
SlimArchive: A Lightweight Architecture
for Ethereum Archive Nodes

Hang Feng1, Yufeng Hu1, Yinghan Kou1, Runhuai Li2,
Jianfeng Zhu2, Lei Wu1, and Yajin Zhou1

1Zhejiang University
2BlockSec

Blockchain Optimization

Consensus Protocol

Execution Machine

Storage Engine

Faster
Consensus

1 minute 12 seconds < 1 second

Parallel
Execution

Pipelined
Blockchain

Smart Contract
JIT

Sharding / Replica State Model
Optimization Data Compression

Performance & Scalability

This work

Interpreter

EV
M

World
State

Persistent

Context

Memory

Stack

Volatile

CodeHash
Nonce

Balance

Storage Root

Address

Account-based
Model

Ethereum Storage Layer

MPT

Encode as

u Ethereum: transaction driven state machine
u Account-based state model

u Identified by address (pub-key)
u Account may have storage, referenced by its storage root

u States are encoded as Merkle Patricia Tries (MPTs), a.k.a. world state trees

MPT
u Ethereum Merkle Patricia Trie—16-radix Merkle tree

u Merkle tree: a vector commitment protocol
u Data are stored in leaf nodes
u Hash pointers link parent and children

u Efficient data authentication, to verify a3:
u Prover provides: b1, a3, a4

u Verifier validates: Commitment = h(b1 || h(a3 || a4))

Commitment

b1

a4a3a2a1

b2
b1 = h(a1 || a2) b2 = h(a3 || a4) Commitment = h(b1 || b2)

Ethereum World State Tree

State Root

CodeHash
Nonce

Balance

Storage Root

Address[0]

Account

Address[1:40]

Slot Value

Root
Key[0]

Key[1:64]

Prev Hash

Gas Used

Sate Root
······

Block Header

Account Trie Storage Trie

u Ethereum MPT
u 16-radix account & storage tries
u State trees are updated per block

u State validation during synchronizing the latest blocks
u Data authentication

u Used by light nodes (ONLY have state roots) when querying states
from untrusted remote nodes

Light/Full Node

World State
𝜎!

World State
𝜎!"#

Block b

State RootState Root

Transaction
World State

𝜎!$#

Block b-1

State Root

Transaction

Pruned

u Light node: does not maintain any states

u Full node: maintains ONLY the latest world state
Ø Historical states are pruned

Archive Node

World State
𝜎!"#

Block b

State RootState Root

Transaction
World State

𝜎!$#

Block b-1

State Root

Transaction

u Maintains ALL historical states
Ø The MPT at each block is saved

u Requires more disk resource

World State
𝜎!

The Importance of Archive Node
Q: Why do we use archive nodes?

A: For testing and analyzing smart contracts and transactions

u Abilities of archive node

ü Access to historical states

ü Profiling historical transactions
l Data/control flow analysis of a transaction execution

ü Simulating transactions at a historical time point

The Importance of Archive Node

u Usage for academia
Ø Detecting attack transactions and smart contract vulnerabilities

Ø Demystifying defi mev activities in flashbots bundle, CCS 23
Ø Your exploit is mine: Instantly synthesizing counterattack smart contract, USENIX Security 23

Ø Smart contract fuzz testing
Ø Detecting state inconsistency bugs in dapps via on-chain transaction replay and fuzzing, ISSTA 23

Ø Quantitative/arbitrage strategies back-testing
Ø Cyclic arbitrage in decentralized exchanges, WWW 22
Ø A large scale study of the ethereum arbitrage ecosystem, USENIX Security 23

Ø Blockchain temporal research
Ø Temporal analysis of the entire ethereum blockchain network, WWW 21

Ø And more …

Q: Why do we use archive nodes?
A: For testing and analyzing smart contracts and transactions

The Importance of Archive Node

u Usage in industry
Ø DeFi’s developments make transaction’s complexity increasing

Ø Today, users need to dive into their transactions to better understand the logic

Ø Many infrastructure service providers release products for debugging and analyzing

historical transactions

Ø BlockSec, Tenderly …

Q: Why do we use archive nodes?
A: For testing and analyzing smart contracts and transactions

Problems

u Performance and scalability

Ø Storage exploding

Ø Full node size: ~ 1.1 TB

Ø Archive node size: ~ 18.0 TB

Ø Low access throughput

Ø State access consumes the majority of the transaction execution time

Root Cause 1

u Inefficient MPT

u Excessive intermediate data

293.8M

217.9M
14.9 GB

40.6 GB

The state trie at block height 18M
Storage utilization: 36.7%

Root Cause 1

u Inefficient MPT

u Read/write amplification
l Time complexity: O(log n)

l Average depth: 8.6

l Each state access is amplified to an

average of 8.6 database operations

The average depth of state tries at different block heights

Solution 1

u Replace the MPT

u The usage of MPT in Ethereum

u State validation & data authentication

u For state validation:

Historical states become immutable after synchronization

Validation of historical states is not required

Solution 1

u Replace the MPT

u Is data authentication for historical states necessary?

u In most real-world scenarios: No!

u Furthermore
u Archive nodes are primarily used for testing and analytical purposes

u Performance is more critical

u Data authentication carries a high price (No matter how you optimize the DA)

1. Merkle proofs are rarely used in current ecosystem

2. Blockchain nodes are considered trusted by users in most scenarios

Solution 1

u Replace the MPT

Data authentication of historical states is not
required in most real-world usage scenarios

Employ a compacted and flattened data model to
minimize intermediate data and simplify state access

MPT structure is not necessary

Trade off between DA and performance/cost-effectiveness
A solution tailored for most real-world scenarios

Root Cause 2

u Coarse-grained state granularity

u Block-level world state
l The granularity of historical states is a block

u Intra-block (transaction-level) state fetching
l Requires re-executing all txs before the target transaction

The execution from tx 0 to i−1 is pre-processing
Only the execution of transaction i is effective

Root Cause 2

u Coarse-grained state granularity

u Transaction execution efficiency

l Pre-processing cost exceeds 1s

l Efficiency ratio is near zero

𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐y_ratio =
𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒_𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛

𝑝r𝑒_𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 + 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒_𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛

Solution 2

u Refining the granularity

u Decoupled state transition granularity
u Consensus layer: block

u Execution layer: transaction

Block n

··· ···

Block n

Consensus Layer

Execution Layer

Block-level
historical states

Transaction-level
historical states

Solution 2

u Transaction-level historical states

The granularity of state transition at the low-
level execution layer is a transaction

Refine the granularity of historical states to a transaction to
eliminate the overhead caused by the pre-processing

SlimArchive Design

Objectives

Properties

Methodology

Ø Flattened state model that simplifies state access
Ø Compacted data storage that reduces intermediate data
Ø Fine-grained state granularity that eliminates computation overhead

Flattening the minimum state changes of
each transaction required for the world state

ü Lightweight
ü Flexible
ü High-performance

SlimArchive Overview
u Recorder

u An instrumented EVM
u Collects state changes of each transaction

u Encoder
u Encodes state changes as state-temporal

archive, a flattened representation of
transaction-level historical states

u State Generator
u Recovers historical states
u Provides query interfaces for EVM and users

SlimArchive workflow

Blockchain Raw
blocks

Execution results

Recorder

Encoder

State
Generator

K-V
Database

State-
Temporal
Archive

JSON-RPC
API

EVM

Tx-level
State

Changes

Tx inputs

Recorder

u Transaction-level state change collection
u What to collect

u Temporal data, and post account/storage states

u Ignore authentication data and runtime data

u Where to collect

u Normal/virtual transaction

u How to collect

u R/W set tracking

u De-duplication Example: state changes of a WETH deposit transaction

Encoder
u State-temporal archive

Ø Each state changed is encoded as a k-v pair, with three parts:

Ø State Key: which state is changed
𝑆𝑡𝑎𝑡𝑒𝐾𝑒𝑦 = 𝐴𝑝𝑝𝑒𝑛𝑑(𝑆𝑡𝑎𝑡𝑒𝐹𝑙𝑎𝑔, 𝑆𝑡𝑎𝑡𝑒𝐼𝐷)

Ø Temporal Key: when the state change occurred
𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙𝐾𝑒𝑦 = 𝐴𝑝𝑝𝑒𝑛𝑑 𝐵𝑙𝑜𝑐𝑘𝑁𝑢𝑚𝑏𝑒𝑟, 𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝐼𝑛𝑑𝑒𝑥

Ø State Value: what the state is after the transaction

uFlattened historical states
Ø Key aligned
Ø Partially chronological order: each entity’s state changes are placed chronologically

StateKey TemporalKey StateValue

Encoder
u State-temporal archive

SlimAccount
CodeHash
Nonce
Balance

State Generator

Querying the state at a specific time point

Seeking the last state change before that time

Lower Bound: StateKey
Upper Bound: Append(StateKey,TemporalKey)
Seek the last change with key in [lower, upper)

u Fetching historical states

Evaluation
u Baselines:

u Geth
u Erigon

u Workloads:
u Real-world Ethereum transactions and states

Evaluation
u Synchronization

u Time spent on generating historical states

u Disk usage for historical states of 18M blocks

Evaluation
u State access

Evaluation
u Transaction execution

Overall speedup

The positive correlation between
transaction index and execution speedup

Summary & Takeaways
u The limitations of current Ethereum archive nodes

u Inefficient MPT
u Coarse-grained state granularity

u Our solution
u Replace MPT with a compacted and flattened data model
u Refine the granularity with transaction level

u Evaluation
u Saves disk by 98.1%
u Improves access throughput by 19.0×
u Speeds up transaction execution by 1112.5×

Thank You!
Hang Feng

Zhejiang University
Email: h_feng@zju.edu.cn

Any questions? Contact me:

