
This paper is included in the Proceedings of the 
2024 USENIX Annual Technical Conference.

July 10–12, 2024 • Santa Clara, CA, USA
978-1-939133-41-0

Open access to the Proceedings of the 
2024 USENIX Annual Technical Conference 

is sponsored by

UniMem: Redesigning Disaggregated Memory 
within A Unified Local-Remote Memory Hierarchy

Yijie Zhong, Minqiang Zhou, and Zhirong Shen, Xiamen University;  
Jiwu Shu, Xiamen University, and Minjiang University

https://www.usenix.org/conference/atc24/presentation/zhong



UniMem: Redesigning Disaggregated Memory within A Unified Local-Remote
Memory Hierarchy

Yijie Zhong1, Minqiang Zhou1, Zhirong Shen1∗, Jiwu Shu1,2

1Xiamen Key Laboratory of Intelligent Storage and Computing, Xiamen University
2Minjiang University

Abstract
Disaggregated memory (DM) has been proposed as a feasi-
ble solution towards scaling memory capacity. A variety of
memory disaggregation approaches have been introduced to
facilitate the practical use of DM. The cache-coherent-based
DM system, which relies on cache-coherent accelerator, can
offer network-attached memory as NUMA memory. How-
ever, the current cache-coherent-based DM system introduces
an extra address translation for each remote memory access.
Meanwhile, the local cache mechanism of existing approaches
overlooks the inherent issues of cache thrashing and pollution
that arise from DM system.

This paper presents UniMem, a cache-coherent-based DM
system that proposes a unified local-remote memory hier-
archy to remove extra indirection layer on remote memory
access path. To optimize local memory utilization, UniMem re-
designs the local cache mechanism to prevent cache thrashing
and pollution. Furthermore, UniMem puts forth a page migra-
tion mechanism that promotes frequently used pages from
device-attached memory to host memory based not only on
page hotness but also on hotness fragmentation. Compared to
state-of-the-art systems, UniMem reduces the average memory
access time by up to 76.4% and offers substantial improve-
ment in terms of data amplification.

1 Introduction
Disaggregated memory has attracted significant interest due
to its high memory capacity, resource efficiency, and capac-
ity scalability [26, 45]. It separates computing and mem-
ory resources into computing nodes (CNs) and memory
nodes (MNs), which are interconnected with high-speed net-
work, such as Remote Direct Memory Access (RDMA) con-
nections. Despite the advent of new memory technologies
like CXL 1.0 memory devices and CXL 2.0 memory pool-
ing, which can provide ample memory resources for a sin-
gle server or rack-scale cluster [5], RDMA-based DM sys-
tems continue to play a pivotal role in supporting large-

∗Corresponding author: Zhirong Shen (shenzr@xmu.edu.cn)

scale systems [26, 30, 37, 52]. Existing DM systems can
be divided into three distinct categories. Object-based DM
systems [34, 35, 41, 50, 54, 58] can provide fine-grain re-
mote memory access through a key-value or a data-structure-
based interface. They can achieve high performance by ad-
dressing the costly software overhead and restrictions of OS
(e.g., page faults and data amplification). However, object-
based DM systems require significant code modification
of applications to utilize the new interfaces. Page-based
DM systems [24, 26, 37] depend on virtual memory sub-
system to expose remote memory transparently. These sys-
tems treat network-attached remote memory as a swap de-
vice and swap page between local page cache and remote
memory in cases of a page fault. Cache-coherent-based
DM systems [29–31, 52] leverage cache-coherent hardware
to reap the advantages of both systems. Newly approached
cache-coherent protocols, such as compute express link (CXL)
[4] and CCIX [3], can interconnect processor with accelerator
or co-processor as Non-Uniform Memory Access (NUMA)
system. The cache-coherent accelerator is responsible for
resolving memory access on device-attached memory. Rely-
ing on this, cache-coherent-based systems offer remote mem-
ory to CNs by exposing a range of fake physical memory
space, which is perceived as the device-attached memory to
the host of CNs. It enables the provision of transparent and
fine-grained remote memory to CNs. In this remote memory
mechanism, a CPU cache miss on fake memory range from
the host is forwarded to the accelerator, which resolves the
translation between the fake physical address and the remote
memory address.

As the remote memory mechanism is realized by fake phys-
ical memory, each remote memory access introduces an ad-
dress translation. This extra address translation introduces
extra latency on remote memory access path. This could po-
tentially overwhelm the accelerator, especially when there are
multiple memory-intensive workloads running on powerful
processors, generating hundreds of millions of CPU cache
miss events per second. Furthermore, existing works orga-
nize local cache for remote memory on the device-attached

USENIX Association 2024 USENIX Annual Technical Conference    463



memory of accelerator to minimize remote data fetching. Un-
fortunately, they overlook a fundamental aspect of the DM
system: the cache size is invariably much smaller than the
workload footprint. This discrepancy makes the local cache
susceptible to thrashing and pollution [55, 61]. Therefore,
it’s crucial for the local cache mechanism to be resistant to
thrashing and pollution.

In this paper, we explore the design of a high-performance
cache-coherent-based DM system. We propose UniMem re-
designing the remote memory mechanism to expose the re-
mote memory pool directly to CN’s physical memory space,
thereby eliminating the indirection layer. We extend the mem-
ory hot-plug feature [11] of the OS to implement flexible
remote memory management. Considering the local cache for
remote memory on CNs has to withstand cache thrashing and
pollution, we propose a local cache mechanism that reserves
the majority of the cache space for frequently accessed pages
and promptly evicts pages with little or no reuse. Moreover,
we keep a record of remote address (address in remote mem-
ory pool) of evicted blocks to detect the reused pages [2]. Ac-
cess to device-attached memory is slower than access to host
memory. We propose a comprehensive fully-used page pro-
motion scheme. It determines which page in device-attached
memory should be migrated to the host memory based on both
page hotness and hotness fragmentation. Therefore, work-
loads can exploit the benefit of faster host memory and bypass
the overhead of cache-coherent interconnect. We facilitate the
batch promotion of frequently used pages on a per-process
basis to amortize page migration overhead. To demonstrate
the effectiveness, we compare UniMem to Kona [30] and its
variations on a set of typical workloads. UniMem reduces av-
erage memory access time by 33.4% and 24.1%, compared
to Kona and its variation, respectively. In terms of data am-
plification, UniMem reduces it by 5.2–7.9×. We open source
UniMem at https://github.com/yijieZ/UniMem.

The main contributions of this paper are:

• We conduct an in-depth analysis for existing DM sys-
tems, demonstrating the overhead from extra indirection
layer and the inefficiency of local cache mechanism in
the DM scenario (§2.2).

• We propose UniMem, a new design for a cache-coherent-
based DM system. It eliminates the indirection layer
by constructing a unified local-remote memory hierar-
chy. It also incorporates a thrashing-resistant local cache
on device-attached memory and a comprehensive page
promotion scheme that promotes pages based on page
hotness and hotness fragmentation (§3).

• We conduct a comparative analysis of UniMem and
the state-of-the-art cache-coherent-based DM systems
across a wide variety of workloads, focusing on metrics
such as average memory access time and data amplifi-
cation. We evaluate the benefits offered by each design
technique of UniMem. Furthermore, we evaluate the per-

formance of UniMem under a variety of system configu-
rations, including parameters like cache block size, host
memory capacity and set associativity (§4).

2 Background and Motivation

2.1 Disaggregated Memory
Basics of disaggregated memory:By separating comput-
ing and memory resources into different network-attached
pools [24, 37, 41, 58], DM resolves the tight coupling of hard-
ware resources in the traditional monolithic server model.
Therefore, it can achieve high resource utilization and good
elasticity. The compute pool has multiple CNs, each of which
is a server that comprises powerful CPU cores and a small
amount of memory. While the memory pool has many MNs,
each MN is a server equipped with large DRAM capacity but
limited computing power. The connection between compute
and memory pools is typically enabled by microsecond-level
RDMA network technique, which requires an RDMA NIC
for each CN and MN.

Taxonomy of disaggregated memory:Existing DM systems
can be classified into the following branches: object-based,
page-based, and cache-coherent-based DM systems.
Object-based DM systems expose a key-value or a data-

structure-based interface for upper-layer applications to fa-
cilitate the fine-grained manipulation of remote data [34, 35,
41, 49, 50, 54]. Since the object-based DM systems provide
remote memory abstraction in user level, they can bypass the
expensive kernel path. While achieving good performance,
the object-based DM systems need intrusive code changes
that transform legacy applications to new interfaces, hence
needing expensive engineering efforts and easily introducing
additional program errors. Figure 1(a) depicts that the applica-
tions access remote data through key-value storage interfaces
(Get and Put, Step ¶). The remote data can be fetched from
local cache of object-based DM system or directly accessed
from remote memory (Step ·). Object-based DM systems
also decide the data migration between local cache and remote
memory (Step ¸).

To improve compatibility, page-based DM systems rely
on the traditional OS mechanisms and interfaces (e.g., virtual
memory management [37,38, 44] and virtual filesystem [24]),
such that the upper-layer applications can leverage remote
memory without needing any code modification. More specif-
ically, it can map remote memory to the application’s address
space using virtual memory management and cache remote
pages in the local cache. When applications attempt to access
a page that does not reside in the local cache, the page-based
DM system will trigger a page fault, which retrieves the re-
quested page from the corresponding remote MN to the local
cache over the network. Although having good portability,
the page-based DM systems still suffer from performance
degradation, caused by expensive kernel path (e.g., more than
60% of the throughput drops are caused by page faults and

464    2024 USENIX Annual Technical Conference USENIX Association

https://github.com/yijieZ/UniMem


Workload 1 User 
Space

Remote Memory

Local Cache
(Host Memory)

❶ Get/Put

❷ DAX

❸ Data
Migration

❶ Page
Fault

Virtual Memory 
Mechanism

Virtual File System

Workload 2

Local Cache
(Host Memory)

Workload 3

❸ Swap In/Out

❷ Search

❶ File 
Operation

Remote Memory

User 
Space

Kernel 
Space

Workload 4

Address 
Translation

Local Cache
(Device-attached memory)

❶ CPU Cache 
Miss

User 
Space

ccFPGA

❷ Search

❸ Swap In/Out

Remote Memory

(a) Object-based DM. (b) Page-based DM. (c) Cache-coherent-based DM.

