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Conventional SSD (Block interface)

WritingClean

Garbage collection
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Erase-before-write

• Flash memory has sequential programming and “erase-before-write” characteristics.
• To provide block interface for flash memory, SSD performs logical-to-physical (L2P) address mapping 

and garbage collection.
• Data striping over multiple chips for parallel operation.
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• Superblock: the set of flash blocks where data is striped
• Superpage: the set of programming units on the same offset of the superblock

• Issues
• Memory cost for L2P mapping table ( page mapping)
• Write amplification ( data with different lifetimes are mixed)

Sequential
programming
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ZNS (Zoned Name Space) SSD
• Sequential write constraint  coarse-grain (zone) mapping  reduced L2P map
• Host controls data placement  removes device garbage collection

• Host is responsible for data separation to reduce write amplification.

Zone 0 Zone 1 Zone 2 …
Device capacity divided in zones

Write pointer

Sequential write
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Does mobile storage benefit from zone abstraction?
Responsiveness is critical in mobile devices.
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Zone abstraction’s features
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Does mobile storage benefit from zone abstraction?
Responsiveness is critical in mobile devices.

Increased latency of tiny 
synchronous file update

Degraded multi-zone 
write performance

Random read 
performance

Reduced L2P map

Random write 
performance

Reduced write 
amplification

Device GC removed

More file 
metadata writes

More writes due to
write buffer switchingSequential write

Data separation

DRAM-less

No PLP*

*PLP: Power loss protection

Storage constraints

Zone abstraction’s features
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ZMS Overview
• Utilizing F2FS*, data is separated according to six temperature types.
• Techniques to address the challenges: IOTailor, budget-based in-place update
• Optimization techniques: copy offloading, multi-granularity mapping (not covered in this talk)
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• Multi-granularity mapping

• Budget-based in-place update
• Copy offloading to reduce GC cost

*F2FS: A new file system for flash storage, Lee et al. USENIX FAST ‘15
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Talk Outline
• Challenge #1: Multi-zone write performance
• Challenge #2: Latency of Tiny Synchronous File Update
• Evaluation
• Conclusion



Challenge #1: 
Multi-zone Write Performance
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SLC Buffering to Handle Unaligned Buffer Flushes
• Unaligned buffer flush: flush data that is smaller than TLC programming unit.
• Backup data to SLC, later migrate data to TLC
• Side-effect: double writes

Buffer flush

SLC block

SLC programming

write buffer

TLC block
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TLC block

TLC programming

SLC block

invalidated
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Example of Unaligned Buffer Flush Handling

Stripe unit: 32KiB (flash page)
Superpage = 12 stripe units (384 KiB)
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IOTailor
• Superpage-aligned request is good for parallelism and avoids unaligned buffer flushes.
• For each zone, IOTailor transforms requests to superpage-aligned requests
• Request split & request grouping in the per-zone queues
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Example of Writing to Multiple Zones
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Challenge #2: 
Latency of Tiny Synchronous 

File Update
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F2FS write optimization does not work for zoned device
• Tiny synchronous file update is latency critical.
• For conventional SSDs, F2FS uses in-place update policy to reduce the latency of

tiny (< 32KiB) synchronous file update.
• In-place update policy cannot be used on zoned devices.

new data

no node writes

new data

new node

valid data valid node clean

Append logging In-place update
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I/O Pattern of SQLite insert() Transaction

<Block device> <Zoned device>

Node writes for
journal and database

Create & 
write journal

fsync() 
journal

fsync() 
directory Write journal fsync() 

journal
fsync() 

database
Write 

database Unlink journal

In-place update Append logging
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Budget-based In-Place Update
• Allow in-place update for select files as per the application request
• Device writes the In-place updated data into SLC blocks.
• Cap total valid data size for efficient garbage collection.

F2FS

Zoned UFS

Application

fcntl (fid, In-place);
write();
fsync(fid);

add “overwrite” tag to the zone overwrite requests

• program overwritten data to SLC
• report the size of total “valid” overwritten data in SLC
• perform garbage collection for SLC region

• in-place update if total IPU data <= IPU budget



Evaluation

- How much are the benefits of zone abstraction for mobile storage?
- are the challenges addressed well?
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Evaluation Setup
• Host platform: SM8350 (8 cores), 12GiB DRAM, Android 11, Linux 5.4
• Zoned UFS: 128GiB, UFS 2.1

- zone size: 138MiB
- a conventional logical unit for F2FS meta area

• Baseline: the same device with a firmware that supports legacy block 
interface

ConfigurationWorkload

Fio1, 512 KiB IO sizeSequential read/write

Fio, 4 KiB IO over 1 GiB fileBuffered random read/write

Fio, 4 KiB write followed by fsync()Synchronous random write

Fio, 4 KiB read over 8 GiB fileWide range random read

Three concurrent Fio writing jobs, each writing to its own filesConcurrent writing to multiple zones

1M insert(), 3.9 MiB WAL3 file, 385 MiB database fileSQLite benchmark (Mobibench2)

Category (number of apps): basic (8), image (3), video (5), 
education (4), game (17)

Application launch

1FIO: https://fio.readthedocs.io/en/latest/fio_doc.html
2Mobibench: https://github.com/ESOS-Lab/Mobibench
3WAL: Write ahead logging
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• 2.85x ~ 6.4x lower write amplification
• 5x ~ 13.6x higher random write throughput
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Random Read Performance
• 37~44% better random read performance
• Application launch time: 5.8 ~ 11.6% reduction
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Device GC kicks in

SLC buffering due to
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• IOTailor improves multi-zone write performance by reducing SLC buffering.
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Synchronous Update Performance
• Using the budget-based in-place update, ZMS shows no performance degradation in tiny 

synchronous update and SQLite rollback journal mode.
• 60~100% performance gain in write-ahead log (WAL) mode (append logging).
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Conclusion
• Zone abstraction is promising for enhancing responsiveness of mobile devices.

• Two challenges when employing zoned mobile storage
• Degraded multi-zone write performance
• Increased latency of tiny synchronous file update

• ZMS techniques to address the challenges
• IOTailor improves performance of writing to multiple zones by avoiding unaligned buffer flushes 

due to buffer switching.
• Budget-based in-place update improves synchronous update performance.

• ZMS improves random read/write performance and write amplification significantly.
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