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Abstract
SSD failures have an increasing impact on storage reliabil-
ity and performance in data centers. Some manufacturers
have customized fine-grained Telemetry attributes to analyze
and identify SSD failures. Based on Telemetry data, this pa-
per proposes the mutation similarity based failure rating and
diagnosis (MSFRD) scheme to predict failures in dynamic
environment of data centers and improve failure handling
efficiency. MSFRD dynamically detects the internal muta-
tions of SSDs in real time and measures their similarity to
the mutations of historical failed SSDs and healthy SSDs for
failure prediction and early rating. Based on the rating, un-
available SSDs with serious failures are handled immediately,
while available SSDs with less serious failures will be con-
tinuously tracked and diagnosed. The MSFRD is evaluated
on real Telemetry datasets collected from large-scale SSDs in
data centers. Compared with the existing schemes, MSFRD
improves precision by 23.8% and recall by 38.9% on average
for failure prediction. The results also show the effectiveness
of MSFRD on failure rating and progressive diagnosis.

1 Introduction

Nowadays, with the development of the Internet, the scale of
data is growing exponentially and storage plays a more and
more crucial role in computer systems. NAND flash-based
solid state drives (SSDs) have better performance and lower
power consumption than hard disk drives (HDDs), and are
increasingly used in data centers. However, as the storage
density of SSDs increases, the durability and reliability are
decreasing [18, 21], which poses a challenge to the storage
reliability of large data centers with even millions of SSDs.
SSD failures have received more and more attention due to
the following two impacts. First, although passive failure tol-
erance mechanisms (such as replication [33] and RAID [26])
are used to avoid data loss, SSD failures would cause instabil-
ity in online services, such as jitter performance and long-tail
latency. Second, SSD failures bring additional maintenance
costs, and failure handling may be inaccurate and result in
more recovery costs. Therefore, SSD failure prediction, as a
proactive failure tolerance mechanism, is a powerful supple-
ment to passive failure tolerance mechanisms. The industry

expects to reduce the impact and cost of SSD failures through
early failure detection and handling (such as service migration
and SSD replacement).

Traditional failure prediction is mainly based on Self-
Monitoring, Analysis, and Reporting Technology (SMART)
originated from HDDs. Based on SMART logs, the exist-
ing HDD and SSD failure prediction schemes adopt clas-
sification or anomaly detection algorithms to distinguish
failed disks from healthy disks. Specifically, classification
algorithms such as random forest learn existing patterns of
failed disks and healthy disks to perform binary classification
[6, 16, 20, 22, 35, 38, 44]. Anomaly detection algorithms such
as autoencoder learn the pattern of healthy disks, and identify
a failed disk when its SMART data are very different from
those of most healthy disks [4, 7, 42]. Based on these algo-
rithms and SMART logs, HDD failure prediction has achieved
high prediction accuracy [20], but SSD failure prediction has
not [6]. Unlike mechanical-based HDDs, the internal mech-
anism of flash-based SSDs is more complicated. The SSD
has more components and processes that require fine-grained
monitoring. Moreover, it has various error tolerance mecha-
nisms [15], which makes it difficult to distinguish between
real failures and tolerable errors. SSD monitoring and failure
prediction are still facing great challenges in industry.

To enhance SSD monitoring and failure warning, some
manufacturers (e.g., Samsung) have customized comprehen-
sive Telemetry logs with more attributes to monitor SSD’s
internal mechanisms and components in detail. However, we
find that the existing schemes face three challenges and are
not fully suitable for complicated Telemetry information and
dynamic environment in practice. To this end, we propose
the mutation similarity based failure rating and diagnosis
(MSFRD) scheme. The existing challenges and the main
ideas of our solution are summarized as follows and intro-
duced in detail in Section 3.

• Changes in data importance from model training to
online prediction. The existing schemes design feature en-
gineering based on training data to obtain key information
from data. For example, feature selection is usually used
to select important monitoring attributes for failure predic-
tion [4, 6, 22, 34, 38, 42]. However, in practice, the training
data are historical data, but actual failure prediction is per-
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formed on future online data [39, 40]. As SSDs wear out,
failure-irrelevant attributes in the training data may become
failure-relevant in future online data, especially when there
are many Telemetry attributes. In this case, traditional static
feature engineering based on historical training data would
miss some attributes that are important for online predic-
tion. Different from static feature engineering, we propose
to dynamically extract failure-related mutations (i.e., rare
and sudden changes) from Telemetry data in real time as
features, thereby focusing on the real critical information in
future online data even if they are not critical in historical
training data. (See Section 3.1)

• Unseen patterns in dynamic data center environments.
For failure prediction in practice, traditional classification
models are trained based on historical data and can ef-
fectively distinguish health/failure patterns seen in histori-
cal data. However, in practice, data patterns continuously
change and unseen patterns would appear [4]. Some studies
[4, 42] adopt anomaly detection models to predict failures
by detecting outlier patterns including unseen patterns, but
outlier patterns are not exactly equivalent to failure patterns.
It is still a challenge to accurately capture both seen and
unseen failure patterns. To take advantage of classification
models and anomaly detection models, we adopt the idea of
similarity measurement that exist in both types of models.
The similarity of mutations in SSDs is measured to capture
both seen and unseen patterns. (See Section 3.2)

• Diverse failure phenomena and degrees. Most existing
schemes have a single definition and handling measure for
failures [1, 4, 6, 17, 38, 42]. However, in complex produc-
tion environments, SSD failures are diverse and vary in
degree [19, 39]. In addition to unavailable SSDs with se-
rious failures that should be replaced immediately, some
available SSDs with less serious failures (e.g., performance
degradation) can be further diagnosed and handled accord-
ingly. The previous schemes cannot capture fine-grained
failure status and lack suggestions for failure analysis and
handling, which brings troubles to operators. In this paper,
we adopt failure rating to distinguish the detailed status
and health/failure level of SSDs to reduce operators’ bur-
den. In particular, by identifying and diagnosing available
SSDs with less serious failures, the cost of unnecessary
SSD replacement can be reduced. (See Section 3.3)

We carried out evaluations on large-scale datasets from
data centers. The results show that the proposed scheme im-
proves precision by 23.8% and recall by 38.9% on average
for failure prediction and improves accuracy rate by at least
38.7% for failure rating, compared with existing schemes.
Our contributions are summarized as follows.

1. We propose a dynamic mutation feature extraction method
to locate abnormal changes and failure symptoms of SSDs
in real time, avoiding the impact of changes in data impor-
tance. The deviation of data trends from expectations is

adopted to capture mutations, and self-learned weights are
designed to reflect the rarity and importance of mutations.

2. We propose a mutation based similarity measure approach
to capture failure patterns. When patterns that have been
seen in historical data are captured through similarity mea-
surement, unseen patterns are also perceived based on their
outlier degree and health/failure tendency.