Figure 1: Architectures of different DM systems.

TLB validations once moving only 25% of application’s data
remotely [30]). Figure 1(b) shows that applications access
remote memory transparently by relying on virtual memory
mechanism (Step ¶). It searches the requested data across
the local cache at the host (Step ·) and swaps in the data
from remote memory if a cache miss occurs (Step ¸).

To ensure both transparency and good performance,
cache-coherent-based DM systems propose to leverage
cache-coherent protocol to track the load and store of appli-
cations at a fine granularity (e.g., cacheline), without relying
on OS-level mechanisms nor requiring application modifica-
tions. Specifically, the emerging open industry interconnects
based on the PCI Express (PCIe) interface (e.g., CXL [4]
and CCIX [3]) realize the cache coherence between the
CPU and the accelerator (e.g., FPGAs, GPUs, network/storage
adapters, and customized ASICs). Kona [30] exposes a fake
physical address space mapped in host physical memory
space. The pages of this fake address space can be allocated
to application as host local memory and always marked as
present in application page table. When the CPU accesses
the data from the fake memory space, it first searches on
CPU cache as usual and turns to accelerator but not host
memory while CPU cache miss happens. Cache-coherent ac-
celerator will fetch the specific cacheline from either the local
cache or the remote memory. Figure 1(c) shows that appli-
cation accesses the fake memory range and misses in CPU
cache (Step ¶). This CPU cache miss event is forwarded to
cache-coherent FPGA (ccFPGA). After address translation
(from fake physical address to remote memory address), Kona
searches in local cache (Step ·). While there is a miss in lo-
cal cache, the corresponding data is swapped in from remote
memory to satisfy the application access (Step ¸). Other
cache-coherent-based DM systems [52] have the similar data
flow with Kona [30].

The kind of cache-coherent-based disaggregated system
which establishes rack-scale memory pool relying on cache-
coherent interconnect with no networking interference [36]
is not in the scope of this work, as the memory resources
support memory semantics (i.e., load and store) natively.
The cache-coherent-based DM system mentioned in this work
represents works extending remote memory through network

[29–31, 52].

2.2 Motivation
With the help of cache-coherent accelerator, cache-coherent-
based DM system can provide high-performance remote mem-
ory transparently. However, there remain two fundamental
limitations of existing systems.
Limitation#1 (Overhead from indirection layer).Cache-
coherent-based DM system provides remote memory to appli-
cations transparently with the assistance of a cache-coherent
accelerator. Since RDMA only supports operations similar to
file operations (e.g., one-sided read and write), it treats remote
memory pool as a swap device and encapsulates the details
of data swapping (e.g., remote memory mapping and RDMA
operations) within the ccFPGA.

Compared to the page-based DM system that simply needs
to translate the virtual memory address to the physical mem-
ory address via page table for memory access, cache-coherent-
based DM system introduces an additional step. It not only has
to translate virtual memory address to fake physical memory
address but also translate this fake physical memory address
to remote memory address. This fake physical memory mech-
anism and address translation form an indirection layer. The
indirection layer isolates CNs from each other and provides
each CN with a private memory address space, as the remote
memory pool is shared by all CNs. In particular, each time a
CPU cache miss event occurs on fake physical memory range,
the CPU forwards it to the accelerator over cache-coherent in-
terconnect. The corresponding fake physical memory address
is then transferred to the remote memory address via a hash
table in Kona [30] or Remote Memory Management Unit
in ThymesisFlow [52]. This remote memory address is used
for searching local data cache on device-attached memory or
fetching remote data from remote memory pool.

To investigate the impact of the indirection layer imple-
mented in the Kona [30], Figure 2 illustrates the extra la-
tency it introduces. We assume CXL [4] the cache-coherent
interconnect that connects CPU and ccFPGA. The round-
trip latency of a CPU cache miss event across CXL Link is
2×25 ns [5, 43, 48]. We then consider the address transla-
tion latency of indirection layer in the ccFPGA. The address

USENIX Association 2024 USENIX Annual Technical Conference    465



ccFPGA

CXL Link Address Translation
(Fake PA to Remote Addr)

25 ns

CPU Cache

CPU
Device-attached

Memory

14 - 243 ns

Fake PA

Figure 2: Indirection layer of Kona.

translation is realized by hash table lookup in Kona. Previ-
ous works [62, 63] have implemented high-performance hash
tables on FPGA, showing that the search latency over the
hash table ranges from 14 ns to 243 ns on state-of-the-art de-
vices (i.e., Intel Stratix 10 FPGA [7] and Xilinx Alveo 250U
FPGA [21]). The address translation of indirection layer in-
troduces non-negligible latency to DM system.

We further conduct a simulated experiment to investigate
the impact of indirection layer of Kona on the system per-
formance. We use Linux Perf [9] to record the number of
cache miss events of the CPU last-level cache and the elapsed
time of running the applications on host memory. As every
cache miss event in the CPU cache will undergo a round-trip
on interconnect and introduce an additional address trans-
lation in the ccFPGA, the number of cache miss events is
used to calculate the total runtime overhead of interconnect
round-trip and address translation. The application runtime
on Kona is simulated by adding application runtime on host
memory to the interconnect round-trip and address transla-
tion runtime overhead. We assume the remote memory access
is always satisfied by local cache on device-attached mem-
ory. We run eight real-world applications, which are abbre-
viated as PR (i.e., Page Rank), GC (i.e., Graph Coloring),
CC (i.e., Connected Components), RR (i.e., Redis-Rand),
LR (i.e., Linear Regression), ETC (i.e., Facebook-ETC),
YCSB-A and YCSB-B. The details about experiment configura-
tions can be found in §4.1. We set the latency of the address
translation in the ccFPGA to 128 ns, which is the average
latency reported in previous studies [62, 63].

Figure 3 shows that the address translation can occupy
the total runtime from 18.7% (Linear Regression) to 58.7%
(Graph Coloring), which is unacceptable. This additional ad-
dress translation could be overwhelming for general-purpose
accelerator, as there might be multiple powerful processors
in a CN generating hundreds of millions of CPU cache
misses under numerous memory-intensive workloads [29].
Otherwise, it consumes precious compute resources of the
accelerator that could be used for boosting other processes
such as local data cache searching. In multi-tenant environ-
ments [27, 32, 51], workloads would concurrently run on the
same CN and compete for the CPU cache space. This compe-
tition could lead to higher CPU cache miss rate, resulting in
increased address translation overhead.
Limitation#2 (Cache pollution and thrashing).DM systems
use local memory (host memory or device-attached memory)
as data buffer for remote memory to absorb remote access,
thereby reducing network overhead. This makes local cache
a crucial component for system performance. In page-based

0%

25%

50%

75%

100%

PR GC CC RR LR ETC YCSB-A YCSB-B
Workload

R
un

tim
e

Address Translation Interconnect Round-trip Workload Runtime

Figure 3: Performance breakdown (in percentage) of eight
representative applications on Kona.

system, the virtual memory management organizes host mem-
ory as per-process page cache. It tracks the page hotness
through 2Q (two LRU lists), namely inactive and active lists
respectively [17], for page swapping between local and re-
mote nodes. Cache-coherent-based system can establish data
cache in device-attached memory. Kona [30] implements it as
a 4-way set associative cache with the block size set to 4 KB,
which is the common page size aiming to fully exploit spatial
locality.

However, they overlook the vulnerability to cache pollu-
tion and thrashing issues that arise due to the limited capacity
of the local cache. As proposed by previous work [59] and
accelerator producers [6,20], CNs are typically equipped with
a small piece of memory around 10 GB, and the capacity
of the memory pool might reach hundreds of gigabytes and
even thousands of gigabytes (100s – 1000s GB) in the near
future. Since the cache size is invariably much smaller than
the workload footprint, memory-intensive workloads with a
large working set size will compete for the limited local mem-
ory resources, when executed on the same CN. A previous
study [61] on software cache observes that if the cache size is
set to 10% of the working set size, around 72% of data in the
cache is not reused before eviction. This is due to the fact that
a smaller cache means a shorter observation window for the
access pattern of workload. It lowers the likelihood of identi-
fying locality to keep the frequently used (reused) data in the
cache. Furthermore, the frequently used data might devolve
into one-hit wonder (no request after insertion), polluting and
thrashing the cache.

We conduct experiments on five typical workloads on both
Kona 4-way set associative cache and the OS page cache to
observe the trends of local cache miss rate at varying local
cache sizes. We utilize Intel Pin [15] to trace the memory
access operations for each application. The memory access
sequences are replayed on simulated CPU cache for gathering
the CPU cache miss events. Then, these cache miss events are
replayed under different local cache mechanisms. The local
cache size is progressively reduced from 100% to 10% of
workloads’ working set size. We evaluate the cache efficiency
based on the rate of local cache misses normalized to the
number of pages in the workload’s working set. Figure 4
shows the normalized local cache miss rate for five workloads
on Kona 4-way set associative cache and OS page cache,

466    2024 USENIX Annual Technical Conference USENIX Association



0

4

8

12

100% 75% 50% 25% 10%
Local Cache SizeN

or
m

. L
oc

al
 C

ac
he

 M
is

s

Page Rank
Graph Coloring
Connected Components
Redis-Rand
Linear Regression

0

4

8

12

100% 75% 50% 25% 10%
Local Cache SizeN

or
m

. L
oc

al
 C

ac
he

 M
is

s

Page Rank
Graph Coloring
Connected Components
Redis-Rand
Linear Regression

(a) 4-way set associative cache. (b) Page Cache.

