is the second operand.

‡ The input must be stored. The last two layers do not need to be
recomputed, so no activation is stored and the recomputing time
is always saved.

layer into multiple layers (for example, recomputing half of
Linear to reconstruct half activation size) may generate more
solutions but is not considered in our method.

5.2.3 Compute-Memory Balanced Solution

Our compute-memory balanced checkpointing method uses
the inflection point of the Pareto frontier. Stored activations
are shown in Table 6. All computing-intensive layers (Linear
and Attention) are not recomputed in our method. The set
of layers that are recomputed includes RMSNorm#1, RM-
SNorm#7, SiLU#9, and Mul#10. Total recomputing time is
only 1.5% times forward and backward time.

By using the compute-memory balanced checkpointing,
the stored activation size of each transformer layer becomes

M′
b =

1
tc

(
8+

4g
a

+
4H
h

)
lbsh (10)

Compared to no checkpointing, it saves 39% activation mem-
ory usage for Llama-175B and Llama-65B, and it saves 44%
for Llama2-70B. Although the time is measured on one model,
our checkpointing method is efficient for models of all scales.
Because the executed recomputing cost is proportional to bsh,
while each of the saved recomputing cost is proportional to
bsh2 or bs2h. Interestingly, full checkpointing is not on the
Pareto frontier. The reason is that full checkpointing always
recomputes all layers including the last two layers.
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is the sum of forward, recomputing, and backward. Triangle
marks: all feasible choices. Blue line: Pareto frontier. Green
point: compute-memory balanced checkpointing that is se-
lected from the Pareto frontier. Red point: full checkpointing.
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Figure 6: Difference between two checkpointing methods.
SuperNeurons [31] uses more recomputing than our method
when reconstructing the input of Linear.

Both SuperNeurons [31] and our approach avoid recalculat-
ing Linear/Attention/Conv layers. However, Figure 6 shows
an example where these two checkpointing methods are dif-
ferent indeed. SuperNeurons store the output of Linear, so
they recompute more layers than ours.

5.3 Hybrid Parallel Parameters Tuning
The search space for hybrid parallelism parameters is vast,
and the addition of offloading and checkpointing mechanisms
further amplifies this complexity. This section treats param-
eter tuning as a constrained optimization problem and pro-
poses an efficient method to solve this problem. In pursuit
of modeling accuracy, we incorporate factors that are diffi-
cult to model, such as hardware characteristics and resource
contention caused by concurrent computation and communi-

cation, into empirical measurements. By utilizing these em-
pirically determined parameters, the model’s theoretical pre-
dictions are in good agreement with its actual performance,
with a difference of about two percent. Therefore, the opti-
mal parallel configuration can be quickly determined through
an exhaustive search, greatly improving the efficiency of the
search process.

5.3.1 Tuning Algorithm

To reduce the total number of experiments, we measure some
primitive information and subsequently construct a perfor-
mance model based on those. Before explaining the perfor-
mance model, we give the formulation of the optimization
problem. The time of each iteration is modeled as Tmodel. Then
we solve the minimizing problem:

min
t,c,p,l,ckpt

Tmodel

s.t. Mgpu ≤ Mthresh
gpu ∧Mhost ≤ Mthresh

host

(11)

where Mthresh
gpu and Mthresh

host are the GPU memory size threshold
and host memory threshold for each device, respectively.

5.3.2 Performance Modeling

In pursuit of accurate modeling, key performance benchmarks
as shown in Table 7 must be identified. The motivation for
tracking computation and communication durations stems
from their nonlinear relationship with theoretical computa-
tional complexity and message size. Specifically, the forward
propagation time of the embedding layer, transformer layer,
and header layer must be evaluated on all permutations of
(t,c). These timings may vary due to factors such as GPU
type, CUDA version, and specific operator implementation.
Concurrently, this methodology offers the advantage of im-
plicitly accounting for factors that are challenging to model
explicitly, such as resource contention arising from variations
in data shapes, concurrent communication and computation
tasks, and other related complexities.

