
Chair of Computer Architecture and Parallel Systems
TUM School of Computation, Information and Technology
Technical University of Munich

Every Mapping Counts in Large Amounts: Folio Accounting
David Hildenbrand (TUM, Red Hat), Martin Schulz (TUM), Nadav Amit (Technion)

USENIX ATC ’24

Santa Clara, July 12, 2024

Linux’ Folio abstraction: Unit of contiguous pages
● Aggregate state at folio: Reference Counter, Flags, …
● Might span multiple page table entries
● Can be partially mapped in address spaces

Trend: Manage larger memory units to improve OS efficiency
● Shorter LRU lists, reduced allocation overhead …

Introduction

Traditional: Huge Pages to reduce TLB misses
● Utilize “huge” page table entries

➜ Challenge: Aggregating per-page mapping state

Page
Table Huge Page

entry huge
entry

Page
Table

entry huge
entry

Physical memory

Partially
mapped folio

Entirely
mapped folio

Page

Now one folio

Determining exclusivity is crucial
● Correctness: Enforce OS policies, memory statistics
● Performance: Reduce redundant Copy-on-Write operations

Folio

Per-page state used to determine page exclusivity
● Single vs. multiple address spaces

Per-page state (“map_count”) is expensive
● Memory: maintain page metadata
● Performance: updating page metadata

Motivation

3

➜ New folio accounting approach required

AS page
metadata

Folio

AS

folio
metadata

& “exclusive vs. shared” ?

Aggregating map_counts at folio level
➜ Insufficient to determine folio exclusivity

Exclusivity
● Exclusive: page.map_count == 1
● Shared: page.map_count > 1

Dual purpose
1. #Page table entries
2. #Address Spaces (ASes)1

Challenge: Page map_count

4

AS1 AS2

sum: 4

1 1 1 1

sum: 4

1 2 0 1

sum: 4

1 1 1 1

1anonymous pages can only be mapped once per AS
“Exclusive”

AS1 AS2

AS1

FolioPage

“Shared”

Pigeonhole Principle: folio.map_count > folio.nr_pages
● At least one page mapped by another AS

➜ “Shared”

folio.map_count <= folio.nr_pages:
➜ More information required

Possible solution: Track #ASes that map a folio
● Requires tracking #mappings per AS per folio
● Linux allows for up to 4M processes

Simplification: “one vs. multiple” ASes
● Sufficient for “exclusive vs. shared”

Approach (1): Pigeonhole Principle

5

sum: 4

1 1 1 1

AS1

folio.map_count == folio.nr_pages

sum: 5

1 1 1 1

AS1

folio.map_count > folio.nr_pages

AS2

!

subtract from

Approach (2): Specialized Tracking

6

as.id

“Exclusive” vs. “shared” ?
● folio.as_aggregator == folio.map_count * as_id_unit

➜ Suitable as_id_unit required

folio.nr_pages

as_id_unit

derive

folio.map_count

folio.as_aggregator
add to

add “1” to

subtract “1” from

Unique Address
Space ID

Aggregated
map_count

Multi-Word
value

Adding / Removing one mapping (page table entry)

Approach (3): Deriving as_id_unit

7

Interpret bit representation of as.id in basis “folio.nr_pages + 1”
● Intuition: One counter per as.id bit & compress counters into single value
● No overflow while folio.map_count <= folio.nr_pages

as.id

folio.nr_pages

as_id_unit

2 = 102

512

10512+1 = 10513

Example:

Benchmarks allocate 1 GB of folios of a given size1 to then fork() or munmap()

Evaluation (1): OS Primitives

8
Higher = betterLower = better

Up to 1.9x Up to 4.2x

12MiB not mapped using “huge-page” mapping

Comparison of our approach (FolioMap) with current approach in Linux (BaseLine)
● BaseLine: Linux 6.7 + mTHP (multi-sized THP) patches
● FolioMap: Extension of BaseLine with our changes

Multi-process Python program: Possible Copy-on-Write optimization (reuse)
● BaseLine: Only when folio is mapped with single page table entry
● FolioMap: For all folio sizes

Evaluation (2): Copy-on-Write impact on Python

9

Higher = betterLower = better

Up to 1.6x

No unnecessary
CoW operations!

Single “huge-page” mapping
(map_count == 1)

Linux introduced folio abstraction
● Page table mappings still tracked per page
● Hinders performance and memory savings

Innovative approach for per-folio accounting
● Pigeonhole principle + specialized tracking

Precise and scalable
● Overheads grow sublinearly with folio size
● Significant speedups

Paves the way for more enhanced system performance
● Implementation is getting incrementally upstreamed

For more details/experiments/results, refer to our paper!

Conclusions

David

10

https://www.ce.cit.tum.de
/en/caps/staff/david-hilde
nbrand/

https://www.ce.cit.tum.de/en/caps/staff/david-hildenbrand/
https://www.ce.cit.tum.de/en/caps/staff/david-hildenbrand/
https://www.ce.cit.tum.de/en/caps/staff/david-hildenbrand/

1. Redis
2. Python Program
3. Pseudocode
4. Example

Backup

Backup (1): Redis

Backup (2): Python Program

import multiprocessing as mp
import numpy

size = pow(512, 3)
arr = numpy.ones(size)

def fn(range):
return numpy.sum(arr[range[0]:range[1]])

def multi_process_sum(arr):
c = int(size / 8)
ranges = [(i,i + c) for i in range(0, size, c)]

pool = mp.Pool(processes = 8)
return int(sum(pool.map(fn, ranges)))

assert(multi_process_sum(arr) == size)
arr[0:size] = 0
assert(multi_process_sum(arr) == 0)

Backup (3): Pseudocode

def as_id_unit(as, folio):
binary_unit = bin(as.id)[2:]
return int(binary_unit, base=folio.nr_pages + 1)

def add_folio_mapping(as, folio):
folio.map_count += 1
folio.as_aggregator += as_id_unit(as, folio)

def remove_folio_mapping(as, folio):
folio.map_count -= 1
folio.as_aggregator -= as_id_unit(as, folio)

def is_folio_mapped_exclusively(as, folio):

if folio.map_count > folio.nr_pages:
 return false

return (as_id_unit(as, folio) *
 folio.map_count == folio.as_aggregator)

Backup (4): Example