Figure 4: Normalized local cache miss rate.

0%

20%

40%

60%

80%

100%

100%75% 50% 25% 10%
Local Cache Size

A
cc

es
se

d 
D

at
a

Page Rank
Graph Coloring
Connected Components
Redis-Rand
Linear Regression

0%

20%

40%

60%

80%

100%

100%75% 50% 25% 10%
Local Cache Size

A
cc

es
se

d 
D

at
a

Page Rank
Graph Coloring
Connected Components
Redis-Rand
Linear Regression

(a) 4-way set associative cache. (b) Page Cache.

Figure 5: The percentage of accessed data.

respectively.
Most of the workloads exhibit a similar trend that the nor-

malized local cache miss rate increases as the local cache
size diminishes on both local cache mechanisms. It increases
steadily as the local cache size is reduced from 100% to 75%
of the working set size on 4-way set associative cache and
from 100% to 50% on the OS page cache. However, the nor-
malized local cache miss rate increases rapidly when the local
cache size is further reduced from 75% to 10% on 4-way set
associative cache of Kona and from 50% to 10% on the OS
page cache. This indicates that the efficiency of both Kona’s
4-way set associative cache and the OS page cache is affected
by the cache pollution and thrashing, as explained in prior
works [55,61]. The local cache miss rate of Linear Regression
shows no correlation with the local cache size, which can be
attributed to its streaming access pattern that involves almost
no data reused.

Furthermore, we discover that swapping remote data in
4 KB granularity leads to data amplification. We record the
number of bytes accessed for every page that is swapped in,
and gather the proportion of data accessed from that page
when it is swapped out. Figure 5 shows the accessed data for
five workloads on Kona 4-way set associative cache and OS
page cache, respectively. We observe that the percentage of
accessed data is influenced by the size of the local cache, with
the exception of Linear Regression due to its access pattern.
As the local cache size decreases, the accessed data percentage
also declines. It declines modestly as the local cache size
contracts from 100% to 75% on 4-way set associative cache,
and from 100% to 50% on OS page cache. Then the accessed
data percentage declines rapidly as the local cache size further
shrinks from 75% to 10% on 4-way set associative cache, and
from 50% to 10% on OS page cache. This can be attributed to

Shadow-Region & Remote-Balloon(§3.1)

Fully-used Page 
Promotion (§3.3)

Filter-Cache(§3.2)

CPU

Unified Local-Remote 
Hierarchy

ccFPGA

Active List
Inactive 

List

Remote 
Mem Pool

❶ CPU Cache Miss 
on Remote Mem

❷ Searching 
Local Cache

❸ Swap In/Out

Compute
Node

① Recording
② Batch 

Promotion
Active List

Inactive 
List

…

Refault Queue
Hot-plugged 
Remote MemHost Mem

Shadow-Region
& Remote-Balloon

Device-attached Mem

Sub-page

QR

QR

Figure 6: Architecture overview of UniMem.

the fact that pages have a shorter time to live in the cache as the
local cache size decreases, resulting in them being swapped
out before being reused. This data amplification is also a
result of the coarse-grained data swap granularity, which is
either constrained by the hardware (e.g., MMU and TLB) of
the host processor in page-based systems, or by system design
decisions in a cache-coherent-based systems.

3 UniMem Design
Motivated by the observations regarding the additional ad-
dress translation of remote memory mapping and inefficiency
of local cache in small capacity, we present UniMem, a high-
performance cache-coherent-based DM system.

To eliminate the indirection layer overhead (additional ad-
dress translation) on remote memory accessing path, UniMem
exposes the remote memory pool directly to the physical mem-
ory space of CNs by Shadow-Region which relies on PCIe
specification (§3.1). As all the CNs share the same remote
memory address space, UniMem implements Remote-Balloon
for remote memory synchronization with the help of Mem-
ory hot-(un)plug feature (§3.1). Figure 6 shows that the CPU
cache miss on remote memory is forwarded to cache-coherent
accelerator (Step ¶).

To satisfy the CPU cache miss from host on CNs, UniMem
constructs Filter-Cache(§3.2) on device-attached memory
which is a local cache for remote memory (Step ·). It pre-
vents local cache from pollution and thrashing by setting a
small inactive list to filter out the one-hit wonders from active
list, and reduces data amplification by using sub-page (512 B)
as caching and swapping granularity (Step ¸).

Considering that the local memory in CNs includes host
memory and device-attached memory, UniMem proposes
fully-used page promotion scheme. It distinguishes and
records fully-used pages in device-attached memory (Step ¬).
Then it promotes them to the faster host memory in batch
(Step ­), thereby exploring local memory in a more refined
manner (§3.3).

3.1 Shadow-Region and Remote-Balloon
Remote memory interconnected by RDMA serves as a swap
device shared by CNs. The previous cache-coherent-based

USENIX Association 2024 USENIX Annual Technical Conference    467



Remote 
Mem Pool

Physical 
Mem Space

Hot-plugged 
Remote Mem

CN #1 CN #2 CN #N

Host Mem Remote-BalloonShadow-Region

…

❸ Hot-plug
Extent 

Tree

❷ Lookup & Insert

❶ Allocation 
Request

Base_Addr Size

0x00a0

CN_id

0x100 1

0x0b00 0x100 2

0xc000 0x300 N

0x00a0 0x0b00 0xc000

Figure 7: Shadow-Region and Remote-Balloon (§3.1).

disaggregated system [30, 52] encapsulates the complicated
details of remote memory (e.g., RDMA semantic and remote
memory mapping) inside cache-coherent hardware and ex-
poses a fake physical memory range for host to utilize remote
memory. However, the fake physical memory mechanism
behaves like an indirection layer thereby introducing extra
address translation. This turns out to be the bottleneck of
critical path as described in §2.2.

In view of this, UniMem proposes to build a unified local-
remote memory hierarchy that directly exposes the entire
remote memory address range to eliminate the extra ad-
dress translation. UniMem introduces Shadow-Region which
presents the entire remote memory pool to each CN by
mapping remote memory to system physical space of CNs.
Thereby, CNs naturally treat remote memory as local phys-
ical memory resources. Subsequently, UniMem presents the
resource management mechanism, Remote-Balloon, which is
responsible for dynamic memory allocation, deallocation and
synchronization between CNs. Once the CN requests memory
resources from remote memory pool through Remote-Balloon,
the specific remote memory range is hot-plugged for CNs.
The OS of CN recognizes this hot-plugged physical memory
and allocates it to applications straightforwardly.
Shadow-Region:UniMem assumes that each CN is connected
with a cache-coherent accelerator over the PCIe physical layer.
The PCIe standard defines a set of Base Address Registers
(BARs) that devices can use to expose internal resources to
specific host physical memory space range. Previous works
[22, 39] leverage BARs to exploit the byte-accessibility of
SSDs to extend host memory capacity with high-performance
storage resources. When the host is powered on, the BIOS and
OS check the BAR registers of PCIe endpoints and assign the
specified physical memory region. In UniMem, we also use
the PCIe BARs of cache-coherent accelerator to assign a phys-
ical memory space region for Shadow-Region. Consequently,
the capacity of remote memory pool is required at the boot
time of CNs. Figure 7 shows that Shadow-Region occupies
physical memory space with the same size as remote memory
pool in every CN. The pages belonging to Shadow-Region are
distributed to applications on demand by page allocator of OS
as normal physical memory resources. Similar to Kona [30],
the memory request to Shadow-Region is redirected to the
accelerator when it misses in CPU cache. But the physical

memory address coming along with memory request can be
used to address corresponding data in local cache or remote
memory pool forthrightly without the necessity of extra ad-
dress translation. This unified local-remote memory hierarchy
design eliminates the extra address translation and reserves
the compute resource of accelerator for other processes (local
cache searching) in critical path.

In contrast to previous works [22, 39] on SSD, UniMem
initializes Shadow-Region to be cacheable on CPU cache to
leverage the benefit of it with the help of cache-coherent PCIe-
based interconnect (e.g., CXL [4] and CCIX [3]). Addition-
ally, Shadow-Region is not backed by real storage resources
in accelerator but remote memory, while the device-attached
memory acts as the local cache for remote memory and all
the interactions between remote memory are concealed by
UniMem.
Remote-Balloon: In UniMem, Shadow-Region is constructed
in every CN. As a result, all CNs consider their exclusiveness
of the whole remote memory pool which is shared in fact.
The OS of CN considers remote memory as local physical
memory and the page allocator can distribute these “exclusive”
pages to applications as needed. However, it might cause fatal
system errors without a proper synchronization mechanism.
In Kona [30], a resource manager is responsible for allocating
blocks of memory to CNs from the remote memory pool. It
uses a hashmap to record the mapping between fake physical
memory exposed to host and remote memory, which is the
extra address translation described in §2.2.

UniMem proposes Remote-Balloon to implement dynamic
and flexible memory management efficiently with the help of
memory hot-(un)plug feature [11]. The memory hot-(un)plug
feature supports physical memory onlining and offlining at
runtime, which can be used to implement dynamic remote
memory allocation and deallocation.

During the power-up process of CNs, the specific physical
space of Shadow-Region is initialized to be offlined. At this
time, remote memory is unavailable to CNs. Remote-Balloon
introduces an extent tree to trace the allocated remote memory
among CNs. Figure 7 shows that the entry in extent tree
records the Base_address (base address on remote memory
pool), Size and CN_id of each memory allocation. When a
CN sends an allocation request (Step ¶), Remote-Balloon
searches the extent tree to lookup an available remote memory
range that satisfies the request and inserts an entry to the extent
tree to reserve that remote memory range (Step ·). Then,
Remote-Balloon onlines the corresponding remote memory
range within the Shadow-Region of the specific CN (Step ¸).
After that, the allocated remote memory becomes visible to
OS of specific CN as local physical memory resources to
satisfy the memory requirement of applications.

