
This paper is included in the Proceedings of the
2024 USENIX Annual Technical Conference.

July 10–12, 2024 • Santa Clara, CA, USA
978-1-939133-41-0

Open access to the Proceedings of the
2024 USENIX Annual Technical Conference

is sponsored by

MagPy: Compiling Eager Mode DNN Programs
by Monitoring Execution States

Chen Zhang, Rongchao Dong, Haojie Wang, Runxin Zhong, Jike Chen,
and Jidong Zhai, Tsinghua University

https://www.usenix.org/conference/atc24/presentation/zhang-chen

MAGPY: Compiling Eager Mode DNN Programs by Monitoring Execution States

Chen Zhang Rongchao Dong Haojie Wang Runxin Zhong Jike Chen Jidong Zhai

Tsinghua University

Abstract
Real-world deep learning programs are often developed

with dynamic programming languages like Python, which
usually have complex features, such as built-in functions and
dynamic typing. These programs typically execute in eager
mode, where tensor operators run without compilation, result-
ing in poor performance. Conversely, deep learning compilers
rely on operator-based computation graphs to optimize pro-
gram execution. However, complexities in dynamic languages
often prevent the conversion of these programs into complete
operator graphs, leading to sub-optimal performance.

To address this challenge, we introduce MAGPY1 to opti-
mize the generation of operator graphs from deep learning
programs. MAGPY generates more complete operator graphs
by collecting key runtime information through monitoring
program execution. MAGPY provides a reference graph to
record program execution states and leverages reference rela-
tionships to identify state changes that can impact program
outputs. This approach significantly reduces analysis com-
plexity, leading to more complete operator graphs. Experimen-
tal results demonstrate that MAGPY accelerates complex deep
learning programs by up to 2.88× (1.55× on average), and
successfully instantiates 93.40% of 1191 real user programs
into complete operator graphs.

1 Introduction

In recent years, deep learning models have shown their power
in various domains like biological science, weather forecast-
ing, and recommendations. For ease of programming, users
usually program deep learning models in Python and call ten-
sor libraries like PyTorch when a tensor operation is needed.
Then, the program is eagerly executed by running tensor oper-
ations one by one, which usually leads to poor performance.

Conversely, to boost the speed of deep learning models,
deep learning compilers usually convert deep learning mod-
els into operator graphs to perform graph-level optimiza-

1MAGPY is available at https://github.com/heheda12345/MagPy

Bert DeBERTa MonoDepth Quantized TridentNet
0.00

0.01

0.02

0.03

0.04

0.05

Ti
m

e
(s

)

Eager (PyTorch)
Fullgraph-Inductor
Fullgraph-XLA

TorchDynamo-Inductor
LazyTensor-XLA

Figure 1: Deep learning compilers can significantly ac-
celerate DNN models when operator graphs are avail-
able (Fullgraph-Inductor and Fullgraph-XLA), but cur-
rent performance cannot be guaranteed due to existing
graph instantiation techniques (TorchDynamo-Inductor and
LazyTensor-XLA). Tested with batch size 1 on A100.

tions, such as graph substitution [22, 38, 43] and operator
fusion [27, 29, 32, 41, 46]. Once operator graphs are avail-
able, TorchInductor [1] and XLA [3], two representative deep
learning compilers, can accelerate DNN models by 1.65×
and 1.27× on average over eager execution. Detailed results
are shown in Figure 1, denoted as Fullgraph-Inductor
and Fullgraph-XLA. However, achieving such improvements
requires manually converting user programs into operator
graphs, which is difficult for many model developers. Espe-
cially given the current extensive use of deep learning, an in-
creasing number of models are developed by non-professional
programmers, like scientists in chemistry, biology, and astron-
omy. Consequently, there is a growing demand for automati-
cally converting users’ easy-to-write programs with Python
to compiler-friendly graphs to accelerate programs, which we
call operator graph instantiation in this paper.

Existing techniques for graph instantiation can be clas-
sified into analysis-based and trace-based approaches.
Analysis-based approaches, including Janus [20],
torch.jit.script [2], and TorchDynamo [1], gen-
erate operator graphs by trying to analyze the exact
behavior of the source code. Trace-based approaches,

USENIX Association 2024 USENIX Annual Technical Conference 683

https://github.com/heheda12345/MagPy

including AutoGraph [28], torch.jit.trace [2],
torch.fx.symbolic_trace [31], Terra [23], LazyTen-
sor [33], and Torchy [26], generate operator graphs by
executing user programs and recording all tensor operations
via overloading the tensor operations. Neither approach can
achieve the optimal instantiation result when encountering
complex models. As shown in Figure 1, TorchDynamo
causes 2.08× overhead (TorchDynamo-Inductor vs.
Fullgraph-Inductor) and LazyTensor causes 2.85×
overhead (LazyTensor-XLA vs. Fullgraph-XLA) on
average compared with directly compiling the graph with the
same deep learning compiler.

Analysis-based approaches fail to generate graphs when
programs use flexible Python features not yet supported by the
compiler, like advanced built-in functions and complex inher-
itance. As a result, these approaches can only extract multiple
small graph fragments from user programs. Significant run-
time overhead will be introduced by executing unsupported
parts in a slow Python Interpreter and frequent switches be-
tween Python and operator graph execution. Global graph
optimizations by deep learning compilers are also impeded.
Supporting all Python features is impractical because it is
even harder than re-implementing a Python interpreter. More-
over, the Python interpreter is under active development with
a large community; significant human efforts are required
to align the modifications and support new Python features.
Trace-based approaches can only collect an operator graph for
one execution, but they fail to know whether the graph will
change for another execution. As a solution, they either rely
on users to ensure the graph remains unchanged, potentially
introducing silent bugs, or retrace the operator graph for each
execution, which results in a large execution overhead.

The key challenge in graph instantiation is to understand dy-
namic and flexible user programs. Analysis-based approaches
try to achieve this by re-implementing a small subset of
Python features in their compilers. In contrast, instead of
understanding user programs, trace-based approaches execute
programs repeatedly. Both approaches fail to provide enough
information for compilers to understand user programs and ex-
tract operator graphs precisely. Fortunately, Python interpreter,
being a mature software that accurately supports all Python
features, should be able to provide valuable information for
graph instantiation. Effectively leveraging the information
provided by the interpreter, we can gain a more comprehen-
sive understanding of a program’s behavior, thus facilitat-
ing graph instantiation. Therefore, in this paper, we propose
MAGPY2 to enhance operator graph instantiation by moni-
toring the execution states of Python interpreter. MAGPY is
designed based on the following insights.

First, most deep-learning programs only have limited dy-
namics. Though programs are written in Python, with poten-

2Can be pronounced as “magpie”, which is a kind of bird that builds a
bridge between a separated couple Niulang and Zhinv every year in a Chinese
romantic mythology.

def forward(self, x, dims):
shape = list(x.shape)
shape[dims[0]] //= self.scale
shape.insert(dims[0]+1, self.scale)
x = x.reshape(*shape)
dim = self.dim if self.dim < dims[1] else

self.dim + 1
dim = dim if dim <= dims[0] else dim + 1
perm = [dim, dims[1] + 1, dims[0] + 2]
perm = [i for i in range(min(perm))]+perm
perm.extend(i for i in range(x.dim()) if

i not in perm)
x = x.permute(*perm)
...

x
dims self.scale

dims self.scale
x = x.reshape(*shape)

self.dim self.dim
self.dim

dims
dims dims

x = x.permute(*perm)

Operator graph
Reshape

[shape=1,2,1,2,4]
Permute

[perm=0,2,4,1,3]

Reads of
external

Runtime
value

x
dims

self.scale
self.dim

Tensor[…]
List ([2,1])

Int(2)
Int(0)

x.shape==[1,2,2,4]
dims == [2,1]
self.scale == 2
self.dim == 0

Guards

Mock code
def compiled_forward(x):
graph_outputs = graph(x)
x = graph_outputs[0]

Figure 2: The program logic remains the same as long as all
values reading from external remain unchanged.

tial dynamics like data type, control flow logic, and runtime
function dispatch, the operator graph structures, (e.g., opera-
tor orders, operator attributes, and operator shapes), usually
remain the same across different batches. ParityBench3 is
a benchmark that crawls deep learning programs written in
PyTorch and with over 100 stars from Github. 83% of that
benchmark’s 1421 deep learning programs satisfy limited dy-
namics. Their operator graphs can be obtained by monitoring
tensor operations during program execution. Thus, instead of
analyzing “what the graph is” like analysis-based approaches,
which require a full simulation of a given user code, we only
need to know “when the graph will change”.

Second, only external values can affect program behav-
ior. By leveraging this feature, we can significantly reduce
the complexity of monitoring dynamics during graph in-
stantiation. Program behaviors affecting program outputs
include the operator graph and all side effects (writing to
external). They will not change as long as all values that read
from external, like input arguments and global variables, re-
main unchanged, and all operations are ensured to produce
fixed results when feeding into unchanged inputs. Therefore,
MAGPY only needs to validate the operations and gener-
ate guards to check whether external reads are unchanged
to determine whether the graph is changed. For example,
though the program in Figure 2 uses plenty of complex Python
features, the operator graph will remain unchanged as long
as all reads of external values (x, dims, self.scale, and
self.dim, marked with bold), match the previous run. When
the guards on these values pass, MAGPY can safely run a
mock function for calling the accelerated operator graph and
simulating the program behavior (writing x to external) of the
previous run.

