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u Ethereum: transaction driven state machine
u Account-based state model

u Identified by address (pub-key)
u Account may have storage, referenced by its storage root

u States are encoded as Merkle Patricia Tries (MPTs), a.k.a. world state trees



MPT
u Ethereum Merkle Patricia Trie—16-radix Merkle tree

u Merkle tree: a vector commitment protocol
u Data are stored in leaf nodes
u Hash pointers link parent and children

u Efficient data authentication, to verify a3:
u Prover provides: b1, a3, a4

u Verifier validates: Commitment = h(b1 || h(a3 || a4))

Commitment

b1

a4a3a2a1

b2
b1 = h(a1 || a2) b2 = h(a3 || a4) Commitment = h(b1 || b2)



Ethereum World State Tree
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u Ethereum MPT
u 16-radix account & storage tries
u State trees are updated per block

u State validation during synchronizing the latest blocks
u Data authentication

u Used by light nodes (ONLY have state roots) when querying states 
from untrusted remote nodes
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u Light node: does not maintain any states

u Full node: maintains ONLY the latest world state
Ø Historical states are pruned



Archive Node
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u Maintains ALL historical states
Ø The MPT at each block is saved

u Requires more disk resource
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The Importance of Archive Node
Q: Why do we use archive nodes?

A: For testing and analyzing smart contracts and transactions

u Abilities of archive node

ü Access to historical states

ü Profiling historical transactions
l Data/control flow analysis of a transaction execution

ü Simulating transactions at a historical time point 



The Importance of Archive Node

u Usage for academia
Ø Detecting attack transactions and smart contract vulnerabilities

Ø Demystifying defi mev activities in flashbots bundle, CCS 23
Ø Your exploit is mine: Instantly synthesizing counterattack smart contract, USENIX Security 23

Ø Smart contract fuzz testing
Ø Detecting state inconsistency bugs in dapps via on-chain transaction replay and fuzzing, ISSTA 23

Ø Quantitative/arbitrage strategies back-testing
Ø Cyclic arbitrage in decentralized exchanges, WWW 22
Ø A large scale study of the ethereum arbitrage ecosystem, USENIX Security 23

Ø Blockchain temporal research
Ø Temporal analysis of the entire ethereum blockchain network, WWW 21

Ø And more …

Q: Why do we use archive nodes?
A: For testing and analyzing smart contracts and transactions



The Importance of Archive Node

u Usage in industry
Ø DeFi’s developments make transaction’s complexity increasing

Ø Today, users need to dive into their transactions to better understand the logic

Ø Many infrastructure service providers release products for debugging and analyzing 

historical transactions

Ø BlockSec, Tenderly …

Q: Why do we use archive nodes?
A: For testing and analyzing smart contracts and transactions



Problems

u Performance and scalability

Ø Storage exploding

Ø Full node size: ~ 1.1 TB

Ø Archive node size: ~ 18.0 TB

Ø Low access throughput

Ø State access consumes the majority of the transaction execution time



Root Cause 1

u Inefficient MPT

u Excessive intermediate data

293.8M

217.9M
14.9 GB

40.6 GB

The state trie at block height 18M
Storage utilization: 36.7%



Root Cause 1

u Inefficient MPT

u Read/write amplification
l Time complexity: O(log n)

l Average depth: 8.6

l Each state access is amplified to an 

average of 8.6 database operations

The average depth of state tries at different block heights



Solution 1

u Replace the MPT

u The usage of MPT in Ethereum

u State validation & data authentication

u For state validation: 

Historical states become immutable after synchronization

Validation of historical states is not required



Solution 1

u Replace the MPT

u Is data authentication for historical states necessary? 

u In most real-world scenarios: No!

u Furthermore
u Archive nodes are primarily used for testing and analytical purposes

u Performance is more critical

u Data authentication carries a high price (No matter how you optimize the DA)

1. Merkle proofs are rarely used in current ecosystem

2. Blockchain nodes are considered trusted by users in most scenarios



Solution 1

u Replace the MPT

Data authentication of historical states is not 
required in most real-world usage scenarios

