
Computer Hardware And System Evolution Laboratory

ScalaCache: Scalable User-Space
Page Cache Management with

Software-Hardware Coordination

Li Peng1, Yuda An1, You Zhou3, Chenxi Wang4, Qiao Li5, Chuanning Cheng6, Jie Zhang1,2

Peking University1, Zhongguancun Laboratory2, HUST3, UCAS4, Xiamem University5, Huawei6

USENIX ATC’24

Peking University

Background: Storage Software Stack
ØAdopted in diverse computing domains
• Databases, cloud computing, and HPC

ØComponents
• Page cache manager: buffer hot data in main memory
• I/O engine: concurrently access data residing in SSD
• Narrow down performance gap between processors

and storage devices

Storage SW stack

I/O engine

Application

Page cache

NVMe SSD

Peking University

Background: Existing Page Cache Manager Design
ØLinux kernel page cache
• Kernel space implementation
• Fails to follow up on SSD performance boost
• Heavy overhead (e.g., global locking)

ØHardware trend -> High-performance SSD
• High bandwidth: surpass 14GB/s
• Low latency: ~10us

……
Kernel space

User Space

Driver

NVMe SSD

Linux kernel

Page cache

APP

Interrupt

Ctx switch

Intel Optane SSD Samsung PM1743

Peking University

Background: Existing Page Cache Manager Design
ØLinux kernel page cache
• Kernel space implementation
• Fails to follow up on SSD performance boost
• Heavy overhead (e.g., global locking)

ØUser-space page cache (TriCache [OSDI’22])
• Efficient user-space SPDK I/O engine
• Multiple threads manage cache without lock
• Message passing between cache mgr. and APPs

……
Kernel space

User Space

Driver

User Space

NVMe SSD
PollingInterrupt

Linux kernel TriCache

SPDK

Page cache Cache mgr. th.

APP APP
Ctx switch Msg passing

Peking University

Preliminary Study
ØPerformance analysis
• Macro-benchmark
• Compare with ideal cases

ØPoor scalability with CPU cores
• Kernel: 36.76% degradation
• TriCache: 32.33% degradation

ØCannot scale with SSDs
• Kernel: 52.54% performance gap
• TriCache: 77.51% performance gap

36.76%

32.33% 77.51%

52.54%

Peking University

Motivation: Heavy Storage Tax
ØRoot cause: host-centric designs
• Both designs exclusively reside on the host

ØLevy heavy storage tax
• CPU tax
• Communication tax
• Interference tax

……
Kernel space

User Space

Driver

User Space

Msg passing

PollingInterrupt

Linux kernel TriCache

SPDK

Page cache Cache mgr. th.

APP APP

NVMe SSD

Ctx switch

Host-centric cache managers

Peking University

Motivation: Heavy Storage Tax
ØRoot cause: host-centric designs
• Both designs exclusively reside on the host

ØCPU tax
• Kernel page cache: locking (18.98%) and heavy I/O engine (21.45%)
• TriCache:

• Dedicate multiple host CPU threads per SSD for cache mgnt.
• Exacerbate as the number of SSDs scales up

• Deprive applications of precious computing resources

……
Kernel space

User Space

Driver

User Space

NVMe SSD

Msg passing

PollingInterrupt

Linux kernel TriCache

SPDK

Page cache Cache mgr. th.

APP APP
Ctx switch

Peking University

Motivation: Heavy Storage Tax
ØRoot cause: host-centric designs
• Both designs exclusively reside on the host

ØCommunication tax
• Kernel page cache: heavy I/O engine
• TriCache:

• Tripartite structure: APP <-> Cache mgr. <-> SSD
• Prolongs communication path
• 77.74% queuing latency due to communication

……
Kernel space

User Space

Driver

User Space

NVMe SSD

Msg passing

PollingInterrupt

Linux kernel TriCache

SPDK

Page cache Cache mgr. th.

APP APP
Ctx switch

77.74%

Tripartite arch.

Peking University

Motivation: Heavy Storage Tax
ØRoot cause: host-centric designs
• Both designs exclusively reside on the host

ØInterference tax
• Host-centric designs cannot detect SSD internal activities (e.g., GC)

• multiple software layers sit between the host-centric manager and the SSD
• Interference between GC and regular I/O requests
• Compromise performance stability

……
Kernel space

User Space

Driver

User Space

Msg passing

PollingInterrupt

Linux kernel TriCache

SPDK

Page cache Cache mgr. th.

APP APP

NVMe SSD

Ctx switch

Peking University

Key insights
ØEmerging computational SSDs
• Multi-core ARM processor (4-16 cores)
• DRAM capacity (4-16GB)
• Process offloaded tasks from host

ØNVMe host memory buffer (HMB) feature
• A DMA-able region in host memory
• Allows SSDs to directly manage data in the region
• Ensure rapid data accessibility for applications
• SSD-controlled page cache with the data cached on the host side

SSD SSD SSD

DRAM HMB region

Host CPU

Offload cache management to CSDs!

