

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND

Jaehyun Song¹, Bumsuk Kim¹, Minwoo Kwak², Byoungyoung Lee³, Euiseong Seo¹, and Jinkyu Jeong²

Sungkyunkwan University¹
Yonsei University²
Seoul National University³

Serverless Computing

- Serverless computing has gained traction in cloud computing
 - Major cloud vendors adopted serverless computing
 - Developers write functions, each function handles requests from multiple users

Security in Serverless Computing

- Original serverless computing has no security concerns
 - Functions are stateless
 - States of the function disappears after execution
 - Functions run in an ephemeral sandbox
 - Sandbox (i.e., container) provides isolation

Sandbox (Container)

Security in Serverless Computing

- Original serverless computing has no security concerns
 - Functions are <u>stateless</u>
 - States of the function disappears after execution
 - Functions run in an <u>ephemeral sandbox</u>
 - Sandbox (i.e., container) provides isolation
 - Ephemeral sandbox eliminates persistence of any data

Salidbox (Colitaine)	,
f Process	
ļ;	

Sandhay (Container)

Ephemeral

Sandbox (Container)

Security in Serverless Computing

- Original serverless computing has **no security concerns**
 - Functions are <u>stateless</u>
 - States of the function disappears after execution
 - Functions run in an ephemeral sandbox
 - Sandbox (i.e., container) provides isolation
 - Ephemeral sandbox eliminates persistence of any data
- Cold-start overhead degrades performance

Sandbox (Container)

f Process

Container Reuse in Serverless Computing

- Container reuse is a prevalent technique to mitigate the cold-start overhead
- However, container reuse raises a security problem
 - Quasi-persistence [1, 2] of data
 - Attack opportunities of data exfiltration, rootkit, etc.

```
from code import func
...
do
    args = recv()
    result = func(args)
    send(result)
while keepalive == True
...
```

Function Handler

^[1] Mohamed Alzayat, Jonathan Mace, Peter Druschel, and Deepak Garg. Groundhog: Efficient request isolation in faas. In *Proceedings of the Eighteenth European Conference on Computer Systems*, pages 398–415, 2023. [2] Datta, Pubali, et al. "{ALASTOR}: Reconstructing the provenance of serverless intrusions." *31st USENIX Security Symposium (USENIX Security 22)*. 2022.

Container Reuse in Serverless Computing

- Container reuse is a prevalent technique to mitigate the cold-start overhead
- However, container reuse raises a security problem
 - Quasi-persistence [1, 2] of data
 - Attack opportunities of data exfiltration, rootkit, etc.

```
from code import func
...
do
    args = recv()
    result = func(args)
    send(result)
while keepalive == True
...
```

Function Handler

[1] Mohamed Alzayat, Jonathan Mace, Peter Druschel, and Deepak Garg. Groundhog: Efficient request isolation in faas. In *Proceedings of the Eighteenth European Conference on Computer Systems*, pages 398–415, 2023. [2] Datta, Pubali, et al. "{ALASTOR}: Reconstructing the provenance of serverless intrusions." *31st USENIX Security Symposium (USENIX Security 22)*. 2022.

Container Reuse in Serverless Computing

- Container reuse is a prevalent technique to mitigate the cold-start overhead
- However, container reuse raises a security problem
 - Quasi-persistence [1, 2] of data
 - Attack opportunities of data exfiltration, rootkit, etc.

```
from code import func
...
do
    args = recv()
    result = func(args)
    send(result)
while keepalive == True
...
```


^[1] Mohamed Alzayat, Jonathan Mace, Peter Druschel, and Deepak Garg. Groundhog: Efficient request isolation in faas. In *Proceedings of the Eighteenth European Conference on Computer Systems*, pages 398–415, 2023. [2] Datta, Pubali, et al. "{ALASTOR}: Reconstructing the provenance of serverless intrusions." *31st USENIX Security Symposium (USENIX Security 22)*. 2022.

Alleviating Security Issues #1 – Fork

- fork() removes memory persistence through process isolation for each request
 - The function handler process forks a child process to handle each function request

```
from code import func
...
do
    args = recv()
    child = fork()
    if (child == 0):
        result = func(args)
        exit(result)
    else:
        wait(child, &result)
    send(result)
while keepalive == True
...
```


Function Handler

Alleviating Security Issues #1 – Fork

- fork() removes memory persistence through process isolation for each request
 - The function handler process forks a child process to handle each function request

```
from code import func
...
do
    args = recv()
    child = fork()
    if (child == 0):
        result = func(args)
        exit(result)
    else:
        wait(child, &result)
    send(result)
while keepalive == True
...
```

Function Handler

No attacks made effective!

