
Expeditious High-Concurrency MicroVM SnapStart in PMem
with an Augmented Hypervisor

Xingguo Pang, Yanze Zhang, Liu Liu, Dazhao Cheng, Chengzhong Xu, and Xiaobo Zhou

Slide 1 /32

xingguo.pang@connect.um.edu.mo

mailto:xingguo.pang@connect.um.edu.mo

Background: SnapStart

Restore snapshot Function
Executionrequest

Cold-start Delay(~ms)(SnapStart)

Sandbox
Initialization

Resource
Allocation

Load Library
&Packages

Function
Loading

Function
Executionrequest

(non-SnapStart)
Cold-start Delay(~s)

SnapStart is an approach that leverages snapshot-restore technique to bypass the
time-consuming cold start and expedites function execution by reusing previously
saved memory state.

Slide 2 /32

Background: MicroVM SnapStart
• AWS Firecracker[NSDI’20] MicroVM

• A lightweight VM tailored for short-lived workloads
• An ideal sandboxing solution for production SnapStart.

Lightweight Virtualization VM-like Security Rapid Startup

Slide 3 /32

Background: Why SnapStart

Booting time mitigation Memory state reuse Snapshots

LightVM [SOSP’17]

Firecracker [NSDI’20]

Pagurus[OSDI’22]

Nephele [EuroSys '23]

Keep-alive (warm start)

SEUSS [EuroSys’20]

Icebreaker [ASPLOS’22]

ORION [OSDI'22]

Catalyzer [ASPLOS’20]

Firecracker snapshots

• REAP [ASPLOS’21]

• FaaSnap [EuroSys’22]

SnapStart serves as a tradeoff between cold start latency & memory resource occupation.

Slide 4 /32

Background: SnapStart

Restore snapshot Function
Executionrequest

Cold-start Delay(~ms)(SnapStart)

Sandbox
Initialization

Resource
Allocation

Load Library
&Packages

Function
Loading

Function
Executionrequest

(non-SnapStart)
Cold-start Delay(~s)

• Fast to start
• mmap memory file (previous snapshot of guest) as guest memory
• Resume VM immediately
• Load guest pages from disk on demand (demand paging)

• Slow to finish
• Guest accessing pages not in memory causes major page faults
• Context switches, scheduling, data movement
• Slow down execution

Slide 5 /32

State of the art: FaaSnap [EuroSys’22]

• Reduce major page faults by prefetching working set
• Phase 1: Record guest working set and save it to a compact file
• Phase 2 (invoke): Prefetch working set from disk

• Prefetch stable working set
fewer guest major page faults

 faster function execution

PM

VM VM

VM VM

High concurrency
Slide 6 /32

Motivation:
•Single-tiered Persistent Memory
• An alternative to replace DRAM+SSD tiered architecture

High cost-effectiveness
Huge capacity with low price

Good performance
Persistence & fast recovery capability

Slide 7 /32

memory.snap

read read already loaded into memory,
Immediately return.

not loaded in memory.
pagefault!
Load from file & put it in memory.

Disk

DRAM

During SnapStart execution

Motivation: Single-tiered PMem

Page Fault

Slide 8 /32

Motivation: Single-tiered PMem

• Huge gap
• Costly data movement

• Single-tiered Memory
• Minimal gap

Slide 9 /32

Motivation: Single-tiered PMem

Fast Operation latency
100~300 ns

Byte addressable Cacheline & XPline
64 bytes /256 bytes

Big capacity Max capacity
8 TB per machine

Non-Volatile persistency
retain data without power

Cost-effective

Slide 10 /32

Motivation: Single-tiered PMem

read read always accessible

PMem memory.snap

• No tiered access
• No data movement from slow disk.

Slide 11 /32

Stable VM access

Motivation: Single-tiered PMem
• Intel Optane persistent memory instructions
• Unified address management

Different configurations of PMem.
PMem with the orange color (in the PMem and File I/O modes) indicates the use of PMem as persistent
storage while the gray color (in the Memory Mode) means its usage as volatile memory.

*Picture taken from arXiv 2005.07658 Slide 12 /32

Challenge #01 Efficient page mapping in PMEM

MicroVM

Memory
Snapshot

Page FaultAccess

During SnapStart.

Memory
Loading

VM
Restoration
Time

Function
Execution Time

Extra Resource
Requirement

Lazy + +++ No

Partial ++ ++ Yes

Full +++ + No

Default Scheme

Efficient page mapping in PMEM.

fully leverage PMEM's capabilities for a MicroVM's SnapStart

Slide 13 /32

Challenge #02 Direct data access in PMEM.
• Direct data access(DAX) in PMEM.

• bypassing cache intermediaries

MicroVM

Persistent
Memory

DAX FaultDirect Access

During SnapStart.

Slide 14 /32

• Simply mounting snapshots on a DAX-enabled filesystem

Challenge #03 Ephemeral workloads
• non-iterative, single-access workloads
• ephemeral pages:
 data accessed temporarily and then quickly discarded

MicroVM

Slow

During SnapStart.

Working
 Set

Slide 15 /32

• unnecessary replication overhead from traditional caching-based methods

Case Study #01: Page Fault Overhead in SnapStart

Page fault is a bottleneck for end-to-end SnapStart execution in microVM.

Page fault overhead in SnapStart execution.

Slide 16 /32

Case Study #02: SnapStart under Ephemeral Workloads
Table: SnapStart performance on an ephemeral workload.

Ephemeral workloads does not have heavy cache dependencies for latency
performance.

Slide 17 /32

Case Study #03: SnapStart under High Concurrency

• FaaSnap has bad SnapStart performance under High Concurrency.