Typically, for a specific model configuration, the measure-
ment process can be completed within a few minutes. The
time for each iteration can be divided into the following parts:

1) Pipeline warm-up phase starts from the beginning of
the first micro-batch forward on the first pipeline stage (on
the first pipeline parallel rank), and ends at the beginning of
the first micro-batch forward on the last pipeline stage (on the
last pipeline parallel rank).

Twarmup = p(TembF + lTF +Tp2p)︸ ︷︷ ︸
first p forwards on first rank

+ (vp− p−1)(lTF +Tp2p)︸ ︷︷ ︸
next stages of first micro-batch

(12)
where Tp2p is the time of the pipeline parallel peer-to-peer
communication. Tp2p should be measured for each communi-
cation message size 2bsh/(tc).
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Table 7: Notations of primitive information.

Symbol Explanation Measured times Time to measure
TembF,TembB Fwd/bwd time of the embedding layer

each model, each (b,s, t,c)
2 ∼ 15 min for each

model each (b,s)
TF,TB Fwd/bwd time of each transformer layer

TheadF,TheadB Fwd/bwd time of the head layer
Tckpt Recompute time of the balanced checkpointing each (b,s/(tc),h,s/c,H/t) total <15 min for

all models (shared
among models)

Tp2p Time of pipeline parallel peer-to-peer comm. each (2bsh/(tc))
BWopt Algorithm bandwidth of optimizer comm. each (t,cd)

BWDtoH DtoH memory copy bandwidth per GPU

once
total <10 min for

all models (shared
among models)

BWHtoD HtoD memory copy bandwidth per GPU
BWbidir Bidirectional memory copy bandwidth per GPU
ωadam #Param. to time ratio of Adam optimizer
βp2p Computation slow down ratio if overlaps p2p

βoffload Computation slow down ratio if overlaps offloading

2) Pipeline steady phase follows the warm-up phase and
ends to the tail of the last micro batch backward on the last
pipeline stage.

Tsteady = p(lTF +TheadF +TheadB + lTB)︸ ︷︷ ︸
first p micro-batches on the last rank

+

(m− p)(vlTF +TheadF +TheadB + vlTB)︸ ︷︷ ︸
other m− p micro-batches on the last rank

(13)

3) Pipeline cooldown phase follows the steady phase and
ends to the tail of the last micro batch backward on the first
pipeline stage.

Tcooldown = p(Tp2p + lTB +TembB)︸ ︷︷ ︸
last p backwards on last rank

+ (vp− p−1)(Tp2p + lTB)︸ ︷︷ ︸
other stages of last micro-batch

(14)
4) Optimizer communication and computation includes

reduce-scatter of gradients, optimizer step, and all-gather of
model weights.

Gradients and weights are communicated in the Cartesian
product of context parallel group and data parallel group. The
message size of optimizer communication is large enough,
thus transmission time is decided by bandwidth, while la-
tency is ignored. Denote BWopt as the algorithm bandwidth
of the optimizer communication group. Denote ωadam as the
ratio of the number parameters to Adam optimizer execution
time. Then optimizer communication and computation time
is modeled as

Topt = Mm/BWopt︸ ︷︷ ︸
communication

+(vlP+V h)/(tcd)/ωadam︸ ︷︷ ︸
Adam computation

(15)

where BWopt should be measured for each combination of
(t,cd), and ωadam = 53.4 GHz for Megatron-LM implemen-
tation on NVIDIA H800 80GB.

5) Offloading overhead and checkpointing overhead.
Offloading overhead is computed according to Section 5.1.3,
and the total offloading overhead is denoted to Toffload. The
time to recompute selected sublayers in one transformer layer

is denoted to Tckpt. If compute-memory balanced checkpoint-
ing is used, Tckpt is added to TB. Our performance model also
supports full checkpointing with the replacement of Tckpt to
TF.

6) Computation slow down caused by overlap. The num-
ber of pipeline parallel peer-to-peer communications that are
overlapped with computation on the critical execution path
is (4mv−2m+2p−2), where bidirectional communications
are counted twice because both compete with computation.
The additional time caused by computation slowdown is con-
sidered proportional to overlapped communication time with
a ratio βp2p. The number of offloading that overlaps with com-
putation on the critical execution path is (mv+ p−2) and so
is reloading. The additional time caused by computation slow
down is considered proportional to offload size with a ratio
βoffload.

