
StreamCache: Revisiting Page Cache for
File Scanning on Fast Storage Devices

Zhiyue Li and Guangyan Zhang
Tsinghua University

Agenda

• Background & Motivation

• Design & Techniques

• Evaluation

• Conclusion

2

File scanning in data-intensive applications

 File scanning
 Most file pages are only accessed once during one I/O stage
 Low ratio of reused data

 Common in data-intensive applications
 Scientific computing and AI training
 Initial data loading, checkpoint and restart, and result visulization

3[1] E3SM. https://e3sm.org/research/cryosphere-ocean/v1-cryosphere-ocean/.
[2] S. H. Langer, A. Bhatele and C. H. Still. PF3D Simulations of Laser-Plasma Interactions in National Ignition Facility Experiments. 2014.

Climate simulation[1] Laser-plasma interaction[2] Large language model

ChatGPT ChatGLM

Gemini Meta Llama

Examples of common data-intensive applications

File scanning with the kernel buffered I/O

 Buffered I/O is commonly used for file scanning
 Cutting-edge HPC clusters deploy NVMe SSD-based burst buffer (BB)
 The BB file system HadaFS[1] uses buffered I/O on the burst buffer nodes

 Advantage of buffered I/O
 Transparent buffering, data aggregation, I/O alignment and prefetching

with the kernel page cache

4
[1] https://www.usenix.org/conference/fast23/presentation/he.

Global file system

Compute node

Burst buffer node

NVMe SSD

Ext4 and page cache

Compute node

Burst buffer node

NVMe SSD

Compute node

Burst buffer node

NVMe SSD

Buffered read Buffered write
0

2

4

6

8

10

B
an

dw
id

th
 (G

B
/s

)

I/O mode

 1 SSD 2 SSDs
 4 SSDs 8 SSDs

Performance issues on next-generation storage

5

Buffered read: 35% improvement at most

Buffered write: no obvious improvement

Direct read/write: better scalability

 Issue 1: Poor scalability with the device bandwidth
 Aggregating 8 PCIe 3.0 SSDs to simulate a next-generation storage
 Sequential read/write workloads with FIO (10GB file size, 4MB I/O size)
 Direct I/O scales better than buffered I/O under a large I/O size

The kernel page cache doesn’t fit for fast storage
devices under file scanning

Buffered read Direct read Buffered write Direct write
0

2

4

6

8

10

B
an

dw
id

th
 (G

B
/s

)

I/O mode

 1 SSD 2 SSDs
 4 SSDs 8 SSDs

Performance issues on next-generation storage

 Issue 2: High interference from background writeback
 Sequential write workload with FIO (30GB file size)
 Performance is stable at the beginning
 The proportion of software overhead increases when writing back to fast

storage, severely degrading the buffered write performance

6

0 3 6 9 12 15
0

3

6

9

Ba
nd

w
id

th
 (G

B/
s)

Time (s)

 Application I/O Background writeback

0 3 6 9 12 15
0

3

6

9

Ba
nd

w
id

th
 (G

B/
s)

Time (s)

 Application I/O Background writeback

Without writeback: relative stable performance

During writeback: about 32% degradation

Background writeback on fast storage severely
degrades buffered write performance

CPU time breakdown with profiling

 Profiling sequential read, sequential write and sequential write with
active writeback using perf tool
 Page allocation occupies major CPU cycles in all workloads
 Coupled page index and dirty states causes lock contention during writeback
 Data copy takes non-negligible parts of CPU time

7
Page cache miss

Kernel page
allocator

Dirty states

Page index

XArray node

…

XArray

pages

Background writeback

Read Write Write w/ writeback
0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

 Other Dirtying Device
 Index Copy Allocation

33% 36% 24%

15%
25%

4%
15%

CPU time breakdown of three workloads The procedure of file scanning buffered write

Agenda

• Background & Motivation

• Design & Techniques

• Evaluation

• Conclusion

8

StreamCache overview

9

Page index
XArray node

…

XArray

pages

STT State index

dirty states … dirty states

Page cache miss

Technique 1: Lightweight stream tracking Technique 2: Stream-
based page reclaiming

Technique 3: Two-layer
memory management

Background
writeback

Key idea: Batch updates of dirty states (decicated stream-level index)
and fast page allocation (sharded and file-local free-page lists)

