
Efficient Decentralized Federated Singular Vector
Decomposition

Di Chai1, Junxue Zhang1, Liu Yang1, Yilun Jin1, Leye Wang2,
Kai Chen1, and Qiang Yang1

1Hong Kong University of Science and Technology
2Peking University

1

Outline

• Introduction: Background and Motivation

• Excalibur’s Matrix Protection

• Excalibur’s Decentralized SVD Workflow

• Implementation and Evaluation

• Conclusion and Future Work

2

Federated SVD is an Essential Primitive

3

Federated Singular Vector Decomposition (SVD) is an essential primitive
to support many real-world distributed application.

Latent sematic analysis / topic modeling

SVD-based Genome-Wide
Association Studies (GWAS) require

million-scale samples
SVD works as the solver for LR.

min
𝑤𝑤

𝑋𝑋𝑋𝑋 − 𝑦𝑦 2
2 + 𝛼𝛼 𝑋𝑋 2

2

𝑋𝑋 = 𝑈𝑈Σ𝑉𝑉𝑇𝑇

𝑋𝑋 = 𝑉𝑉(Σ𝑇𝑇Σ + 𝛼𝛼𝐼𝐼)−1Σ𝑇𝑇𝑈𝑈𝑇𝑇𝑦𝑦
Real-world applications require

combining different data sources!

Problem Definition of Federated SVD

4

 A B C = U

[𝑋𝑋𝐴𝐴;𝑋𝑋𝐵𝐵;𝑋𝑋𝐶𝐶] ∈ ℝ𝑚𝑚×(𝑛𝑛𝐴𝐴+𝑛𝑛𝐵𝐵+𝑛𝑛𝐶𝐶)

⋱
⋱Σ 𝑉𝑉𝐴𝐴𝑇𝑇 𝑉𝑉B𝑇𝑇 𝑉𝑉C𝑇𝑇

Public Results Secret Results

Federated SVD factorizes matrix from multiple domains into public and secret parts.

An illustration of federated SVD in GWAS.

External Servers Downgrade the Privacy Protection

5

Most of the existing works rely on external servers.

The servers obtain excessive access to the private data
and thus significantly decreases the privacy protection.

Intuitive ideas of enhancing privacy
protection at the server side cannot work

 Pick a subset of the users as “servers”. The
privacy issues remain in unselected users.

 Deploy TEE at the servers. The issue of
distrust, particularly in the server-aided
approach, poses a significant challenge.

 Leveraging HE at the servers. HE brings
severe computational overhead (will
discuss more).

Efficient Decentralization is Challenging

6

Existing works have explored using Homomorphic Encryption to remove the
servers but suffer from significant efficiency issues.

HE-based solution is 4~5 orders of magnitudes slower.

Computational Challenge

Sequential computation makes stacking more hardware
less effective. Designing new hardware is also challenging.

Communication Challenge

Data Size
Communication Size

Before Encryption After Encryption
𝑚𝑚 = 1𝐾𝐾
𝑛𝑛 = 50𝑀𝑀 372GB 11.6TB

The overhead of communication size is significant and
becomes more severe after encryption.

Data Size # of Peers Communication Rounds

𝑚𝑚 = 10𝐾𝐾 𝑘𝑘 = 10 4m(k-1)
2.5 Hours when RTT=50ms

Popular centralized SVD methods have significant
overhead of communication rounds.

Efficient Decentralization is Challenging

7

Existing works have explored using Homomorphic Encryption to remove the
servers but suffer from significant efficiency issues.

HE-based solution is 4~5 orders of magnitudes slower.

Computational Challenge

Sequential computation makes stacking more hardware
less effective. Designing new hardware is also challenging.

Communication Challenge

Data Size
Communication Size

Before Encryption After Encryption
𝑚𝑚 = 1𝐾𝐾
𝑛𝑛 = 50𝑀𝑀 372GB 11.6TB

The overhead of communication size is significant and
becomes more severe after encryption.

Data Size # of Peers Communication Rounds

𝑚𝑚 = 10𝐾𝐾 𝑘𝑘 = 10 4m(k-1)
2.5 Hours when RTT=50ms

Popular centralized SVD methods have significant
overhead of communication rounds.

Can we design a federated SVD system that
enhances privacy protection by removing the external servers

while achieving high efficiency?

Our answer is Excalibur.
Core ideas:
 1) Computation-efficient matrix protection
 2) Communication-efficient decentralized SVD workflow

Outline

• Introduction

• Excalibur’s Matrix Protection (computation-efficient protection)

• Threat Model and Security Goals

• Multiplicative Matrix Sharing

• Accelerating the Multiplicative Operations

• Excalibur’s Decentralized SVD Workflow (communication-efficient workflow)

• Implementation and Evaluation

• Conclusion and Future Work
8

Threat Model and Security Goals

9

Threat Model: We assume all peers are semi-honest.