Tslowdown = (4mv−2m+2p−2)βp2pTp2p+

βoffload(mv+ p−2)αMb
(16)

where βp2p is measured by comparing the origin timeline
and the timeline without peer-to-peer communication (re-
place peer-to-peer communication with a null operation), and
βoffload is measured by comparing the timelines with different
offload ratio α. On our hardware, we have βp2p = 0.05 and
βoffload = 0.0016 sec/GB.

As a result, we can estimate the total time as

Tmodel = Twarmup +Tsteady +Tcooldown+

Topt +Toffload +Tslowdown
(17)

5.3.3 Parameter Searching

Before searching for the optimal parameter, we make some
primitive measurements:

(1) For each combination of (t,c), we record the model
layers computation time. Since the computation time is in-
dependent of data parallelism and pipeline parallelism, we
can perform these measurements on a model with a reduced
number of layers for time-saving. Depending on the size of
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the model and the length of the sequence, the measurement
duration varies from a few minutes to tens of minutes.

(2) The recomputation time of the memory balancing
checkpoint is evaluated for each input shape of the selected
sublayer. Models with different sequence lengths can share
these measurements, which typically take a minute to com-
plete.

(3) Measure point-to-point communication time for each
2bsh/(tc) configuration, which also takes approximately one
minute.

(4) Evaluate the communication speed of the optimizer for
each combination of (t,cd), which takes less than 10 minutes.

(5) Memory copy bandwidth and the parameters ωadam,
βopt, and βoffload are measured only once and then applied to
all models and sequence lengths.

After obtaining the primitive information mentioned
above, we exhaustively enumerate all combinations of
(t,c, p, l,ckpt), ensure it is a valid group of hybrid parallel
parameters, affirm the memory size matches the constraint,
and estimate Tmodel using Equation 17.

Based on our record, Problem 1 introduced in Section 4.2
is solved in 0.001 seconds with an exhaustive searching algo-
rithm implemented in Python. Problem 2 can also be resolved
in a short time since no additional primitive information is
needed.

6 Evaluation

6.1 Experimental Settings

Experiments are conducted on a cluster where each node is
equipped with eight NVIDIA H800 80GB GPUs intercon-
nected via NVLink, with a bandwidth of 400 GB/s per GPU.
For inter-node communication, each node is outfitted with
eight 100 Gbps NICs. The nodes are configured with two In-
tel Xeon 8468V CPUs and 1TB of host memory. The cluster
consists of 32 nodes. Training precision is BF16 with FP32
gradients accumulation. The optimizer is Adam with FP32 op-
timizer states. Interleaved pipeline parallel is always enabled.
The global batch size is 256 if not specified otherwise. Micro
batch size is fixed to 1. Our baseline is forked from Megatron-
LM and we implement some industry level improvement on
it. Further implementation details refer to Appendix B.1.

6.2 Offloading and Checkpointing

In this section, we measure GPU memory size to examine
whether offloading and checkpointing work as expected.

Figure 7 shows the relationship between GPU memory us-
age and offload ratio. Without the help of offloading, running
Llama-65B with context windows size of 8192 using paral-
lel parameter (t,c, p, l) = (2,2,8,2) results in out-of-memory.
The model can be trained using the offloading technique with
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Figure 7: GPU memory with the use of offloading and
checkpointing. Left bar: w/o checkpointing. Right bar: w/
checkpointing. From bottom to top: Mm +Mo, Mgpu, peak
of all tensors (max_memory_allocated), PyTorch reserved
memory (max_memory_reserved), total GPU memory usage.
The cross mark indicates OOM. The model is Llama-65B,
s = 8192, t = 2, c = 2, p = 8, l = 2.

α ≥ 0.3. The model can also be trained using the checkpoint-
ing technique. GPU memory size decreases as long as the
offload ratio increases. Extra tensors not included in our mem-
ory model are small. The size of extra tensors is “max memory
allocated” minus Mgpu, which is 1,188 MB on average.

In this example, the extra memory size reserved by PyTorch
is 4,864 MB on average, extra memory size out of PyTorch
memory management is 6,814 MB on average. The total
memory size of NVIDIA H800 is 81,559 MB. There are
69,881 MB left on average for Mgpu and other tensors.