3. We propose failure rating to predict and distinguish the
status and degree of SSD failure, and suggest correspond-
ing measures. In particular, for available SSDs with less
serious failures, we continuously track and diagnose the
fine-grained failure status and perform progressive pro-
cessing.

2 A Look at Field Data

We have two large-scale Telemetry datasets collected from the
data centers of large Internet companies such as ByteDance.
The Telemetry logs are the snapshots of SSD internal at-
tributes on a regular basis (e.g., one Telemetry log per day for
each SSD). The first dataset has over 41 million Telemetry
logs collected from more than 120,000 SSDs over a year and
a half, called the 41-M dataset in this paper. The SSDs carry
various businesses and workloads. The second dataset from
another company contains over 10 million Telemetry logs
collected within seven months from more than 35,000 SSDs,
called the 10-M dataset in this paper. These data are col-
lected from Samsung’s current data center-level PM9A3 SSD,
since Samsung has customized up to 85 Telemetry attributes
for PM9A3. These attributes monitor the fine-grained status
and mechanisms inside the SSD. In particular, there are vari-
ous error tolerant mechanisms inside SSDs to enhance their
reliability. In addition to common read/write and temperature-
related attributes, error tolerance and uncorrectable situations
are also recorded. Some key Telemetry attributes are shown
in Table 1.

Besides Telemetry data and corresponding SSD informa-
tion (serial number, model, firmware, etc.), the failure lists
are also collected by the operators, including serial number
of failed SSDs, failure’s report date, failure description, and
handling measures. There are 1,126 and 318 records in the
failure list of 41-M dataset and 10-M dataset respectively.
Many of the failed SSDs have been confirmed as unavailable
and then replaced by operators. Some SSDs that temporarily
resulted in online problems (e.g., performance degradation or
SSD lost) were reported in failure list but later confirmed to
be usable by operators, so they are not replaced for the time
being.

3 Background and Motivation

Recently, machine learning-based failure prediction schemes
have become mainstream in HDD and SSD failure prediction
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Uncorrectable error
• lifetime_uecc_count: the count of NAND’s uncorrectable error-

correction code (ECC) errors
• dram_uecc_count: the count of DRAM’s uncorrectable ECC

errors
• ETE_uncorrectable_error: the count of end-to-end uncor-

rectable errors

Error tolerance (correctable error)
• dram(sram)_cecc_count: the count of DRAM(SRAM)’s cor-

rectable ECC errors
• dram(sram)_cecc_address_count: the count of distinct ad-

dresses of DRAM(SRAM)’s correctable ECC errors
• read_recovery_attempts: the count of NAND reads that require

retrying
• read_reclaim_count: the count of blocks that have been re-

allocated to maintain data integrity
• bad_user(system)_nand_block_count: the count of user (sys-

tem) NAND blocks that have been retired

Read/write
• lifetime_user_reads(writes): the count of bytes read(written) by

the host
• physical_media_units_read(written): the count of bytes read

(written) by the media
• trailing_hour_WAF: the write amplification factor within one

hour

Temperature
• highest_temperature: the highest temperature of the device
• lowest_temperature: the lowest temperature of the device
• over_temperature_minutes: the number of minutes the device

exceeds the specified maximum operating temperature

Wear and capacitor
• wear_level_avg(max, min): the average (maximum, minimum)

erase cycle of internal blocks
• endurance_estimate: a current estimate of the total number of

data bytes that can be written to the device over its lifetime
• capacitor_health: an indicator of capacitor health and it repre-

sents capacitor energy margin

Table 1: The description of key Telemetry attributes. (Similar
attributes are described together, such as dram_cecc_count
and sram_cecc_count)

[40] because of their good performance. Failure prediction
based on machine learning usually has the following three
steps. 1) Feature engineering. Key information for failure
prediction is extracted as features from raw monitoring data
to reduce noise information. 2) Prediction model. The features
are input to the machine learning model to predict failures. 3)
Failure alarm and handling. Failures are alarmed and handled
in advance based on the prediction results. Next, we will
introduce the background and challenges of each of the above
steps, as well as our motivations and ideas.

3.1 Feature Engineering
Background. Feature engineering aims to extract the key
information from monitoring data to predict failures. The ex-

Figure 1: The Pearson correlation coefficients between
Telemetry attributes and the failures per month. The top five
attributes with the highest correlation coefficients during this
period are displayed.

isting failure prediction schemes [4, 6, 22, 34, 38, 42] usually
use feature selection to select monitoring attributes related
to failures as features, thereby removing other irrelevant at-
tributes to reduce noise. Many schemes use correlation coeffi-
cients [2] or J-index [9] to identify the attribute correlation for
distinguishing healthy and failed SSDs, and select attributes
with high correlation as features. The existing approaches all
rely on training data, because they select attributes that are
more relevant to failures in the training set. However, in prac-
tice, training data are historical data, and failure prediction
are actually performed on future data [39, 40]. Furthermore,
an evaluation period is required before the model goes on-
line. As workloads change and SSDs wear out, the patterns of
monitoring data will change and some unseen data patterns
will appear, and the correlation between attributes and failures
will also change. Accordingly, the features selected based on
training data would not be fully applicable to future online
data.

Figure 1 shows that the Pearson correlation coefficients
[2] between attributes and failures vary greatly over time. For
example, the attribute ETE_uncorrectable_error changes from
failure-irrelevant (0) to failure-relevant (0.17), but it will be
discarded and cannot contribute to future online prediction if
feature selection is based on early data. In fact, after collecting
data for over a year and a half, we still observe significant
changes in the correlation between attributes and failures on
latest data. This indicates that current static feature selection
based on training data does not work well in practical time-
based training-evaluation-prediction situation. According to
our practice, after feature engineering and model training,
the model should be evaluated for at least three months to
verify its effectiveness before it is actually launched for online
prediction, thus widening the time gap between training data
and future online data.

In addition to feature selection, some previous schemes
[39, 40] also extract time-series features (such as difference
and slope) from the data of multiple monitoring logs to reflect
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Figure 2: Attribute trends of healthy and failed SSDs. The horizontal coordinate is the date (month-day), and the vertical
coordinate is the value of corresponding attribute. Most of failed SSDs have no subsequent data since they have been replaced.

the changes in the SSD, which is helpful for capturing fail-
ure symptoms. The time-series features can reflect changes
in monitoring values over time, but there are many normal
changes inside SSD that are not related to failures, which
will also introduce noise information. How to extract key
information of failure-related changes remains a challenge.
Motivation and analysis. Based on the existing limitations,
we conceive of dynamically capturing abnormal changes re-
lated to failures in online data as features, instead of perform-
ing static feature engineering based on historical training data.
In this way, even if some attributes are not related to failures
on historical training data, their information will still be ex-
tracted when they change abnormally in future online data.
At the same time, by extracting abnormal changes, normal
changes and corresponding attributes unrelated to failures in
online data can be implicitly eliminated, thereby reducing
noise information.