Third, both the guard and mock can be determined by ana-
lyzing program execution states. The guard validates whether
the input state of a new call matches the previous run, and the
mock reproduces the final state of the previous run. Both parts
are only based on runtime states instead of the logic of the
user program. The guards and mocks are performed on values
explicitly read from or written to the external, together with
the values they hold a reference. Therefore, MAGPY proposes
to maintain reference relationships to record and analyze the

3github.com/jansel/pytorch-jit-paritybench, commit b219ee7

684 2024 USENIX Annual Technical Conference USENIX Association

github.com/jansel/pytorch-jit-paritybench

program behavior.
Based on the above observation, MAGPY proposes Ref-

Graph (Reference Graph) for recording program states during
program execution. MAGPY defines execution state interface
for gathering runtime information during program execution
and uses annotation-based graph update rules to maintain the
RefGraph. MAGPY also provides a searching algorithm on
the RefGraph to generate graph instantiation results.

MAGPY is implemented on top of Python and PyTorch.
MAGPY instantiates the operator graph in the format of
Torch.fx [31], a widely used graph format that is already sup-
ported by mainstream deep learning compilers like TorchIn-
ductor [1] and XLA [3]. The graph instantiation by MAGPY
can be enabled by adding only one line of code. Evalua-
tion of 8 typical models shows that MAGPY achieves 1.55×
speedup on average (up to 2.88×) compared to existing graph
instantiation techniques when using the same deep learning
compiler to compile the operator graphs. MAGPY also passes
the correctness check of ParityBench, and successfully in-
stantiates 93.40% of the 1191 limited dynamic models in
the benchmark into complete operator graphs, reducing the
rate of unsupported Python features by 3.44× compared with
TorchDynamo, the state-of-the-art analysis-based framework.

We summarize the main contributions below.
1. We identify the limited dynamics of deep learning pro-

grams, a property that makes effective graph instantiation
practical.

2. We propose RefGraph to record program states during
execution and monitor potential dynamics during graph
instantiation. This significantly reduces the complexity of
dynamic analysis, facilitating the implementation of better
graph instantiation.

3. We propose an annotation-based approach to handle the
complexity of programming languages, including built-
in functions, user-defined functions, etc., for the better
generation of RefGraph.

4. We design and implement MAGPY, an effective operator
graph instantiation system for deep learning programs in
Python. Evaluation shows that MAGPY achieves up to
2.88× (1.55× on average) speedup over state-of-the-art
systems and successfully instantiates 93.40% of the 1191
limited-dynamic real user models in ParityBench to com-
plete operator graphs.

2 Background and Challenges

2.1 Challenges
Operator graph instantiation of deep learning programs is chal-
lenging because both Python and PyTorch are designed for
programming easily and thus provide abundant flexible fea-
tures. The compiler has to handle all these features correctly
to generate a correct operator graph. We manually analyze
272 real user programs in ParityBench that TorchDynamo

1 #1:LoSealL/VideoSuperResolution
2 perm = [2, 1]
3 perm.extend(i for i in range(x.dim()) if i not in perm)
4 x = x.permute(*perm)
5 #2:rawmarshmellows/pytorch-unet-resnet-50-encoder
6 for i, block in enumerate(self.down_blocks, 2):
7 ...
8 #3:bayesiains/nflows, numel:number of elements
9 x * torch.Size(x.shape).numel()

(a) Builtin functions

1 # pabloppp/pytorch-tools
2 class EqualLeakyReLU(nn.LeakyReLU):
3 def __init__(self, scale):
4 super().__init__()
5 self.scale = scale
6 def forward(self, x):
7 return super().forward(x) * self.scale

(b) OOP Programming

1 # Deberta model in huggingface/transformers
2 def forward(self, inp, mask, dim):
3 self.dim = dim
4 output = inp.masked_fill(mask, ...)
5 output = torch.softmax(output, self.dim)
6 return output

(c) Side effect

Figure 3: Real DNN programs with complex fea-
tures highlighted. xxx/yyy means the program is from
github.com/xxx/yyy.

fails to export complete operator graphs though these opera-
tor graphs are actually static. The main obstacles for graph
instantiation are listed below:

• Dynamic data types. Python is dynamically typed, mean-
ing that the type of a Python expression can only be known
during program execution. The example programs in Figure
3 have no type annotations, so the compiler cannot know
which operations are operated on tensors and should be
inserted into the generated operator graph. Almost all user
programs do not provide the exact data type of variables.

• Numerous builtin APIs. Python and PyTorch provide var-
ious useful APIs to operate on objects, including but not
limited to the ones used in Figure 3a: advanced container
operations (#1), flexible iterators (#2), and Tensor metadata
processing (#3). The compiler needs to know the exact re-
sult of these APIs to construct operator graph. However, the
number of builtin APIs is too many to be implemented one
by one. 47.2% of Dynamo failures come from unsupported
builtin APIs.

• Complex object-oriented programming (OOP). Users
tend to define new classes in OOP style to encapsulate the
repetitive parts of their models, as shown in Figure 3b. As
Python is a dynamically interpreted language, it is difficult
for the compiler to find actual objects and functions. 34.7%
of Dynamo failures result from the limited ability to handle
user-defined classes.

• Side effects. Variable mutations also widely exist in Python

USENIX Association 2024 USENIX Annual Technical Conference 685

def model(x, run_act):
y = x * 2
if run_act:

y = relu(y)
global z; z = y
return y

def guard(x, run_act):
return x is Tensor and \

x.shape == [2,2] and \
run_act == True

def mock(x):
out = run_graph(x)
global z; z = out
return out

Operator Graph

× 2 relu

(a) The user program (b) Guard, mock, and operator graph

input output

Figure 4: Example of compiled record

User
program

Guard
match?

Run mock Re-compile

Record

guard mock graph

Record

Record
……

Add new recordyes no

graph
mock
guard

graph
mock
guard

Graph-level
compiler

Cache

Figure 5: Workflow of guard-based just-in-time compilation

programs. In Figure 3c, the function forward writes to and
reads from the dim attribute at lines 2 and 4. These modi-
fications can change the behavior of subsequent function
calls, so they should be handled correctly. 6.3% of Dynamo
failures are caused by this.
Moreover, there is a large semantic gap between the Python

programming language and operator graph representation. For
better performance, graph-level compilers prefer a simple and
static graph representation. Therefore, the above complex
Python features cannot be represented in an operator graph
and have to be eliminated during graph instantiation.

Despite the above challenges, the exact behavior of user
programs is usually the same across different batches. There-
fore, as long as it can be verified that the program behavior
remains unchanged, MAGPY can safely reuse the operator
graph in the previous run without understanding the precise
semantics of these programs.

2.2 Guard-based Just-in-time Compilation

Given that many variables remain constant across different
batches, deep learning programs can be specialized with these
unchanged variables by just-in-time (JIT) compilation. For
example, when calling the model function in Figure 4(a) with
a 2×2 Tensor x and run_act=True, the JIT compiler special-
izes the program into a mock in Figure 4(b). The specialized
mock function executes a static operator graph without a
branch on run_act and reproduces the side effect in model
function (updating the global variable z). To ensure the cor-
rectness of specialization, the JIT compiler also generates a
guard function to validate the assumptions of the specialized

The MagPy System

Native
program
executor

RefGraph
updater

(§5.2, §5.3)

RefGraph (§4.1)

User
program

Record
generator

(§4.2, §4.3)

Record Guard Mock Graph
program
output

List
x

V0
[6,8]

6

V1
[8]

x[0] x[1] x[1]

8

update

fetch

generate

Cache
(§6.1)

insert

Figure 6: MAGPY Overview

program. When the guard passes for new inputs, the special-
ized mock function will produce the same result as the original
user program. We call the collection of a guard function, a
mock function, and an operator graph as a record in this paper.

As shown in Figure 5, the compiled records are saved in
a cache of the JIT system. When the compiled function is
called, the JIT system first searches the cache for a record
whose guard can be successfully passed. If a matching record
is found, the JIT system will replace the call by calling a
mock associated with that record. Otherwise, the JIT system
will recompile the user program to generate a new record and
call the graph-level deep learning compiler to optimize the
operator graph in the record. Then, the record is saved into
the cache for future use.

3 Overview

The overview of MAGPY is shown in Figure 6. When not find-
ing a matched record, MAGPY recompiles the user program
by executing the program with the native language execu-
tor (e.g., Interpreter of Python) and monitors execution. We
call the process a monitor run of the user program. Differ-
ent from traditional compilers that analyze program logic
based on structures like control flow graphs, MAGPY only
cares about program states. MAGPY proposes a RefGraph
(Reference Graph) to save runtime state information, mainly
the reference relationship between runtime variables of the
user program. MAGPY captures the Execution State of each
instruction from the native executor during program execu-
tion and updates the RefGraph based on captured execution
states. When the program is finished, MAGPY generates a
new record by analyzing the RefGraph and saves the new
record into the record cache.

4 Design

In this section, we will introduce the definition of RefGraph
(§4.1), plus the algorithms to generate guard, mock, and oper-
ator graph based on the RefGraph (§4.2-§4.3).