In the next sections, we set Mthresh
gpu = 65,000 MB if not oth-

erwise specified. As for host memory, the total host memory
size is 1 TB, so we allocate at most Mthresh

host = 100,000 MB
for each device.

6.3 Performance Model
This section evaluates the accuracy of the performance model.
We utilize a controlled variable methodology to measure the
impact of various distributed parameters on the performance
model. Figure 8(a)(b)(c) reveals our performance model is
accurate for various t and c. Figure 8(a)(e)(f) suggests it is
robust for different p and l. Figure 8(a)(g)(h) indicates our
performance model maintains correctness for all three check-
pointing methods. Figure 8(a)(d) illustrates the model can fit
different global batch sizes. In all the cases, the difference
between measured time and Tmodel is no larger than 2.0%.

6.4 End-to-End Performance Tuning
In this section, we compare the optimal performance of the
baseline system and our system on three models and a variety
of sequence lengths. For each system, optimal hybrid parallel
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Figure 8: Verify the accuracy of our performance model with different parameters. Items in a parenthesis are t, c, p, l, and
checkpointing method, respectively.

Table 8: End-to-end performance tuning. The global batch size is 256, number of GPUs is 256, throughput metric is normalized
to tokens per second per GPU.

w/o offloading and balanced checkpointing w/ offloading and balanced checkpointing

Model s t c p l ckpt
Throughput

/ MFU
Latest

Megatron t c p l ckpt α
Throughput

/ MFU
Llama-175B 4096 4 2 16 2 no 367 / 39.8% 340 / 37.0% 2 2 16 1 no 53% 381 / 41.4%
Llama-175B 8192 2 2 16 1 full 299 / 33.4% 278 / 31.0% 4 1 8 2 ours 63% 387 / 43.2%
Llama-175B 16384 4 1 8 2 full 289 / 34.0% 284 / 33.3% 4 1 8 2 ours 85% 382 / 44.8%
Llama-175B 32768 4 2 8 2 full 250 / 32.3% 234 / 30.2% 4 2 8 2 ours 85% 330 / 42.7%
Llama-65B 4096 4 1 8 2 no 897 / 36.8% 868 / 35.6% 2 1 8 2 no 36% 914 / 37.5%
Llama-65B 8192 2 4 8 2 no 884 / 37.7% 802 / 34.2% 2 2 8 2 no 36% 929 / 39.6%
Llama-65B 16384 8 1 8 1 no 785 / 36.1% 753 / 34.6% 4 1 4 2 ours 43% 879 / 40.4%
Llama-65B 32768 2 2 4 2 full 590 / 31.0% 551 / 28.9%† 4 2 4 2 ours 43% 734 / 38.5%
Llama-65B 65536 2 4 4 2 full 433 / 28.3% 335 / 21.9%† 4 2 4 2 ours 77% 548 / 35.9%

Llama2-70B 4096 2 2 8 2 no 875 / 37.9% 804 / 34.8% 2 2 8 2 no 0% 875 / 37.9%
Llama2-70B 8192 2 4 8 2 no 896 / 40.2% 807 / 36.3% 2 4 8 2 no 0% 896 / 40.2%
Llama2-70B 16384 2 8 8 2 no 771 / 37.2% 612 / 29.5% 2 4 8 2 no 44% 846 / 40.8%
Llama2-70B 32768 2 16 8 2 no 612 / 33.5% 424 / 23.2% 2 4 4 2 ours 89% 724 / 39.6%
Llama2-70B 65536 4 16 4 5 no 438 / 29.7% 402 / 27.2% 2 4 8 1 ours 75% 544 / 36.9%
Llama2-70B 131072 2 4 8 1 full 285 / 26.7% OOM 2 8 8 1 ours 77%‡ 352 / 33.0%
† We configure torch.cuda.set_per_process_memory_fraction to run the case, otherwise, the latest Megatron-LM runs out of memory.
‡ The offload ratio is set to 2% higher than that is calculated by the memory model because memory overhead is large when the context

window is long.