To dynamically capture abnormal changes related to SSD
failures, we need to understand what changes are abnormal
before failures occur. On the key Telemetry attributes such
as error- and read/write-related attributes, the data trends
of failed SSDs and healthy SSDs in our dataset are com-
pared. We found that failed SSDs usually have rare, sudden,
rapid changes (called mutations in this paper) in Telemetry
attributes before the failure, as shown in Figure 2.

Figure 2(a) compares failed and healthy SSDs whose
NAND UECC (i.e., lifetime_uecc_count) increases. It shows
that these failed SSDs have similar symptoms, i.e., the rare
and rapid increase of UECC. Some healthy SSDs’ UECC
also increases, but the increase tends to be slow and small.
UECC means that the SSD has experienced some data read
errors, and sporadic UECC may happen by accident, so the
SSD still work later. However, the rapid and substantial in-
crease of UECC implies that there are continuous unresolv-
able problems inside the SSD, and it is on the verge of failure.
Figure 2(b) shows that the failed SSDs are also more likely to
experience sudden increases of read_recovery_attempts com-
pared with healthy SSDs. Read_recovery_attempts means that
the SSD needs to solve some problems by read retry. When it
increases rapidly, the read-retry mechanism may not solve the

problems, thus resulting in a failure. Although most mutations
are rare and more likely to appear on failed SSDs, we also find
some common mutations that widely exist on both healthy
and failed SSDs, such as WAF (i.e., trailing_hour_WAF) mu-
tations in Figure 2(c). WAF is susceptible to workloads, so
its mutation is more common and less meaningful for failure
prediction compared with error- and wear-related mutations.
In general, Telemetry mutations are abnormal changes related
to failures, especially rare mutations which are more likely to
appear before failures occur.
Ideas. To focus on actual important attributes and abnormal
changes in online data, we suggest dynamically extracting
mutation information in Telemetry attributes to reflect the
failure symptoms and patterns. Compared with normal slow
changes, mutations are rare, sudden, and unexpected changes.
If we predict future attribute trend as the expected trend based
on historical trend, the prediction error (i.e., the difference
between predicted trend and actual trend) for mutations will
be much larger than normal changes. Therefore, we adopt the
prediction errors of attribute trends as the mutation features to
represent the degree of mutations. For normal slow changes,
the prediction errors will be very small and the feature values
tend to be zero, so they are implicitly eliminated. For muta-
tions, there will be larger prediction errors, and the feature
values will also be larger and more significant. Meanwhile,
since common mutations on healthy SSDs are less impor-
tant, we also recommend estimating the rarity of mutations to
reflect their importance.

3.2 Prediction Model

Background. There are mainly two types of machine learn-
ing models for failure prediction: classification models and
anomaly detection models. Most previous schemes [1, 6, 17,
22, 38, 40] treat failure prediction as a binary classification
problem and use classification models such as random forest
to classify healthy and failed SSDs. The classification models
learn the patterns of healthy and failed SSDs at the same time,
and classify them by their differences, so these models are
good at distinguishing patterns seen in historical training data.
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Figure 3: Data patterns over time. The same PCA is used to
reduce the dimension of each SSD’s monthly data into two
dimensions (x and y) for visualization. It is a scenario that the
historical six-month data are used for model training and the
future six-month data for evaluation and online prediction.

However, compared to healthy SSDs, the number of failed
SSDs is very small, and there are limited failure patterns seen
in historical training data [4,42]. In dynamic production envi-
ronment, unseen failure patterns will continuously appear, and
the classification models have difficulty handling them [4].

To reflect the changes of data patterns in practical time-
based training-evaluation-prediction situation, we adopt the
widely used principle component analysis (PCA) method [24]
to reduce the dimension of each SSD’s monthly data to two
dimensions (x and y), and thus they can be visualized in a
coordinate system, similar to the previous work [4]. Figure 3
shows that some outlier data patterns not seen in historical
data will appear in future prediction. To perceive these unseen
patterns, given that there are far more healthy SSDs than
failed SSDs, anomaly detection models (also called 1-class
models) are applied to failure prediction [4, 42]. The anomaly
detection models learn the data patterns of healthy SSDs,
and identify outlier patterns that are different from the health
patterns as failure patterns. However, outlier patterns are not
exactly equivalent to failure patterns. Figure 3 shows that both
healthy and failed SSDs may have outlier patterns that are
far away from the historical data patterns, and there are also
some failed SSDs with non-outlier patterns.
Motivation and analysis. Based on the dynamic environment
in practice, we need to distinguish patterns that have been
seen in historical training data, and identify unseen patterns
as well. Drawing on the idea of classification models, for
the patterns seen in historical training data, it is important to
match them with historical health patterns and failure patterns.
Based on the idea of anomaly detection models, the outlier
patterns should be detected to perceive unseen patterns. The
remaining question is which of the unseen outlier patterns are
actually failure patterns. Figure 3 shows that although these
outlier patterns in the future are far away from the historical
patterns, the outlier patterns of the failed SSDs are still closer
to the historical failure patterns, and those of the healthy SSDs
are closer to the historical health patterns. This tendency can
be exploited to further distinguish outlier patterns.

Ideas. In addition to identifying the patterns that have been
seen in historical training data, unseen patterns and their ten-
dency also need to be perceived. We adopt the idea of sim-
ilarity measurement that is applicable to both classification
and anomaly detection. First, the patterns that have been seen
in historical training data can be effectively distinguished in
prediction by measuring their similarity with historical health
and failure patterns. Second, the similarity measure can cap-
ture unseen patterns which tend to be outlier, and is helpful
for estimating their health/failure tendency.

3.3 Failure Alarm and Handling

Background. The existing schemes predict failures and take
measures (e.g., disk replacement) in advance to reduce the
impact of failures on online services. When failures are re-
ported, some healthy SSDs may also be wrongly reported as
failed ones. To reduce false alarms, some schemes [4, 22, 40]
suggest using scrub technology to perform a full scan on the
alarmed SSD to confirm whether it is failed. A scrubber is
a background process provided by commercial storage sys-
tems, RAID, or file systems, and it detects data integrity errors
through full disk scanning [22].

Most previous schemes use a unified mechanism to alert
and handle all failures. In practice, however, there are various
failures [19, 39] and the measures are also different (for ex-
ample, the failure list includes the cases of replacing the SSD
and not replacing the SSD). In particular, there are diverse
error-tolerant mechanisms inside the SSD, which increase
the reliability of the SSD, but also make it difficult to distin-
guish whether the SSD is really failed. Some error-tolerant
mechanisms such as read retry may cause long tail latency in
I/O or timeout error, thereby affecting service performance
[25]. These SSDs are available but suffer performance degra-
dation or transient error, and may also be reported in failure
list. Some researchers call this event gray failure [14, 39] or
fail-slow [10, 19]. Such failures cannot even be verified with
scrub technology as they do not have data integrity issues. In
general, coarse-grained failure prediction and handling cannot
fully adapt to practical scenarios with various failures.
Motivation and analysis. SSD failures involve various phe-
nomena and degrees, and it is meaningful to identify fine-
grained failure status and take corresponding measures. Un-
available SSDs with serious failures should be predicted in
advance and handled immediately via data migration, disk
replacement, etc. However, for available SSDs without seri-
ous failures such as gray failures, we can further check their
detailed status. If they work normally later or can be repaired,
unnecessary overheads (e.g., data migration and SSD retire-
ment) would be reduced.