Strictly follow pre-defined protocol

But try to discover privacy during execution

Security Definition: The system is secure if all
intermediate results could be derived from final results.
(Having the same distribution in mathematical language)

Same definition to secure multi-
party computation (SMC)

Discussion

(1) What if they do not follow the protocol?

Check whether 𝑼𝑼𝑼𝑼𝑇𝑇 = 𝑰𝑰, 𝑽𝑽𝑖𝑖𝑽𝑽𝑖𝑖𝑇𝑇 = 𝑰𝑰, 𝑿𝑿𝒊𝒊 = 𝑼𝑼𝚺𝚺𝑽𝑽𝑖𝑖𝑇𝑇

(2) How to protect the final results?

Leveraging differential privacy.

Multiplicative Matrix Sharing (MMS)

10

𝑿𝑿′ = 𝑨𝑨𝑿𝑿𝑨𝑨 = 𝑨𝑨 𝑿𝑿1, … .𝑿𝑿𝑘𝑘
𝑨𝑨1 0 0
0 ⋱ 0
0 0 𝑨𝑨𝑘𝑘

We protect the matrix with random non-singular matrices

For peer-𝑖𝑖

𝑿𝑿𝑖𝑖′ =
𝑨𝑨1
⋮
𝑨𝑨𝑘𝑘

𝑿𝑿𝑖𝑖𝑨𝑨𝑖𝑖 =
𝑨𝑨1𝑿𝑿𝑖𝑖𝑨𝑨𝑖𝑖

⋮
𝑨𝑨𝑘𝑘𝑿𝑿𝑖𝑖𝑨𝑨𝑖𝑖

=
𝑺𝑺𝑖𝑖1
⋮
𝑺𝑺𝑖𝑖𝑘𝑘

𝑿𝑿𝑖𝑖 = 𝑨𝑨−1𝑿𝑿𝑖𝑖′𝑨𝑨𝑖𝑖−1 = 𝑨𝑨1−1, … ,𝑨𝑨𝑘𝑘−1
𝑺𝑺𝑖𝑖1
⋮
𝑺𝑺𝑖𝑖𝑘𝑘

𝑨𝑨𝑖𝑖−1 = �
𝑗𝑗=1

𝑘𝑘

𝑨𝑨𝑗𝑗−1𝑺𝑺𝑖𝑖
𝑗𝑗𝑨𝑨𝑖𝑖−1

One MMS

Recovering 𝑿𝑿𝑖𝑖 needs all the matrix shares

(𝑨𝑨𝑗𝑗−1 is the columns of 𝑨𝑨−1)

Accelerating the Multiplicative Operations

11

Complexity of generating and applying random orthogonal matrices is 𝑂𝑂 𝑚𝑚2𝑛𝑛 or 𝑂𝑂(𝑛𝑛2𝑚𝑚).

(1) Reduce algorithm complexity

How to efficiently support large-scale data?

Transfer 𝐴𝐴 to a group of 2 × 2 rotations on
random selected rows.

𝑂𝑂 𝑚𝑚2𝑛𝑛𝑖𝑖 -> 𝑂𝑂 𝑚𝑚𝑛𝑛𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚

(2) Solve the I/O bottleneck

Process by columns instead of by rows.
Formulate each column into rectangular

matrix if it exceed L1 cache.

(3) Local pre-processing
for matrix 𝑨𝑨

𝑿𝑿𝑖𝑖 = 𝑹𝑹𝑖𝑖𝑇𝑇𝑸𝑸𝑖𝑖
𝑇𝑇

𝑂𝑂 𝑛𝑛𝑖𝑖2𝑚𝑚 -> 𝑂𝑂 𝑚𝑚2𝑛𝑛𝑖𝑖 + 𝑚𝑚3

𝑹𝑹1𝑇𝑇 , … ,𝑹𝑹𝑘𝑘𝑇𝑇 = 𝑼𝑼𝚺𝚺[𝑽𝑽𝑹𝑹𝟏𝟏
𝑻𝑻 , … ,𝑽𝑽𝑹𝑹𝒌𝒌

𝑻𝑻]

Local pre-process to reduce
complexity when 𝑚𝑚 ≪ 𝑛𝑛.

With all the above optimizations, the MMS can efficiently support billion-scale data.

Outline

• Introduction

• Excalibur’s Matrix Protection (computation-efficient protection)

• Excalibur’s Decentralized SVD Workflow (communication-efficient workflow)

• Analyzing the Design Space

• Overlapping the Pipelines

• Implementation and Evaluation

• Conclusion and Future Work

12

Design Space of Decentralized SVD

13

 Jacobi iteration has significantly higher
communication rounds.

 Two-side bidiagonalization is the popular method
used in NumPy and LAPACK, but its communication
size is large.

 The one-side bidiagonalization has the minimum
communication complexity.