parameters are solved by our performance model. Results are
shown in Table 8. The performance of the latest Megatron-LM
is also shown for comparison. Our baseline slightly outper-
forms the latest Megatron-LM using the same parameters.
Note that our performance model is not tuned for the lat-
est Megatron-LM, we just use the same parameters to run

it. With the help of offloading and balanced checkpointing,
our method has more room to trade-off parallel configura-
tions, resulting in significant performance gain compared to
the baseline. For example, our method significantly increases
MFU from 32.3% to 42.7% for Llama-175B with a context
window size of 32,768 on 256 NVIDIA H800 GPUs.
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Figure 9: Data parallel scaling and optimal scaling. Lines are modeled throughput, marks are achieved throughput. The range of
global batch size is 256±16.

Here are some interesting observations from the result:
(1) None of the factors in the hybrid parallel search space

are trivial to achieve optimum performance. For a single
model, the solution evolves with varying context window
sizes. Models using the same context window size may
also demand distinct parallel parameters to attain maximum
throughput.

(2) For the GQA model, context parallelism is preferred
over tensor parallelism. This reason is that context parallelism
communication size 12lbsg(h/a)/t is only g/a = 1/8 times
that of the model without GQA (which is 12lbsh/t).

(3) For the GQA model, inter-node context parallelism is
preferred over full checkpointing. However inter-node context
parallelism has a significant overhead. For example, when
s increases from 8192 to 16384, MFU drops 3.0% using
our implementation, and MFU drops 6.8% using the latest
Megatron-LM implementation; the overhead of offloading
is much smaller than inter-node context parallelism, and no
MFU drop is observed.

6.5 Optimal Scaling

It is a practical requirement to find the optimal training con-
figuration for each scale of a cluster. The example is to train
three models with different context window lengths, global
batch size can be chosen from the range 256±16. The num-
ber of nodes scales from 4 to 32. The data parallel scaling
method is to tune the optimal parameters for B = 256 on half
nodes, and scale data parallel size as long as the number of
nodes changes.

The optimal scaling method is to tune the parameters for
every global batch size and every number of nodes. The output
of the optimal scaling algorithm is (B, t,c, p, l,ckpt) for each
number of nodes. We implement the optimal scaling algorithm
by exhaustive searching using Python. The algorithm finishes
in 1 second. The result is shown in Figure 9.

Then we run experiments on each output of the opti-

mal scaling algorithm. The result shows that each modeled
throughput is achieved with an error of at most 1.9%. The
optimal scaling method outperforms data parallel scaling
at many numbers of nodes. For example, given 24 nodes,
the optimal scaling achieves 1.80× 105 tokens per second
(TPS) on Llama-65B s = 4096, and the optimal parameter
is (B, t,c, p, l,ckpt) = (240,4,1,8,2,no). Data parallel scal-
ing can utilize only 20 nodes and is expected to achieve
1.48 × 105 TPS, the parameter is (240,2,1,8,2,ours). Be-
sides, it’s also worse than the optimal parameter on 20 nodes,
which is (240,2,1,10,2,no) and achieves 1.59×105 TPS.

7 Conclusion

This paper proposed two activation rematerialization methods
including Pipeline-Parallel-Aware Offloading, which maxi-
mizes the utilization of host memory for storing activations,
and Compute-Memory Balanced Checkpointing, which seeks
a practical equilibrium between activation memory and com-
putational efficiency. To optimize the vast search space of
parallelism parameters, an efficient method is proposed to ex-
haustively search for the optimal combination of parameters
by building the performance model with few-shot measure-
ments on the primitive information.

Limitation and Future Work Our proposed compute-
memory balanced checkpointing method supports a smaller
maximum sequence length than the full checkpointing
method. In the future, we may explore more optimization
strategies to solve this problem. Furthermore, the temperature
of the GPUs may affect the accuracy of the time measurement
and thus the performance model, it is interesting to take a
thorough consideration of these aspects in the future.
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A Artifact Appendix

A.1 Abstract
This artifact offers resources to reproduce the accelerating
method. The minimum demo can be run on 4 GPUs, and all
the experiment results can be verified on a cluster that hard-
ware is specified in Section 6.1. This artifact also includes
scripts and a Docker image, ensuring reproducibility of the ex-
periment results. The artifact is publicly accessible on GitHub
to promote further research.