The detailed status of SSD is related to the internal er-
ror tolerance mechanism and error occurrence [22]. Table 2
shows the rates of SSDs with different types of errors in
healthy SSDs and failed SSDs, and the replacement propor-
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Status Rate in
health

Rate in
failure

Replacement
proportion

With uncorrectable
errors 0.03% 9.71% 94.12%

With correctable
errors 44.74% 47.43% 65.06%

Without errors 55.23% 42.86% 46.67%

Table 2: The rates of SSDs with different error status in
healthy SSDs and failed SSDs, and the proportion of failed
SSDs that were actually replaced. (For example, 9.71% of
failed SSDs have uncorrectable errors, and 94.12% of them
have been replaced.)

tions in failed SSDs. SSD failures with uncorrectable errors
are usually serious failures, so the replacement proportion
is very high. We also found that some SSDs that did not re-
port failures had uncorrectable errors. These errors may occur
accidentally at non-critical addresses and there was no or un-
noticed impact on the online services, so these SSDs were not
reported as failed ones and we call them problematic health.
For failed SSDs with correctable errors, the replacement rate
is not so high, indicating that there are available SSDs such
as those with gray failures. For SSDs without errors, they
appear more often in healthy SSDs. In fact, since Telemetry
data with error information may not be collected in time when
failures occur, the actual rate of SSDs without errors among
failed SSDs is lower than 42.86%. Internal errors, especially
uncorrectable ones, reflect the health/failure level of the SSD.
Ideas. To distinguish different failures and their degrees, we
recommend fine-grained rating for SSDs. Based on the above
analysis, we define four levels from failure to health, namely
serious failure, gray failure, problematic health, and perfect
health. According to the occurrence of errors, failure list and
replacement status, historical SSDs fall into these four levels
(see Section 4.2 for more details). Combined with the idea of
similarity measurement described in Section 3.2, we can iden-
tify the health/failure level of an SSD based on its similarity
with the four levels of historical SSDs. Then, serious failures
can be handled directly, while gray failures and problematic
health are further diagnosed with corresponding measures
(e.g., latency monitoring or scrub scanning).

4 Methodology

The architecture of mutation similarity based failure rating
and diagnosis (MSFRD) scheme is shown in Figure 4. Based
on our motivations and ideas, the MSFRD scheme is divided
into the following three parts. 1) To characterize key failure
symptoms, the mutations in attribute trends are dynamically
extracted. As shown in Section 3.1, the mutation means that
the data trend deviates significantly from expectations, so
it is less predictable than the normal trend. Therefore, we

Figure 4: Overall architecture of MSFRD.

predict the subsequent attribute trend, and calculate the error
between predicted trend and actual trend to reflect the degree
of mutation. Considering that failures and the corresponding
mutations are generally rare, we also introduce self-learned
weights in the prediction model to measure the rarity of muta-
tions. 2) Based on the idea in Section 3.2, we adopt similarity
measurement to capture both seen and unseen failure patterns.
To identify the fine-grained failure status and degree, we di-
vide historical SSDs into four levels from serious failure to
perfect health, i.e., level 1 to level 4, based on the analysis
in Section 3.3. For a new mutation of an SSD to be identi-
fied, the failure level of the SSD is estimated by measuring
the similarity of this mutation to the mutations of failed and
healthy SSDs of these four levels. 3) Measures are provided
based on the failure level to reduce operation and maintenance
overhead. Serious failures can be directly handled, and less
serious failures would be gradually diagnosed and processed
according to their similarity trend with historical SSDs, the
development of mutations, and the inspection results of corre-
sponding tools (i.e., scrubber and latency monitor). Next, we
will introduce these three parts in detail.

4.1 Mutation Feature Extraction

We recommend dynamic mutation feature extraction due to
its two benefits. 1) By dynamically extracting important muta-
tions from data in real time instead of static feature engineer-
ing, we can adapt to the changes of data importance over time.
2) By capturing the detailed mutation status of each Telemetry
attribute of an SSD, we can focus on the abnormal changes
that truly reflect the failure status and avoid the interference
caused by normal changes.

Since mutations are rare, sudden, rapid changes that de-
viate more from expectations than normal slow trends, the
errors between predicted trends (i.e., expectations) and actual
trends are adopted as mutation features. We adopt Informer
model [43] to predict data trends, since it is an accurate time
series prediction model derived from the widely used Trans-
former model [31]. First, after data preprocessing by min-max
normalization, we train an Informer model with the time-
series data of large-scale historical healthy SSDs (i.e., healthy
SSDs in the training set). In this way, the normal trends in
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healthy data are easily predicted by the model, while the mu-
tations are still less predictable. Then, the trained Informer
model is used to predict subsequent trend of each attribute
of each SSD, and the prediction error between the predicted
trend and the actual trend is used to characterize the mutation
on each attribute (see Figure 4).

Specifically, based on the past time-series data
{dnT−H , ...,dnT−1,dnT} of the n-th attribute, we use
the trained Informer model to predict the subsequent time-
series data {pnT+1, ...,pnT+2,pnT+F}, and later calculate
the difference between them and the actual time-series
data {dnT+1,dnT+2, ...,dnT+F}. The prediction errors
{dnT+1 − pnT+1,dnT+2 − pnT+2, ...,dnT+F − pnT+F} are
used as the mutation feature MUTn of the n-th attribute. The
larger prediction error represents the larger mutation, and the
prediction error for normal change tends to be small, because
it is expected and thus correctly predicted.

In addition, since failed SSDs are pretty rare relative to
healthy SSDs, the major internal mutations that lead to fail-
ures also tend to be rare. As shown in Section 3.1, the rarity
of a mutation reflects its importance in identifying failures.
Therefore, we add a fully connected layer on the last hidden
layer of the Informer network, and use the outputs to estimate
the rarity weights of possible mutations. The estimated rar-
ity weights W are automatically learned during training by
adding them to the loss function of the Informer model. Based
on the original mean squared error (MSE) loss function (i.e.,

1
F×N ∑

T+F
t=T+1 ∑

N
n=1(dnt −pnt)

2), our loss function is designed
as follows.

loss= 1
F×N ∑

T+F
t=T+1 ∑

N
n=1((dnt −pnt)

2×Wn+e−Wn) (1)

where Wn is the rarity weight of the mutation for the n-th
attribute, and e−Wn is designed as the penalty term to pre-
vent Wn from approaching zero [3]. Since mutations are
less predictable, squared error is usually larger when muta-
tions occur. As analyzed in Section 3.1, common mutations
of healthy SSDs (e.g., WAF mutations) are of little signifi-
cance for failure prediction. Compared with rare mutations,
common mutations and corresponding large squared errors ap-
pear frequently in training samples, so the corresponding Wn
would decrease with the convergence of loss in training. At
the same time, the penalty term e−Wn is introduced to prevent
the rarity weights from being all zero. In this way, self-learned
Wn can reflect the rarity of the corresponding mutation, and
the mutation with higher Wn is rarer and more important.

