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SnapStart is an approach that leverages snapshot-restore technique to bypass the 
time-consuming cold start and expedites function execution by reusing previously 
saved memory state.
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Background: MicroVM SnapStart
• AWS Firecracker[NSDI’20] MicroVM

• A lightweight VM tailored for short-lived workloads        
• An ideal sandboxing solution for production SnapStart.

Lightweight Virtualization VM-like Security Rapid Startup
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Background: Why SnapStart

Booting time mitigation Memory state reuse Snapshots

LightVM [SOSP’17]

Firecracker [NSDI’20]

Pagurus[OSDI’22]

Nephele [EuroSys '23]

Keep-alive (warm start) 

SEUSS [EuroSys’20]

Icebreaker [ASPLOS’22]

ORION [OSDI'22]

Catalyzer [ASPLOS’20]  

Firecracker snapshots

• REAP [ASPLOS’21]

• FaaSnap  [EuroSys’22]

SnapStart serves as a tradeoff between cold start latency & memory resource occupation.
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Background: SnapStart
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• Fast to start
• mmap memory file (previous snapshot of guest) as guest memory
• Resume VM immediately
• Load guest pages from disk on demand (demand paging)

• Slow to finish
• Guest accessing pages not in memory causes major page faults
• Context switches, scheduling, data movement
• Slow down execution
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State of the art: FaaSnap  [EuroSys’22]

• Reduce major page faults by prefetching working set
• Phase 1: Record guest working set and save it to a compact file
• Phase 2 (invoke): Prefetch working set from disk

• Prefetch stable working set 
fewer guest major page faults

         faster  function execution

PM

VM VM

VM VM

High concurrency
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Motivation: 
•Single-tiered Persistent Memory
• An alternative to replace DRAM+SSD tiered architecture

High cost-effectiveness
Huge capacity with low price

Good performance
Persistence & fast recovery capability
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memory.snap

read read already loaded into memory,
Immediately return.

not loaded in memory.
pagefault!
Load from file & put it in memory.

Disk

DRAM

During SnapStart execution

Motivation: Single-tiered PMem

Page Fault
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Motivation: Single-tiered PMem

• Huge gap
• Costly data movement 

• Single-tiered Memory
• Minimal gap

Slide 9 /32



Motivation: Single-tiered PMem

Fast Operation latency
100~300 ns

Byte addressable Cacheline & XPline
64 bytes /256 bytes

Big capacity Max capacity 
8 TB per machine

Non-Volatile persistency
retain data without power

Cost-effective
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Motivation: Single-tiered PMem

read read always accessible

PMem memory.snap

• No tiered access
• No data movement from slow disk.
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Motivation: Single-tiered PMem
• Intel Optane persistent memory instructions
• Unified address management

Different configurations of PMem. 
PMem with the orange color (in the PMem and File I/O modes) indicates the use of PMem as persistent 
storage while the gray color (in the Memory Mode) means its usage as volatile memory.

*Picture taken from arXiv 2005.07658 Slide 12 /32



Challenge #01 Efficient page mapping in PMEM

MicroVM

Memory 
Snapshot

Page FaultAccess

During SnapStart.

Memory 
Loading

VM 
Restoration 
Time

Function 
Execution Time

Extra Resource 
Requirement

Lazy + +++ No

Partial ++ ++ Yes

Full +++ + No

Default Scheme

Efficient page mapping in PMEM.

fully leverage PMEM's capabilities for a MicroVM's SnapStart
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Challenge #02 Direct data access in PMEM.
• Direct data access(DAX) in PMEM.

• bypassing cache intermediaries

MicroVM

Persistent
Memory

DAX FaultDirect Access

During SnapStart.
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• Simply mounting snapshots on a DAX-enabled filesystem



Challenge #03 Ephemeral workloads
• non-iterative, single-access workloads 
• ephemeral pages: 
 data accessed temporarily and then quickly discarded

MicroVM

Slow

During SnapStart.

Working 
     Set
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• unnecessary replication overhead from traditional caching-based methods



Case Study #01: Page Fault Overhead in SnapStart

Page fault is a bottleneck for end-to-end SnapStart execution in microVM.

Page fault overhead in SnapStart execution.
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Case Study #02: SnapStart under Ephemeral Workloads
Table:  SnapStart performance on an ephemeral workload.

