Fast (Trapless) Kernel Pro
Everywhere

Jinghao Jia, Michael V. Le, Salman Ahmed,
Dan Williams, Hani Jamjoom, Tianyin Xu

\Z/a

IIIIIIIIIIII

ILLINOIS

AAAAAA -CHAMPAIGN

<'II

Kernel probes as an observability primitive

* Dynamic instrumentation on any kernel instructions
* Custom handler functions
* No re-build / reboot required
* Widely used in tracing and debugging

Kernel probes as an observability primitive

* Dynamic instrumentation on any kernel instructions
* Custom handler functions
* No re-build / reboot required
* Widely used in tracing and debugging

* Performance is important!
* Our use case: Kernel Control Flow Integrity (KCFI)
* Validating indirect control flow transfers
* One kprobe on each indirect call instruction

Basic kprobes are implemented by traps

kernel code Probed inst

Basic kprobes are implemented by traps

kernel code int3

Probed inst

Basic kprobes are implemented by traps

@ Hitint3

kernel code int3

Probed inst

Basic kprobes are implemented by traps

@ Hitint3

kernel code int3

@ Breakpoint

trap
k .
prDoEE Probed inst
pre

Basic kprobes are implemented by traps

O Hitint3
kernel code int3
@ Breakpoint
trap

Probed inst

user
€ Invoke user pre-handler

Basic kprobes are implemented by traps

@ Hitint3

kernel code

int3

@ Breakpoint
trap

user
handler

Probed inst

int3

kprobes
post

@ int3-based single-step

€ Invoke user pre-handler

Basic kprobes are implemented by traps

@ Hitint3

kernel code

int3

e Return to

@ Breakpoint
trap

user
handler

next instruction

Probed inst

int3

kprobes
post

@ int3-based single-step

€ Invoke user pre-handler

Trap-based kprobes are too slow

@ Breakpoint
trap

int3

l

Two traps are used,

with significant overhead
due to context switches

in;c3 -

@ int3-based single-step

Trap-based kprobes are too slow

Two traps are used,

with significant overhead
int3 due to context switches

@ Breakpoint
trap 1

A single kernel probe int3f—

takes 6000+ cycles!

@ int3-based single-step

How to build a fast kernel probe
mechanism (with no trap)?

ARTIFACT ARTIFACT

EVALUATED EVALUATED

UUUUUU ' susenix
’ AAAAAAAAAAA ’ AAAAAAAAAAA

Contributions

* Uno-kprobe: a fast, universally trapless kernel probe mechanism

o Single-probe performance increased by a factor of 10x
o 3x for kprobe-based KCFI enforcements

* An implementation of Uno-kprobe on top of x86 Linux-kprobe
o Address fundamental limitations of Linux kprobe optimizations
o Code available: github.com/hardos-ebpf-fuzzing/atc24-uno-kprobe

http://github.com/hardos-ebpf-fuzzing/atc24-uno-kprobe

Design principle of trapless kprobes

* Replace traps with direct control flow transfer instructions
e E.g.,call andjmp

Design principle of trapless kprobes

* Replace traps with direct control flow transfer instructions
e E.g.,call andjmp

* Strawman approach: use nops to allocate extra space
* Insert a 5-byte nop before every kernel instruction

Design principle of trapless kprobes

* Replace traps with direct control flow transfer instructions
e E.g.,call andjmp

* Strawman approach: use nops to allocate extra space
* Insert a 5-byte nop before every kernel instruction
* Rewrite nop into a 5-byte call instruction

Design principle of trapless kprobes

* Replace traps with direct control flow transfer instructions
e E.g.,call andjmp

* Strawman approach: use nops to allocate extra space
* Insert a 5-byte nop before every kernel instruction
* Rewrite nop into a 5-byte call instruction

* Transfer control flow to a trampoline
* Trampoline is responsible for setting up a call to the handler

Design principle of trapless kprobes

83 ff 02 cmp $0x2,%edi
75 05 jne ©Oxa

ba 00 01 00 00 mov $0x100,%edx
+ c7 inc %edi

Design principle of trapless kprobes

of 1f 44 00 08 nop ©Ox8(%rax,%rax,1)

83 ff 02 cmp $0x2,%edi
of 1f 44 00 08 nop ©Ox8(%rax,%rax,1)
75 05 jne ©xa

of 1f 44 00 08 nop ©Ox8(%rax,%rax,1)
ba 00 01 00 00 mov $0x100,%edx

of 1f 44 00 08 nop ©Ox8(%rax,%rax,1)
f c7 inc Z%edi

Design principle of trapless kprobes

of 1f 44 00 08 nop ©Ox8(%rax,%rax,1)