Through the above process, we obtained the mutation fea-
ture MUTn of the n-th attribute represented by the prediction
error, and the corresponding rarity weight Wn. They reflect
the degree and importance of the mutation respectively. In this
way, the noise introduced by normal changes is significantly
reduced, and the key information of mutations is dynamically
extracted to capture fine-grained failure symptoms in real

time, without relying on the attribute importance and value
range in historical training data.

4.2 Mutation Similarity based Failure Rating
Based on the extracted mutation features, a machine learning
based prediction model is needed to identify the detailed
status of SSDs. As analyzed in Section 3.2, the unseen failure
patterns would appear in future prediction in practice, and
existing classification models and anomaly detection models
have their own strengths and weaknesses in catching seen
and unseen failure patterns. We adopt the idea of similarity
measurement (i.e., k-nearest neighbor [30, 41]) that exist
in these two types of models to take their advantages. The
patterns seen in historical data are distinguished based on
the nearest historical neighbors, and the outlier degree is also
considered to make the health/failure tendency of unseen
patterns more apparent.

It is an option to only distinguish failed SSDs and healthy
SSDs by the similarity measure of mutations. However, failed
SSDs have different failure status and degrees, and available
SSDs with less serious failures may not need to be replaced
in practice. Therefore, failure rating is meaningful to reduce
unnecessary maintenance overhead and additional impact on
online services. Based on the ideas in Section 3.3, historical
SSDs are automatically divided into four levels from failure
(levels 1 and 2) to health (levels 3 and 4), which is reflected by
SSDs’ error, failure and replacement status. The four levels
are defined as follows.

• Level 1: serious failure, such as unavailability or data in-
tegrity failure. The failed SSDs (i.e., those in failure list)
that are replaced or have uncorrectable errors are in this
level.

• Level 2: gray failure, such as performance degradation. The
failed SSDs that are not replaced and have no uncorrectable
errors are usually available SSDs with gray failures, so they
are placed in this level.

• Level 3: problematic health, with self warning or data issues
that have no or unnoticed impact. This level includes healthy
SSDs (i.e., those not in failure list) with critical warnings [8]
or uncorrectable errors.

• Level 4: perfect health, without any issues. The healthy
SSDs without critical warnings and uncorrectable errors are
in this level.

Figure 5 shows our overall process of failure rating based
on the mutation similarity with historical SSDs. For a new mu-
tation of an SSD (the mutation feature of the n-th attribute is
MUTnewn), we measure its similarity to all mutations of his-
torical SSDs at four levels. Rare mutations are more important
(see Section 3.1), so they should make a greater contribution
in similarity measurement. To this end, we adopt weighted
Euclidean distance (a widely used method in similarity mea-
surement) [23], and use normalized rarity weights to amplify
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Figure 5: Overall process of mutation similarity based failure rating. ① Similarity measure between a new mutation of an SSD
and all historical SSD mutations of 4 levels. ② Averaging top 3 similarity scores of each level as base level scores. ③ Fine-tuning
level scores with new mutation’s health, failure, and outlier tendencies.

the proportion of rare attribute mutations in distance calcula-
tion. In all J mutations of historical SSDs, assuming that the
mutation feature of the n-th attribute of the j-th mutation is
MUTjn, we use the following formula to measure the distance
between the new mutation and the j-th historical mutation.

Distance j =
N

∑
n=1

(∥MUTnewn −MUTjn∥2×Wn) (2)

where Wn is the rarity weight introduced in Section 4.1. A
larger Wn means that the mutation on this attribute is rarer
and more important, and it would occupy a larger proportion
in the distance calculation. Then, Distance j is transformed
to the similarity score Similarity j in the range of 0-1 by the
following common formula:

Similarity j =
1

1+Distance j
(3)

Through the above formula, we can obtain the similarities
between the new mutation and all historical mutations of
the four levels, and each level takes the top k (3 by default)
similarity scores for subsequent process. The new mutation
is more likely to be at the level with high similarity scores.
Therefore, for i-th level, the average of the top k similarity
scores is regarded as the base confidence score Basei.

In addition to the base confidence, which level the new
mutation falls into also depends on whether it is more like a
mutation of failure, a mutation of health, or an unseen muta-
tion. Therefore, we introduce failure tendency (FT ), health
tendency (HT ), and outlier tendency (OT ) to fine-tune the
base confidence scores. FT is designed as the sum of base
confidence scores of levels 1 and 2, reflecting the confidence
that the new mutation belongs to a failure. Meanwhile, HT
is designed as the sum of base confidence scores of levels
3 and 4, reflecting the confidence that the new mutation be-
longs to a healthy SSD. In addition, if the new mutation is far
away from all historical mutations, the outlier tendency OT
should be larger. When the global maximum similarity score

is Similaritymax, OT is defined as 1−Similaritymax, which re-
flects how far the new mutation is from historical mutations.

Based on the obtained FT , HT , and OT , the base confi-
dence scores are fine-tuned. The ratio of the failure tendency
to the healthy tendency ( FT

HT ) is adopted to represent the com-
prehensive health/failure tendency of the new mutation. If
the ratio is greater than 1, the new mutation is more similar
to the mutations in historical failed SSDs relative to healthy
SSDs. Otherwise, it is less similar to the mutations in failed
SSDs. Therefore, this ratio is used to adjust the base confi-
dence scores for failure-related levels (i.e., levels 1-2). At the
same time, since the unseen pattern with large OT is far away
from historical mutations and its health/failure tendency is
not obvious, OT is used to increase its health/failure tendency
(i.e., FT

HT ). The base confidence score Basei of the i-th level is
adjusted as follows:

Leveli =

{
Basei×( FT

HT )
OT+1 i = 1 or 2

Basei i = 3 or 4
(4)

where Leveli is the fine-tuned confidence score of the i-th
level. It is then normalized through dividing it by the sum of
fine-tuned confidence scores of all levels. The new mutation
belongs to the level with the highest confidence score. When
the new mutation is similar to the mutations of historical fail-
ures, its score of levels 1-2 will be larger after fine-tuning with
its health/failure tendency (i.e., FT

HT ). When the new mutation
is far away from all historical mutations but slightly inclined
to the mutations of failures, it would also belong to level 1 or
2 after fine-tuning with FT

HT amplified by the large OT . In this
way, both seen failure patterns with similar mutations in his-
torical data and unseen failure patterns with outlier mutations
would be captured.