Per-file cache

Muliple memory regions

Page cache miss
…

Buffered I/O request

Cached pages in stream3

logical pages of file A
... ...

clean page
dirty page

Technique 1: Lightweight stream tracking

 Stream tracking and stream tracking tree (STT)
 Stream refers to a range of logically continuous cached pages
 STT is the per-file tree that indexes streams with their start page indexes

• Better capturing the I/O patterns than the system-level tracking
• Keeping the STT intact when a stream is extended

 New streams from buffered I/O requests are merged with existing ones to keep
them non-intersected

10

K0 K1 K3 K4

K2

stream0 stream1 stream2 stream3 stream4

STT of file A

K3 ds3 de3 end3

start=K3, end=end3, dirtystart=ds3,
dirtyend=de3, upper_limit=K4

Technique 1: Lightweight stream tracking

 Stream tracking optimization with stream pointer
 A per-file pointer that points to the stream of the last I/O
 Tracking each buffered I/O request firstly inspects the cached stream
 Inspecting the “upper_limit” field for any potential intersection
 Accelerating stream tracking when workload is sequential

11

Cached pages in stream4

logical pages of file A
...

K0 K1 K3 K4

K2

stream0 stream1 stream2 stream3 stream4

STT of file A

K4 end4 end4’

stream pointer
Non-intersected condition: end < upper_limit

start=K4, end=end4’, dirtystart=K4,
dirtyend=end4’, upper_limit=Infinite

Technique 1: Lightweight stream tracking

12• Maintaining at the page granularity
• Requiring an exlusive lock for each page dirtying

Dirty
Page index

XArray node

Dirty Clean Clean Clean…

XArray

dirty clean clean clean

Dirty state tracking in existing methods Dirty state tracking in StreamCache

• Maintaining at the stream granularity
• Low tracking overhead under sequential I/Os

Page index
XArray node

…

XArray

pages

STT State index

Dirty … Clean

Takeaway: Decoupled dirty states at the stream granularity

Technique 2: Stream-based page reclaiming

 Stream-based page reclaiming based on STT
 Connecting streams with double-linked lists for writeback and eviction
 Keeping a pool of reclaiming threads for page writeback and eviction at

the stream granularity
 The per-file writeback counters to denote the completion of writeback in

face of the commands like “fsync”

13

S
D

S
D

S
D

S
D

S
D

S

D

system-level
list headers

stream nodeS

dirty stream nodeD

dirty stream

clean streameviction

writeback

K0 K1

K2

K3 K4

reclaiming thread pool

1024 0writeback counter

fsync completes!

Technique 2: Stream-based page reclaiming

 Locating dirty pages in stream-based writeback
 Extracting the indexes of a range of dirty pages from the STT
 Referring to the dirty pages in the XArray without an exclusive lock

14

K0 K1 K3 K4

K2

stream0 stream1 stream2 stream3 stream4

Page indexes
for writeback

STT of file A

No XArray exclusive lock!

XArray of file A

Stream-level exlusive lock

Page index
XArray node

…

XArray

pages

Technique 2: Stream-based page reclaiming

15• Both buffered writes and background writeback needs
an exlusive lock for each page manipulation

Writeback in existing methods

• Page-level read-write contention and stream-
level write-write contention

Mark a page “clean”

XArray

Foreground buffered writes

Background writeback

Insert a new page Mark a page “dirty”

Mark a page “writeback”

Writeback in StreamCache

XArray

Foreground buffered writes

Background writeback

Mark pages “dirty”

Mark pages “clean”

STT

Insert a new page

Read a page for writeback

Lock-free for read-write
contention under RCU!

Takeaway: Changing the dirty states at the stream granularity

Technique 3: Two-layer memory management

 Two-layer memory management
 Pre-allocating zero-order pages into system-level per-core free-page lists
 Per-file cache for CPU-cache-friendly page allocation

16

Memory pool

...

...
per-file cache 0

...