Slide 18 /32

Case Study #04: FaaSnap in a PMEM Filesystem

SnapStart time by FaaSnap

• FaaSnap can not work properly for SnapStart on PMem.

Slide 19 /32

Case Study #05:DAX Faults in a PMEM Filesystem

DAX fault is severe to performance of SnapStart execution.

 ~30% overhead

Slide 20 /32

Case Study Summary
• 1) Page fault overhead critically hinders SnapStart execution time;
• 2) The DAX feature in PMEM can enhance memory access efficiency

for certain ephemeral workloads;
• 3) High concurrency significantly degrades FaaSnap's performance;
• 4) FaaSnap's prefetching is incompatible with PMEM DAX feature;
• 5) MicroVM memory snapshots on a PMEM filesystem underutilize

DAX capabilities.

Opportunity:
Direct management of PMEM, avoiding traditional filesystems, may optimize
SnapStart's use of PMEM's performance potential.

Slide 21 /32

PASS

Approach
Leveraging PMem Direct Access into MicroVM with

Complete Address Indexing

Goal
Reducing time spent on page faults and data movement

PaSS: PMem-aware SnapStart

Slide 22 /32

Design Overview

Slide 23 /32

Design #01: Pre-fault Page Mapping
• Complete Address Indexing

• Memory snapshot to VM memory

• No fragmented mapping
• No online mapping reconstruction
• No data movement(only metadata)

• Address Indexing Lifetime Management
• VM start to VM shutdown
• Unique for this VM

• Address Indexing Synchronization
• Sync to KVM space

Slide 24 /32

Design #02: Zero-copy On-demand Paging
• Embedded PMem manager

• Space is stable
• File system is redundant.

• Less context switch

• User-space memory
• Memory load/store
• Direct access

Slide 25 /32

Design:
• VM-Snapshot Memory match
- Build a match between a microVM and its snapshot memory on PMem

- replacing the need for snapshot file locating in a DAX file system.

• Pre-built Indexing on PMem
- Pass pre-built indexing (hash table) from PMem to guest memory

- Avoids rebuilding the mapping and frequent page faults during VM execution

Slide 26 /32

 PMem Address Management
 Programming Interface
……

Refer to our paper for more details!

More Details

Slide 27 /32

Evaluation
• For comparison with PASS, we evaluated the following approaches for SnapStart execution:

• Lambda SnapStart: The standard approach on SSD.
• Vanilla: Lambda SnapStart on the PMEM filesystem(ext4-dax), enabling DAX for performance enhancement
• FaaSnap: The state-of-the-art. It accelerates MicroVM SnapStart by employing a prefetching technique.
• DRAM-Cached: While effective, it is unsuitable for production platforms due to substantial memory demands.

• Variety of applications

• Intel Optane PMEM 200 series
• an Interleaved four-DIMM
• 512GB
• in AppDirect mode

• 1vCPUs, 1GB RAM per function

Functions from FunctionBench [Cloud’19],
Sprocket [SoCC’18], and SeBS [Middleware’21]

Slide 28 /32

Evaluation: End-to-End SnapStart Time

Execution latency of ephemeral workloads.

SnapStart execution time of different approaches.

improved SnapStart time by 1% to 47% v.s.
 3% to 72%

FaaSnap
Vanilla
DRAM-Cached(at a worst-case) less than 3%

In the "read-list" test,
6.38x(4x) performance increase
compared to Vanilla (FaaSnap).

Slide 29 /32

Evaluation: Scalability

SnapStart execution under different concurrency levels.
(top: "recognition"; bottom: "ffmpeg")

SnapStart execution time under a high concurrency.

PASS outperformed Vanilla (by 1.56x to 6.38x)
 and FaaSnap (by 1.38x to 4x)
in the execution time under the concurrency level 32.

under the concurrency level 32.

Slide 30 /32

In the "recognition" test,
3.5x(1.6x) performance increase
compared to Vanilla (FaaSnap).

In Conclusion
• Problem:

• Slow SnapStart for short-lived workloads

• Technology：
• Pre-fault Page Mapping
• Zero-copy On-demand Paging

• Achievement：
• 72% SnapStart time reduction than Vanilla,
• 47% SnapStart time reduction than FaaSnap.
• 2x throughput than Firecracker & FaaSnap
• 2.2x cost-effectiveness than Firecracker

Slide 31 /32

Thank you! Q&A

Slide 32 /32

	Expeditious High-Concurrency MicroVM SnapStart in PMem �with an Augmented Hypervisor
	Background: SnapStart
	Background: MicroVM SnapStart
	Background: Why SnapStart
	Background: SnapStart
	State of the art: FaaSnap [EuroSys’22]
	Motivation:
	Motivation: Single-tiered PMem
	Motivation: Single-tiered PMem
	Motivation: Single-tiered PMem
	Motivation: Single-tiered PMem
	Motivation: Single-tiered PMem
	Challenge #01 Efficient page mapping in PMEM
	Challenge #02 Direct data access in PMEM.�
	Challenge #03 Ephemeral workloads�
	Case Study #01: Page Fault Overhead in SnapStart
	Case Study #02: SnapStart under Ephemeral Workloads
	Case Study #03: SnapStart under High Concurrency
	Case Study #04: FaaSnap in a PMEM Filesystem
	Case Study #05:DAX Faults in a PMEM Filesystem
	Case Study Summary
	PASS
	Design Overview
	Design #01: Pre-fault Page Mapping
	Design #02: Zero-copy On-demand Paging
	Design:
	幻灯片编号 27
	Evaluation
	Evaluation: End-to-End SnapStart Time
	Evaluation: Scalability�
	In Conclusion
	幻灯片编号 32