4.3 Progressive Diagnosis and Processing

After failure rating, the SSDs judged to be level 1 are about
to face a serious failure and need to be replaced immediately,
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while the SSDs of levels 2 and 3 which would face gray fail-
ures or problems require tracking and diagnosis to confirm
their impact and future status. For these SSDs, automatic di-
agnosis is first performed based on their subsequent similarity
trend and mutation development. Based on the mutation simi-
larity, if the SSD’s level-1 score increases further, it is more
likely to face serious failure. Moreover, mutations represent
abnormal changes that may lead to failure. Therefore, we fo-
cus on the attribute with the largest mutation, which reflects
the biggest anomaly inside the SSD. If the attribute value
with the largest mutation further increases or decreases in
the direction of mutation, it means that the mutation is still
ongoing and the issue is getting more serious. Based on these
two points, for an SSD rated at level 2 or 3, when the confi-
dence score of level 1 further increases and the attribute value
with the largest mutation continuously changes, it is further
diagnosed as level 1 and needs to be processed immediately.
In this way, we can catch the issues that may develop into
serious failures and reduce unnecessary handling for SSDs
that are no longer bad.

In addition to automatic trend-based diagnosis above, we
also recommend using some tools for diagnosis and treatment.
Most SSDs rated at level 2 are available but may face per-
formance issues. Therefore, the impact of SSD performance
issues on online services needs to be evaluated to decide what
measures to take. Since I/O latencies reflect the quality of
services, and many mainstream SSDs for data centers (e.g.,
Samsung PM9A3) support device-side latency tracing, moni-
toring latency is a good choice. By continuously monitoring
the occurrence of SSD’s long-tail latency, we can find SSD
performance degradation in time and confirm whether it is
acceptable or needs to be fixed. For SSDs rated at level 3, the
main problem is data integrity, and the scrub technology with
full scan is helpful for monitoring data integrity errors. In
particular, the addresses of data integrity errors can be found
to confirm their impact. If these errors occur accidentally at
non-critical addresses and will not occur again, they may not
need to be handled. Otherwise, data migration and SSD re-
placement are necessary. By using relevant tools to diagnose
SSDs at different levels, we can clarify the fine-grained SSD
status and suggest corresponding measures.

5 Evaluation

The effectiveness of the proposed MSFRD was evaluated
based on the real data collected from large-scale SSDs of data
centers. We first compared MSFRD with existing schemes on
failure prediction in Section 5.1. The prediction is required to
be within one month before failure report, and for MSFRD,
early ratings of levels 1 and 2 are considered true alarms. The
evaluation is performed on three datasets. In addition to our
41-M and 10-M PM9A3 Telemetry datasets introduced in
Section 2, the MB2 SMART dataset publicly available from
Alibaba [38] is also used in this evaluation. The MB2 SSD

Dataset Exp.
round

Train set
(month)

Val set
(month)

Test set
(month)

41-M Telemetry
1 1–10th 11th 12–14th

2 1–13th 14th 15–17th

10-M Telemetry
1 1–3th 4th 5th

2 1–4th 5th 6th

3 1–5th 6th 7th

MB2 SMART
1 1–17th 18th 19–21th

2 1–20th 21th 22–24th

Table 3: Data partitions on three datasets.

model only has 14 SMART attributes and its Multi-Level Cell
(MLC) flash technology is different from Triple-Level Cell
(TLC) based PM9A3. On the three datasets of SSDs with
different monitoring attributes, flash technologies, and users,
the failure prediction performance and generalizability of the
schemes can be fully evaluated.

Similar to the previous work [38], we divide each dataset
into training set, validation set and test set in chronological
order respectively. The training set is used to build the model,
the validation set to fine-tune the model’s hyper-parameters,
and the test set to evaluate the model. We conduct indepen-
dent experiments on two or three different data partitions for
each of the three datasets, as shown in Table 3. The data par-
titioning is based on the real situations, i.e., the prediction
models are trained on the historical data and then used to
predict SSD failures with future data. The multiple data par-
titions also simulate real scenarios. Although the proposed
scheme has the ability to cope with data changes and unseen
failures, the online model is still updated every few months
to further adapt to data changes through iterative training and
verification on the latest data. For each dataset, since there are
two or three independent experiments, their average results
are deemed as the final evaluation results.

Besides failure prediction evaluation, the failure rating ac-
curacy, the effect of each module in MSFRD, the model trans-
ferability, and the real failure rating examples are also dis-
cussed in Section 5.2, 5.3, 5.4, and 5.5 respectively. Then
we shall introduce the evaluation metrics used in this paper.
Precision, recall, and F0.5-Score are adopted to evaluate the
accuracy of failure prediction.

Precision: the proportion of true alarms (i.e., correctly pre-
dicted failed SSDs) to both true alarms and false alarms.

Recall: the proportion of true alarms to all failed SSDs.

F0.5-score: (1+0.52)×Precision×Recall
0.52×Precision+Recall . It is obtained by com-

bining precision and recall for a more comprehensive evalu-
ation. In the production environment, precision tends to be
more important to avoid too many false alarms [38], so it has
a larger weight in the calculation of F0.5-Score.

In addition, we use accuracy rate (the proportion of true
alarms with correctly identified failure levels to all true
alarms) to evaluate failure rating performance in Section 5.2.
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Methods
41-M Telemetry 10-M Telemetry MB2 SMART Average

Precision Recall F0.5 Precision Recall F0.5 Precision Recall F0.5 Precision Recall F0.5

RF [38] 0.61 0.19 0.43 0.64 0.18 0.38 0.72 0.24 0.52 0.66 0.20 0.44

EC [6] 0.59 0.24 0.44 0.63 0.21 0.44 0.85 0.24 0.57 0.69 0.23 0.48

AE [4] 0.57 0.26 0.46 0.61 0.23 0.46 0.53 0.25 0.43 0.57 0.25 0.45

MVT-RF [40] 0.62 0.28 0.50 0.70 0.27 0.52 0.87 0.25 0.58 0.73 0.27 0.53

MSFRD(Ours) 0.72 0.37 0.61 0.87 0.34 0.66 0.87 0.27 0.60 0.82 0.33 0.62

Table 4: The evaluation of failure prediction on three datasets.