Design space of decentralized SVD

Tall-Skinny Matrix
𝑿𝑿 ∈ ℝ𝑚𝑚×𝑛𝑛 Short-Wide

Matrix
𝑿𝑿 ∈ ℝ𝑚𝑚×𝑛𝑛

Two-side
Bidiagonalization

Jacobi
Iteration

One-side
Bidiagonalization

Bidiagonal SVD (bSVD)

Federated QR

Finish With 𝑿𝑿 = 𝐔𝐔𝜮𝜮𝑽𝑽𝑻𝑻

Multiplicative Matrix Sharing

𝑚𝑚 > 𝑛𝑛 𝑚𝑚 ≤ 𝑛𝑛

Overlapping the Pipelines

14

The three all-reduce communications in
the for loops become the bottleneck.

Overlapping the communications is
challenging due to data dependency.

We find the underlying shared
components of these communications.

Merge for loops via pipeline parallel.

Reducing 66%
communication cost.

Outline

• Introduction

• Excalibur’s Matrix Protection

• Excalibur’s Decentralized SVD Workflow

• Implementation and Evaluation

• Conclusion and Future Work

15

Implementation and Testbed

16

Peer 𝟏𝟏

Peer 𝟐𝟐 Peer 𝒊𝒊

Peer 𝒌𝒌

…

Containers

Bridge
Network

Containers

Each container is assigned with 4 Cores and 64GB RAM
Default network setting: 1Gbps bandwidth and 50ms RTT

We implement a fully functional prototype using
C/C++. The system runs in double precision, i.e.,
64 bits.

 We use BLAS and LAPACKE from Intel MKL as
the major library.

 For operations not included in existing library,
we implement from scratch and use OMP and
AVX2 for parallelism.

 To support large-scale data that cannot fit into
memory, we create memory-mapped files and
offload the data to NVMe SSD.

Evaluation

17

Datasets
 We have used four datasets in the evaluation: MNIST, Wine, ML100K, and synthetic data.
Baselines
 1) FedSVD: state-of-the-art (SOTA) server-aided federated SVD.
 2) SF-PCA: SOTA multi-key HE-based solution.
 3) FATE and SecureML: widely used federated linear regression (LR) systems.
Tasks
 SVD task and its three applications:
 Principal components analysis (PCA), latent semantic analysis (LSA), and LR.

Accuracy Evaluation

Evaluation

18

Efficiency on SVD Task

Compared to the SOTA server-aided system, Excalibur not
only removes the external servers but also achieves better
efficiency.

 Excalibur is 3.1 × ~6.0 × faster than FedSVD.

 Excalibur reduces more than 68.4% amount of
communication.

Evaluation

19

Efficiency on SVD Applications

Comparing Excalibur with SF-PCA on PCA application,
while computing the top-5 principal components
(bandwidth=1Gb/s, RTT=20ms, six peers). Comparing Excalibur with FedSVD, FATE, and SecureML

on LR application.

 Compared to the SOTA HE-based system that attempted to remove the servers, Excalibur is far
more efficient and has > 23000 × larger throughput.

 Comparing to two widely used federated LR systems: FATE and SecureML, Excalibur is 100x and
1000x faster, respectively.

Evaluation

20

Scalability on SVD and LSA

We evaluate Excalibur’s scalability when increasing the number
of peers, assuming all peers hold the same amount of data and
test the efficiency when more peers join the federation.

Effectiveness of the Optimizations

Measuring the effectiveness of system optimizations in
Excalibur, while NoOpt means no optimization, Opt1 is
optimizing the multiplicative operations in MMS, and Opt2
is overlapping pipelines to reduce communication rounds.

Outline

• Introduction

• Excalibur’s Matrix Protection

• Excalibur’s Decentralized SVD Workflow

• Implementation and Evaluation

• Conclusion and Future Work

21

Conclusion and Future Work

22

Conclusion

In this paper, we propose Excalibur, an efficient
decentralized federated SVD that not only eliminates the
privacy concerns caused by external servers but also can
efficiently decompose large-scale matrices.

Future Work

 How to update the results when more peers are joining in the
computation?

 How to utilize the matrix protection in this paper in other
scenarios? For example, the secure model inference.

Thanks

Artifact available at: https://github.com/Di-Chai/Excalibur

https://github.com/Di-Chai/Excalibur

	Efficient Decentralized Federated Singular Vector Decomposition
	Outline
	Federated SVD is an Essential Primitive
	Problem Definition of Federated SVD
	External Servers Downgrade the Privacy Protection
	Efficient Decentralization is Challenging
	Efficient Decentralization is Challenging
	Outline
	Threat Model and Security Goals
	Multiplicative Matrix Sharing (MMS)
	Accelerating the Multiplicative Operations
	Outline
	Design Space of Decentralized SVD
	Overlapping the Pipelines
	Outline
	Implementation and Testbed
	Evaluation
	Evaluation
	Evaluation
	Evaluation
	Outline
	Conclusion and Future Work
	Thanks