686 2024 USENIX Annual Technical Conference USENIX Association

SN
#5

SN
#1

v0v0

SN
#2 TensorTensor

SN
#3 2.0

SN
#4

Tensor

v1

SN
#0
(external)

v1v0

SN
#5

SN
#1

v0v0

SN
#2 TensorTensor

SN
#3 2.0

SN
#4

Tensor

v1

SN
#0
(external)

v0

‘x’ ‘y’
‘a’

SN
#1 v0

SN
#2 TensorTensor

SN
#3 2.0

SN
#4

Tensor

v1

SN
#0
(external)

v0

[0] [1]

[0] [1]

SN
#1 v0

SN
#2 TensorTensor

SN
#3 2.0

SN
#0
(external)

v0

SN
#1 v0

SN
#2

Tensor
SN
#3 2.0

SN
#0
(external)

v0

(1) Load x[0]&y, before x[0]+=y (2) After x[0]+=y (3) After x.append(x[0]*y)

(4) After building tuple(x), before assigning to a (5) After a=tuple(x)

‘x’ ‘y’

[0]

ShadowNode
(abbr. as SN)

ShadowVersion

Reference
Relationship

Figure 7: Update of reference graph when monitoring program in Figure 9. The changes in different steps are highlighted.

class RefGraph:
sn: List[ShadowNode]
def get_node_by_var(variable: Any)->int
def get_node_by_id(node_id: int)->ShadowNode

(a) Reference Graph

class ShadowNode:
node_id: int
versions:

List[ShadowVersion]↪→

(b) ShadowNode

class ShadowVersion:
value: Any
refs: List[Pair<Relation,

dest_id>]↪→

(c) ShadowVersion

Figure 8: Definition of reference graph

1 def f(x, y, z):
2 x[0] += y # inplace update x[0] to x[0]+y
3 x.append(x[0]*y) # add x[0]*y to end of list x
4 a = tuple(x) # build tuple a with elements in x
5
6

7 tensor=torch.rand((3,3))
8 f([tensor], 2.0, 3.0) # list of tensor, float, float

Figure 9: An example deep learning program

4.1 Definition of RefGraph

The definition of RefGraph is shown in Figure 8. It contains
the following elements.
RefGraph RefGraph saves the runtime information, with
ShadowNodes (correlation each runtime variable) as graph
nodes and reference relationships of the runtime variables
as graph edges. MAGPY can retrieve the ShadowNode using
either the runtime variable or the ShadowNode id. Figure
7 shows the example updating process of RefGraph when
MAGPY monitoring the execution of deep learning program
in Figure 9. The RefGraph is updated during the execution of

programs, and the details of this process will be explained in
the following part.

ShadowNode Each runtime variable (including both Tensor
and non-Tensor variables) is represented by a ShadowNode
in the RefGraph. A special ShadowNode SN #0 is introduced
for saving the state of external runtime, e.g., global variables
and arguments in Python. ShadowNodes will be only created
lazily when the interpreter explicitly accesses the variables in
the runtime. By doing that, MAGPY can eliminate the over-
head of creating ShadowNodes for all variables and avoid
over-specialization of unused variables during guard genera-
tion. Figure 7(1) shows the RefGraph after the runtime read-
ing x[0] and y from external and before performing x[0]
+= y. MAGPY only creates ShadowNodes for three used vari-
ables x (SN #1), x[0](SN #2), and y (SN #3) respectively,
while ignores unused argument z.

ShadowVersion MAGPY introduces ShadowVersion to hold
the variables’ update history. The update history helps recover
initial input values for guard generation and find in-place
updates for mock generation. Though MAGPY only needs
the input and final states of runtime variables, we introduce
MAGPY as recording all versions of the variables in this paper
to make the explanation fluent. A new version is created when
an in-place operation happens in the program runtime. For
each version, MAGPY records the value and variables that it
holds a reference in that version. For example, the in-place
add x[0] += y in step (2) creates a new version for x[0] (SN
#2), and x.append() in step (3) creates a new version for x
(SN #1).

Reference relationship Many composite variables hold
references to other variables. For example, a list in Python
holds the reference of elements in it. The reference relation-

USENIX Association 2024 USENIX Annual Technical Conference 687

#2.v0

#3.v0
#2.v1

#4.v0

iadd

mul

Tensor node Operator node

Figure 10: The result operator graph

ship affects the set of variables to be guarded unchanged
and to be reproduced during mocking. Therefore, MAGPY
saves such information explicitly, with edges from a spe-
cific ShadowVersion of a composite variable to the whole
ShadowNode of the variable whose reference is held. The
edges are saved in the ref field of ShadowVersion. The de-
tailed reference relationship is saved as an attribute of the
edge. For simplicity, Figure 7 only depicts the detailed rela-
tionship of newly-created edges in each step. MAGPY only
needs the state of reference, which can be easily obtained by
inspecting runtime variables, and does not care about why
such a state is formulated. For example, in step (3) of Figure
7, MAGPY can know list x contains SN #2 as x[0] and SN
#4 as x[1] by observing the value of x in the runtime without
knowing append in Python is for adding a new element into
the list; and in step (4), though the tuple (SN #5) is created
from list x (SN #1), these two ShadowNodes are independent
without an edge like in a traditional data flow graph. The
reference relationship from a variable x to the target y that x
holds a reference can be generated lazily if the target can only
be explicitly visited, e.g., the attributes of user-defined vari-
ables. However, the relationship should be generated when
visiting x if the target variable may be implicitly visited, like
the contained variables of a container.
Operator graph In addition to the generated RefGraph,
MAGPY also records the operator graph of the executed pro-
gram, which contains all Tensor operations that visit the tensor
data, as shown in Figure 10. The ShadowNode id and version
id in RefGraph are also recorded for each Tensor. By using
RefGraph, MAGPY can know where to load the input Tensors
and where to store the output Tensors.

The RefGraph records all information needed to generate
the guard function for validation and the mock function for
calling the recorded operator graph properly. As RefGraph
mainly saves the exact reference relationship of runtime vari-
ables, MAGPY can build the graph by examining the runtime
state of the executor while not needing much knowledge of
the complex language semantics.

4.2 Guard and Mock Generation
Due to the lazy creation of ShadowNode and reference rela-
tionship, the RefGraph in MAGPY naturally filters the set of
key variables that have real influence on the program output.
MAGPY then uses Algorithm 1 to collect the key variables
for guard and mock via searching on the RefGraph.

Algorithm 1: Guard and mock generation via search-
ing reference graph

Data: Reference graph G
Result: List of ShadowNodes result

1 Function Search(G, src_sn, version):
2 result← empty list, queue← empty queue;
3 enqueue src_sn into queue;
4 add src_sn to result;
5 while queue is not empty do
6 cur_sn← dequeue from queue;
7 foreach _,id ∈ cur_sn.v[version].re f s do
8 re f _sn← G.get_node_by_id(id) ;
9 if re f _sn /∈ result then

10 enqueue re f _sn into queue;
11 add re f _sn to result;
12 return result;
13 Function GetGuardNodes(G):
14 return Search(G, G.sn[0], 0)
15 Function GetMockNodes(G):
16 f inal_nodes← Search(G, G.sn[0], -1) ;
17 initial_nodes← Search(G, G.sn[0], 0) ;
18 result← empty list ;
19 foreach sn ∈ f inal_nodes do
20 if sn ̸∈ initial_nodes then
21 add sn to result ;
22 foreach sn ∈ initial_nodes do
23 if len(sn.version) ̸= 1 then
24 add sn to result ;
25 return result;

Guard generation The goal of the guard is to verify whether
the initial state is not changed when the program starts. It
needs to check the variables that the runtime explicitly read
from the external state during the monitor run. All these vari-
ables exist at the function entry, and can be reached in Ref-
Graph by walking from the external state (SN #0) only via
the reference relationship of version 0. MAGPY collects these
nodes by GetGuardNodes in Algorithm 1. The variables to
be guarded and the guard function for the example code in
Figure 9 are shown in Figure 11a and Figure 11c.

Mock generation The goal of mock is to reproduce the
final program state of the monitor run without executing the
user program. The mock needs to reproduce all variables that
may be used outside the compile region. These variables can
be divided into two types, both of which can be collected
from RefGraph by searching from the external state SN #0,
as shown in GetMockNodes of Algorithm 1.

1. Variables that are created during program execution and
explicitly stored to the external, e.g., a in the example pro-
gram. These variables can be collected by searching from
the external node SN #0 with reference relationship in the
last version as edges (line 16, 19- 21 in Algorithm 1). How-
ever, if one variable exists at the function entry and is not in
place updated (with only one version in its ShadowNode),
MAGPY can skip reproducing it and use its initial value

688 2024 USENIX Annual Technical Conference USENIX Association

SN
#5

SN
#1

v0v0

SN
#2 TensorTensor

SN
#3 2.0

SN
#4

Tensor

v1

SN
#0
(external)

v1v0

‘x’ ‘y’

[0]

(a) Guard candidate generation by searching the first version

SN
#5

SN
#1

v0v0

SN
#2 TensorTensor

SN
#3 2.0

SN
#4

Tensor

v1

SN
#0

(external)
v1v0

[0]

‘a’

[1]

SN

SN

Mock due to in-place update of initial value

Mock due to explicit store

(b) Mock candidate generation by searching first and last version

def guard_f(x, y, z):

return sn[1].match(x) \
and sn[2].match(x[0]) \
and sn[3].match(y)

(c) Generated guard

def mock_f(x, y, z):
sn2,sn4 = run_graph(x[0],y)
sn[2].inplace_upd(x[0],sn2)
sn[1].inplace_upd(x,sn2,sn4)
a = sn[5].mock(sn2, sn4)

(d) Generated mock

Figure 11: Nodes inside the reference graph

instead.
2. Variables that exist at the function entry and are in-place

modified, e.g., x and x[0] in the example program. These
variables may be visited outside the compile region, so
even if there is no path from the external node SN #0
with the reference relationship in the last version, these
variables still need to be updated in mock. These variables
are collected by line 17, 22- 24 in Algorithm 1.