5.1 Failure Prediction

For failure prediction, the proposed MSFRD is compared
with existing methods: Random Forest [38], Ensemble Clas-
sifier [6], Autoencoder [4], and Multi-view and Multi-task
Random Forest [40]. Their detailed descriptions are as fol-
lows. 1) Random Forest (RF): A combined feature selec-
tion method is adopted to select important attributes and the
corresponding data are input into the trained random forest
model for failure/health classification. 2) Ensemble Classi-
fier (EC): SMART/Telemetry data after feature selection are
input into multiple classification models (e.g., random for-
est and gradient boosted decision tree), and the outputs are
combined to get the final failure/health result. 3) Autoencoder
(AE): SMART/Telemetry data after feature selection are re-
constructed by a neural network-based encoder and decoder,
and failures are predicted according to the reconstruction
loss. It is an anomaly detection algorithm, and the key idea
is that the data of failed SSDs are abnormal and difficult to
reconstruct. 4) Multi-view and Multi-task Random Forest
(MVT-RF): The multi-view time-series related features are
extracted from raw SMART/Telemetry data, and then input
into multiple random forests to vote for the failures.

These methods’ separate and average results on the three
datasets are shown in Table 4. RF and EC, as classification
methods, lack the perception of unseen failure patterns, and
thus obtain relatively low recall. AE predicts SSD failures
by detecting outlier patterns, which helps to discover unseen
failure patterns, so it improves recall to 0.25 on average. How-
ever, outlier patterns are not exactly equivalent to failure pat-
terns, so the average precision of AE is only 0.57. Besides,
these methods use static feature selection to find important
attributes and data based on historical training data, which
cannot fully adapt to changes of data importance over time
in practice, so the overall performance is not good with low
F0.5-Score. MVT-RF performs better than RF, AE, and EC,
and obtains an average F0.5-Score of 0.53, since it extracts
multi-view time-series related features which can capture the
failure symptoms in data trends.

Compared with the average result of three datasets of four
existing methods, the proposed scheme improves precision,
recall, and F0.5-Score by 23.8%, 38.9%, and 30.5%, respec-
tively. MSFRD dynamically extracts mutation features to

locate abnormal changing trends in real time and capture
failure symptoms more accurately, thereby achieving 0.82
in average precision. Furthermore, MSFRD captures failure
patterns seen in training set through similarity measurement,
and introduces outlier tendency to perceive unseen failure
patterns. Therefore, it predicts SSD failures more comprehen-
sively and improves the recall to 0.33 on average. The average
F0.5-Score of 0.62 further demonstrates that our scheme can
accurately predict more failed SSDs.

Table 4 shows that MSFRD outperforms the existing meth-
ods on almost all metrics of three datasets. These datasets
were collected from different companies with different moni-
toring attributes, workloads, and collection periods, and thus
the results on them show the effectiveness and generalizabil-
ity of MSFRD. In addition, compared with existing methods,
MSFRD shows a larger performance improvement on Teleme-
try datasets relative to SMART dataset. The MB2 SMART
dataset only has 14 attributes, while Telemetry datasets have
85 attributes. So many Telemetry attributes enhance the mon-
itoring of various components and mechanisms in SSD, but
are not friendly for capturing key failure-related information.
The attribute importance and value ranges change over time in
practice, which brings more troubles to static feature engineer-
ing. The proposed MSFRD dynamically captures mutations
and estimates their rarity, which accurately locates key at-
tributes and failure-related changes in real time and reduces
noise caused by meaningless changes, thus working well on
the Telemetry datasets.

5.2 Failure Rating
To reduce the impact on available SSDs without serious fail-
ures, the proposed MSFRD grades the degree of failures and
tracks the status of available SSDs through progressive diag-
nosis. In this section, the effectiveness of our failure rating
and progressive diagnosis is evaluated. RF, EC, and MVT-RF
can also perform the classification of four levels of SSDs, and
are compared with our scheme together based on the same
level definitions. Figure 6 shows the accuracy of our scheme
and existing schemes on the ratings of their true alarms on
the 41-M dataset. For failure rating, EC outperforms RF and
MVT-RF. EC combines the results of various machine learn-
ing methods, which would be more accurate and robust than
the single method.
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Figure 6: The evaluation on failure rating.

Figure 6 shows that our scheme has higher accuracy com-
pared to the existing methods. The mutation similarity based
failure rating (MSFR) rates an SSD by its mutation similarity
to historical mutations of four levels, and introduces health,
failure, and outlier tendencies in similarity measure to further
fine-tune the ratings. It obtains an accuracy rate of 0.72 in
failure rating. Coupled with automatic trend-based diagnosis
(i.e., MSFRD), the accuracy rate finally reaches 0.86 which
is 38.7% higher than EC. Progressive diagnosis is able to
track available SSDs at levels 2 and 3, and adjust the rating to
level 1 when they go bad. In conclusion, through failure rating
and progressive diagnosis, MSFRD effectively distinguishes
the detailed health/failure status of SSDs to provide accurate
recommendations.

5.3 Discussion on MSFRD Modules
In this section, we shall discuss the effectiveness of each mod-
ule or process in the proposed scheme. The following seven
methods are compared on the 41-M dataset, from the baseline
random forest method, to using partial MSFRD and finally
the whole MSFRD. 1) Raw data + RF: The raw data are input
into the trained random forest model for failure/health classifi-
cation. 2) Feature selection + RF: The data after static feature
selection are input into the trained random forest model for
failure/health classification. It is the same as RF in Section 5.1.
3) Mutation feature + RF: The dynamic mutation features are
input into the trained random forest model for failure/health
classification. 4) Mutation feature + similarity based failure
rating (SFR): Based on the mutation feature, failed SSDs and
their levels are identified based on their similarities to his-
torical failed and healthy SSDs of four levels. 5) Mutation
feature with rarity (Mutation(rarity)) + SFR: the difference
from mutation feature + SFR is that the self-learned rarity
weights (Equation 1 in Section 4.1) are used in similarity
measure (Equation 2 in Section 4.2). 6) Mutation(rarity) +
SFR with fine-tuned score (SFR(tuned)): the difference from
Mutation(rarity) + SFR is that the fine-tuned confidence score
(Equation 4 of Section 4.2) is used instead of base confidence
score for failure prediction and rating. 7) MSFRD: coupled
with automatic diagnosis (see Section 4.3) on Mutation(rarity)
+ SFR(tuned), the whole MSFRD is used to predict failures.

Table 5 shows the results of these seven methods. Static
feature selection selects failure-relevant attributes based on
historical training data, which reduces the noise introduced by

Methods Precision Recall F0.5
Raw data+RF 0.55 0.21 0.41

Feature selection+RF 0.61 0.19 0.43

Mutation feature+RF 0.70 0.24 0.51

Mutation feature+SFR 0.66 0.27 0.52

Mutation(rarity)+SFR 0.67 0.30 0.54

Mutation(rarity)+SFR(tuned) 0.69 0.36 0.58

MSFRD 0.72 0.37 0.61

Table 5: Comparison of MSFRD modules.

failure-irrelevant attributes, and thus Feature selection + RF
has higher precision than Raw data + RF. However, some
removed failure-irrelevant attributes may become failure-
relevant in the future, making it difficult to identify the corre-
sponding failures and resulting in a decrease in recall. Instead
of static feature selection, we extracted dynamic mutation
feature to capture the failure symptoms in real time, therefore
mutation feature + RF performs better than Feature selection
+ RF and improves precision to 0.70 and recall to 0.24.