Alleviating Security Issues #2 - Checkpoint/Restore

- Groundhog (GH) [1] removes memory persistence by using checkpoint/restore
 - Checkpoint a function handler process before handling any function request
 - Restore a function handler process to its initial state after handling a function request

```
from code import func
...
do
    checkpoint()
    args = recv()
    result = func(args)
    send(result)
    restore()
while keepalive == True
...
```


Function Handler

[1] Mohamed Alzayat, Jonathan Mace, Peter Druschel, and Deepak Garg. Groundhog: Efficient request isolation in faas. In Proceedings of the Eighteenth European Conference on Computer Systems, pages 398–415, 2023.

Alleviating Security Issues #2 - Checkpoint/Restore

- Groundhog (GH) [1] removes memory persistence by using checkpoint/restore
 - Checkpoint a function handler process before handling any function request
 - Restore a function handler process to its initial state after handling a function request

```
from code import func
...
do
    checkpoint()
    args = recv()
    result = func(args)
    send(result)
    restore()
while keepalive == True
...
```

Function Handler

No attacks made effective!

[1] Mohamed Alzayat, Jonathan Mace, Peter Druschel, and Deepak Garg. Groundhog: Efficient request isolation in faas. In Proceedings of the Eighteenth European Conference on Computer Systems, pages 398–415, 2023.

- Problem #1: memory space overhead
 - GH copies all data to the snapshot to recover initial state
 - The repeated execution allows further optimization opportunities

- Problem #2: repeated page fault overheads
 - GH recovers modified data after request handling
 - Tracking modified data requires page faults (Linux's soft-dirty feature)

- Problem #2: repeated page fault overheads
 - GH recovers modified data after request handling
 - Tracking modified data requires page faults (Linux's soft-dirty feature)

- Problem #2: repeated page fault overheads
 - GH recovers modified data after request handling
 - Tracking modified data requires page faults (Linux's soft-dirty feature)

- Problem #2: repeated page fault overheads
 - GH recovers modified data after request handling
 - Tracking modified data requires page faults (Linux's soft-dirty feature)

- Problem #2: repeated page fault overheads
 - GH recovers modified data after request handling
 - Tracking modified data requires page faults (Linux's soft-dirty feature)

- Problem #2: repeated page fault overheads
 - GH recovers modified data after request handling
 - Tracking modified data requires page faults (Linux's soft-dirty feature)
 - fork() causes copy-on-write page faults for modified data

Container

- Problem #2: repeated page fault overheads
 - GH recovers modified data after request handling
 - Tracking modified data requires page faults (Linux's soft-dirty feature)
 - fork() causes copy-on-write page faults for modified data

Container

- Problem #2: repeated page fault overheads
 - GH recovers modified data after request handling
 - Tracking modified data requires page faults (Linux's soft-dirty feature)
 - fork() causes copy-on-write page faults for modified data

Container

- Problem #2: repeated page fault overheads
 - GH recovers modified data after request handling
 - Tracking modified data requires page faults (Linux's soft-dirty feature)
 - fork() causes copy-on-write page faults for modified data

Container

- Problem #2: repeated page fault overheads
 - GH recovers modified data after request handling
 - Tracking modified data requires page faults (Linux's soft-dirty feature)
 - fork() causes copy-on-write page faults for modified data

Container

- Problem #2: repeated page fault overheads
 - GH recovers modified data after request handling
 - Tracking modified data requires page faults (Linux's soft-dirty feature)
 - fork() causes copy-on-write page faults for modified data
 - New mmap()s after snapshot/fork causes overheads (page allocation + page faults)
 - → These overheads repeat on every function request handling

Container

- Problem #2: repeated page fault overheads
 - GH recovers modified data after request handling
 - Tracking modified data requires page faults (Linux's soft-dirty feature)
 - fork() causes copy-on-write page faults for modified data
 - New mmap()s after snapshot/fork causes overheads (page allocation + page faults)
 - → These overheads repeat on every function request handling

Container

- **Problem #3**: no consideration of **file persistence**
 - Both schemes leave files after function executions
 - Files can contain privacy-sensitive data
 - Remaining files can be leaked or maliciously used

Our Approach: REWIND

- Goal: performance and memory efficient snapshot/restore
 - Elimination of memory and file persistence
 - Minimize memory usage for snapshot and reduce page faults
 - Key idea: exploiting repeated handling of function requests

Challenges:

- How does REWIND put only the original data of dirty pages to the snapshot?
- How does REWIND track pages to dirty without page faults?