83 ff 02 cmp $0x2,%edi
of 1f 44 00 08 nop ©Ox8(%rax,%rax,1)
75 05 jne ©xa

e8 d7 00 00 01 call *@x10000d7 (%rip)
ba 00 01 00 00 mov $0x100,%edx

of 1f 44 00 08 nop ©Ox8(%rax,%rax,1)
f c7 inc %edi

kprobe trampoline:
... # save registers
call kprobe handler

. # restore registers
ret

Design principle of trapless kprobes

of 1f 44 00 08 nop ©Ox8(%rax,%rax,1)

83 ff 02 cmp $0x2,%edi
of 1f 44 00 08 nop ©Ox8(%rax,%rax,1)
75 05 jne 0Oxa

e8 d7 00 00 01 call *@x1eeeed7(%rip)

ba 00 01 00 00 mov $0x100,%edx
of 1f 44 00 08 nop ©Ox8(%rax,%rax,1)

f c7 inc X%edi

kprobe trampoline:

Too many nops lead to performance issues!

~30% overhead measured on LEBench

Majority of nops are unnecessary

* |In many cases, the target instruction can be rewritten into a
jmp instruction without needing extra space from nops

Majority of nops are unnecessary

* |In many cases, the target instruction can be rewritten into a
jmp instruction without needing extra space from nops

83 ff 02 cmp $0x2,%edi
75 05 jne Oxa

ba 00 01 00 00 mov $0x100,%edx
ff c7 inc %edi

Majority of nops are unnecessary

* |In many cases, the target instruction can be rewritten into a
jmp instruction without needing extra space from nops

83 ff 02 cmp
75 05 jne
e9 d7 00 00 01 jmp
f c7 inc

$0x2,%edi

Oxa

*@x10000d7 (%rip)
%edi

/

QJump to trampoline

per kprobe trampoline:
call kprobe handler

mov $0x100, %edx
Jmp

Majority of nops are unnecessary

* |In many cases, the target instruction can be rewritten into a
jmp instruction without needing extra space from nops

83 ff 02 cmp
75 05 jne
e9 d7 00 00 01 jmp

f c7

inc

$0x2,%edi
Oxa
*@x10000d7 (%rip)

%edi

/

Q Jump to trampoline
Q Invoke user handler

per_kprobe trampoline:
call kprobe_handler

mov $0x100,%edx
Jmp

Majority of nops are unnecessary

* |In many cases, the target instruction can be rewritten into a
jmp instruction without needing extra space from nops

83 ff 02 cmp
75 05 jne
e9 d7 00 00 01 jmp

f c7

inc

$0x2,%edi
Oxa
*@x10000d7 (%rip)

%edi

/

Q Jump to trampoline
Q Invoke user handler
€ Executed copied probe target

per_kprobe trampoline:
call kprobe handler

mov $0x100, %edx
jmp

Majority of nops are unnecessary

* |In many cases, the target instruction can be rewritten into a
jmp instruction without needing extra space from nops

83 ff 02 cmp
75 05 jne
e9 d7 00 00 01 jmp

f c7

inc

$0x2,%edi
Oxa
*@x10000d7 (%rip)

%edi

Q Jump to trampoline
@ Invoke user handler
€ Executed copied probe target
O Jump back to next instruction

/'
\

per_kprobe trampoline:
call kprobe handler

mov $0x100, %edx
jmp

Such rewriting does not always work

1. No enough space to avoid overwriting other branch targets
* Inserted jmp spans basic block (BB) boundaries
* Breaking instruction decoding

Such rewriting does not always work

9: 83 ff 02 cmp $0x2,%edi
3: 75 04 jne 0x9
5: 41 80 cO 01 add $0x1,%r8b
9: ff 7 inc Z%edi

Such rewriting does not always work

9: 83 ff 02 cmp $0x2,%edi
3: 75 04 jne 0x9
5: 41 80 cO 01 add $0x1,%r8b
9: ff\c7 inc %edi

jne jumps here if taken

Such rewriting does not always work

9: 83 ff 02 cmp $0x2,%edi

3: 75 04 jne ©x9

5: 41 80 co 01 add $0x1,%r8b

9: ff 7 inc %edi

9: 83 ff 02 cmp $0x2,%edi

3: 75 04 jne ©x9

5: e9 d7 00 00 01 jmp *Ox10000d7(%rip)
a: c7 ... pP?

Such rewriting does not always work

9: 83 ff 02 cmp $0x2,%edi

3: 75 04 jne 0x9

5: 41 80 coO 01 add $0x1,%r8b

9: ff 7 inc %edi

9: 83 ff 02 cmp $0x2,%edi

3: 75 04 jne 0x9

5: e9 d7 00 00 01 jmp *Ox10000d7(%rip)
a: c7 ... 22

jne lands on 01 byte, not

an instruction boundary!

