
ZMS: Zone Abstraction 
for Mobile Flash Storage

2024/7/10
Joo-Young Hwang1, Seokhwan Kim1, Daejun Park1, Yong-Gil Song1, Junyoung Han1, 

Seunghyun Choi1, Sangyeun Cho1 and Youjip Won2

1 Samsung Electronics Device Solutions
2 Korea Advanced Institute of Science and Technology

2024 USENIX Annual Technical Conference



Background



3/24

Conventional SSD (Block interface)

WritingClean

Garbage collection

clean
valid

invalid

Erase-before-write

• Flash memory has sequential programming and “erase-before-write” characteristics.
• To provide block interface for flash memory, SSD performs logical-to-physical (L2P) address mapping 

and garbage collection.
• Data striping over multiple chips for parallel operation.

CPU
Host
I/F

NAND
Controller Chip 0 Chip 2

NAND
Controller Chip 1 Chip 3

Channel 0

Channel 1Mem

…
Blk 0 Blk 1

…
Blk 0 Blk 1

…
Blk 0 Blk 1

…
Blk 0 Blk 1

Programming unit

• Superblock: the set of flash blocks where data is striped
• Superpage: the set of programming units on the same offset of the superblock

• Issues
• Memory cost for L2P mapping table ( page mapping)
• Write amplification ( data with different lifetimes are mixed)

Sequential
programming



4/24

ZNS (Zoned Name Space) SSD
• Sequential write constraint  coarse-grain (zone) mapping  reduced L2P map
• Host controls data placement  removes device garbage collection

• Host is responsible for data separation to reduce write amplification.

Zone 0 Zone 1 Zone 2 …
Device capacity divided in zones

Write pointer

Sequential write



5/24

Does mobile storage benefit from zone abstraction?
Responsiveness is critical in mobile devices.

Random read 
performance

Reduced L2P map

Random write 
performance

Reduced write 
amplification

Device GC removed

Sequential write

Data separation

Zone abstraction’s features



6/24

Does mobile storage benefit from zone abstraction?
Responsiveness is critical in mobile devices.

Increased latency of tiny 
synchronous file update

Degraded multi-zone 
write performance

Random read 
performance

Reduced L2P map

Random write 
performance

Reduced write 
amplification

Device GC removed

More file 
metadata writes

More writes due to
write buffer switchingSequential write

Data separation

DRAM-less

No PLP*

*PLP: Power loss protection

Storage constraints

Zone abstraction’s features



7/24

ZMS Overview
• Utilizing F2FS*, data is separated according to six temperature types.
• Techniques to address the challenges: IOTailor, budget-based in-place update
• Optimization techniques: copy offloading, multi-granularity mapping (not covered in this talk)

Zoned UFS

F2FS Hot 
data

Warm 
data

Cold 
data

Hot 
node

Warm 
node

Cold 
node

Hot 
data

Warm 
data

Cold 
data

Hot 
node

Warm 
node

Cold 
node

Zones

Superblocks

IOTailor

Superpage aligned requests

• Multi-granularity mapping

• Budget-based in-place update
• Copy offloading to reduce GC cost

*F2FS: A new file system for flash storage, Lee et al. USENIX FAST ‘15



8/24

Talk Outline
• Challenge #1: Multi-zone write performance
• Challenge #2: Latency of Tiny Synchronous File Update
• Evaluation
• Conclusion



Challenge #1: 
Multi-zone Write Performance



10/24

SLC Buffering to Handle Unaligned Buffer Flushes
• Unaligned buffer flush: flush data that is smaller than TLC programming unit.
• Backup data to SLC, later migrate data to TLC
• Side-effect: double writes

Buffer flush

SLC block

SLC programming

write buffer

TLC block

write more data

TLC block

TLC programming

SLC block

invalidated



11/24

Example of Unaligned Buffer Flush Handling

Stripe unit: 32KiB (flash page)
Superpage = 12 stripe units (384 KiB)

0
4
8

1
5
9

2
6

3
7

Write
buffer

0,4,8 1,5,9

2 6 3 7

TLC
superpage 

SLC
superpage 

unaligned flush aligned flush 

CPU
Host
I/F

NAND
Controller

0
4
8 …

Blk 0 Blk 1
Chip 0 Chip 2

2
6

10 …

Blk 0 Blk 1

NAND
Controller

1
5
9 …

Blk 0 Blk 1
Chip 1 Chip 3

3
7

11 …

Blk 0 Blk 1

Channel 0

Channel 1Mem

Chip 0 Chip 1 Chip 2 Chip 3

TLC program unit 
(3 flash pages)



12/24

IOTailor
• Superpage-aligned request is good for parallelism and avoids unaligned buffer flushes.
• For each zone, IOTailor transforms requests to superpage-aligned requests
• Request split & request grouping in the per-zone queues

superpage

zone

w2

w2-f

w2-b

hot data
zone

warm data
zone

cold data
zone

hot node
zone

warm node
zone

cold node
zone

Zoned UFS

IOTailor

F2FS*

Block layer

w1

w1

request split

grouped to make a superpage request

superpage-aligned requests



13/24

Example of Writing to Multiple Zones

Warm data zone Cold data zoneHot data zone

w1
128K

w2
320K

w3
320K

c1
256K

h1
64K

Command order: w1 – c1 – w2 – h1 – w3

Buffer 0

w1
128K c1w2-1

256K
w2-2
64K

Buffer 1

h1
64K

w3
320K

TLC SLC SLC

buffer switching Buffer 1Buffer 0

w1
128K

w2-1
256 K

w2-2
64 K

w3
320K

TLC TLC

c1h1Host

Device

hot data 
queue

warm data 
queue

cold data 
queue

w/ IOTailorw/o IOTailor



Challenge #2: 
Latency of Tiny Synchronous 

File Update



15/24

F2FS write optimization does not work for zoned device
• Tiny synchronous file update is latency critical.
• For conventional SSDs, F2FS uses in-place update policy to reduce the latency of

tiny (< 32KiB) synchronous file update.
• In-place update policy cannot be used on zoned devices.