The mock will first call the operator graph accelerated by
graph-level compilers to get the output Tensors (with details
in §4.3). Then, the mock will reproduce the variables as in
the monitor run. The variables of type 1 can be created from
scratch, and variables of type 2 need to be in-place updated.
Figure 11b and Figure 11d show the collected nodes and
generated mock code of the example code respectively.

Pointer alias analysis is a challenge in compiler design.
However, in MAGPY, the pointer alias relationship is natu-
rally represented in RefGraph, with different paths to reach
the specific node from SN #0. In addition to the value guards
mentioned above, MAGPY also verifies the pointer alias rela-
tionship matches the monitor run. It can be achieved by check-
ing all paths to the same node in RefGraph reach the same
variable. The mock also needs to reproduce the reference
relationship, which can be achieved by simply reproducing
the reference relationship in the RefGraph.

4.3 Operator Graph Generation

For the recorded operator graph, MAGPY will determine the
input and output nodes, together with where these tensors
should be loaded from or stored to the runtime during mock-
ing. The input nodes are the Tensor nodes with no in-edge in
the operator graph. These Tensor variables are not created by
tensor operations, so they should exist at the function entry.
Therefore, there are reference paths using edges of version
0 from SN #0 to the corresponding nodes in RefGraph. The
output nodes are the Tensor variables that need to be mocked
and are determined during mock generation. The output nodes
are also available by searching from SN #0 in RefGraph, and
the path represents the stored position of the output Tensors.
MAGPY can ensure that the intermediate nodes will not be
used in the future and pass this information to the graph-level
compiler. So the graph-level compiler can safely perform
optimizations like dead code elimination or operator fusion.
However, trace-based frameworks fail to achieve this because
they cannot know whether a Tensor will be used in the future.

5 RefGraph Generation

MAGPY generates the RefGraph by analyzing the interme-
diate runtime state of the monitor run. Specifically, MAGPY
captures the execution state (§5.1) of each instruction during
monitor run, gets the pre-defined operation property (§5.2)
of the instruction, and updates the RefGraph with different
RefGraph update rules (§5.3) based on the property.

5.1 Interface of Execution State Capture

Dynamic languages usually save the high-level information of
runtime variables for dynamic interpretation, e.g., types and
variable structures. Such information is valuable for MAGPY
to analyze the runtime state. Therefore, MAGPY collects the
execution state of each instruction from the runtime, which in-
cludes all relevant variables of the instruction. The execution
state contains the following elements:
• OP: the operation that will be performed, like loading a

global variable or adding two variables.
• input[x]: the input to the operation indexed by x. For

example, the input of a function call is its argument list,
and the input of an assign operation is the value that will
be stored.

• output[x]: the output of the operation indexed by x. E.g.,
the output of a function call is its return value.

5.2 Operation Property Annotation

For performance concerns, dynamic languages use native
machine code to implement some operations. For example,
Python implements some functions in C. These low-level

USENIX Association 2024 USENIX Annual Technical Conference 689

machine codes do not preserve high-level variable informa-
tion and are difficult to analyze. To collect all operators and
run MAGPY correctly, the property annotation of these func-
tions are needed. Note that they are just annotations, and are
much easier than re-implementing the functions as in analysis-
based approaches. MAGPY also encourages annotation on
frequently-used functions implemented by the dynamic lan-
guage, to allow MAGPY to skip diving into the implemen-
tation detail of the function and make the monitor run faster.
The required annotations are listed below.
Function Properties are annotated for functions:
• AsOpNode: a function to convert the operation to an opera-

tor node of the operator graph. Returns None if the opera-
tion cannot be represented by an operator node.

• PureClosure: a boolean attribute that can be annotated as
True if the return values are identical for identical input
arguments, and no external effect happens like implicitly
updating the global variables. In-place updates of input
arguments are allowed when PureClosure is True.

AsOpNode is defined for generating the operator graph.
PureClosure identifies dynamic behaviors in Python like
system calls and random number generators, whose annota-
tions will be False.
Input Properties are annotated for each input variable of the
function:
• ValueRead: a boolean property that is True when the func-

tion reads the value of that input variable.
• InPlace: a boolean property indicating the variable may

be in-place modified by the function.
For example, all arguments of mathematical operations like
add or sub will be annotated as ValueRead=True. For func-
tion list.append that adds a variable to the list, the first
argument (the list) is annotated as ValueRead=True as its
internal structure is accessed by the function. In contrast, the
second argument (the variable to be added) is annotated as
ValueRead=False because the function only adds its refer-
ence to the list and does not access its value. Moreover, the
first argument is annotated as InPlace=True because the list
is in-place modified with the specified value, while the second
argument is annotated as InPlace=False.
Output Properties are annotated for each output variable:
• InPlace: a boolean property indicating the variable may

be in-place modified by the function.
• Relation: marks the relationship that needs to be created

between the input and output node, together with the de-
tailed relationship. Need to specify further whether it is
a read through existing reference (e.g., reading v.x) or a
write that creates a new reference (e.g., assigning v.x =
1.0).
The user effort of making such annotations is affordable.

Despise 6 properties in total, only PureClosure for oper-
ations plus InPlace for input and output variables are fre-
quently annotated. The AsOpNode only needs to be annotated
for the limited number of operations supported by the graph-

(1) Annotation exist

(3) AsOpNode

True

(2) Code available

False

True

$0:Inline

$1:Stop instantiation

False

Not None

None

$2:Operator node
e.g. torch.relu()

(5) ValueRead+Tensor

True False

$4:Stop instantiation

$5:No action

e.g. LSTM operator

e.g. list.append

e.g. UDF in Python

e.g. UDF in C

(4) PureClosure

True

$3:Stop instantiation

False

e.g. random.shuffle

Figure 12: Operator graph update and dynamics detection

level compiler. And ValueRead is necessary only when the
function can read a Tensor because of the graph update rule in
§5.3. Relation is only used for special lazily-create reference
relationships like explicitly loading an attribute. Moreover,
many operations have the same annotation, like the +−×÷
operations, allowing for mass production of annotations.

5.3 Graph Update Rule

MAGPY first generates ShadowNodes for input and output
variables that do not have corresponding nodes in the Ref-
Graph. MAGPY then retrieves the property annotation of the
operation and updates the RefGraph and operator graph based
on the annotations and captured execution state.

5.3.1 Operator Graph Update and Dynamics Detection

The AsOpNode, PureClosure, and ValueRead annotations
are used for updating the operator graph and detecting the
dynamics. The workflow is shown in Figure 12.
(1) Annotation Retrieval. MAGPY first attempts to retrieve
the annotation of the function. Although annotations are pro-
vided for most built-in and commonly used library functions,
some functions, like user-defined ones, may lack annotations.
MAGPY goes to steps (2) or (3) based on whether the annota-
tion exists.
(2) Handling Functions with No Annotations. If no anno-
tation is found, MAGPY treats the function call as an uncon-
ditional jump into the function and tries to inline the function
($0). If the function code is unavailable, e.g., when imple-
mented in native language, MAGPY will treat the function as
dynamic and stop the graph instantiation ($1).
(3) Operator Graph Generation with AsOpNode. If
AsOpNode successfully generates an operator node for the
function (e.g., torch.relu), MAGPY will add the node to
the operator graph ($2). Jump to (4) otherwise.
(4) Dynamic Function Detection with PureClosure. If
False, MAGPY will regard the function as a dynamic func-

690 2024 USENIX Annual Technical Conference USENIX Association

def f(v):

v.x = 2.0
a = v.x
b = v.y # 3.0
...

(a) Example code

SN
#1 v1v0

SN
#2 2.0

SN
#3 3.0

Create for write v.x=2.0
Create for read b=v.y

‘x’ ‘y’

(b) Reference relationship

Figure 13: Update of reference relationship

tion and stop graph instantiation ($3) 4. If True, MAGPY
will assume the function’s behavior is unchanged in different
batches, and jump to (5).
(5) Dynamic Tensor Computation Detection with
ValueRead. MAGPY scans input arguments to find whether
an input position is marked as ValueRead=True and its run-
time value is a Tensor. If such an argument is found, MAGPY
will treat the function as dynamic and stop graph instantiation
($4). The reason is that MAGPY allows the change of Tensor
data in different batches, so these operations will generate dif-
ferent results as they read the data of the Tensor. Typical cases
are the tensor operations not supported by the graph-level
compiler like the nn.LSTM for Inductor. These operations
are not converted to operator nodes by AsOpNode and reach
this branch. Otherwise, the operations only read the value of
non-tensor variables, like list.append only reads the list,
and can be ensured to provide fixed results ($5). In such cases,
no change is needed.

When detecting dynamic functions and stopping graph
instantiation, MAGPY will use dynamic function calls as split
points to cut the user program into subprograms. MAGPY can
compile each subprogram separately by monitoring a single
run of the user program, and generate the compiled code that
runs the dynamic functions eagerly.