Ephemeral workloads does not have heavy cache dependencies for latency 
performance.
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Case Study #03: SnapStart under High Concurrency

• FaaSnap has bad SnapStart performance under High Concurrency.
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Case Study #04: FaaSnap in a PMEM Filesystem

SnapStart time by FaaSnap

• FaaSnap can not work properly for SnapStart on PMem.
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Case Study #05:DAX Faults in a PMEM Filesystem

DAX fault is severe to performance of SnapStart execution.
 
 ~30% overhead
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Case Study Summary
• 1) Page fault overhead critically hinders SnapStart execution time; 
• 2) The DAX feature in PMEM can enhance memory access efficiency 

for certain ephemeral workloads;
• 3) High concurrency significantly degrades FaaSnap's performance; 
• 4) FaaSnap's prefetching is incompatible with PMEM DAX feature; 
• 5) MicroVM memory snapshots on a PMEM filesystem underutilize 

DAX capabilities. 

Opportunity:
Direct management of PMEM, avoiding traditional filesystems, may optimize 
SnapStart's use of PMEM's performance potential.
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PASS

Approach
Leveraging PMem Direct Access into MicroVM with 

Complete Address Indexing

Goal
Reducing time spent on page faults and data movement

PaSS: PMem-aware SnapStart
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Design Overview
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Design #01: Pre-fault Page Mapping
• Complete Address Indexing

• Memory snapshot to VM memory

• No fragmented mapping 
• No online mapping reconstruction
• No data movement(only metadata)

• Address Indexing Lifetime Management
• VM start to VM shutdown
• Unique for this VM

• Address Indexing Synchronization
• Sync to KVM space
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Design #02: Zero-copy On-demand Paging
• Embedded PMem manager

• Space is stable
• File system is redundant.

• Less context switch

• User-space memory 
• Memory load/store
• Direct access
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Design:
• VM-Snapshot Memory match
- Build a match between a microVM and its snapshot memory on PMem

- replacing the need for snapshot file locating in a DAX file system.

• Pre-built Indexing on PMem
- Pass pre-built indexing (hash table) from PMem to guest memory

- Avoids rebuilding the mapping and frequent page faults during VM execution
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 PMem Address Management
 Programming Interface
……

Refer to our paper for more details!

More Details
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Evaluation
• For comparison with PASS, we evaluated the following approaches for SnapStart execution:

• Lambda SnapStart: The standard approach on SSD.
• Vanilla: Lambda SnapStart on the PMEM filesystem(ext4-dax), enabling DAX for performance enhancement
• FaaSnap: The state-of-the-art. It accelerates MicroVM SnapStart by employing a prefetching technique.
• DRAM-Cached: While effective, it is unsuitable for production platforms due to substantial memory demands.

• Variety of applications

• Intel Optane PMEM 200 series
• an Interleaved four-DIMM 
• 512GB
• in AppDirect mode

• 1vCPUs, 1GB RAM per function

Functions from FunctionBench [Cloud’19],  
Sprocket [SoCC’18], and SeBS [Middleware’21]
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Evaluation: End-to-End SnapStart Time 

Execution latency of ephemeral workloads.

SnapStart execution time of different approaches.

improved SnapStart time by 1% to 47%  v.s.
                3% to 72%

FaaSnap
Vanilla
DRAM-Cached(at a worst-case) less than 3%

In the "read-list" test, 
6.38x(4x) performance increase
compared to Vanilla (FaaSnap).
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Evaluation: Scalability

SnapStart execution under different concurrency levels. 
(top: "recognition"; bottom: "ffmpeg")

SnapStart execution time under a high concurrency.

PASS outperformed Vanilla (by 1.56x to 6.38x) 
         and FaaSnap (by 1.38x to 4x) 
in the execution time under the concurrency level 32.

under the concurrency level 32.
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In the "recognition" test, 
3.5x(1.6x) performance increase
compared to Vanilla (FaaSnap).



In Conclusion
• Problem:

• Slow SnapStart  for short-lived workloads 

• Technology：
• Pre-fault Page Mapping
• Zero-copy On-demand Paging

• Achievement：
• 72% SnapStart time reduction than Vanilla,
• 47% SnapStart time reduction than FaaSnap.  
• 2x throughput than Firecracker & FaaSnap
• 2.2x cost-effectiveness than Firecracker
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Thank you! Q&A
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