The state of the allocated range is offlined on other CNs,
so that other CNs cannot consume the same piece of remote
memory, which avoids the conflicts between CNs. It also has
a downside as it limits the sharing of remote memory pages

468    2024 USENIX Annual Technical Conference USENIX Association



Active List
Inactive 

List

❷ Insert 
first-accessed block

❹ Evict

② Insert 
refaulted block

❶ Search

❸ Promote second-accessed block

❹ Evict

Remote Memory

Qrefault

Figure 8: The illustration of Filter-Cache (§3.2).

among different CNs. Despite this drawback, it does not hin-
der the core objective of UniMem, which is to provide remote
memory to CNs as exclusive local memory. It is efficient to
minimize the metadata storage overhead with extent tree, as
UniMem tries to allocate memory to the CN in sequential
chunks as possible. Each time a CN can allocate remote mem-
ory in multiple times of memory-hotplug granularity. The
memory hot-plug granularity depends on architecture, such
as 128 MB in x86_64 and 16 MB in ppc64. This remote mem-
ory allocation mechanism is feasible to be implemented in a
centralized or distributed approach.

With the help of memory-hotplug feature, it is convenient
to release remote memory resources by unplugging mem-
ory block from CNs. When dynamically offlining a specific
memory range, the OS migrates all pages off the affected
memory block to another place. As the migration is finished,
the state of corresponding memory range is changed to be
offlined, and Remote-Balloon can reclaim this memory range
for the next allocation. To accommodate the growth of remote
memory pool, we recommend that the Shadow-Region should
occupy physical memory range larger than remote memory
pool at the CN’s boot time. This setup ensures that UniMem
can support the expansion of the remote memory pool as
long as it remains within the capacity of the Shadow-Region.
The Remote-Balloon is executed on host CPU with abun-
dant generic compute resources but not in accelerator such
as FPGA or SmartNIC. It is more proper to run the control
path in host CPU, but these heterogeneous processors and the
precious compute power of accelerator is reserved.

3.2 Filter-Cache
The DM systems leverage local memory resources of CNs to
cache remote data for reducing remote data fetching. How-
ever, the restricted local memory capacity poses a challenge in
designing an efficient local cache for memory-intensive work-
loads. It becomes difficult to identify frequently accessed (hot)
data with limited cache space and prevent cache pollution and
thrashing, as abovementioned observation in §2.2.

In view of this, UniMem introduces Filter-Cache. It par-
titions cache space into active list and inactive list.
The active list is used to reserve popular data blocks to ab-
sorb as much remote data access as possible. The inactive list
serves as a guard, containing the first-accessed block to pro-
tect the active list from thrashing and pollution. Filter-Cache
maintains the history records of evicted blocks from active and
inactive lists in a ring buffer, called refault queue, to ex-

tend the capacity of lists logically for recognizing popular data.
The cache block size in Filter-Cache is set to sub-page for
mitigating the data amplification. Furthermore, Filter-Cache
divides the cache space into equal parts to construct multi-
ple pairs of active and inactive lists which is similar to set
associative cache for enabling parallel cache operations.

Figure 8 illustrates the data flow of Filter-Cache. When
the block is fetched from remote memory pool, Filter-Cache
first searches the refault queue to verify whether the block
is previously evicted from active or inactive list (Step ¶).
The block that is accessed for the first time is inserted at the
head of the inactive list (Step ·). If the block is refaulted
(recorded in the refault queue), it is inserted at the head of
the active list (Step ­). When the block in inactive list is
accessed, it is promoted to the head of active list as popular
data (Step ¸). When the block is evicted from inactive list or
active list, the block is written back to remote memory if it
is modified (Step ¹). The remote address of evicted block is
logged in refault queue.

Splitting local cache into two lists prompts an immediate
policy decision: what should be the size of each list? Linux’s
page cache roughly regulates that the active list does not
exceed the inactive list [2]. However, this strategy can be in-
efficient as half of the cache space might be used for caching
one-hit wonders. UniMem regulates that the size of active
list can grow up to 90% of the cache space and the inactive
list occupies at least 10% of the cache. When Filter-Cache
starts in cold, most of the blocks flow into inactive list. At
this time, the inactive list can even grow to occupy the whole
cache. The second-accessed blocks in inactive list are con-
sidered as popular blocks and promoted to active list. The
active and inactive lists are organized as LRU and FIFO lists,
respectively.

As the active list grows and takes up more cache space, the
size of inactive list diminishes, thereby reducing the lifespan
of blocks on the inactive list. This implies that the observation
window for the workload access pattern is shortened. It might
be detrimental to cache efficiency, as no additional block is
defined as popular to be promoted from the inactive list to
active list. When the hot spot shifts, the blocks in active list
become cold but still take up the cache space. As a result,
the entire cache is halted. To address this issue, we draw
inspiration from refault distance of Linux kernel [2] and ghost
list of S3-FIFO [61]. UniMem adopts a refault queue to log
the remote address of evicted blocks from both active and
inactive lists, as these blocks are still logically buffered in the
local cache. It provides a larger observation window for local
cache mechanism to recognize popular blocks. The maximum
number of entries in the refault queue is set to match the
number of maximum caching blocks. When a block is evicted
from active list, it is directly discarded and not inserted into
inactive list. We regard the block evicted from active list as
unvalued because the hot spot of workload has shifted or the
block has become cold.

USENIX Association 2024 USENIX Annual Technical Conference    469



The swapping and caching granularity in Filter-Cache can
be set up to any size. According to prior work [30], most of
the contiguous accessed data in a 4 KB page spans a length of
1 to 4 cachelines (64 bytes). The remaining data may not be
accessed before the page is evicted. In UniMem, the swapping
and caching granularity is set to 512 bytes for lower data am-
plification. However, the finer granularity might incur higher
software overhead when managing cache blocks (block pro-
motion or eviction). It could also cause a rise in local cache
misses and initiate more RDMA operations, as a coarser block
essentially serves as a prefetch for data. Thus, Filter-Cache
promotes or evicts blocks in batch for alleviating the software
overhead and reduces RDMA operations by batching remote
data fetching through optimization approaches, such as Door-
bell Batch [42] and Scatter/Gather List [47]. We conduct
experiments in §4.5 to discuss the benefits and drawbacks of
fine-grained caching block.

It is complicated and inefficient to implement Filter-Cache
upon FPGA. We propose to utilize the wimpy CPU cores in
the accelerator [6,20] for its control plane, thereby fully lever-
aging the various computation resources in the accelerator.

3.3 Fully-used Page Promotion Scheme
UniMem eliminates the extra address translation in remote
memory access path and constructs a highly efficient local
cache on device-attached memory for remote data. However,
it still exhibits higher latency when accessing device-attached
memory compared to host memory in CNs. It is critical to
thoroughly explore the limited fast host memory for optimal
system efficiency.

Unlike cache-coherent accelerator, which can flexibly de-
termine the cache block size, the host is constrained to buffer
data in page (4 KB commonly) due to hardware restrictions
(e.g., MMU and TLB). The mismatch in cache block size
between device-attached memory and host memory compli-
cates the promotion scheme. Simply promoting data in page
granularity from device-attached memory to host memory in
terms of page hotness might be sub-optimal. As shown in
previous works [28, 30] and discussed in §2.2, data amplifica-
tion in page granularity could consume a significant amount
of cache space for unnecessary data, severely impacting the
efficiency of the data cache. This phenomenon is known as
hotness fragmentation in prior work [28], which is caused by
different accessing frequencies of sub-pages within a page.

UniMem proposes fully-used page promotion scheme. A
fully-used page is defined as a frequently used page with low
hotness fragmentation. It is considered more appropriate to
promote these pages to host memory in order to reduce the
overhead of cache-coherent interconnect. This is because a
page with the same level of hotness but higher fragmentation
is more likely to be cached by the CPU cache.

The fully-used page promotion scheme implements per-
process promotion. Since the pages of remote memory are
directly mapped into process address space as host memory in

UniMem, they are tracked by per-process page cache [17, 19]
(the same one in page-based DM system). UniMem selects
the hot page depending on the process page cache and then
evaluates the hotness fragmentation of them. UniMem mea-
sures the hotness fragmentation of a page by the state of each
sub-page within the same page. As sub-pages of a page might
be scattered across different lists on device-attached memory,
UniMem assigns a hotness score to each sub-page based
on the list they reside in. The sub-page in active list is given
the highest score, while the sub-page in refault queue receives
the lowest score. The variance of sub-pages’ hotness scores
represents the hotness fragmentation of a page. After col-
lecting a set of promotion candidates, a batch promotion is
activated. The batch promotion can amortize the software
overhead of page migration, such as page table modification
and TLB invalidations and shootdowns [18, 60].

4 Evaluation
We conduct comprehensive experiments to evaluate the per-
formance of UniMem through simulation. We compare the ef-
fectiveness of UniMem to the state-of-the-art cache-coherent-
based DM system under various local cache capacity (§4.2,
§4.3 and §4.4). Next, we adjust the system configurations of
UniMem to understand their influence on system performance,
which includes cache block size (§4.5), host memory capacity
(§4.6), and set associativity (§4.7).

4.1 Experiment Setup
Comparison systems:The cache-coherent-based DM system
is comprised of two key mechanisms: the remote memory
mechanism and the local cache mechanism. The remote mem-
ory mechanism can be of two types, including fake physical
memory from Kona [30] and Shadow-Region and Remote-
Balloon (SR&RB) from UniMem. The local cache mechanism
is adaptable, as it can incorporate any software cache mecha-
nisms from other systems, such as 4-way set associative cache
of Kona, OS page cache [17] and Filter-Cache of UniMem.
Therefore, we compare UniMem against the state-of-the-art
cache-coherent-based DM system, Kona, and its variation.

• Kona [30]: Kona is the state-of-the-art cache-coherent-
based network-attached DM system that proposes the use
of cache-coherent accelerator for disaggregated mem-
ory implementation. It innovatively provides transparent
access to remote memory for CNs via a fake physical
memory mechanism and establishes a 4-way set associa-
tive cache for remote memory within the device-attached
memory. The cache block size is set to 4 KB in Kona.