A.2 Scope
1. Getting Started Instructions: To reproduce the acceler-
ating method on a minimum demo using 4 GPU cards. It
verifies that our activation rematerialization mechanism re-
duces GPU memory consumption, and achieves a significant
performance improvement over the baseline by utilizing of-
floading and balanced checkpointing. Besides, it verifies that
our baseline outperforms the latest Megatron-LM.
2. Detailed Instructions: To reproduce the exact performance
reported in this work. By following these instructions, re-
searchers should be able to reproduce all the memory usage
values in Figure 7, all the “Throughput / MFU” values listed in
Table 8, and all the “achieved throughput” values in Figure 9.

A.3 Contents
This artifact includes source code, a readme document, scripts,
a Docker image, and a sample dataset.

A.4 Hosting
This artifact can be downloaded from the atc24ae branch of
https://github.com/kwai/Megatron-Kwai. The readme docu-
ment and scripts are located at examples/atc24.

Table 9: The main differences between the latest Megatron-
LM, codebase, and our code may influence performance.
Whether our implementation is the same as Megatron-LM is
shown in the last column.

Feature
Latest

Megatron
Codebase Ours Impl.

Context parallelism ✓ ✓ Diff.
Overlap TP comm. ✓ ✓ Diff.
Manual Python GC ✓ ✓ Diff.
Embedding layer ✓ ✓ ✓ Diff.

Grouped query attn. ✓ ✓ Diff.
FlashAttention-2 ✓ ✓ Same
Fused RMSNorm ✓ ✓ Same

Fused RoPE ✓ -
Our offloading ✓

Our checkpointing ✓
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Table 10: Schedule of offloading and reloading on the first pipeline parallel rank. In the example, the number of micro-batches is
8, and the number of pipeline stages is 2. Each activation block is represented in two numbers in parenthesis: micro batch index
and pipeline stage index. An overview of the pipeline of all ranks can be found in Figure 3.

step 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
forward (1,1) (2,1) (3,1) (4,1) (1,2) (2,2) (3,2) (4,2) (5,1) (6,1) (7,1) (8,1) (5,2) (6,2)

backward (1,2) (2,2) (3,2)
# living act. 1 2 3 4 5 6 7 8 9 10 11 11 11 11 11 11 11

offload (1,1) (2,1) (3,1) (4,1) (1,2) (2,2) (3,2) (4,2) (5,1) (6,1) (7,1) (8,1) (5,2)
reload (1,2) (2,2) (3,2) (4,2)

# living @GPU 1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3
# living @host 0 1 2 3 4 5 6 7 8 9 10 10 10 10 10 10 10

step 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
forward (7,2) (8,2)

backward (4,2) (1,1) (2,1) (3,1) (4,1) (5,2) (6,2) (7,2) (8,2) (5,1) (6,1) (7,1) (8,1)
# living act. 11 11 11 11 11 10 9 8 7 6 5 4 3 2 1

offload (6,2) (7,2) (8,2)
reload (1,1) (2,1) (3,1) (4,1) (5,2) (6,2) (7,2) (8,2) (5,1) (6,1) (7,1) (8,1)

# living @GPU 3 3 3 3 3 2 2 2 2 2 2 2 2 2 1
# living @host 10 10 10 10 10 9 8 7 6 5 4 3 2 1 0

B Implementation Details

B.1 Software Version

CUDA toolkit version is 12.3.0, PyTorch version is 2.1.0-rc2,
NCCL version is 2.18.3-1, FlashAttention version is 2.2.5,
and TransformerEngine version is 1.1.0.

“Latest Megatron” refers to the publicly available
Megatron-LM. We checked out the main branch on Jan 1,
2024, when the latest commit was 2bc6cd3. We follow their
example to set experiments. These options are additionally
used to enhance performance: 1) The implementation from
Megatron core (which uses TransformerEngine) is used; 2)
Distributed optimizer is used; 3) FlashAttention-2 is used;
4) Overlap of tensor parallel communication and Gemm ker-
nels [33] is enabled when c = 11; 5) Manual Python garbage
collection is enabled and the interval is set to infinity2.

