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Linux’ Folio abstraction: Unit of contiguous pages
● Aggregate state at folio: Reference Counter, Flags, …
● Might span multiple page table entries
● Can be partially mapped in address spaces

Trend: Manage larger memory units to improve OS efficiency
● Shorter LRU lists, reduced allocation overhead …

Introduction

Traditional: Huge Pages to reduce TLB misses
● Utilize “huge” page table entries

➜ Challenge: Aggregating per-page mapping state
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Determining exclusivity is crucial
● Correctness: Enforce OS policies, memory statistics
● Performance: Reduce redundant Copy-on-Write operations

Folio

Per-page state used to determine page exclusivity
● Single vs. multiple address spaces

Per-page state (“map_count”) is expensive
● Memory: maintain page metadata
● Performance: updating page metadata

Motivation

3

➜ New folio accounting approach required
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Aggregating map_counts at folio level
➜ Insufficient to determine folio exclusivity

Exclusivity
● Exclusive: page.map_count == 1
● Shared: page.map_count > 1

Dual purpose
1. #Page table entries
2. #Address Spaces (ASes)1

Challenge: Page map_count
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1anonymous pages can only be mapped once per AS
“Exclusive”

AS1 AS2

AS1

FolioPage

“Shared”



Pigeonhole Principle: folio.map_count > folio.nr_pages
● At least one page mapped by another AS

➜ “Shared”

folio.map_count <= folio.nr_pages:
➜ More information required

Possible solution: Track #ASes that map a folio
● Requires tracking #mappings per AS per folio
● Linux allows for up to 4M processes

Simplification: “one vs. multiple” ASes
● Sufficient for “exclusive vs. shared”

Approach (1): Pigeonhole Principle
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subtract from

Approach (2): Specialized Tracking
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as.id

“Exclusive” vs. “shared” ?
● folio.as_aggregator == folio.map_count * as_id_unit

➜ Suitable as_id_unit required
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Approach (3): Deriving as_id_unit
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Interpret bit representation of as.id in basis “folio.nr_pages + 1”
● Intuition: One counter per as.id bit & compress counters into single value
● No overflow while folio.map_count <= folio.nr_pages

as.id

folio.nr_pages

as_id_unit

2 = 102

512

10512+1 = 10513 

Example:



Benchmarks allocate 1 GB of folios of a given size1 to then fork() or munmap()

Evaluation (1): OS Primitives
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Higher = betterLower = better

Up to 1.9x Up to 4.2x

12MiB not mapped using “huge-page” mapping

Comparison of our approach (FolioMap) with current approach in Linux (BaseLine)
● BaseLine: Linux 6.7 + mTHP (multi-sized THP) patches
● FolioMap: Extension of BaseLine with our changes



Multi-process Python program: Possible Copy-on-Write optimization (reuse)
● BaseLine: Only when folio is mapped with single page table entry
● FolioMap: For all folio sizes

Evaluation (2): Copy-on-Write impact on Python
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Higher = betterLower = better

Up to 1.6x

No unnecessary 
CoW operations!

Single “huge-page” mapping
(map_count == 1)



Linux introduced folio abstraction
● Page table mappings still tracked per page
● Hinders performance and memory savings

Innovative approach for per-folio accounting
● Pigeonhole principle + specialized tracking

Precise and scalable
● Overheads grow sublinearly with folio size
● Significant speedups

Paves the way for more enhanced system performance
● Implementation is getting incrementally upstreamed

For more details/experiments/results, refer to our paper!

Conclusions

David
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/en/caps/staff/david-hilde
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1. Redis
2. Python Program
3. Pseudocode
4. Example

Backup



Backup (1): Redis



Backup (2): Python Program

import multiprocessing as mp
import numpy

size = pow(512, 3)
arr = numpy.ones(size)

def fn(range):
return numpy.sum(arr[range[0]:range[1]])

def multi_process_sum(arr):
c = int(size / 8)
ranges = [(i,i + c) for i in range(0, size, c)]

pool = mp.Pool(processes = 8)
return int(sum(pool.map(fn, ranges)))

assert(multi_process_sum(arr) == size)
arr[0:size] = 0
assert(multi_process_sum(arr) == 0)



Backup (3): Pseudocode

def as_id_unit(as, folio):
binary_unit = bin(as.id)[2:]
return int(binary_unit, base=folio.nr_pages + 1)

def add_folio_mapping(as, folio):
folio.map_count += 1
folio.as_aggregator += as_id_unit(as, folio)
 

def remove_folio_mapping(as, folio):
folio.map_count -= 1
folio.as_aggregator -= as_id_unit(as, folio)    

 
def is_folio_mapped_exclusively(as, folio):

if folio.map_count > folio.nr_pages:
    return false

return (as_id_unit(as, folio) *
        folio.map_count == folio.as_aggregator)



Backup (4): Example