• Kona-PC: This is a variation of Kona, which substitutes
the local cache mechanism with the OS page cache [17].
The OS page cache keeps track of the pages in cache
using two LRU lists, namely the active and inactive lists.
We regulate the size of these lists as Linux kernel that
the active list is restricted from exceeding the size of the
inactive list [2]. The cache block size is also set to 4 KB.

470    2024 USENIX Annual Technical Conference USENIX Association



Table 1: Simulation configurations.

Memory Tier Hardware
Configuration

Average
Latency

CPU Cache
L1D, 12-way, 48 KB per core
L2, 20-way, 1.2 MB per core
L3, 12-way, 24 MB shared [8]

20 ns (64 B)

Host Memory DDR4 DIMMs [43, 48] 80 ns (64 B)

Device-attached
Memory

Intel’s Sapphire Rapids with
Intel FPGA implementing
CXL at x16 width
PCIe 5.0 interconnect [56]

150 ns (64 B)

Remote
Memory

One-sided RDMA
Operation through Mellanox
ConnectX-3 [42, 47]

2 µs (512 B)
4 µs (4 KB)

UniMem configuration:Without otherwise specified, we se-
lect the following configurations for the evaluation. We regu-
late the Filter-Cache (§3.2) that the active list can grow up to
90% of the cache space and the inactive list occupies at least
10% of cache space. The limit of records in refault queue is set
to match the maximum number of cache blocks in cache. The
cache space for refault queue is pre-allocated. As cache block
size of UniMem is set to 512 bytes, the refault queue takes up
approximately 1.5% of cache capacity. The number of pairs
of active and inactive lists is set to 8. When the fully-used
page promotion scheme (§3.3) is enabled, we assume 30%
of local memory as host memory for page cache and 70% as
device-attached memory for Filter-Cache. UniMem promotes
512 base pages (4 KB) in batch from device-attached memory
to host memory.

Besides, we break down UniMem to demonstrate the ef-
fectiveness gained by each design technique as follows: (i)
Shadow-Region and Remote-Balloon with 4-way set asso-
ciative cache (SR&RB-4SC), which replaces Kona’s remote
memory mechanism (fake physical memory) with Shadow-
Region and Remote-Balloon (§3.1), while maintaining the
local cache mechanism as 4-way set associative cache; (ii)
UniMem-NoPromote, which disables the fully-used page pro-
motion (§3.3) of UniMem.

Workloads:We evaluate UniMem using three categories of
memory-intensive workloads: in-memory key-value storage,
graph analytics workload, and in-memory MapReduce work-
load. For the in-memory key-value storage system, we use
Redis [16] and initiate a uniformly random key-value stor-
age workload by Memtier [12] benchmark, referred to as
Redis-Rand. We also execute Yahoo Cloud Serving Bench-
mark (YCSB) [33] workloads (YCSB-A and YCSB-B) on Redis,
representing typical cloud services. In addition, we run the
Facebook’s ETC [27] workload on Memcached [10] by Muti-
late [14], denoted as Facebook-ETC. For the graph analytics
workload, we launch Page Rank using GraphLab [46] with
the Twitter dataset [1]. Metis [40] is the in-memory MapRe-
duce framework that we use to run the Linear Regression.
The working set size of these workloads ranges from 4 GB
(Redis-Rand) to 40 GB (Linear Regression).

Simulated configuration:We compare UniMem with other
systems using Pin-based simulation. We gather the memory
access operations, memory address and access data size of
the workload using Intel Pin [15] and replay these operations
on a simulated CPU cache to obtain the CPU cache miss
events of the workload. The CPU cache configurations follow
the real hardware specifications of Intel Xeon Silver 4314
processors [8]. Since each CPU cache miss comes to the
local cache, we replay the CPU cache miss events in different
local cache mechanisms to collect local cache miss events.
The local cache miss is addressed by fetching remote data
from the remote memory pool via RDMA operations (one-
sided read). Based on the cache miss counts on different
memory tiers, we can collect various performance statistics
(e.g., average memory access time and remote fetching data
size) of workloads under different DM systems.

Table 1 summarizes the simulation configurations. As the
CPU cache configurations are identical to all workloads and
systems, we disregard the latency differences between CPU
cache levels and set CPU cache hit latency of all levels at an
average of 20 ns, as in previous works [5, 48]. We assume
CXL [4] as the interconnect between host processor and ac-
celerator. The latency for a processor to load a cacheline from
device-attached memory (end-to-end overhead for CXL reads)
across CXL ranges from 150 ns to 175 ns [5, 43, 48] in Intel’s
Sapphire Rapids CPU with x16 width PCIe 5.0 interconnect.
Therefore, we consider the hit latency of local cache on device-
attached memory as 150 ns. According to prior works [47,57],
we consider that fetching a 512 B or 4 KB block from remote
memory to device-attached memory via RDMA introduces a
latency of 2 µs or 4 µs, respectively. For the page promoted to
host memory, we assume the host memory access latency as
80 ns. As described in previous works [13, 60], the overhead
for promoting 512 base pages in batch is 2 ms. Specifically,
Kona [30] introduces a hash table for extra address translation
in the path of fetching a cacheline from device-attached mem-
ory to CPU cache. According to previous works [62, 63], the
searching latency of hash table varies from 14 ns to 243 ns on
the state-of-the-art devices (i.e., Intel Stratix 10 FPGA [7] and
Xilinx Alveo 250U FPGA [21]). We consider it adds 14 ns of
latency to the path in our experiments.

4.2 Average Memory Access Time
In this section, we first evaluate the average memory access
time (AMAT) of six representative workloads on different DM
systems. AMAT is considered a crucial performance indicator
of DM system. We adjust the local cache size from 100%
to 10% of workloads’ working set size. As the CPU cache
miss event of workloads is consistent across all systems, the
presented AMAT is simulated without including CPU cache
hit access to focus on the efficiency of DM system.

Figure 9 shows that UniMem surpasses both Kona and Kona-
PC by demonstrating lower AMAT for most workloads across
different local cache size configurations, with the exception

USENIX Association 2024 USENIX Annual Technical Conference    471



0

100

200

300

400

100% 75% 50% 25% 10%
Local Cache Size

A
M

A
T

 (
ns

)

Kona
Kona-PC
SR&RB-4SC
UniMem-NoPromote
UniMem

0

100

200

300

400

100% 75% 50% 25% 10%
Local Cache Size

A
M

A
T

 (
ns

)

Kona
Kona-PC
SR&RB-4SC
UniMem-NoPromote
UniMem

(a) Facebook-ETC. (b) Redis-Rand.

0

200

400

600

800

100% 75% 50% 25% 10%
Local Cache Size

A
M

A
T

 (
ns

)

Kona
Kona-PC
SR&RB-4SC
UniMem-NoPromote
UniMem

0

200

400

600

800

100% 75% 50% 25% 10%
Local Cache Size

A
M

A
T

 (
ns

)
Kona
Kona-PC
SR&RB-4SC
UniMem-NoPromote
UniMem

(c) YCSB-A. (d) YCSB-B.

0

50

100

150

200

100% 75% 50% 25% 10%
Local Cache Size

A
M

A
T

 (
ns

)

Kona
Kona-PC
SR&RB-4SC
UniMem-NoPromote
UniMem

0

100

200

300

400

100% 75% 50% 25% 10%
Local Cache Size

A
M

A
T

 (
ns

)

Kona
Kona-PC
SR&RB-4SC

UniMem-NoPromote
UniMem

(e) Page Rank. (f) Linear Regression.

Figure 9: Average memory access time.

of Linear Regression. On average, UniMem achieves a lower
AMAT by 33.4% and 24.1% compared to Kona and Kona-
PC, respectively. As the local cache capacity decreases, the
AMAT of all systems increases. However, UniMem exhibits
a more gradual increasing trend and performs up to 76.4%
and 49.1% (YCSB-B) better than Kona and Kona-PC in the
scenario with limited cache capacity (10% of working set
size), due to its local cache mechanism.

We break down UniMem to understand the benefits derived
from each design technique. SR&RB-4SC shows a lower
AMAT across all workloads compared to Kona with an av-
erage improvement of 7.1%. This is credited to the remote
memory mechanism of UniMem, which eliminates the extra
address translation overhead in Kona. The AMAT of UniMem-
NoPromote varies according to workloads and local cache
capacity configurations. UniMem-NoPromote presents lower
AMAT compared to Kona and Kona-PC by 43.6% and 43.5%
on YCSB workloads. It outperforms them in the low cache ca-
pacity scenario (10% of working set size) on Redis-Rand and
Facebook-ETC. UniMem-NoPromote shows a higher AMAT
than Kona and Kona-PC on Page Rank and Linear Regression.
This is due to the Filter-Cache of UniMem-NoPromote adopt-
ing a finer cache block size (512 B) than 4-way set associative
cache of Kona and OS page cache (4 KB), leading to more
local cache miss events. It negates the benefit of reduced data
amplification brought by finer cache granularity. The coarse
cache granularity acts as a prefetch for subsequent data and
reduces local cache misses, especially in workloads with a

0

10

20

30

100% 75% 50% 25% 10%
Local Cache Size

D
at

a 
A

m
pl

ifi
ca

tio
n Kona

Kona-PC
UniMem

0

4

8

12

100% 75% 50% 25% 10%
Local Cache Size

D
at

a 
A

m
pl

ifi
ca

tio
n Kona

Kona-PC
UniMem

(a) Facebook-ETC. (b) Redis-Rand.

0

50

100

150

100% 75% 50% 25% 10%
Local Cache Size

D
at

a 
A

m
pl

ifi
ca

tio
n Kona

Kona-PC
UniMem

0

50

100

150

100% 75% 50% 25% 10%
Local Cache Size

D
at

a 
A

m
pl

ifi
ca

tio
n Kona

Kona-PC
UniMem

(c) YCSB-A. (d) YCSB-B.

0

1

2

3

100% 75% 50% 25% 10%
Local Cache Size

D
at

a 
A

m
pl

ifi
ca

tio
n Kona

Kona-PC
UniMem

0.0

0.5

1.0

1.5

100% 75% 50% 25% 10%
Local Cache Size

D
at

a 
A

m
pl

ifi
ca

tio
n

Kona
Kona-PC
UniMem

(e) Page Rank. (f) Linear Regression.

Figure 10: Data amplification.

sequential access pattern or the scenario with sufficient cache
space. UniMem outperforms UniMem-NoPromote by an aver-
age of 17.6% due to the fully-used page promotion scheme,
which promotes frequently used pages to host memory reduc-
ing the overhead from cache-coherent interconnect.

4.3 Data Amplification
To get further on local cache efficiency, we evaluate UniMem
against other systems based on the amount of data fetched
from remote memory pool. Retrieving a smaller amount of
data from remote memory signifies a more efficient local
cache mechanism. This suggests a reduction in data amplifi-
cation and less network bandwidth being wasted.

We track the data fetched from remote by the local cache
miss event across six representative workloads. Figure 10
illustrates the data amplification which is the amount of re-
motely fetched data normalized to working set size of work-
load with different local cache size configurations. It shows
that a reduction in the local cache size leads to an increase in
data amplification for most workloads across all systems. The
data amplification of UniMem is minimally affected by the
reduction in local cache capacity, maintaining an average of
2.6 times the working set size. In contrast, Kona and Kona-PC
present an average of 20.6 and 13.6 times the working set
size, respectively. The underlying reasons are two-fold. On
the one hand, the local cache mechanism of UniMem presents
higher cache efficiency than other systems, particularly in
the scenario with low cache space. The small inactive list of

472    2024 USENIX Annual Technical Conference USENIX Association



0

50

100

150

200

250

100% 75% 50% 25% 10%
Local Cache Size

A
M

A
T

 (
ns

)

Kona
Kona-PC
UniMem

0

5

10

15

20

100% 75% 50% 25% 10%
Local Cache Size

D
at

a 
A

m
pl

ifi
ca

tio
n Kona

Kona-PC
UniMem

(a) AMAT. (b) Data Amplification.

Figure 11: AMAT and data amplification with concurrent
execution of multiple workloads.

Filter-Cache prevents local cache thrashing, and the active
list occupies the majority of the cache space for maintaining
frequently used blocks. It leads to quick eviction of one-hit
wonders and fewer refaulted swap-in of hot blocks. On the
other hand, UniMem adopts a finer cache granularity than
other systems. It means that each time a local cache miss oc-
curs, UniMem fetches less data from remote memory pool. For
workloads with a random access pattern or the scenario with
limited cache space, it comes to lower data amplification and
prevents local cache thrashing and pollution. Kona presents
higher remote data fetching than Kona-PC and UniMem due
to the conflicts on cache set.

4.4 Mixed Workload
We further evaluate the performance benefit of UniMem un-
der several memory-intensive workloads, which simulates
the concurrent execution of multiple workloads. It aims to
demonstrate the system performance of DM systems in a
more realistic scenario. The memory access operations from
different workloads will compete for local cache, as local
cache on cache-coherent-based accelerator cannot receive the
hint of process from host.

The mixed workload includes four workloads: Redis-Rand,
Facebook-ETC, Page Rank and YCSB-A. We simulate it
by interleaving their memory access operations. The local
cache capacity is adjusted from 100% to 10% of workloads’
working set size. Figure 11 shows that UniMem presents the
lowest AMAT compared to Kona and Kona-PC, achieving
an average improvement of 26.9% and 24.1% respectively.
For the data amplification, UniMem achieves the lowest data
amplification in the scenario with limited local cache capacity
(25% and 10% of working set size). It presents 2.9 and 4.1
times lower data amplification compared to Kona and Kona-
PC, respectively. On both metrics, UniMem presents the least
impact from reduction of local cache capacity.

4.5 Cache Block Size
We evaluate the performance of UniMem with different cache
block sizes. It aims to demonstrate how the cache block size
impacts the system performance. The cache block size affects
both the local cache miss rate and remote data fetching size,
which are essential metrics related to the AMAT and data
amplification.

0

3

6

9

12

0

250

500

750

128 256 512 1K 2K 4K
Caching Block Size (B)

D
at

a 
A

m
pl

ifi
ca

tio
n

A
M

A
T

 (ns)

0

10

20

30

0

100

200

300

400

500

128 256 512 1K 2K 4K
Caching Block Size (B)

D
at

a 
A

m
pl

ifi
ca

tio
n

A
M

A
T

 (ns)

(a) Redis Rand. (b) Facebook-ETC.

0

1

2

3

4

5

0

100

200

300

400

128 256 512 1K 2K 4K
Caching Block Size (B)

D
at

a 
A

m
pl

ifi
ca

tio
n

A
M

A
T

 (ns)

0

20

40

60

80

0

100

200

300

400

128 256 512 1K 2K 4K
Caching Block Size (B)

D
at

a 
A

m
pl

ifi
ca

tio
n

A
M

A
T

 (ns)

(c) Page Rank. (d) YCSB-A.

Figure 12: Impact of cache block size. The bars illustrate data
amplification, while the line indicates the AMAT of systems.

We evaluate the data amplification and AMAT of UniMem
in the scenario with limited local cache capacity (10% of
working set size) with cache block size ranging from 128 B
to 4 KB. The latency for remote fetching of 128 B and 256 B
blocks are set at 2 µs as 512 B block. For a 2 KB block, the
remote fetching latency is set at 3 µs. We disable the page
promotion scheme to avoid interference. Figure 12 shows
that the data amplification increases as the cache block size
grows across four workloads. The most significant increase is
observed in YCSB-A, where it rises from 2.8 times the work-
ing set size to 74.2 times. This increase in data amplification
is due to the coarse cache block size acting like a prefetch,
bringing in more data during a local cache miss. When the
workload access pattern presents less spatial locality, it results
in data amplification. The data amplification only increases
from 2.1 times to 2.4 times in Page Rank. The difference
between workloads is due to the differing spatial locality of
their access patterns. On the contrary, the AMAT decreases
by an average of 56.3% with the increase in cache block size
for most workloads. This is because fewer remote data fetch-
ing operations are triggered with a coarser cache block size.
However, in contrast to other workloads, the AMAT increases
with a coarser cache block size in YCSB-A. The reason is
that the workload presents less spatial locality, and the coarser
cache block size prefetches unused data which wastes the
cache space.

4.6 Host Memory Capacity
We demonstrate the benefit of host memory capacity for the
performance of UniMem in the scenario with limited local
memory capacity (10% of working set size).

We evaluate the AMAT of UniMem by adjusting the host
memory size from 0% to 80% of local memory. The host

USENIX Association 2024 USENIX Annual Technical Conference    473



0

100

200

300

400

0 10% 20% 30% 40% 50% 60% 70% 80%
Host Memory Capacity

A
M

A
T

 (
ns

)

Redis Rand Page Rank Facebook-ETC YCSB-A

Figure 13: Impact of host memory capacity.

0

100

200

300

1 4 8 16
Set Accosiativity

A
M

A
T

 (
ns

)

Redis Rand
Page Rank

Facebook-ETC
YCSB-A

0

3

6

9

1 4 8 16
Set Accosiativity

D
at

a 
A

m
pl

ifi
ca

tio
n

(a) AMAT. (b) Data Amplification.

Figure 14: Impact of set associativity.

memory is organized by OS as page cache in Linux [17]. The
rest of local memory is considered as device-attached memory
used for Filter-Cache. Figure 13 shows that it improves the
AMAT of all workloads by 13.9% on average, as the host
memory capacity increases from 0% to 10%. However, the
rate of improvement slows down as the host memory capac-
ity continues to increase. The reason is that more sub-pages
are combined into 4 KB pages and promoted to host memory
as the host memory expands. For workloads with less spa-
tial locality, the page cache in host memory introduces data
amplification and consumes the precious local memory.

4.7 Set Associativity
We demonstrate the influence of local cache set associativity
(the count of active and inactive list pairs) on UniMem. It is
important to partition data for parallel cache operations.

We evaluate both data amplification and AMAT of UniMem
in the scenario with limited local cache capacity (10% of
working set size) with set associativity varying from 1 to
16. Figure 14 shows that both the data amplification and
AMAT of various workloads remain stable despite changes in
set associativity. The overall performance of UniMem is not
significantly affected by the set associativity. Thus, UniMem
can fit in a range of accelerators with varying parallelization
capabilities to fully leverage the hardware resources.

5 Related Work
Exposing network-attached remote memory:Advanced
network technology (e.g., RDMA) provides the opportunity to
expand memory capacity by memory disaggregation. Object-
based [34, 35, 41, 49, 50, 54] and page-based [24, 37, 38, 44]
systems treat the network-attached remote memory as a swap
device. Prior cache-coherent-based DM systems [30, 31, 52]

implement memory semantics (i.e., load and store) for
network-attached remote memory with the help of cache-
coherent interconnect. It exposes remote memory transpar-
ently over an indirection layer to isolate CNs from conflict.
UniMem moves further to build a unified local-remote memory
space in each CN for exposing remote memory into the phys-
ical memory space of the host, eliminating the extra software
overhead introduced by the indirection layer.

Software-controlled cache:Existing DM systems [24,30,31,
34, 35, 37, 41, 44, 49, 50, 54] usually employ local memory
to serve as local cache to absorb remote data access. They
organize local data cache using different approaches, such as
user-level data cache in object-based systems [34, 35, 41, 49,
50,54], OS page cache in page-based systems [17], and 4-way
associative set cache in cache-coherent-based systems [30,
31]. UniMem gives attention to design local cache resistant
to thrashing and pollution. Besides, existing works neglect
the perception of popular data. As a comparison, UniMem
extends the cache logically using refault queue to enlarge the
observation window of popular data.