- snapshot()
 - Take a snapshot of each page only when a page is about to be dirtied
 - Copy-on-write protection + buddy page table

Container

- snapshot()
 - Take a snapshot of each page only when a page is about to be dirtied
 - Copy-on-write protection + *buddy page table*

Container

- snapshot()
 - Take a snapshot of each page only when a page is about to be dirtied
 - Copy-on-write protection + buddy page table

Container

snapshot()

- Take a snapshot of each page only when a page is about to be dirtied
 - Copy-on-write protection + *buddy page table*
- For repeated dirty pages, keep pages duplicated (snapshot + original)
- For zero pages, do NOT maintain in a snapshot to save memory

Container

snapshot()

- Take a snapshot of each page only when a page is about to be dirtied
 - Copy-on-write protection + buddy page table
- For repeated dirty pages, keep pages duplicated (snapshot + original)
- For zero pages, do NOT maintain in a snapshot to save memory
- Keep snapshot of files

- rewind()
 - Restore dirty pages to original ones
 - Reset pages to zero if necessary

Container

- rewind()
 - Restore dirty pages to original ones
 - Reset pages to zero if necessary
 - Delete memory mappings mapped after snapshot
 - Keep pages and related metadata to accelerate mmap()s in next function execution

Container

- rewind()
 - Restore dirty pages to original ones
 - Reset pages to zero if necessary
 - Delete memory mappings mapped after snapshot
 - Keep pages and related metadata to accelerate mmap()s in next function execution

Container

- rewind()
 - Restore dirty pages to original ones
 - Reset pages to zero if necessary
 - Delete memory mappings mapped after snapshot
 - Keep pages and related metadata to accelerate mmap()s in next function execution

Container

- rewind()
 - Restore dirty pages to original ones
 - Reset pages to zero if necessary
 - Delete memory mappings mapped after snapshot
 - Keep pages and related metadata to accelerate mmap()s in next function execution

Container

- rewind()
 - Restore dirty pages to original ones
 - Reset pages to zero if necessary
 - Delete memory mappings mapped after snapshot
 - Keep pages and related metadata to accelerate mmap()s in next function execution
 - Restore files to the snapshot

Container

- Efficient kernel-level snapshot/rewind
 - Introduce buddy page table for efficient snapshot management

state: snapshot

- Efficient kernel-level snapshot/rewind
 - Introduce buddy page table for efficient snapshot management
 - Copy original page table to buddy page table when snapshotting
 - Enable copy-on-write protection to track dirty pages
 - Copy a page during page fault handling to the snapshot

state: execution

- Efficient kernel-level snapshot/rewind
 - Introduce buddy page table for efficient snapshot management
 - Copy original page table to buddy page table when snapshotting
 - Enable copy-on-write protection to track dirty pages
 - Copy a page during page fault handling to the snapshot
 - Zero (anonymous) pages allocated after snapshot are not copied

state: execution

Anonymous pages are initialized to zero at allocation

- Efficient kernel-level snapshot/rewind
 - Introduce buddy page table for efficient snapshot management
 - Copy original page table to buddy page table when snapshotting
 - Enable copy-on-write protection to track dirty pages
 - Copy a page during page fault handling to the snapshot
 - Zero (anonymous) pages allocated after snapshot are not copied

state: execution

Anonymous pages are initialized to zero at allocation

- Efficient kernel-level snapshot/rewind
 - Introduce buddy page table for efficient snapshot management
 - Copy original page table to buddy page table when snapshotting
 - Enable copy-on-write protection to track dirty pages
 - Copy a page during page fault handling to the snapshot
 - Zero (anonymous) pages allocated after snapshot are not copied
 - Rewind dirty pages to the snapshot
 - Copy back snapshot pages to restore to initial state
 - Allow write permission
 - → No page faults on repeated execution

state: rewind

- Efficient kernel-level snapshot/rewind
 - Introduce buddy page table for efficient snapshot management
 - Copy original page table to buddy page table when snapshotting
 - Enable copy-on-write protection to track dirty pages
 - Copy a page during page fault handling to the snapshot
 - Zero (anonymous) pages allocated after snapshot are not copied
 - Rewind dirty pages to the snapshot
 - Copy back snapshot pages to restore to initial state
 - Allow write permission
 - → No page faults on repeated execution
 - Clear anonymous pages allocated after snapshot to zero