5.3.2 Update of RefGraph

The Relation and InPlace annotations are used for updat-
ing the RefGraph.
Relation for creating reference edges. If a reference rela-
tionship is annotated between two variables, MAGPY will add
reference edges between the corresponding ShadowNodes
in the RefGraph. For a write operation like v.x=2.0 in
Figure 13a, MAGPY creates a new version in the source
ShadowNode, and adds only one reference edge from this
version. For a read operation, MAGPY will create no edge if
the relationship already exists in the last version of the source
ShadowNode (e.g., a = v.x in Figure 13a), and create edges
from all versions of the source ShadowNode to the target
ShadowNode if the relationship does not exist (e.g., b = v.y
in Figure 13a) because the reference exists right from the
beginning of program execution.

4MAGPY handles some specific random API (e.g., randint) by generating
new random numbers in mock, so these APIs will not stop graph instantiation.

InPlace for version management. If InPlace=True,
MAGPY will add a new version to the corresponding
ShadowNode and copy all reference relationships of that ver-
sion if they still exist.

6 Detect and Handle Dynamic Behaviors

Though most deep learning programs satisfy limited dynam-
ics, some programs still have dynamic behaviors like dynamic-
value scalars, dynamic-shape Tensors, and dynamic control
flow. MAGPY can detect them automatically and handle them
with best effort.

6.1 Dynamic Detection
The handling of dynamic functions is discussed in §5.3. An-
other source of dynamics comes from the dynamics of input
arguments, which will cause the guard failure.
Cache for different inputs. When guards fail, MAGPY will
re-generate a compiled record and save it to the cache. When
a guard matches, MAGPY will update the cache to try the
record earlier in subsequent calls.
Guard fail reason detection. When the number of records
exceeds a threshold, MAGPY will assume the records are over-
specialized and try to make weaker assumptions. MAGPY will
locate the non-const variables that cause the guard failures
and try to generate weaker guards for these variables (§6.2.1).

6.2 Dynamic Handling
6.2.1 Lift up Non-const Variables

When MAGPY detects a non-const input variable whose
datatype is supported by the underlying graph-level compiler,
MAGPY will regard the variable as a “Tensor node” in the
operator graph, and handle the variable like a Tensor. MAGPY
will record all operations of the variable into the operator
graph and recompute all variables that depend on it, so that
the value of the variable is allowed to change. Typical cases
include feeding dynamic scalars and dynamic shapes to the
user program. If the underlying graph-level compiler does not
support the variable type, MAGPY will cut the user program
to appropriate pieces that do not visit the variable.

6.2.2 Dynamic Control Flow

The user code is mixed with static and dynamic control flow.
Static control flow is usually used to try different archi-

tectures or hyperparameters, but the model structure is fixed
across different batches. These control flow operations usu-
ally determine the jump target with static scalars. MAGPY
will add proper guards for these scalars as discussed in §4 and
remove the control flow operation in the generated graph and
mock.

USENIX Association 2024 USENIX Annual Technical Conference 691

import MagPy
model = ResNet()
compiled_model = MagPy.compile(model)
compiled_model(torch.rand((1,3,224,224))

Figure 14: Example of using MAGPY

Dynamic control flow is typically used for getting the
model architecture during runtime, and usually determines the
jump target with dynamic Tensor value. MAGPY can convert
these dynamic jumps to control flow operator in the operator
graph when the target graph-level compiler supports dynamic
control flow.

For loop operations, MAGPY monitors the execution of all
iterations. If both the value of external reads and the operator
graph are the same in different iterations, MAGPY can safely
convert the recorded operator graph to the body of the Loop
node.

For branch operations, MAGPY will force the runtime to
execute both branches by automatically modifying the source
code like in AutoGraph [28]. MAGPY can guarantee the cor-
rectness by monitoring the execution of two branches. Specif-
ically, MAGPY first executes the branch that the program will
not jump to, records all effects made by the branch, and en-
sures that all these effects are recoverable. If MAGPY detects
a non-recoverable effect, MAGPY will cut the user program
before the dynamic jump and run this jump eagerly. Then,
MAGPY recovers all effects, runs the branch that the program
will jump to, generates the If node by merging the opera-
tor graph of two branches, and merges the RefGraph of two
branches.

7 Implementation

MAGPY is implemented by about 4000 lines of code on top
of Python and PyTorch. The operator graph in MAGPY is
exported to torch.fx format that is compatible with main-
stream graph compilers. To enable MAGPY, only one line of
MagPy.compile is needed, as shown in Figure 14. Then, dur-
ing each call to the compiled model, MAGPY tries to match a
compiled record or performs a monitoring-based recompila-
tion if no match is found.

MAGPY monitors the interpreter state of executing
each Python Bytecode using the per-bytecode callback of
sys.settrace in Python. The capture is achieved by ana-
lyzing the frame passed to MAGPY during the callback of
sys.settrace. The calling of guard match and mock func-
tion is implemented by modifying the ByteCode with the
Frame Evaluation API of Python.

MAGPY regards each object in Python as a variable
with its own ShadowNode. And the get_node_by_obj in-
terface in RefGraph (Figure 8b) is implemented by a map
between the object’s id and the ShadowNode. To make the
id of objects unique, MAGPY holds a reference of all ob-
jects to avoid garbage collection. MAGPY has implemented

ShadowNode.match and ShadowNode.mock in Figure 11 for
29 commonly-used Python datatypes, and allows the exis-
tence of other data types during monitor run as long as they
do not need to be guarded and mocked. The match returns true
when both type and value match the monitor run. For scalar,
the value refers to the exact value. For containers, MAGPY
checks that all objects in the container equal the value at the
same position during monitor run. For Tensors, MAGPY veri-
fies the metadata is not changed, but does not check the value
of Tensor. If MAGPY finds these guards are over-specialized,
MAGPY will try to make weaker assumptions as in §6.2.1.

8 Evaluation

8.1 Evaluation Setup
Platform The evaluation is performed on one NVIDIA A100-
PCIE-40GB GPU with two AMD EPYC 7742 CPUs. The
software versions are Python 3.9, CUDA 11.8, and GCC 11.4.
Baselines We compare MAGPY with state-of-the-art graph
instantiation techniques, including analysis-based frameworks
TorchDynamo [1] and TorchScript [2] with PyTorch v2.0.1,
and trace-based framework LazyTensor with torch.xla v2.0.
TorchScript fails to compile some models, and we manually
annotate the largest possible supported regions of the models.
Some trace-based techniques, like torch.jit.trace [2] and
AutoGraph [28], may cause silent errors theoretically, so they
are not compared. Janus [20] and Terra [23] are not included
as they are not open-sourced.
Benchmarks Our evaluation uses two sets of models. The
first is ParityBench, a benchmark containing 1418 PyTorch
models with over 100 stars on Github, to evaluate the cover-
age of different Python features in real user code. However,
since the model input shape cannot be crawled, the shapes
are automatically generated by the benchmark. The generated
input shape is far from the real scenario, so we use 8 repre-
sentative DNN models for time measurement. These models
cover typical DNN architectures like CNN and transformers
and include popular scenarios like multi-model and quanti-
zation. These models contain both classical models like Bert
and ResNet that have been manually simplified to accom-
modate the currently limited graph instantiation ability, and
models that are a bit less popular so not yet been simplified
but still gain a lot of attention (e.g., with a considerable ci-
tation count). ALIGN [21] is a multi-modal that combines
the Bert [9] language model and EfficientNet [35] vision
model. Bert [9] is a classical Transformer model and De-
BERTa [16] is another Transformer model with disentangled
attention. DenseNet [18], MonoDepth [14], ResNet [15], and
TridentNet [25] are four vision models with different CNN
architectures. We use densenet-121, Monodepth-18, ResNet-
101, and TridentNet based on ResNet-101, respectively. The
Quantize model uses the algorithm [4] proposed by Banner et
al. to quantize a ResNet model. The configurations, citations,

692 2024 USENIX Annual Technical Conference USENIX Association

ALIGN Bert DeBERTa DenseNet MonoDepth Quantized ResNet TridentNet
0.000

0.025

0.050

0.075

Ti
m

e
(s

)

G
ra

ph
 C

om
pi

le
 F

ai
l

G
ra

ph
 C

om
pi

le
 F

ai
l

G
ra

ph
 C

om
pi

le
 F

ai
l

Eager

TorchDynamo-Inductor
MagPy-Inductor

TorchScript-TorchScript
MagPy-TorchScript

LazyTensor-XLA
TorchDynamo-XLA
MagPy-XLA

(a) BS=1

ALIGN Bert DeBERTa DenseNet MonoDepth Quantized ResNet TridentNet
0.00

0.05

0.10

Ti
m

e
(s

)

G
ra

ph
 C

om
pi

le
 F

ai
l

G
ra

ph
 C

om
pi

le
 F

ai
l

G
ra

ph
 C

om
pi

le
 F

ai
l

Eager

TorchDynamo-Inductor
MagPy-Inductor

TorchScript-TorchScript
MagPy-TorchScript

LazyTensor-XLA
TorchDynamo-XLA
MagPy-XLA

(b) BS=16

Figure 15: End-to-end inference on NVIDIA A100. xxx-yyy means extracting graphs via xxx and compiling graphs via yyy.

