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Background: Storage Software Stack
ØAdopted in diverse computing domains
• Databases, cloud computing, and HPC

ØComponents
• Page cache manager: buffer hot data in main memory
• I/O engine: concurrently access data residing in SSD
• Narrow down performance gap between processors

and storage devices
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Background: Existing Page Cache Manager Design
ØLinux kernel page cache
• Kernel space implementation
• Fails to follow up on SSD performance boost
• Heavy overhead (e.g., global locking)

ØHardware trend -> High-performance SSD
• High bandwidth: surpass 14GB/s
• Low latency: ~10us
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Background: Existing Page Cache Manager Design
ØLinux kernel page cache
• Kernel space implementation
• Fails to follow up on SSD performance boost
• Heavy overhead (e.g., global locking)

ØUser-space page cache (TriCache [OSDI’22])
• Efficient user-space SPDK I/O engine
• Multiple threads manage cache without lock
• Message passing between cache mgr. and APPs
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Preliminary Study
ØPerformance analysis
• Macro-benchmark
• Compare with ideal cases

ØPoor scalability with CPU cores
• Kernel: 36.76% degradation
• TriCache: 32.33% degradation

ØCannot scale with SSDs
• Kernel: 52.54% performance gap
• TriCache: 77.51% performance gap

36.76%

32.33% 77.51%

52.54%



Peking University

Motivation: Heavy Storage Tax
ØRoot cause: host-centric designs
• Both designs exclusively reside on the host

ØLevy heavy storage tax
• CPU tax
• Communication tax
• Interference tax
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Motivation: Heavy Storage Tax
ØRoot cause: host-centric designs
• Both designs exclusively reside on the host

ØCPU tax
• Kernel page cache: locking (18.98%) and heavy I/O engine (21.45%)
• TriCache:

• Dedicate multiple host CPU threads per SSD for cache mgnt.
• Exacerbate as the number of SSDs scales up

• Deprive applications of precious computing resources
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Motivation: Heavy Storage Tax
ØRoot cause: host-centric designs
• Both designs exclusively reside on the host

ØCommunication tax
• Kernel page cache: heavy I/O engine
• TriCache:

• Tripartite structure: APP <-> Cache mgr. <-> SSD
• Prolongs communication path
• 77.74% queuing latency due to communication
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Motivation: Heavy Storage Tax
ØRoot cause: host-centric designs
• Both designs exclusively reside on the host

ØInterference tax
• Host-centric designs cannot detect SSD internal activities (e.g., GC)

• multiple software layers sit between the host-centric manager and the SSD 
• Interference between GC and regular I/O requests
• Compromise performance stability

……
Kernel space

User Space

Driver

User Space

Msg passing

PollingInterrupt

Linux kernel TriCache

SPDK

Page cache Cache mgr. th.

APP APP

NVMe SSD

Ctx switch



Peking University

Key insights
ØEmerging computational SSDs
• Multi-core ARM processor (4-16 cores)
• DRAM capacity (4-16GB)
• Process offloaded tasks from host

ØNVMe host memory buffer (HMB) feature
• A DMA-able region in host memory
• Allows SSDs to directly manage data in the region 
• Ensure rapid data accessibility for applications
• SSD-controlled page cache with the data cached on the host side

SSD SSD SSD

DRAM HMB region

Host CPU

Offload cache management to CSDs!
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Our Solution
ØOvercome CPU tax by 

üOffloading cache management into CSDs
ØOvercome communication and interference taxes by

üCoordinate software (cache management) and hardware (SSD)

ScalaCache
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ScalaCache: Outline
ØOverview
ØDesign
ØEvaluation
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ScalaCache: SW-HW coordination for cache mngt.
ØOverview
• Lightweight: high-performance cache index structure
• Scalability: lockless cache mngt. and resource allocation
• Efficiency and stability: trimmed communication and GC-aware rplcmnt.
•àReduce communication and interference taxes