Page placement strategy:In cache-coherent-based DM sys-
tems, the local memory inside CNs includes host memory
and device-attached memory. The device-attached memory
presents higher latency due to the limited interconnect band-
width and interconnect overhead. Prior studies solely focus
on realizing local cache on host memory [24,37,44] or device-
attached memory [30, 31]. In comparison, UniMem proposes
to utilize both types of memory by migrating popular pages
from device-attached memory to host memory. Existing page
migration mechanisms mainly pay attention to the page hot-
ness [23, 25, 53, 60], while UniMem considers both page hot-
ness and hotness fragmentation.

6 Conclusion

In this paper, we introduce UniMem that redesigns cache-
coherent-based DM system with a unified local-remote mem-
ory hierarchy. UniMem carefully utilizes the host memory
and device-attached memory to construct a tiered local cache
for remote memory. Experiments show that UniMem is an ef-
fective solution that brings significant performance improve-
ments across a variety of workloads. The source code of
UniMem will be released in the final version of this paper.

Acknowledgement
We thank our anonymous shepherd and reviewers for their
valuable feedback and suggestions. This work was sup-
ported by the National Key R&D Program of China (No.
2021YFF0704001), the Major Research Plan of the National
Natural Science Foundation of China (No. 92373114), the
Natural Science Foundation of China (No. 62072381), and
the Natural Science Foundation of Fujian Province of China
(No. 2023J06001).

474    2024 USENIX Annual Technical Conference USENIX Association



References
[1] Arizona State University Twitter Data Set. https://

archive.org/details/asu_twitter_dataset.

[2] Better active/inactive list balancing. https://lwn.ne
t/Articles/495543/.

[3] CCIX. https://www.ccixconsortium.com.

[4] CXL Consortium. Compute Express Link Specifi cation
Revision 3.0. https://www.computeexpresslink.o
rg/download-the-specification.

[5] CXL Memory Challenges. https://hc34.hotchips.
org/assets/program/tutorials/CXL/Hot%20Chi
ps%202022%20CXL%20MemoryChallenges.pdf.

[6] Intel Agilex FPGA Portfolio. https://www.intel.co
m/content/www/us/en/products/details/fpga/
agilex.html.

[7] Intel: Stratix 10 MX FPGAs. https://www.intel.co
m/content/www/us/en/products/details/fpga/
stratix/10/mx.html.

[8] Intel Xeon Silver 4314 Processor. https://ark.inte
l.com/content/www/us/en/ark/products/21526
9/intel-xeon-silver-4314-processor-24m-cac
he-2-40-ghz.html.

[9] Linux kernel profiling with perf. https://perf.wiki.
kernel.org/index.php/Tutorial.

[10] Memcached - A distributed memory object caching sys-
tem. http://memcached.org.

[11] Memory Hot(Un)Plug. https://www.kernel.org/d
oc/html/latest/admin-guide/mm/memory-hotpl
ug.html.

[12] Memtier: a command line utility for load generation
and bechmarking NoSQL key-value databases. https:
//github.com/RedisLabs/memtier_benchmark.

[13] mm: page migration enhancement for thp. https://pr
od.lwn.net/Articles/726993/.

[14] Mutilate: high-performance memcached load generator.
https://github.com/leverich/mutilate.

[15] Pin - A Dynamic Binary Instrumentation Tool. https:
//www.intel.com/content/www/us/en/develope
r/articles/tool/pin-a-dynamic-binary-instr
umentation-tool.html.

[16] Redis: open-source, in-memory data structure store. ht
tps://redis.io/.

[17] The multi-generational LRU. https://lwn.net/Arti
cles/851184/.

[18] TLB flush optimization. https://lwn.net/Articl
es/684934/.

[19] Understanding the new control groups API. https:
//lwn.net/Articles/679786/.

[20] VIDIA BlueField-3 data processing unit. https://ww
w.nvidia.com/content/dam/en-zz/Solutions/D
ata-Center/documents/datasheet-nvidia-blue
field-3-dpu.pdf.

[21] Xilinx: Alveo U250 data center accelerator card. https:
//www.xilinx.com/products/boards-and-kits/
alveo/u250.html.

[22] Ahmed Abulila, Vikram Sharma Mailthody, Zaid
Qureshi, Jian Huang, Nam Sung Kim, Jinjun Xiong,
and Wen-mei Hwu. Flatflash: Exploiting the byte-
accessibility of ssds within a unified memory-storage
hierarchy. In Proceedings of the Twenty-Fourth Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages
971–985, 2019.

[23] Neha Agarwal and Thomas F Wenisch. Thermo-
stat: Application-transparent page management for two-
tiered main memory. In Proceedings of the Twenty-
Second International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems, pages 631–644, 2017.

[24] Marcos K Aguilera, Nadav Amit, Irina Calciu, Xavier
Deguillard, Jayneel Gandhi, Stanko Novakovic, Arun
Ramanathan, Pratap Subrahmanyam, Lalith Suresh, Ki-
ran Tati, et al. Remote regions: a simple abstraction for
remote memory. In 2018 USENIX Annual Technical
Conference (USENIX ATC 18), pages 775–787, 2018.

[25] Hasan Al Maruf and Mosharaf Chowdhury. Effectively
prefetching remote memory with leap. In 2020 USENIX
Annual Technical Conference (USENIX ATC 20), pages
843–857, 2020.

[26] Emmanuel Amaro, Christopher Branner-Augmon, Zhi-
hong Luo, Amy Ousterhout, Marcos K Aguilera, Aurojit
Panda, Sylvia Ratnasamy, and Scott Shenker. Can far
memory improve job throughput? In Proceedings of the
Fifteenth European Conference on Computer Systems
(EuroSys 20), pages 1–16, 2020.

[27] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song
Jiang, and Mike Paleczny. Workload analysis of a large-
scale key-value store. In Proceedings of the 12th ACM
SIGMETRICS/PERFORMANCE joint international con-
ference on Measurement and Modeling of Computer
Systems, pages 53–64, 2012.

USENIX Association 2024 USENIX Annual Technical Conference    475

https://archive.org/details/asu_twitter_dataset
https://archive.org/details/asu_twitter_dataset
https://lwn.net/Articles/495543/
https://lwn.net/Articles/495543/
https://www.ccixconsortium.com
https://www.computeexpresslink.org/download-the-specification
https://www.computeexpresslink.org/download-the-specification
https://hc34.hotchips.org/assets/program/tutorials/CXL/Hot%20Chips%202022%20CXL%20MemoryChallenges.pdf
https://hc34.hotchips.org/assets/program/tutorials/CXL/Hot%20Chips%202022%20CXL%20MemoryChallenges.pdf
https://hc34.hotchips.org/assets/program/tutorials/CXL/Hot%20Chips%202022%20CXL%20MemoryChallenges.pdf
https://www.intel.com/content/www/us/en/products/details/fpga/agilex.html
https://www.intel.com/content/www/us/en/products/details/fpga/agilex.html
https://www.intel.com/content/www/us/en/products/details/fpga/agilex.html
https://www.intel.com/content/www/us/en/products/details/fpga/stratix/10/mx.html
https://www.intel.com/content/www/us/en/products/details/fpga/stratix/10/mx.html
https://www.intel.com/content/www/us/en/products/details/fpga/stratix/10/mx.html
https://ark.intel.com/content/www/us/en/ark/products/215269/intel-xeon-silver-4314-processor-24m-cache-2-40-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/215269/intel-xeon-silver-4314-processor-24m-cache-2-40-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/215269/intel-xeon-silver-4314-processor-24m-cache-2-40-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/215269/intel-xeon-silver-4314-processor-24m-cache-2-40-ghz.html
https://perf.wiki.kernel.org/index.php/Tutorial
https://perf.wiki.kernel.org/index.php/Tutorial
http://memcached.org
https://www.kernel.org/doc/html/latest/admin-guide/mm/memory-hotplug.html
https://www.kernel.org/doc/html/latest/admin-guide/mm/memory-hotplug.html
https://www.kernel.org/doc/html/latest/admin-guide/mm/memory-hotplug.html
https://github.com/RedisLabs/memtier_benchmark
https://github.com/RedisLabs/memtier_benchmark
https://prod.lwn.net/Articles/726993/
https://prod.lwn.net/Articles/726993/
https://github.com/leverich/mutilate
https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html
https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html
https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html
https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html
https://redis.io/
https://redis.io/
https://lwn.net/Articles/851184/
https://lwn.net/Articles/851184/
https://lwn.net/Articles/684934/
https://lwn.net/Articles/684934/
https://lwn.net/Articles/679786/
https://lwn.net/Articles/679786/
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-3-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-3-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-3-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-3-dpu.pdf
https://www.xilinx.com/products/boards-and-kits/alveo/u250.html
https://www.xilinx.com/products/boards-and-kits/alveo/u250.html
https://www.xilinx.com/products/boards-and-kits/alveo/u250.html


[28] Shai Bergman, Priyank Faldu, Boris Grot, Lluís Vi-
lanova, and Mark Silberstein. Reconsidering os memory
optimizations in the presence of disaggregated memory.
In Proceedings of the 2022 ACM SIGPLAN Interna-
tional Symposium on Memory Management, pages 1–14,
2022.

[29] Ankit Bhardwaj, Todd Thornley, Vinita Pawar, Reto
Achermann, Gerd Zellweger, and Ryan Stutsman.
Cache-coherent accelerators for persistent memory
crash consistency. In Proceedings of the 14th ACM
Workshop on Hot Topics in Storage and File Systems,
pages 37–44, 2022.

[30] Irina Calciu, M Talha Imran, Ivan Puddu, Sanidhya
Kashyap, Hasan Al Maruf, Onur Mutlu, and Aasheesh
Kolli. Rethinking software runtimes for disaggregated
memory. In Proceedings of the 26th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems, pages 79–92, 2021.