Table 1: Model information. BS denotes “batch size”. The
citation is based on Google Scholar as of January 8, 2024.
xxx/yyy in source refers to github.com/xxx/yyy.

Model Input shape Citation Source

ALIGN text length 64 2029 huggingface/transformers v4.29.1image [BS, 3, 289, 289]
Bert text length 256 88345 huggingface/transformers v4.29.1

DeBERTa text length 256 1595 huggingface/transformers v4.29.1
DenseNet image [BS, 3, 224, 224] 41359 pytorch/vision v0.4.1

MonoDepth image [BS, 3, 256, 256] 3151 OniroAI/MonoDepth-PyTorch b76bee4
Quantized image [BS, 3, 224, 224] 330 eladhoffer/quantized.pytorch e09c447

ResNet image [BS, 3, 224, 224] 195511 pytorch/vision v0.4.1
TridentNet image [BS, 3, 224, 224] 932 open-mmlab/{mmdetection v2.28.2, mmcv v1.7.1}

and code source are listed in Table 1.
We use the original user code without modification except

for fixing version compatibility issues of Python and PyTorch.
Time is measured by averaging 100 runs after 100 warm-ups.

8.2 End-to-end Evaluation

Figure 15 compares the end-to-end inference performance of
different graph instantiation approaches. As some approaches
only support specific graph-level compilers, we compare
the performance of different graph instantiation approaches
using their default graph compiler with MAGPY using the
same graph compiler. MAGPY achieves up to 2.93× speedup
(1.73× on average) over eager execution, which is directly ex-
ecuted without compiling. When using TorchInductor, Torch-
Script, and XLA as graph compilers, MAGPY achieves up
to 6.25×(1.68× on average), 2.88×(1.56× on average), and
8× (1.78× on average) speedup respectively compared with
the best implementation of each model using that compiler.
The missing values in ALIGN model and DeBERTa model
compiled by Dynamo-XLA and MAGPY-XLA are caused by

the bug in compiling FX graph with XLA backend.

The speedup of MAGPY mainly comes from the reduced
Python overhead. MAGPY only needs to run a fast guard and
a fast mock in Python. Though compiling some program frag-
ments, TorchDynamo and TorchScript still need the Python
interpreter to execute the Python code between the fragments.
LazyTensor re-traces the graph in every run and it also suf-
fers from the significant Python overhead. Moreover, GPU
kernels are more efficient in some models because the larger
operator graph generated by MAGPY enables more optimiza-
tions by graph-level compilers. The kernel optimizations will
be more significant in the near future because current graph-
level compilers are exploring optimizing the operator graph
in a larger scope. When both convert the model to one graph,
MAGPY-TorchScript is faster than TorchScript-TorchScript
because MAGPY can safely pass more static information to
the TorchScript graph compiler.

The number of graphs exported by different technolo-
gies are listed in Table 2. The graph count of TorchDy-
namo is computed by counting the times it calls the graph
compiler, the number of graphs exported by TorchScript
is based on the times it enters the region marked with
torch.jit.script, and the graph count of LazyTensor is
based on the CachedCompile metric. These estimated graph
counts are lower than actual values because some tensor op-
erators may execute eager without compilation. MAGPY can
convert all evaluated models to full operator graphs, while
TorchDynamo, TorchScript, and LazyTensor generate 24.88,
20.54, and 1.75 graphs on average. Though LazyTensor only
generates one graph on most models, it is still slower than
MAGPY-XLA, proving its large runtime overhead.

USENIX Association 2024 USENIX Annual Technical Conference 693

Table 2: Number of exported operator graphs

Model ALIGN Bert DeBERTa DenseNet

TorchDynamo 168 1 53 59
TorchScript 204 36 37 3
LazyTensor 2 1 1 1

MAGPY 1 1 1 1

Model MonoDepth Quantized ResNet TridentNet

TorchDynamo 54 85 1 61
TorchScript 31 22 1 57
LazyTensor 1 44 1 1

MAGPY 1 1 1 1

Table 3: Result on ParityBench

Cases Static cases Compiler Failed cases Fail rate

TorchScript 769 64.5%

1421 1191 TorchDynamo 272 22.8%

MAGPY 79 6.6%

8.3 Coverage of Python Features

We use the ParityBench benchmark to evaluate the coverage
of Python features. The benchmark initially contains 2000 real
deep learning programs crawled from Github. We remove 490
cases that the benchmark fails to generate the model inputs.
Though these models may run under specific input configu-
rations, the input generator of ParityBench fails to find such
configurations. We also remove 89 cases that all tests crash in
eager mode. There are 1421 cases remained. MAGPY works
correctly on all these models. By manually examining the
cases, we find 230 (16.2%) models with dynamic behaviors,
and MAGPY can detect them automatically.

The coverage test is performed on the remaining
1191 models that can be represented by one static
operator graph theoretically. TorchScript (marking the
model with torch.jit.script) and TorchDynamo (pass-
ing full_graph=True) fail to export 64.5% and 22.8% mod-
els to a full graph. In contrast, MAGPY does not cover only
6.6% models now and can successfully convert 93.4% mod-
els to a full graph. The result proves that MAGPY is more
extensible for the complex Python features. The main reasons
for uncovery are (1) The bool scalars generated by different
expressions have the same object id in Python, so MAGPY
cannot lift dynamic-value bool scalars to different nodes in
the operator graph. Note that MAGPY works well on bool
Tensors and static bool scalars; (2) Some models contain out-
put that is not supported in the mock generation yet, such as
deque, Conuter, and UserDict.

8.4 Overhead Analysis

The time breakdown of a monitor run for generating a new
compile record and a matched run that runs a compiled record
is shown in Figure 16. The graph-level compiler in the exper-
iment is TorchInductor.

ALIGN Bert
DeBERTa

DenseNet
MonoDepth

Quantized
ResNet

TridentNet
0

25

Ti
m

e
(s

) MagPy profile graph compilation (Inductor)

(a) Breakdown of a monitor run.

ALIGN Bert
DeBERTa

DenseNet
MonoDepth

Quantized
ResNet

TridentNet
0

20

Ti
m

e
(m

s) guard validation mock execution

(b) Breakdown of a matched run.

Figure 16: Time breakdown of execution (BS=1)

During monitor run, MAGPY analyzes the interpreter state
of executing each bytecode. The analyzation time takes
2.91 seconds on average, which accounts for 23% of the to-
tal time. The remaining 77% of time is spent on TorchIn-
ductor compiling the operator graph. The graph compila-
tion time of TorchInductor is typical for graph-level com-
pilers, and many graph compilers will take longer time, such
as hundreds-of-seconds reported by recent works Graph-
Turbo [41], Welder [32], and EinNet [43].

For a matched run, MAGPY runs the guard to find the
matched compile record and runs the compiled mock of the
record. The time for guard and mock are 2% and 98% on
average respectively.

8.5 Dynamic Scenarios
This section evaluates MAGPY on the two common dynamic
scenarios including dynamic shape and dynamic control flow.
Though not satisfying the default limited dynamics assump-
tion, MAGPY can also generate a proper operator graph with
technologies in §6.2.

Figure 17 shows the performance of models with fixed
operator graph structures but fed with dynamic-shape inputs.
The model-bs tests use the input shape in Table 1 but vary
the batch size with a uniform distribution between [2,16].
The input texts of model-seqlen tests for language models
are of batch size 8 and dynamic sequence length between
32 to 256. The operator graph is compiled by TorchInductor
with dynamic shape enabled. Bert and ResNet are two sim-
ple models that TorchDynamo can also export full graphs.
MAGPY can achieve similar performance with TorchDynamo
on the two models, proving that MAGPY does not lose the
hidden runtime information that analysis-based frameworks
can collect. For complex models that are beyond the analysis
ability of TorchDynamo, MAGPY can achieve 1.06×, 1.16×,
and 2.05× speedup over TorchDynamo on DeBERTa with
dynamic batch size, DeBERTa with dynamic sequence length,
and DenseNet with dynamic batch size respectively.

Figure 18 shows the result of compiling models with dy-
namic control flow. LSTM [17] is a classical RNN model

694 2024 USENIX Annual Technical Conference USENIX Association

Bert-bs
Bert-seqlen

ResNet-bs

DeBERTa-bs

DeBERTa-seqlen
DenseNet-bs

0.00

0.02

0.04

Ti
m

e
(s

)

Eager
TorchDynamo
MagPy

Figure 17: Inference of models with dynamic shape

110
120 118.07

120
130 127.17 Eager

TorchDynamo
MagPy

30

35
32.00

30.0
32.5 31.40

LSTM BlockDrop
0

5
3.12 2.382.76

0.78

LSTM BlockDrop
0

5 3.93 3.14
5.15

0.87

Ti
m

e
(m

s)

Figure 18: Inference of models with dynamic control flow

for NLP and contains a dynamic loop over static LSTM
cells. We use a 10-layer LSTM with a hidden size of 256.
The code is from PyTorch’s official repository on Github.
BlockDrop [39] is a convolutional neural network that dy-
namically skips some layers with a dynamic if statement.
The source code is from Tushar-N/blockdrop on Github.
As TorchInductor cannot compile operator graphs with dy-
namic control flow, we compile the exported operator graphs
with Cocktailer [40], the state-of-the-art graph compiler for
dynamic control flow. TorchDynamo chooses to unroll the
whole LSTM model, which is over-specialized for the dy-
namic workload. To make a fair comparison, we manually
mark the LSTM Cell as the compile region of TorchDynamo
and run the loop in Python. MAGPY achieves up to 11.59×
speedup (5.96× on average) over TorchDynamo.