Employ a compacted and flattened data model to 
minimize intermediate data and simplify state access

MPT structure is not necessary

Trade off between DA and performance/cost-effectiveness
A solution tailored for most real-world scenarios



Root Cause 2

u Coarse-grained state granularity

u Block-level world state
l The granularity of historical states is a block

u Intra-block (transaction-level) state fetching
l Requires re-executing all txs before the target transaction

The execution from tx 0 to i−1 is pre-processing
Only the execution of transaction i is effective



Root Cause 2

u Coarse-grained state granularity

u Transaction execution efficiency

l Pre-processing cost exceeds 1s

l Efficiency ratio is near zero

𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐y_ratio =
𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒_𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛

𝑝r𝑒_𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 + 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒_𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛



Solution 2

u Refining the granularity

u Decoupled state transition granularity
u Consensus layer: block

u Execution layer: transaction

Block n
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Solution 2

u Transaction-level historical states

The granularity of state transition at the low-
level execution layer is a transaction

Refine the granularity of historical states to a transaction to 
eliminate the overhead caused by the pre-processing



SlimArchive Design

Objectives

Properties

Methodology

Ø Flattened state model that simplifies state access
Ø Compacted data storage that reduces intermediate data
Ø Fine-grained state granularity that eliminates computation overhead

Flattening the minimum state changes of 
each transaction required for the world state

ü Lightweight 
ü Flexible
ü High-performance



SlimArchive Overview
u Recorder

u An instrumented EVM
u Collects state changes of each transaction

u Encoder
u Encodes state changes as state-temporal 

archive, a flattened representation of 
transaction-level historical states

u State Generator
u Recovers historical states
u Provides query interfaces for EVM and users

SlimArchive workflow
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Recorder

u Transaction-level state change collection
u What to collect

u Temporal data, and post account/storage states

u Ignore authentication data and runtime data

u Where to collect

u Normal/virtual transaction

u How to collect

u R/W set tracking

u De-duplication Example: state changes of a WETH deposit transaction



Encoder
u State-temporal archive

Ø Each state changed is encoded as a k-v pair, with three parts:

Ø State Key: which state is changed
𝑆𝑡𝑎𝑡𝑒𝐾𝑒𝑦 = 𝐴𝑝𝑝𝑒𝑛𝑑(𝑆𝑡𝑎𝑡𝑒𝐹𝑙𝑎𝑔, 𝑆𝑡𝑎𝑡𝑒𝐼𝐷)

Ø Temporal Key: when the state change occurred
𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙𝐾𝑒𝑦 = 𝐴𝑝𝑝𝑒𝑛𝑑 𝐵𝑙𝑜𝑐𝑘𝑁𝑢𝑚𝑏𝑒𝑟, 𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝐼𝑛𝑑𝑒𝑥

Ø State Value: what the state is after the transaction

uFlattened historical states
Ø Key aligned
Ø Partially chronological order: each entity’s state changes are placed chronologically

StateKey TemporalKey StateValue



Encoder
u State-temporal archive

SlimAccount
CodeHash
Nonce
Balance



State Generator

Querying the state at a specific time point

Seeking the last state change before that time

Lower Bound: StateKey
Upper Bound: Append(StateKey,TemporalKey)
Seek the last change with key in [lower, upper)

u Fetching historical states



Evaluation
u Baselines:

u Geth
u Erigon

u Workloads:
u Real-world Ethereum transactions and states



Evaluation
u Synchronization

u Time spent on generating historical states

u Disk usage for historical states of 18M blocks



Evaluation
u State access



Evaluation
u Transaction execution

Overall speedup

The positive correlation between 
transaction index and execution speedup



Summary & Takeaways
u The limitations of current Ethereum archive nodes

u Inefficient MPT 
u Coarse-grained state granularity

u Our solution
u Replace MPT with a compacted and flattened data model
u Refine the granularity with transaction level

u Evaluation
u Saves disk by 98.1%
u Improves access throughput by 19.0×
u Speeds up transaction execution by 1112.5×
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