state: rewind

^{*} X indicates don't care

- Efficient kernel-level snapshot/rewind
 - Introduce buddy page table for efficient snapshot management
 - Copy original page table to buddy page table when snapshotting
 - Enable copy-on-write protection to track dirty pages
 - Copy a page during page fault handling to the snapshot
 - Zero (anonymous) pages allocated after snapshot are not copied
 - Rewind dirty pages to the snapshot
 - Copy back snapshot pages to restore to initial state
 - Allow write permission
 - → No page faults on repeated execution
 - Clear anonymous pages allocated after snapshot to zero

state: execution

^{*} X indicates don't care

- Additional memory area can be allocated and used after snapshot
 - mmap() followed by page fault and page allocation
 - These overheads repeat on every function request handling

- Additional memory area can be allocated and used after snapshot
 - mmap() followed by page fault and page allocation
 - These overheads repeat on every function request handling
- Memory area reuse minimizes overhead from page faults of new mmaps

- Additional memory area can be allocated and used after snapshot
 - mmap() followed by page fault and page allocation
 - These overheads repeat on every function request handling

- Memory area reuse minimizes overhead from page faults of new mmaps
 - Pages, page tables and associated metadata are reused in the next function execution

Container

- Additional memory area can be allocated and used after snapshot
 - mmap() followed by page fault and page allocation
 - These overheads repeat on every function request handling

- Memory area reuse minimizes overhead from page faults of new mmaps
 - Pages, page tables and associated metadata are reused in the next function execution
 - Pages are cleared to zero to prevent data leakage

- Additional memory area can be allocated and used after snapshot
 - mmap() followed by page fault and page allocation
 - These overheads repeat on every function request handling
- Memory area reuse minimizes overhead from page faults of new mmaps
 - Pages, page tables and associated metadata are reused in the next function execution
 - Pages are cleared to zero to prevent data leakage

- Additional memory area can be allocated and used after snapshot
 - mmap() followed by page fault and page allocation
 - These overheads repeat on every function request handling

- Memory area reuse minimizes overhead from page faults of new mmaps
 - Pages, page tables and associated metadata are reused in the next function execution
 - Pages are cleared to zero to prevent data leakage
 - Reuse is limited to anonymous memory

Good performance: no page faults!

Remove File Persistence

- File persistence is removed by rewinding the file system from the snapshot
 - User-level implementation on OverlayFS (file system used by Docker)

Remove File Persistence

- File persistence is removed by rewinding the file system from the snapshot
 - User-level implementation on OverlayFS (file system used by Docker)

Remove File Persistence

- File persistence is removed by rewinding the file system from the snapshot
 - User-level implementation on OverlayFS (file system used by Docker)

Evaluation

- Key questions:
 - Does REWIND effectively save memory size of the snapshot?
 - How much do the snapshot/rewind operations impact function execution time?
 - How much does REWIND accelerate function execution time?
- Comparison with
 - Baseline execute function with container reuse
 - Fork employ the fork() system call on the baseline
 - Groundhog (GH) create a snapshot of a function process and restore to the snapshot

Microbenchmark

- REWIND shows less overheads than Fork and GH
 - 1:1 ratio of random read/write
 - Increase memory working set size 128MB to 1GB

Function Latency

Float

- REWIND shows better performance even than the baseline
 - Real workloads FunctionBench [1]
 - Break down the latency into function time and restore time

VMA reuse minimizes page faults and allocation overheads!

-8%

-19%

Linpack

Restore

0.14 0.12 0.10 0.08 0.06 0.04 0.02 0.02 0.02 0.02 0.08 0.04 0.02 0.04 0.02 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.06

Only REWIND enforces the isolation to the file persistence!

[1] Jeongchul Kim and Kyungyong Lee. Functionbench: A suite of workloads for serverless cloud function service. In 2019 IEEE 12th International Conference on Cloud Computing (CLOUD), pages 502–504. IEEE, 2019.

Cham

PvAES

MatMul

Function

Memory Consumption

- REWIND consumes lower memory than Fork and GH
 - Real workloads FunctionBench
 - Measure peak memory usage (RSS)

REWIND makes a copy of only dirty data in the snapshot → Low memory usage

Conclusion

- REWIND: secure, fast, and resource-efficient serverless platform
 - Security: remove quasi-persistence of data in containers
 - Performance: provide efficient snapshot/rewind and reuse memory for next run
 - Resource usage: do **not copy all data** to the snapshot

REWIND is available at:

https://github.com/s3yonsei/rewind_serverless

Thank you!

Backup