[31] Irina Calciu, Ivan Puddu, Aasheesh Kolli, Andreas
Nowatzyk, Jayneel Gandhi, Onur Mutlu, and Pratap Sub-
rahmanyam. Project pberry: Fpga acceleration for re-
mote memory. In Proceedings of the Workshop on Hot
Topics in Operating Systems, pages 127–135, 2019.

[32] Asaf Cidon, Assaf Eisenman, Mohammad Alizadeh, and
Sachin Katti. Dynacache: Dynamic cloud caching. In
7th USENIX Workshop on Hot Topics in Cloud Comput-
ing (HotCloud 15), 2015.

[33] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking cloud
serving systems with ycsb. In Proceedings of the 1st
ACM symposium on Cloud computing, pages 143–154,
2010.

[34] Aleksandar Dragojević, Dushyanth Narayanan, Miguel
Castro, and Orion Hodson. {FaRM}: Fast remote mem-
ory. In 11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 14), pages 401–414,
2014.

[35] Aleksandar Dragojević, Dushyanth Narayanan, Ed-
mund B Nightingale, Matthew Renzelmann, Alex
Shamis, Anirudh Badam, and Miguel Castro. No
compromises: distributed transactions with consistency,
availability, and performance. In Proceedings of the
25th symposium on operating systems principles, pages
54–70, 2015.

[36] Donghyun Gouk, Sangwon Lee, Miryeong Kwon, and
Myoungsoo Jung. Direct access,{High-Performance}
memory disaggregation with {DirectCXL}. In 2022
USENIX Annual Technical Conference (USENIX ATC
22), pages 287–294, 2022.

[37] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf
Chowdhury, and Kang G Shin. Efficient memory dis-
aggregation with infiniswap. In 14th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 17), pages 649–667, 2017.

[38] Zhiyuan Guo, Yizhou Shan, Xuhao Luo, Yutong Huang,
and Yiying Zhang. Clio: A hardware-software co-
designed disaggregated memory system. In Proceedings
of the 27th ACM International Conference on Architec-
tural Support for Programming Languages and Operat-
ing Systems, pages 417–433, 2022.

[39] Jian Huang, Anirudh Badam, Moinuddin K Qureshi,
and Karsten Schwan. Unified address translation for
memory-mapped ssds with flashmap. In Proceedings of
the 42Nd Annual International Symposium on Computer
Architecture, pages 580–591, 2015.

[40] Frans Kaashoek, Robert Morris, and Yandong Mao. Op-
timizing mapreduce for multicore architectures. 2010.

[41] Anuj Kalia, Michael Kaminsky, and David G Andersen.
Using rdma efficiently for key-value services. In Pro-
ceedings of the 2014 ACM Conference on SIGCOMM,
pages 295–306, 2014.

[42] Anuj Kalia, Michael Kaminsky, and David G Ander-
sen. Design guidelines for high performance rdma sys-
tems. In 2016 USENIX Annual Technical Conference
(USENIX ATC 16), pages 437–450, 2016.

[43] Huaicheng Li, Daniel S Berger, Lisa Hsu, Daniel Ernst,
Pantea Zardoshti, Stanko Novakovic, Monish Shah,
Samir Rajadnya, Scott Lee, Ishwar Agarwal, et al. Pond:
Cxl-based memory pooling systems for cloud platforms.
In Proceedings of the 28th ACM International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems, Volume 2, pages 574–
587, 2023.

[44] Shuang Liang, Ranjit Noronha, and Dhabaleswar K
Panda. Swapping to remote memory over infiniband: An
approach using a high performance network block de-
vice. In 2005 IEEE International Conference on Cluster
Computing, pages 1–10. IEEE, 2005.

[45] Ling Liu, Wenqi Cao, Semih Sahin, Qi Zhang, Juhyun
Bae, and Yanzhao Wu. Memory disaggregation: Re-
search problems and opportunities. In 2019 IEEE 39th
International Conference on Distributed Computing Sys-
tems (ICDCS), pages 1664–1673. IEEE, 2019.

[46] Yucheng Low, Joseph E Gonzalez, Aapo Kyrola, Danny
Bickson, Carlos E Guestrin, and Joseph Hellerstein.
Graphlab: A new framework for parallel machine learn-
ing. arXiv preprint arXiv:1408.2041, 2014.

476    2024 USENIX Annual Technical Conference USENIX Association



[47] Teng Ma, Kang Chen, Shaonan Ma, Zhuo Song, and
Yongwei Wu. Thinking more about rdma memory se-
mantics. In 2021 IEEE International Conference on
Cluster Computing (CLUSTER), pages 456–467. IEEE,
2021.

[48] Hasan Al Maruf, Hao Wang, Abhishek Dhanotia, Jo-
hannes Weiner, Niket Agarwal, Pallab Bhattacharya,
Chris Petersen, Mosharaf Chowdhury, Shobhit Kanaujia,
and Prakash Chauhan. Tpp: Transparent page placement
for cxl-enabled tiered-memory. In Proceedings of the
28th ACM International Conference on Architectural
Support for Programming Languages and Operating
Systems, Volume 3, pages 742–755, 2023.

[49] Christopher Mitchell, Yifeng Geng, and Jinyang Li. Us-
ing {One-Sided}{RDMA} reads to build a fast,{CPU-
Efficient}{Key-Value} store. In 2013 USENIX Annual
Technical Conference (USENIX ATC 13), pages 103–
114, 2013.

[50] Jacob Nelson, Brandon Holt, Brandon Myers, Preston
Briggs, Luis Ceze, Simon Kahan, and Mark Oskin.
{Latency-Tolerant} software distributed shared mem-
ory. In 2015 USENIX Annual Technical Conference
(USENIX ATC 15), pages 291–305, 2015.

[51] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc
Kwiatkowski, Herman Lee, Harry C Li, Ryan McElroy,
Mike Paleczny, Daniel Peek, Paul Saab, et al. Scaling
memcache at facebook. In 10th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
13), pages 385–398, 2013.

[52] Christian Pinto, Dimitris Syrivelis, Michele Gazzetti,
Panos Koutsovasilis, Andrea Reale, Kostas Katrinis,
and H Peter Hofstee. Thymesisflow: A software-
defined, hw/sw co-designed interconnect stack for rack-
scale memory disaggregation. In 2020 53rd Annual
IEEE/ACM International Symposium on Microarchitec-
ture (MICRO), pages 868–880. IEEE, 2020.

[53] Amanda Raybuck, Tim Stamler, Wei Zhang, Mattan
Erez, and Simon Peter. Hemem: Scalable tiered memory
management for big data applications and real nvm. In
Proceedings of the ACM SIGOPS 28th Symposium on
Operating Systems Principles, pages 392–407, 2021.

[54] Zhenyuan Ruan, Malte Schwarzkopf, Marcos K
Aguilera, and Adam Belay. {AIFM}:{High-
Performance},{Application-Integrated} far memory. In
14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 20), pages 315–332, 2020.

[55] Vivek Seshadri, Onur Mutlu, Michael A Kozuch, and
Todd C Mowry. The evicted-address filter: A unified

mechanism to address both cache pollution and thrash-
ing. In Proceedings of the 21st international conference
on Parallel architectures and compilation techniques,
pages 355–366, 2012.

[56] Debendra Das Sharma. Compute express link®: An
open industry-standard interconnect enabling heteroge-
neous data-centric computing. In 2022 IEEE Sympo-
sium on High-Performance Interconnects (HOTI), pages
5–12. IEEE, 2022.

[57] Jiaxin Shi, Youyang Yao, Rong Chen, Haibo Chen, and
Feifei Li. Fast and concurrent {RDF} queries with
{RDMA-Based} distributed graph exploration. In 12th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), pages 317–332, 2016.

[58] Shin-Yeh Tsai, Yizhou Shan, and Yiying Zhang. Dis-
aggregating persistent memory and controlling them
remotely: An exploration of passive disaggregated {Key-
Value} stores. In 2020 USENIX Annual Technical Con-
ference (USENIX ATC 20), pages 33–48, 2020.

[59] Qing Wang, Youyou Lu, and Jiwu Shu. Sherman: A
write-optimized distributed b+ tree index on disaggre-
gated memory. In Proceedings of the 2022 International
Conference on Management of Data, pages 1033–1048,
2022.

[60] Zi Yan, Daniel Lustig, David Nellans, and Abhishek
Bhattacharjee. Nimble page management for tiered
memory systems. In Proceedings of the Twenty-Fourth
International Conference on Architectural Support for
Programming Languages and Operating Systems, pages
331–345, 2019.

[61] Juncheng Yang, Yazhuo Zhang, Ziyue Qiu, Yao Yue,
and Rashmi Vinayak. Fifo queues are all you need for
cache eviction. In Proceedings of the 29th Symposium
on Operating Systems Principles, pages 130–149, 2023.

[62] Yang Yang, Sanmukh R Kuppannagari, Ajitesh Srivas-
tava, Rajgopal Kannan, and Viktor K Prasanna. Fasthash:
Fpga-based high throughput parallel hash table. In High
Performance Computing: 35th International Conference,
ISC High Performance 2020, Frankfurt/Main, Germany,
June 22–25, 2020, Proceedings 35, pages 3–22. Springer,
2020.

[63] Ruizhi Zhang, Sasindu Wijeratne, Yang Yang, San-
mukh R Kuppannagari, and Viktor K Prasanna. A high
throughput parallel hash table on fpga using xor-based
memory. In 2020 IEEE High performance extreme com-
puting conference (HPEC), pages 1–7. IEEE, 2020.

USENIX Association 2024 USENIX Annual Technical Conference    477


	Introduction
	Background and Motivation
	Disaggregated Memory
	Motivation

	UniMem Design
	Shadow-Region and Remote-Balloon
	Filter-Cache
	Fully-used Page Promotion Scheme

	Evaluation
	Experiment Setup
	Average Memory Access Time
	Data Amplification
	Mixed Workload
	Cache Block Size
	Host Memory Capacity
	Set Associativity

	Related Work
	Conclusion