new data

no node writes

new data

new node

valid data valid node clean

Append logging In-place update



16/24

I/O Pattern of SQLite insert() Transaction

<Block device> <Zoned device>

Node writes for
journal and database

Create & 
write journal

fsync() 
journal

fsync() 
directory Write journal fsync() 

journal
fsync() 

database
Write 

database Unlink journal

In-place update Append logging



17/24

Budget-based In-Place Update
• Allow in-place update for select files as per the application request
• Device writes the In-place updated data into SLC blocks.
• Cap total valid data size for efficient garbage collection.

F2FS

Zoned UFS

Application

fcntl (fid, In-place);
write();
fsync(fid);

add “overwrite” tag to the zone overwrite requests

• program overwritten data to SLC
• report the size of total “valid” overwritten data in SLC
• perform garbage collection for SLC region

• in-place update if total IPU data <= IPU budget



Evaluation

- How much are the benefits of zone abstraction for mobile storage?
- are the challenges addressed well?



19/24

Evaluation Setup
• Host platform: SM8350 (8 cores), 12GiB DRAM, Android 11, Linux 5.4
• Zoned UFS: 128GiB, UFS 2.1

- zone size: 138MiB
- a conventional logical unit for F2FS meta area

• Baseline: the same device with a firmware that supports legacy block 
interface

ConfigurationWorkload

Fio1, 512 KiB IO sizeSequential read/write

Fio, 4 KiB IO over 1 GiB fileBuffered random read/write

Fio, 4 KiB write followed by fsync()Synchronous random write

Fio, 4 KiB read over 8 GiB fileWide range random read

Three concurrent Fio writing jobs, each writing to its own filesConcurrent writing to multiple zones

1M insert(), 3.9 MiB WAL3 file, 385 MiB database fileSQLite benchmark (Mobibench2)

Category (number of apps): basic (8), image (3), video (5), 
education (4), game (17)

Application launch

1FIO: https://fio.readthedocs.io/en/latest/fio_doc.html
2Mobibench: https://github.com/ESOS-Lab/Mobibench
3WAL: Write ahead logging



20/24

0

500

1,000

1,500

Baseline ZMS

(GiB) Data Node
Meta GC

0

5

10

15

20

FS Dev E2E FS Dev E2E
60% filled 90% filled

(WAF)

Baseline ZMS

Random Write Performance & Write Amplification
• 2.85x ~ 6.4x lower write amplification
• 5x ~ 13.6x higher random write throughput

Write amplification factor (WAF)

0

20

40

60

80

100

120

60% filled 90% filled

(MiB/s)

Baseline

ZMS

Random write throughputF2FS write volume



21/24

Random Read Performance
• 37~44% better random read performance
• Application launch time: 5.8 ~ 11.6% reduction

0

100

200

300

400

500

600

Clean Aged

(ms) Baseline ZMS

8 GiB
I/O range

Application launch time

90 GiB
I/O range

0

10

20

30

40

ST MT

(KIOPS) Baseline ZMS

Baseline: map cache miss ratio: 27.1%
ZMS: no map cache miss

8GiB file random read



22/24

0

100

200

500 550 600 650 700
Time (s)

(MiB/s)

Baseline
ZMS w/o IOTailor/1 buf
ZMS w/o IOTailor/2 bufs
ZMS

Performance of Writing to Multiple Zones

Device GC kicks in

SLC buffering due to
unaligned buffer flush

• IOTailor improves multi-zone write performance by reducing SLC buffering.



23/24

Synchronous Update Performance
• Using the budget-based in-place update, ZMS shows no performance degradation in tiny 

synchronous update and SQLite rollback journal mode.
• 60~100% performance gain in write-ahead log (WAL) mode (append logging).

0

10

20

30

ST MT

(KIOPS) Baseline ZMS ZMS w/ IPU

Baseline: In-place update
ZMS: append logging
ZMS w/ IPU: budget-based in-place update

4KiB write + fsync() SQLite throughput (Mobibench*)



24/24

Conclusion
• Zone abstraction is promising for enhancing responsiveness of mobile devices.

• Two challenges when employing zoned mobile storage
• Degraded multi-zone write performance
• Increased latency of tiny synchronous file update

• ZMS techniques to address the challenges
• IOTailor improves performance of writing to multiple zones by avoiding unaligned buffer flushes 

due to buffer switching.
• Budget-based in-place update improves synchronous update performance.

• ZMS improves random read/write performance and write amplification significantly.



25/24

Acknowledgement
• The authors express sincere gratitude to Jaegeuk Kim, Bart Van Assche and all 

other individuals who have contributed to zoned UFS standardization and Linux 
kernel support for zoned devices. Such collective efforts contributed to establishing 
ecosystem for zoned UFS.