Mutation feature + SFR adopts similarity measure instead
of the RF method. It is based on the traditional k-nearest
neighbor classification idea, so it obtains similar overall per-
formance (F0.5-Score) with the RF classification method.
Mutation(rarity) + SFR introduces the rarity weights of mu-
tations in similarity measurement and focuses on more rare
and important mutations, thus achieving 0.67 in precision and
0.30 in recall. Mutation(rarity) + SFR can easily find failure
patterns that have been seen in historical data, but it is diffi-
cult to identify ambiguous mutations, such as mutations of
unseen failures. Mutation(rarity) + SFR(tuned) adopts health,
failure and outlier tendencies to fine-tune the failure confi-
dence scores of new mutations. For ambiguous mutations
that are slightly inclined to the mutations of failures, espe-
cially the mutations of unseen failures with higher outlier ten-
dency, the failure confidences are significantly improved after
fine-tuning, and thus Mutation(rarity) + SFR(tuned) greatly
improves recall to 0.36. Finally, through further diagnosis,
some SSDs that go bad are further identified, and the whole
MSFRD scheme achieves 0.61 in F0.5-Score.

5.4 Model Transferability
Due to the differences in workload, server, and SSD firmware,
there are some differences in Telemetry data from different
companies or data centers, and this poses a challenge to the
transferability of the prediction model. In this section, we use
the models trained on the 41-M dataset to perform failure
prediction directly on the 10-M dataset (different company
and different SSD firmware version) to evaluate their trans-
ferability and generalizability.

Figure 7 shows the performance of MSFRD and existing
schemes in this case. RF, EC and AE use static feature selec-
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Figure 7: Model transferability from the 41-M dataset to the
10-M dataset. (P: precision; R: recall; F: F0.5-Score)

tion to select important attributes. However, some attributes
that are important on the 41-M dataset may not be important
on the 10-M dataset, which introduces noisy data and results
in lower precision. In particular, AE treats outlier patterns as
failure patterns. However, with the data differences caused by
dataset migration, there would be more outlier patterns on the
10-M dataset based on the patterns in the 41-M dataset. There-
fore, the precision of AE is the lowest (only 0.40). MVT-RF
pays more attention to data trends which are also susceptible
to the data differences between two datasets, so it does not
work well too and the F0.5-Score is 0.37.

The proposed MSFRD outperforms existing schemes,
achieving 0.86 in precision, 0.32 in recall and 0.64 in F0.5-
Score, which is very similar to the results shown in Section 5.1
for both training and testing on the 10-M dataset. MSFRD
dynamically extracts key failure symptoms by capturing mu-
tations, reducing the impact of data differences between two
datasets. Besides, for patterns with large differences after
dataset migration, MSFRD can estimate their health/failure
tendency through similarity measurement. Based on these
mechanisms, MSFRD maintains high prediction accuracy af-
ter dataset migration.

5.5 Practical Examples

The MSFRD has been applied for online prediction, and Fig-
ure 8 shows the visual results of two true alarms. Figure 8(a)
shows an example where a level-1 failure is correctly pre-
dicted and rated. With dynamic mutation extraction, only a
few attributes of this SSD have mutations (with deep color),
while other attributes that are changing normally in the raw
data are implicitly eliminated. In this way, the key information
is captured. After the similarity measure in mutations, this ex-
ample is mainly similar with level-1 failures and the similarity
scores are high, so it is a pattern seen in historical data and is
definitely rated level 1. Figure 8(b) shows an example that has
not been seen in historical data and the similarity scores are
only about 0.3. Its health/failure tendency is not obvious, but
its outlier tendency is large. MSFRD uses the outlier tendency
to amplify its slight failure tendency, thereby increasing the
confidence scores of levels 1 and 2, and this SSD is finally

(a) An example of Level-1 failure.

(b) An example of Level-2 failure.

Figure 8: The correct failure rating examples of MSFRD. The
heat map shows the values of N attributes of corresponding
data at a moment.

correctly rated at level 2. Through the visualization of MS-
FRD output, operators can clearly understand the mutation
status of SSD, the information of historical neighbors, and
the failure level and confidence, which are useful for failure
handling.

6 Related Work

Numerous studies have investigated and analyzed the impact
of disk errors and failures on large data centers [11, 12, 27, 28,
32, 36, 37]. To take proactive measures before failures occur,
disk failure prediction has received extensive attention. There
are many studies on HDD failure prediction, since HDDs
have been widely used for a long time. Most researchers use
machine learning to predict HDD failures [5, 7, 16, 20, 29,
35, 44], as machine learning is more accurate and flexible.
Some of them have achieved high accuracy for HDD failure
prediction. However, since flash-based SSDs have different
storage technologies and more error-tolerant mechanisms,
these previous results do not apply to SSDs [1, 4].

In recent years, with the large-scale use of SSDs in data
centers, SSD failure prediction has received increasing atten-
tion. Most of existing studies [1, 13, 17, 22, 38, 40] focus on
predicting failures with classification algorithms. Based on
random forest classifier, Xu et al. [38] explored the impact
of different feature selection methods on prediction results.
They also combined the rankings of multiple feature selection
methods to obtain the mean ranking for better performance.
Chen et al. [6] trained multiple decision tree-based classifi-
cation models with different hyper-parameters and boosting
methods, and combined the outputs of different models to
obtain the final prediction results. Zhang et al. [40] extracted
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time-series related features to capture the failure symptoms in
long-term data trends, and achieved better prediction accuracy.
Besides failure prediction, they also introduced failure type
classification and lifespan estimation. It should be pointed out
that the failure type definitions are not completely objective,
and there are some differences in the definitions from differ-
ent companies. The failure ratings in this paper are based on
more objective SSD error, failure, and replacement status, so
they are more universal.

In addition to classification algorithms, Chandranil et al. [4]
adopted anomaly detection algorithms to capture failed SSDs
which are considered far away from most healthy SSDs, and
thus they can perceive unseen outlier patterns. They com-
pared the isolation forest and autoencoder algorithms, and
autoencoder has higher accuracy for failure prediction.

7 Conclusion

In this paper, we propose MSFRD for failure prediction, early
rating and progressive diagnosis. MSFRD first dynamically
detects data mutations through the prediction error of time-
series Telemetry data and estimates the importance of mu-
tations. Then, failed SSDs are predicted and rated based on
mutation similarity with historical failed SSDs and healthy
SSDs. Finally, failures are handled incrementally to minimize
the impact on available SSDs without serious failures. The
evaluations on multiple real datasets show that MSFRD sig-
nificantly improves the accuracy of failure prediction, rating
and handling.
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