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File scanning in data-intensive applications

 File scanning
 Most file pages are only accessed once during one I/O stage
 Low ratio of reused data

 Common in data-intensive applications
 Scientific computing and AI training 
 Initial data loading, checkpoint and restart, and result visulization

3[1] E3SM. https://e3sm.org/research/cryosphere-ocean/v1-cryosphere-ocean/.
[2] S. H. Langer, A. Bhatele and C. H. Still. PF3D Simulations of Laser-Plasma Interactions in National Ignition Facility Experiments. 2014.

Climate simulation[1] Laser-plasma interaction[2] Large language model

ChatGPT ChatGLM

Gemini Meta Llama

Examples of common data-intensive applications



File scanning with the kernel buffered I/O

 Buffered I/O is commonly used for file scanning
 Cutting-edge HPC clusters deploy NVMe SSD-based burst buffer (BB)
 The BB file system HadaFS[1] uses buffered I/O on the burst buffer nodes

 Advantage of buffered I/O
 Transparent buffering, data aggregation, I/O alignment and prefetching 

with the kernel page cache

4
[1] https://www.usenix.org/conference/fast23/presentation/he.
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Buffered read: 35% improvement at most

Buffered write: no obvious improvement

Direct read/write: better scalability

 Issue 1: Poor scalability with the device bandwidth
 Aggregating 8 PCIe 3.0 SSDs to simulate a next-generation storage
 Sequential read/write workloads with FIO (10GB file size, 4MB I/O size)
 Direct I/O scales better than buffered I/O under a large I/O size

The kernel page cache doesn’t fit for fast storage 
devices under file scanning
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Performance issues on next-generation storage

 Issue 2: High interference from background writeback
 Sequential write workload with FIO (30GB file size)
 Performance is stable at the beginning
 The proportion of software overhead increases when writing back to fast 

storage, severely degrading the buffered write performance
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Without writeback: relative stable performance

During writeback: about 32% degradation

Background writeback on fast storage severely 
degrades buffered write performance



CPU time breakdown with profiling

 Profiling sequential read, sequential write and sequential write with 
active writeback using perf tool
 Page allocation occupies major CPU cycles in all workloads
 Coupled page index and dirty states causes lock contention during writeback
 Data copy takes non-negligible parts of CPU time
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StreamCache overview

9

Page index
XArray node

…

XArray

pages

STT State index

dirty states … dirty states

Page cache miss

Technique 1: Lightweight stream tracking Technique 2: Stream-
based page reclaiming

Technique 3: Two-layer 
memory management

Background 
writeback

Key idea: Batch updates of dirty states (decicated stream-level index) 
and fast page allocation (sharded and file-local free-page lists)

Per-file cache

Muliple memory regions

Page cache miss
…

Buffered I/O request



Cached pages in stream3
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clean page
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Technique 1: Lightweight stream tracking

 Stream tracking and stream tracking tree (STT)
 Stream refers to a range of logically continuous cached pages 
 STT is the per-file tree that indexes streams with their start page indexes

• Better capturing the I/O patterns than the system-level tracking
• Keeping the STT intact when a stream is extended

 New streams from buffered I/O requests are merged with existing ones to keep 
them non-intersected
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Technique 1: Lightweight stream tracking

 Stream tracking optimization with stream pointer
 A per-file pointer that points to the stream of the last I/O
 Tracking each buffered I/O request firstly inspects the cached stream
 Inspecting the “upper_limit” field for any potential intersection
 Accelerating stream tracking when workload is sequential
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Technique 1: Lightweight stream tracking

12• Maintaining at the page granularity
• Requiring an exlusive lock for each page dirtying
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Takeaway: Decoupled dirty states at the stream granularity



Technique 2: Stream-based page reclaiming

 Stream-based page reclaiming based on STT
 Connecting streams with double-linked lists for writeback and eviction
 Keeping a pool of reclaiming threads for page writeback and eviction at 

the stream granularity
 The per-file writeback counters to denote the completion of writeback in 

face of the commands like “fsync”
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Technique 2: Stream-based page reclaiming

 Locating dirty pages in stream-based writeback
 Extracting the indexes of a range of dirty pages from the STT
 Referring to the dirty pages in the XArray without an exclusive lock
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Technique 2: Stream-based page reclaiming

15• Both buffered writes and background writeback needs 
an exlusive lock for each page manipulation

Writeback in existing methods

• Page-level read-write contention and stream-
level write-write contention
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Takeaway: Changing the dirty states at the stream granularity



Technique 3: Two-layer memory management

 Two-layer memory management
 Pre-allocating zero-order pages into system-level per-core free-page lists
 Per-file cache for CPU-cache-friendly page allocation
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Technique 3: Two-layer memory management
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Takeaway: Designing sharded and file-local free-page lists

• Page splitting overhead
• Lock contention on a single free-page list
• Page clearing overhead on allocation

Page allocation in kernel page cache Page allocation in StreamCache

• No page splitting overhead
• Minor lock contention with multiple free-page lists
• Removing page clearing from the critical path
• File-local lists for better CPU cache locality
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Experiment settings

 TestBed
 Ubuntu 18.04 (kernel version 5.4)
 32-core AMD Rome EPYC 7542 CPU, 128GB DRAM
 RAID-0 of 8 Intel Optane 905p SSDs

 Baseline (all integrated in XFS)
 Linux kernel page cache
 FastMap-cache

 Workloads
 Synthetic workloads (FIO)
 Real-world workloads (PF3DIO)
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Performance of real-world workload

 Scientfic computing I/O benchmark (PF3DIO kernel)
 Writing checkpoint files in six different patterns
 StreamCache outperforms existing methods by 26%-62%
 Larger problem size triggers background writeback, and the benefit of 

StreamCache is more obvious
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Performance of workloads with different parameters

 Synthetic workloads generated by FIO benchmark
 File scanning workloads can benefit from StreamCache despite the I/O 

size, file size and parallelism
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Effects of individual techniques

 Adding main techiniques incrementally under PF3DIO kernel of 
large problem size
 Memory pool brings a 1.3% improvement
 Stream tracking and stream-based writeback brings a 21.3% improvement
 Per-file cache brings a 27.5% improvement
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Conclusion

 Problem
 XArray lock contention and slow page allocation hinder the performance of 

file scanning with buffered I/O on fast storage devices

 Key idea
 Separating dirty states from the page cache index and keeping them in the 

dedicated stream-level index
 Designing sharded and file-local free-page lists for fast page allocation

 Techniques
 Lightweight stream tracking
 Stream-based page reclaiming
 Two-layer memory management 24

Thank you!