Such rewriting does not always work

1. No enough space to avoid overwriting other branch targets
* Inserted jmp spans basic block (BB) boundaries
* Breaking instruction decoding

2. Address-dependent instructions
* Text addresses of these instructions matter
* RIP-related instructions often use current address to calculate offset
* Kernel uses text address to handle page-fault triggering instructions

Uno-kprobe Overview

* Selectively insert nops at places that cannot be directly rewritten
* No enough space to avoid overwriting other branch targets
 Address-dependent instructions

Uno-kprobe Overview

* Selectively insert nops at places that cannot be directly rewritten
* No enough space to avoid overwriting other branch targets
 Address-dependent instructions

* Perform nop insertions using an LLVM Machine IR (MIR) pass
* Basic blocks are explicit
* Closely models native code -- more information and control over code generation

Uno-kprobe Overview

* Selectively insert nops at places that cannot be directly rewritten
* No enough space to avoid overwriting other branch targets
 Address-dependent instructions

* Perform nop insertions using an LLVM Machine IR (MIR) pass

* Basic blocks are explicit
* Closely models native code -- more information and control over code generation

* Integrate with current x86 Linux-kprobe and its optimizations

Uno-kprobe Overview

* Selectively insert nops at places that cannot be directly rewritten
* No enough space to avoid overwriting other branch targets
 Address-dependent instructions

* Perform nop insertions using an LLVM Machine IR (MIR) pass

* Basic blocks are explicit
* Closely models native code -- more information and control over code generation

* Integrate with current x86 Linux-kprobe and its optimizations

* Implement a more space-efficient kprobe trampoline

Selectively inserting nop using LLVM

bb.0.entry:
FENTRY_CALL
$eax = MOV32rr %esi
CMP32ri8 killed renamable $edi, 2,
JCC_ 1 %bb.2, 5, implicit $eflags

bb.1.if.then:
renamable $eax = ADD32rr killed ...

bb.2.if.end:
RET64 %$eax

10

Selectively inserting nop using LLVM

Address-dependent

instructions

bb.0.entry:
FENTRY_CALL
$eax = MOV32rr $esi
CMP32ri8 killed renamable $edi, 2,

— KPROBE_NOP
JCC_ 1 %bb.2, 5, implicit $eflags

bb.1.if.then:
renamable $eax = ADD32rr killed ...

bb\2.if.end:
KPROBE__NOP
RET64 %$eax

10

Selectively inserting nop using LLVM

Address-dependent
Instructions

Not enough space to
avolid overwriting other
branch targets

bb.0.entry:
FENTRY_CALL
$eax = MOV32rr $esi
CMP32ri8 killed renamable $edi, 2,

— KPROBE_NOP
JCC_ 1 %bb.2, 5, implicit $eflags

bb.1.if.then:
KPROBE__NOP
renamable $eax = ADD32rr killed ...

bb\N.if.end:
KPROBE_NOP
RET64 %$eax

10

Integration with Linux's optimizations

* Linux-kprobe implements ad hoc jmp-based optimizations
* ~21% of the kernel instructions are not eligible for trapless kprobes

* We apply Uno-kprobe design on top of Linux-kprobe

* Respect existing optimization and focus on unoptimizable cases

11

Space-efficient Uno-kprobe trampoline

* Atrampoline is required for trapless kprobe mechanisms
* Saves and restores register contexts
* Prevents handlers from corrupting current context

12

Space-efficient Uno-kprobe trampoline

* Atrampoline is required for trapless kprobe mechanisms
* Saves and restores register contexts
* Prevents handlers from corrupting current context

* The trampoline in Linux’s jmp-based optimization is not scalable

12

Space-efficient Uno-kprobe trampoline

jne Oxa
mov $0x100, %edx
inc %edi

12

Space-efficient Uno-kprobe trampoline

jne
jmp
inc

Oxa
*0x10000d7 (%rip)
%edi

/

* Copied probe target implies '

per-kprobe trampoline
Memory usage scales linearly

per kprobe trampoline:
call kprobe handler

mov $0x100, %edx
jmp ...