...

region 0

... ...

region 1

... ...

region N-1

...

per-file cache 1

...

per-file cache M-1

...

batch movement

Technique 3: Two-layer memory management

17

Takeaway: Designing sharded and file-local free-page lists

• Page splitting overhead
• Lock contention on a single free-page list
• Page clearing overhead on allocation

Page allocation in kernel page cache Page allocation in StreamCache

• No page splitting overhead
• Minor lock contention with multiple free-page lists
• Removing page clearing from the critical path
• File-local lists for better CPU cache locality

0-order 1-order 10-order…

System-level free-page lists

Clear on allocation

PCP0

Per-CPU page lists

PCPN-1
… PFC0

0-order 0-order 0-order…

System-level memory pool

Per-file caches

PFCM-1
…

Direct allocation

Agenda

• Background & Motivation

• Design & Techniques

• Evaluation

• Conclusion

18

Experiment settings

 TestBed
 Ubuntu 18.04 (kernel version 5.4)
 32-core AMD Rome EPYC 7542 CPU, 128GB DRAM
 RAID-0 of 8 Intel Optane 905p SSDs

 Baseline (all integrated in XFS)
 Linux kernel page cache
 FastMap-cache

 Workloads
 Synthetic workloads (FIO)
 Real-world workloads (PF3DIO)

19

• StreamCache’s performance under real-

world workloads?

• StreamCache’s performance under

different workload parameters?

• Effects of individual techniques in

StreamCache?

• More in our paper ...

Experiment outline

Performance of real-world workload

 Scientfic computing I/O benchmark (PF3DIO kernel)
 Writing checkpoint files in six different patterns
 StreamCache outperforms existing methods by 26%-62%
 Larger problem size triggers background writeback, and the benefit of

StreamCache is more obvious

20
dir scdir pdb scpdbmultismultil

0
2
4
6
8

10
12

Ba
nd

w
id

th
 (G

B/
s)

 Page cache StreamCache
 FastMap-cache

dir scdir pdb scpdbmultismultil
0
3
6
9

12
15
18

Ba
nd

w
id

th
 (G

B/
s)

 Page cache StreamCache
 FastMap-cache

Small problem size Large problem size

35% improvements
on average

53% improvements
on average

Performance of workloads with different parameters

 Synthetic workloads generated by FIO benchmark
 File scanning workloads can benefit from StreamCache despite the I/O

size, file size and parallelism

21

4KB 16KB 64KB 256KB 1MB 4MB
0

2

4

6

8

Ba
nd

w
id

th
 (G

B/
s)

Block size

 Page cache
 FastMap-cache
 StreamCache

Different I/O sizes (read)

4KB 16KB 64KB 256KB 1MB 4MB
0

2

4

6

8

Ba
nd

w
id

th
 (G

B/
s)

Block size

 Page cache
 FastMap-cache
 StreamCache

Different I/O sizes (write)

1MB 8MB 64MB 512MB 4GB 32GB
0

2

4

6

Ba
nd

w
id

th
 (G

B/
s)

File size

 Page cache
 FastMap-cache
 StreamCache

Different file sizes (read)

1MB 8MB 64MB 512MB 4GB 32GB
0

2

4

6

Ba
nd

w
id

th
 (G

B/
s)

File size

 Page cache
 FastMap-cache
 StreamCache

Different file sizes (write)

1 2 4 8 16
0

5

10

15

20

Ba
nd

w
id

th
 (G

B/
s)

Parallelism

 Page cache
 FastMap-cache
 StreamCache

Different parallelisms (read)

1 2 4 8 16
0

5

10

15

20

25

Ba
nd

w
id

th
 (G

B/
s)

Parallelism

 Page cache
 FastMap-cache
 StreamCache

Different parallelisms (write)

28% on
average

29% on
average

26% on
average

32% on
average

27% on
average

28% on
average

Effects of individual techniques

 Adding main techiniques incrementally under PF3DIO kernel of
large problem size
 Memory pool brings a 1.3% improvement
 Stream tracking and stream-based writeback brings a 21.3% improvement
 Per-file cache brings a 27.5% improvement

22Effects of individual techniques with PF3DIO large problem size
dir scdir pdb scpdb multi smultil0

3

6

9

12
Ba

nd
w

id
th

 (G
B/

s)
 Page cache
 +Memory Pool
 +Stream-based Writeback
 +Per-file Cache

Agenda

• Background & Motivation

• Design & Techniques

• Evaluation

• Conclusion

23

Conclusion

 Problem
 XArray lock contention and slow page allocation hinder the performance of

file scanning with buffered I/O on fast storage devices

 Key idea
 Separating dirty states from the page cache index and keeping them in the

dedicated stream-level index
 Designing sharded and file-local free-page lists for fast page allocation

 Techniques
 Lightweight stream tracking
 Stream-based page reclaiming
 Two-layer memory management 24

Thank you!