9 Related Work

Several approaches have been proposed to export operator
graphs from user code. Janus [20], TorchScript [2], and Torch-
Dynamo [1] get the operator graph by directly analyzing the
user code. They only support a small subset of Python fea-
tures and cannot export a complete operator graph when the
program contains complex Python features. Other works get
the operator graph by executing the program with special
Tensors and tracing all operators on it. torch.jit.trace [2]
and torch.fx [31] create a stand-alone operator graph that
is never recompiled. AutoGraph [28] and JAX.jit [12] can
automatically recompile when the input arguments to the
function changes but cannot detect the change of other exter-
nal values like global variables, so they still produce wrong
results silently. LazyTensor [33], Terra [23], and Torchy [26]
ensure the correctness by re-trace the operator graph in every
run which will introduce large runtime overhead.

The operator graph exported by the above systems and
MAGPY will be fed to graph-level deep learning compil-

ers. The graph level compilers then convert the operator
graph to a faster implementation by technologies like graph
substitution (e.g., TASO [22], PET [38], and EinNet [43])
and kernel fusion (e.g., Rammer [27], DNNFusion [29],
AStitch [46], GraphTurbo [41], Welder [32]). Other works
including TVM [8], FlexTensor [45], Ansor [42], AMOS [44],
Roller [47], TensorIR [11], and Hidet [10] optimize the deep
learning operators, and can accelerate both eager execution
and compile-based execution.

Many domain-specific languages, including Triton [37] and
FreeTensor [36], use Python as their frontend language and
need to convert users’ Python programs to their intermediate
representations for further compilation. Graph instantiation
technologies can be used for the conversion, helping to avoid
silent errors (e.g., caused by global-parameter mutations), and
to support more flexible grammars.

The just-in-time compilation based on runtime information
is widely used in compiling general-purpose programs. Ex-
amples include PyPy [5] and Numba [24] for Python, java
HotSpot [30], trace-JIT [19] for JAVA, TraceMonkey [13]
for JavaScript. These tools convert a dynamic program into
low-level machine code while MAGPY creates high-level
operator graphs. The process of instantiating the graph and
compiling the graph is similar to multistage programming like
MetaML [34], MetaOCAML [7], and BuiltIt [6]. However,
multi-stage programming languages require users to specify
the stage manually, and cannot automatically recompile when
the external environment changes.

10 Conclusion

We propose MAGPY, which exploits the limited dynamics in-
herent in deep learning programs to enable effective operator
graph instantiation. MAGPY introduces RefGraph to record
program states and reduces the graph instantiation complexi-
ties by monitoring external values that impact program behav-
ior. Evaluation shows that MAGPY can accelerate complex
deep learning programs by up to 2.88× (1.55× on average),
and successfully instantiate 93.40% of 1191 limited-dynamic
user programs into complete operator graphs.

Acknowledgements

We thank the anonymous reviewers their extensive sugges-
tions. This work is supported by National Key R&D Program
of China under Grant 2021ZD0110202, the Young Student
Basic Research Fund of the National Natural Science Foun-
dation of China (623B2061), NSFC for Distinguished Young
Scholar (62225206), National Natural Science Foundation
of China (U20A20226), the Young Scientists Fund of the
National Natural Science Foundation of China (62202259).
Jidong Zhai is the corresponding author of this paper
(zhaijidong@tsinghua.edu.cn).

USENIX Association 2024 USENIX Annual Technical Conference 695

zhaijidong@tsinghua.edu.cn

References

[1] torch.compiler. https://pytorch.org/docs/
stable/torch.compiler.html.

[2] TorchScript. https://pytorch.org/docs/stable/
jit.html.

[3] XLA | TensorFlow. https://www.tensorflow.org/
xla.

[4] Ron Banner, Itay Hubara, Elad Hoffer, and Daniel
Soudry. Scalable methods for 8-bit training of neural
networks. Advances in neural information processing
systems, 31, 2018.

[5] Carl Friedrich Bolz, Antonio Cuni, Maciej Fijalkowski,
and Armin Rigo. Tracing the meta-level: Pypy’s tracing
jit compiler. In Proceedings of the 4th workshop on the
Implementation, Compilation, Optimization of Object-
Oriented Languages and Programming Systems, pages
18–25, 2009.

[6] Ajay Brahmakshatriya and Saman Amarasinghe.
Buildit: A type-based multi-stage programming frame-
work for code generation in c++. In 2021 IEEE/ACM
International Symposium on Code Generation and Opti-
mization (CGO), pages 39–51. IEEE, 2021.

[7] Cristiano Calcagno, Walid Taha, Liwen Huang, and
Xavier Leroy. Implementing multi-stage languages us-
ing asts, gensym, and reflection. In International Con-
ference on Generative Programming and Component
Engineering, pages 57–76. Springer, 2003.

[8] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin
Zheng, Eddie Yan, Haichen Shen, Meghan Cowan,
Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin,
and Arvind Krishnamurthy. TVM: An automated end-
to-end optimizing compiler for deep learning. In 13th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18), pages 578–594, Carlsbad,
CA, 2018. USENIX Association.

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: pre-training of deep bidirec-
tional transformers for language understanding. CoRR,
abs/1810.04805, 2018.

[10] Yaoyao Ding, Cody Hao Yu, Bojian Zheng, Yizhi Liu,
Yida Wang, and Gennady Pekhimenko. Hidet: Task-
mapping programming paradigm for deep learning ten-
sor programs. In Proceedings of the 28th ACM Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, Volume
2, pages 370–384, 2023.

[11] Siyuan Feng, Bohan Hou, Hongyi Jin, Wuwei Lin, Junru
Shao, Ruihang Lai, Zihao Ye, Lianmin Zheng, Cody Hao
Yu, Yong Yu, et al. Tensorir: An abstraction for auto-
matic tensorized program optimization. pages 804–817,
2023.

[12] Roy Frostig, Matthew James Johnson, and Chris Leary.
Compiling machine learning programs via high-level
tracing. Systems for Machine Learning, 2018.

[13] Andreas Gal, Brendan Eich, Mike Shaver, David Ander-
son, David Mandelin, Mohammad R Haghighat, Blake
Kaplan, Graydon Hoare, Boris Zbarsky, Jason Orendorff,
et al. Trace-based just-in-time type specialization for dy-
namic languages. ACM Sigplan Notices, 44(6):465–478,
2009.

[14] Clément Godard, Oisin Mac Aodha, and Gabriel J Bros-
tow. Unsupervised monocular depth estimation with left-
right consistency. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pages
270–279, 2017.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[16] Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. Deberta: Decoding-enhanced
bert with disentangled attention. arXiv preprint
arXiv:2006.03654, 2020.

[17] Sepp Hochreiter and Jürgen Schmidhuber. Long
short-term memory. Neural Comput., 9(8):1735–1780,
November 1997.

[18] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and
Kilian Q Weinberger. Densely connected convolutional
networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 4700–
4708, 2017.

[19] Hiroshi Inoue, Hiroshige Hayashizaki, Peng Wu, and
Toshio Nakatani. Adaptive multi-level compilation in a
trace-based java jit compiler. ACM SIGPLAN Notices,
47(10):179–194, 2012.

[20] Eunji Jeong, Sungwoo Cho, Gyeong-In Yu, Joo Seong
Jeong, Dong-Jin Shin, and Byung-Gon Chun. JANUS:
Fast and flexible deep learning via symbolic graph exe-
cution of imperative programs. In 16th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 19), pages 453–468, 2019.

[21] Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana
Parekh, Hieu Pham, Quoc Le, Yun-Hsuan Sung, Zhen Li,
and Tom Duerig. Scaling up visual and vision-language

696 2024 USENIX Annual Technical Conference USENIX Association

https://pytorch.org/docs/stable/torch.compiler.html
https://pytorch.org/docs/stable/torch.compiler.html
https://pytorch.org/docs/stable/jit.html
https://pytorch.org/docs/stable/jit.html
https://www.tensorflow.org/xla
https://www.tensorflow.org/xla

representation learning with noisy text supervision. In
International conference on machine learning, pages
4904–4916. PMLR, 2021.

[22] Zhihao Jia, Oded Padon, James Thomas, Todd Warsza-
wski, Matei Zaharia, and Alex Aiken. TASO: Opti-
mizing deep learning computation with automatic gen-
eration of graph substitutions. In Proceedings of the
27th ACM Symposium on Operating Systems Princi-
ples, SOSP ’19, page 47–62, New York, NY, USA, 2019.
Association for Computing Machinery.

[23] Taebum Kim, Eunji Jeong, Geon-Woo Kim, Yunmo
Koo, Sehoon Kim, Gyeong-In Yu, and Byung-Gon Chun.
Terra: Imperative-symbolic co-execution of imperative
deep learning programs. Advances in Neural Informa-
tion Processing Systems, 34, 2021.

[24] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert.
Numba: A llvm-based python jit compiler. In Proceed-
ings of the Second Workshop on the LLVM Compiler
Infrastructure in HPC, pages 1–6, 2015.

[25] Yanghao Li, Yuntao Chen, Naiyan Wang, and Zhaoxiang
Zhang. Scale-aware trident networks for object detec-
tion. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 6054–6063, 2019.