12

Space-efficient Uno-kprobe trampoline

Uno-kprobe executes probe target in place

* Global trampoline taking constant 96 bytes

kprobe trampoline:

_,,f”””' ... # save registers
call kprobe handler

“~\\\\\\\ ... # restore registers

ret

jne ©xa
call *@x1eeeed7 (%rAp)
mov $0x100, %edx

inc %edi

Evaluation

* Coverage: 96% of kernel code can enjoy trapless kprobe

* Up from 79% in Linux-kprobe

* Remaining 4% cannot be processed trivially in LLVM
* Assembly source code (inline-asm and assembly source files)
* Page-fault-triggering instructions

* Single-probe performance
* Non-optimizable instruction in Linux-kprobe: 10x

* Overhead from nops : 10% on average on LEBench

13

Performance Improvement of KCFlI

ml
L
X O
0 X
hnwe
!
_ g ®©
5% 8
X
¥ 353
o £ C
Z 3 D

T N O 00 O T N O
N~

140> OU JoAO0 sWiluny

UDIMIS IXDIU0D
AD3

dewuw biq
dewunw sbny
dewunw biq
3404 9bny

peaJ ||ews
deww plw

IEY

}jne} abed plw
91ea.d 4yl

nd>

biq |jod
PI1Y9>J04
dewuw [|ews
p|IYyd>3J0) 9bny
109|9S

puas

1jne} abed |jews
2404

UM plu
dewunuw |jews
2Um biq
dewunw pilw
peaJ piw

||odd

PIIya3404 Biq
9]ldMm abny
||od

>0y Big
pl1Iyd93ea.d Jyj
pidiab

deww sbny
biq |jods

]|ne) abed abny
UM ||ewsS
pusas biIq

1|ne) abed bIq
peal abny
peal biq

AD3J Biq

b1g 109|9S

LEBench

14

Performance Improvement of KCFlI

UDIMIS IX21U0D

m m AD3J

o ¥ dewuw b61q

5 ¢ dewunw abny
— m. m. dewunuw Biq
O w M 340} 2bny
o £ c J [|lews
Z 3D W pIw

w [|ews

kprobe on average

pIw

unw ||ews
biqg

unw piw
J plw

o

23404 biq
abny

} BIq
J93eald Y}
190
w abny
|Joda
Parp) ODed 96Ny
l|lews

s biq
>] 9bed bIq
4 9bny
peal biq
AD3J DIq
b1g 109|9S

4x speedup over Linux-

P

° 1

T ANO W< AN O
L T e B |

140> OU JoAO0 sWiluny

LEBench

14

Upstreamed optimizations and bug fixes

* Merged and released in Linux v6.9

x86/kprobes: Refactor can_{probe,boost} return type to bool

Both can_probe and can_boost have int return type but are using int as
boolean in their context.

Refactor both functions to make them actually return boolean.
Link: https://lore.kernel.org/all/20240204031300.830475-2-jinghao7@illi

Signed-off-by: Jinghao Jia <jinghao7@illinois.edu>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>

x86/kprobes: fix incorrect return address calculation in kprobe_emulate

kprobe_emulate_call_indirect currently uses int3_emulate_call to emulat
indirect calls. However, int3_emulate_call always assumes the size of
the call to be 5 bytes when calculating the return address. This is
incorrect for register-based indirect calls in x86, which can be either
2 or 3 bytes depending on whether REX prefix is used. At kprobe runtime
the incorrect return address causes control flow to land onto the wrong
place after return -- possibly not a valid dinstruction boundary. This
can lead to a panic like the following:

x86/kprobes: Boost more instructions from grp2/3/4/5

With the dinstruction decoder, we are now able to decode and recognize
instructions with opcode extensions. There are more instructions 1in
these groups that can be boosted:

Group 2: ROL, ROR, RCL, RCR, SHL/SAL, SHR, SAR

Group 3: TEST, NOT, NEG, MUL, IMUL, DIV, IDIV

Group 4: INC, DEC (byte operation)

Group 5: INC, DEC (word/doubleword/quadword operation)

x86/kprobes: Prohibit kprobing on INT and UD

Both INT (INT n, INT1, INT3, INTO) and UD (UDG®, UD1l, UD2) serve special
purposes in the kernel, e.g., INT3 1is used by KGDB and UD2 1is involved
in LLVM-KCFI -dinstrumentation. At the same time, attaching kprobes on
these dinstructions (particularly UD) will pollute the stack trace dumped
in the kernel ring buffer, since the exception is triggered in the copy
buffer rather than the original location.

Check for INT and UD 1in can_probe and reject any kprobes trying to
attach to these instructions.

15

ARTIFACT ARTIFACT
EVALUATED EVALUATED

Conclusion

* Uno-kprobe, a universally trapless kernel probe mechanism

* An implementation of Uno-kprobe on top of Linux-kprobe
* Integrating with the existing optimizations

* Uno-kprobe covers 96% of Linux kernel code
* Asingle kprobe runs 10x faster

* Code: github.com/hardos-ebpf-fuzzing/atc24-uno-kprobe

16

http://github.com/hardos-ebpf-fuzzing/atc24-uno-kprobe