Peking University

Our Solution
ØOvercome CPU tax by

üOffloading cache management into CSDs
ØOvercome communication and interference taxes by

üCoordinate software (cache management) and hardware (SSD)

ScalaCache

Peking University

ScalaCache: Outline
ØOverview
ØDesign
ØEvaluation

Peking University

ScalaCache: SW-HW coordination for cache mngt.
ØOverview
• Lightweight: high-performance cache index structure
• Scalability: lockless cache mngt. and resource allocation
• Efficiency and stability: trimmed communication and GC-aware rplcmnt.
•àReduce communication and interference taxes

Remove CPU tax

Peking University

ScalaCache: Outline
ØOverview
ØDesign
ØEvaluation

Peking University

Cache Management Offloading
ØChallenge: cannot directly offload existing cache management
ØObservation: CSD internal FTL mapping similar to cache indexing
ØFusionFTL: consolidates their indirection layers
• Translate LPN to page frame or flash address based on a flag bit
• Simplify redundant address translations

Peking University

Concurrent I/O processing inside CSDs
ØPotential bottleneck: Multiple CSD cores compete for critical resources

throughout the I/O path (e.g., FusionFTL, free page frames, and flash)
ØConcurrent processing model within CSD:
• Resource partitioning: address space, page frames, and flash
• Assigns them to CSD cores as private resources

• Split I/O request based on address space division to exploit each CSD core
• Each core access private resources without contention, which enables lock-

free I/O processing

Removing CPU tax: taxed CPUs are freed up for applications’ use

Peking University

Cache Access on the Host Side
ØOverloading:
• Computing capability of the CSD is still limited
• Processing all requests by CSDs leads to overloading issue

ØGoal: Avoid overloading CSDs and shorten hit path
ØQueueIndex:
• Within each client thread
• Buffer frame address to accelerate cache lookup
• Balance the load between the CSD and the host

Peking University

Coordination between Host and CSDs
ØTrimmed communication:
• By offloading cache mgmt., clients can directly access the cache and flash
• Transform tripartite architecture into bipartite architecture

• Bundle missing pages with discontinuous addr. into a single NVMe cmd.
ØReduced GC interference:
• GC report: share the internal GC state to host
• GC-aware replacement policy to prioritize the reclamation of clean pages

Bipartite arch.

Slashing communication and interference taxes

Peking University

Concurrent cache built on a CSD array
ØGoal: Achieve scalability across multiple CSDs
ØParallel processing model: Organizes multiple CSDs into a CSD array
• Distribute I/O requests to multiple CSDs
• Leverage multiple CSDs to handle requests concurrently
• Aggregate computing power of multiple CSDs to deliver scalable perf.

Peking University

ScalaCache: Outline
ØOverview
ØDesign
ØEvaluation

Peking University

Evaluation: Setup
ØImplementation:
• Build our ScalaCache design based on FEMU emulator

ØPlatform:
• Kernel: traditional page cache implemented in Linux kernel
• TriCache: state-of-the-art user-space cache management
• Hardware: simply offloads cache management into CSDs
• ScalaCache: hardware-software coordinated user-space cache mgmt.

ØReal-world workloads – MSR, FIU, and Tencent block trace

Peking University

Evaluation: Overall
ØBandwidth comparison with fixed 8 host CPU cores
Ø5.12×and 1.95×bandwidth improvement compared to Kernel and Hardware
Ø35.30% and 94.78% bandwidth improvement compared to TriCache which

employs 2 and 6 manager threads (i.e., TriCache-2M and TriCache-6M)
• Frees up taxed CPU for more client th. and benefits from lightweight design

Peking University

Evaluation: Overall
ØBandwidth comparison with fixed 8 client threads
• Relax the number of cores in TriCache (i.e., 8 cores for client threads) while

allocating extra cores as cache manager threads
ØScalaCache still outperforms TriCache (e.g., outperforms 2M8C by 29%)
• More manager threads in TriCache increase the communication cost
• ScalaCache removes this cost

Peking University

Evaluation: Scalability with host CPU cores
ØScalaCache consistently shows improved scalability in all workloads
• E.g., surpasses TriCache-2M by 35.17% in src2

ØDue to lightweight and lockless designs, including
• Lightweight cache management
• Lockless resource allocation framework
• Concurrent I/O processing

Peking University

Evaluation: Tail Latency
ØCompare tail latency in write-intensive workloads
• 11% 99.99th latency reduction compared to TriCache
• Unattainable with host-centric cache manager designs like TriCache

Ø Breakdown:
• Evaluate the tail latency of ScalaCache with and without GC awareness
• E.g., 17.44% 99.9th latency in T1205
• Software-hardware coordinated fashion alleviates GC impact

Peking University

Conclusion
ØChallenges
 Host-centric cache manager designs

Heavy storage taxes: CPU tax, communication tax, and interference tax
ØKey insights
 Cache management offloading and software-hardware coordination
ØScalaCache designs
 Lightweight cache mgmt in CSD + Trimmed communication + GC avoidance

à Successfully reduce heavy storage taxes

Computer Hardware And System Evolution Laboratory

Thanks for attending!
Q&A

USENIX ATC’24