[26] Nuno P Lopes. Torchy: A tracing jit compiler for py-
torch. In Proceedings of the 32nd ACM SIGPLAN Inter-
national Conference on Compiler Construction, pages
98–109, 2023.

[27] Lingxiao Ma, Zhiqiang Xie, Zhi Yang, Jilong Xue,
Youshan Miao, Wei Cui, Wenxiang Hu, Fan Yang, Lintao
Zhang, and Lidong Zhou. Rammer: Enabling holistic
deep learning compiler optimizations with rtasks. In
14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 20), pages 881–897, 2020.

[28] Dan Moldovan, James Decker, Fei Wang, Andrew John-
son, Brian Lee, Zachary Nado, D Sculley, Tiark Rompf,
and Alexander B Wiltschko. Autograph: Imperative-
style coding with graph-based performance. volume 1,
pages 389–405, 2019.

[29] Wei Niu, Jiexiong Guan, Yanzhi Wang, Gagan Agrawal,
and Bin Ren. DNNFusion: accelerating deep neural
networks execution with advanced operator fusion. In
Proceedings of the 42nd ACM SIGPLAN International
Conference on Programming Language Design and Im-
plementation, pages 883–898, 2021.

[30] Michael Paleczny, Christopher Vick, and Cliff Click.
The java {HotSpot™} server compiler. In Java (TM)
Virtual Machine Research and Technology Symposium
(JVM 01), 2001.

[31] James Reed, Zachary DeVito, Horace He, Ansley Ussery,
and Jason Ansel. Torch. fx: Practical program capture
and transformation for deep learning in python. Pro-
ceedings of Machine Learning and Systems, 4:638–651,
2022.

[32] Yining Shi, Zhi Yang, Jilong Xue, Lingxiao Ma, Yuqing
Xia, Ziming Miao, Yuxiao Guo, Fan Yang, and Lidong
Zhou. Welder: Scheduling deep learning memory access
via tile-graph. In 17th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI 23),
pages 701–718, 2023.

[33] Alex Suhan, Davide Libenzi, Ailing Zhang, Parker
Schuh, Brennan Saeta, Jie Young Sohn, and Denys
Shabalin. Lazytensor: combining eager execution
with domain-specific compilers. arXiv preprint
arXiv:2102.13267, 2021.

[34] Walid Taha and Tim Sheard. Multi-stage programming
with explicit annotations. In Proceedings of the 1997
ACM SIGPLAN symposium on Partial evaluation and
semantics-based program manipulation, pages 203–217,
1997.

[35] Mingxing Tan and Quoc Le. Efficientnet: Rethinking
model scaling for convolutional neural networks. In
International conference on machine learning, pages
6105–6114. PMLR, 2019.

[36] Shizhi Tang, Jidong Zhai, Haojie Wang, Lin Jiang, Liyan
Zheng, Zhenhao Yuan, and Chen Zhang. Freetensor:
a free-form dsl with holistic optimizations for irregu-
lar tensor programs. In Proceedings of the 43rd ACM
SIGPLAN International Conference on Programming
Language Design and Implementation, pages 872–887,
2022.

[37] Philippe Tillet, Hsiang-Tsung Kung, and David Cox.
Triton: an intermediate language and compiler for tiled
neural network computations. In Proceedings of the 3rd
ACM SIGPLAN International Workshop on Machine
Learning and Programming Languages, pages 10–19,
2019.

[38] Haojie Wang, Jidong Zhai, Mingyu Gao, Zixuan Ma,
Shizhi Tang, Liyan Zheng, Yuanzhi Li, Kaiyuan Rong,
Yuanyong Chen, and Zhihao Jia. PET: Optimizing ten-
sor programs with partially equivalent transformations
and automated corrections. In 15th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 21), pages 37–54, 2021.

[39] Zuxuan Wu, Tushar Nagarajan, Abhishek Kumar, Steven
Rennie, Larry S Davis, Kristen Grauman, and Rogerio
Feris. Blockdrop: Dynamic inference paths in residual
networks. In Proceedings of the IEEE Conference on

USENIX Association 2024 USENIX Annual Technical Conference 697

Computer Vision and Pattern Recognition, pages 8817–
8826, 2018.

[40] Chen Zhang, Lingxiao Ma, Jilong Xue, Yining Shi, Zim-
ing Miao, Fan Yang, Jidong Zhai, Zhi Yang, and Mao
Yang. Cocktailer: Analyzing and optimizing dynamic
control flow in deep learning. In 17th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 23), pages 681–699, 2023.

[41] Jie Zhao, Siyuan Feng, Xiaoqiang Dan, Fei Liu,
Chengke Wang, Sheng Yuan, Wenyuan Lv, and Qikai
Xie. Effectively scheduling computational graphs of
deep neural networks toward their {Domain-Specific}
accelerators. In 17th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 23), pages
719–737, 2023.

[42] Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu,
Cody Hao Yu, Ameer Haj-Ali, Yida Wang, Jun Yang,
Danyang Zhuo, Koushik Sen, et al. Ansor: Generating
high-performance tensor programs for deep learning. In
14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 20), pages 863–879, 2020.

[43] Liyan Zheng, Haojie Wang, Jidong Zhai, Muyan Hu,
Zixuan Ma, Tuowei Wang, Shuhong Huang, Xupeng
Miao, Shizhi Tang, Kezhao Huang, et al. {EINNET}:
Optimizing tensor programs with {Derivation-Based}
transformations. In 17th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI 23),
pages 739–755, 2023.

[44] Size Zheng, Renze Chen, Anjiang Wei, Yicheng Jin, Qin
Han, Liqiang Lu, Bingyang Wu, Xiuhong Li, Shengen
Yan, and Yun Liang. Amos: enabling automatic map-
ping for tensor computations on spatial accelerators with
hardware abstraction. In ISCA, pages 874–887, 2022.

[45] Size Zheng, Yun Liang, Shuo Wang, Renze Chen, and
Kaiwen Sheng. Flextensor: An automatic schedule ex-
ploration and optimization framework for tensor compu-
tation on heterogeneous system. In Proceedings of the
Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating
Systems, ASPLOS ’20, page 859–873, New York, NY,
USA, 2020. Association for Computing Machinery.

[46] Zhen Zheng, Xuanda Yang, Pengzhan Zhao, Guoping
Long, Kai Zhu, Feiwen Zhu, Wenyi Zhao, Xiaoyong
Liu, Jun Yang, Jidong Zhai, et al. Astitch: enabling a
new multi-dimensional optimization space for memory-
intensive ml training and inference on modern simt
architectures. In Proceedings of the 27th ACM Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages
359–373, 2022.

[47] Hongyu Zhu, Ruofan Wu, Yijia Diao, Shanbin Ke,
Haoyu Li, Chen Zhang, Jilong Xue, Lingxiao Ma,
Yuqing Xia, Wei Cui, et al. ROLLER: Fast and ef-
ficient tensor compilation for deep learning. In 16th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 22), pages 233–248, 2022.

A Artifact Appendix

Abstract
This artifact helps to reproduce the results of ATC’24 paper:
MAGPY: Compiling Eager Mode DNN Programs by Moni-
toring Execution States.

Usage
The input of MAGPY is a PyTorch program. MAGPY auto-
matically exports the PyTorch program to torch.fx format
and adds proper guards with the proposed method described
in the paper. Then, MAGPY uses the graph-level compiler
provided by the user to compile the exported graph.

Scope
The artifact can be used to reproduce the experiments of
the paper, including the introduction (Figure 1), end-to-end
comparison (Figure 15), breakdown (Figure 16 and Table 2),
dynamic models (Figure 17 and 18), and coverage (Table 3).

Contents
This artifact includes the code of MAGPY, input data of ex-
periments, a guide for setting up the environment of the ex-
periments, and scripts for running the experiments. It helps to
reproduce the following Figures:
• Figure 1: Power of graph instantiation
• Figure 15: End-to-end inference on NVIDIA A100
• Figure 16: Time breakdown of execution (BS=1)
• Figure 17: Inference of models with dynamic shape
• Figure 18: Inference of models with dynamic control flow
• Table 2: Number of exported operator graphs
• Table 3: Result on ParityBench

Hosting
MAGPY is host at github.com/heheda12345/MagPy, and the
artifact is host at github.com/heheda12345/MagPy-AE.

Requirements
This artifact needs one machine with at least one NVIDIA
A100 GPU, with NVIDIA driver properly installed. Users can
follow the installation guide to setup the software environment
to reproduce the results.

698 2024 USENIX Annual Technical Conference USENIX Association

https://github.com/heheda12345/MagPy
https://github.com/heheda12345/MagPy-AE

	Introduction
	Background and Challenges
	Challenges
	Guard-based Just-in-time Compilation

	Overview
	Design
	Definition of RefGraph
	Guard and Mock Generation
	Operator Graph Generation

	RefGraph Generation
	Interface of Execution State Capture
	Operation Property Annotation
	Graph Update Rule
	Operator Graph Update and Dynamics Detection
	Update of RefGraph

	Detect and Handle Dynamic Behaviors
	Dynamic Detection
	Dynamic Handling
	Lift up Non-const Variables
	Dynamic Control Flow

	Implementation
	Evaluation
	Evaluation Setup
	End-to-end Evaluation
	Coverage of Python Features
	Overhead Analysis
	Dynamic Scenarios

	Related Work
	Conclusion
	Artifact Appendix