Remove CPU tax



Peking University

ScalaCache: Outline
ØOverview
ØDesign
ØEvaluation
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Cache Management Offloading
ØChallenge: cannot directly offload existing cache management
ØObservation:  CSD internal FTL mapping similar to cache indexing
ØFusionFTL: consolidates their indirection layers
• Translate LPN to page frame or flash address based on a flag bit
• Simplify redundant address translations
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Concurrent I/O processing inside CSDs
ØPotential bottleneck: Multiple CSD cores compete for critical resources 

throughout the I/O path (e.g., FusionFTL, free page frames, and flash)
ØConcurrent processing model within CSD: 
• Resource partitioning: address space, page frames, and flash 
• Assigns them to CSD cores as private resources

• Split I/O request based on address space division to exploit each CSD core
• Each core access private resources without contention, which enables lock-

free I/O processing

Removing CPU tax: taxed CPUs are freed up for applications’ use
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Cache Access on the Host Side
ØOverloading:
• Computing capability of the CSD is still limited
• Processing all requests by CSDs leads to overloading issue

ØGoal: Avoid overloading CSDs and shorten hit path
ØQueueIndex:
• Within each client thread
• Buffer frame address to accelerate cache lookup
• Balance the load between the CSD and the host
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Coordination between Host and CSDs
ØTrimmed communication:
• By offloading cache mgmt., clients can directly access the cache and flash
• Transform tripartite architecture into bipartite architecture

• Bundle missing pages with discontinuous addr. into a single NVMe cmd.
ØReduced GC interference:
• GC report: share the internal GC state to host
• GC-aware replacement policy to prioritize the reclamation of clean pages

Bipartite arch.

Slashing communication and interference taxes
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Concurrent cache built on a CSD array
ØGoal: Achieve scalability across multiple CSDs
ØParallel processing model:  Organizes multiple CSDs into a CSD array
• Distribute I/O requests to multiple CSDs
• Leverage multiple CSDs to handle requests concurrently
• Aggregate computing power of multiple CSDs to deliver scalable perf.
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ScalaCache: Outline
ØOverview
ØDesign
ØEvaluation
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Evaluation: Setup
ØImplementation:
• Build our ScalaCache design based on FEMU emulator

ØPlatform:
• Kernel: traditional page cache implemented in Linux kernel
• TriCache: state-of-the-art user-space cache management 
• Hardware: simply offloads cache management into CSDs
• ScalaCache: hardware-software coordinated user-space cache mgmt.

ØReal-world workloads – MSR, FIU, and Tencent block trace
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Evaluation: Overall
ØBandwidth comparison with fixed 8 host CPU cores 
Ø5.12×and 1.95×bandwidth improvement compared to Kernel and Hardware
Ø35.30% and 94.78% bandwidth improvement compared to TriCache which 

employs 2 and 6 manager threads (i.e., TriCache-2M and TriCache-6M)
• Frees up taxed CPU for more client th. and benefits from lightweight design
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Evaluation: Overall
ØBandwidth comparison with fixed 8 client threads 
• Relax the number of cores in TriCache (i.e., 8 cores for client threads) while 

allocating extra cores as cache manager threads
ØScalaCache still outperforms TriCache (e.g., outperforms 2M8C by 29%)
• More manager threads in TriCache increase the communication cost
• ScalaCache removes this cost
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Evaluation: Scalability with host CPU cores
ØScalaCache consistently shows improved scalability in all workloads 
• E.g., surpasses TriCache-2M by 35.17% in src2

ØDue to lightweight and lockless designs, including
• Lightweight cache management
• Lockless resource allocation framework
• Concurrent I/O processing
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Evaluation: Tail Latency 
ØCompare tail latency in write-intensive workloads 
• 11% 99.99th latency reduction compared to TriCache
• Unattainable with host-centric cache manager designs like TriCache

Ø Breakdown:
• Evaluate the tail latency of ScalaCache with and without GC awareness
• E.g., 17.44% 99.9th latency in T1205
• Software-hardware coordinated fashion alleviates GC impact
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Conclusion
ØChallenges
    Host-centric cache manager designs

Heavy storage taxes: CPU tax, communication tax, and interference tax
ØKey insights
    Cache management offloading and software-hardware coordination
ØScalaCache designs
    Lightweight cache mgmt in CSD + Trimmed communication + GC avoidance

à Successfully reduce heavy storage taxes
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