Our codebase is forked from Megatron-LM on Jun 9, 2023,
with commit db71a33. Table 9 shows the main difference be-
tween our code and Megatron-LM. We implement offloading
and checkpointing on the top of the codebase rather than the
latest Megatron-LM because we have made a lot of industrial
modifications to the codebase, and our code is more robust
and faster than the latest Megatron-LM before offloading and
checkpointing are added.

1In the latest Megatron-LM, a runtime error is raised if context parallelism
works together with an overlap of tensor parallel communication.

2Python garbage collection only affects host memory size, does not affect
whether OOM occurs on GPU.

B.2 Detailed Counting of Activations

A schedule of p = 4, v = 2 on the first pipeline parallel rank
is shown in Table 10. An activation block is represented by a
pair of micro-batch ID and pipeline stage ID.

Let’s explain the example through a case. (3,2) is the acti-
vation block of the third micro batch generated by the second
pipeline stage. (3,2) is generated at step 7. Offloading of (3,2)
starts at the beginning of step 8 and is serialized to finish
before the beginning of step 9. Reloading of (3,2) starts at
the beginning of step 14 and is serialized to finish before the
beginning of step 16. At last, (3,2) is used in the backward
stage at step 16.

At each step, the statistics “# living act.” is the number of
unique stored activation blocks. With the offloaded schema,
living activation blocks are divided into activation blocks on
the GPU and activation blocks on the host. Activation blocks
that are under offloading or reloading are counted to both “#
living @GPU” and “# living @host”.

B.3 Not Overlapped Offloading

The overhead caused by not overlapped offloading at the
warm-up phase is given in Section 5.1.3.

In the steady phase, on the device whose pipeline paral-
lel rank is p− 2, the first forward stage is followed by the
pipeline bubble. The each of the following p−2 backward
and forward stages overlaps lTF+B + Thead, where TF+B =
TF +TB, Thead = TheadF +TheadB. Then there are m/p groups
of paired backward and forward stages. In each group, there
are (v−1)p backward and forward stages that each overlaps
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Figure 10: GPU memory with the use of offloading and checkpointing. Left bar: w/o checkpointing. Right bar: w/ check-
pointing. From bottom to top: Mm +Mo, Mgpu, peak of all tensors (max_memory_allocated), PyTorch reserved memory
(max_memory_reserved), total GPU memory usage. The cross mark means the OOM.

lTF+B and each of the other p groups overlaps lTF+B +Thead.
An exception is the last backward stage in the last group is
followed by the pipeline bubble. In summary, the overhead at
the steady phase is

(m−3)max(0,2αMb/BWbidir − lTF+B −Thead)+

(m− p)(v−1)max(0,2αMb/BWbidir − lTF+B)
(18)

The overhead at the cooldown phase is

(vp− p−1)max(0,αMb/BWHtoD − lTB)+

(p−1)max(0,αMb/BWHtoD − lTB −TembB)
(19)

C Additional Evaluation

C.1 Additional Offloading and Checkpointing
Results

We further verify our proposed methods on two additional
benchmark models, as shown in Figure 10. We observe a
similar memory overhead pattern as in Figure 7.

C.2 Training Loss
We train a Llama2-70B model from scratch to plot the train-
ing loss pattern. The context window size is 4096, the global
batch size is 1024. Learning rate and optimizer parameters are
set the same as Meta’s Llama 2 [28]. The learning rate sched-
ule strategy is cosine, the peak learning rate is 1.5×10−4, the
number of learning rate decay iterations is 500,000, the num-
ber of warm-up iterations is 2000, the decay final learning rate
is 1.5× 10−5, weight decay is 0.1, gradient clipping is 1.0.
Adam parameters are β1 = 0.9, β2 = 0.95, eps = 1× 10−5.
To verify that our techniques correctly work together with
all hybrid parallel methods, we set the parameters as follows:
t = 2, c = 2, p = 8, l = 2, ckpt = ours, α = 0.5.
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Figure 11: Training loss.

We compare the training loss with the latest Megatron-LM,
as shown in Figure 11. The result shows that our accelerating
techniques do not harm the original model’s performance.
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