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Serverless Computing
• Serverless computing has gained traction in cloud computing
• Major cloud vendors adopted serverless computing
• Developers write functions, each function handles requests from multiple users
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Security in Serverless Computing
• Original serverless computing has no security concerns
• Functions are stateless
• States of the function disappears after execution

• Functions run in an ephemeral sandbox
• Sandbox (i.e., container) provides isolation
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Security in Serverless Computing
• Original serverless computing has no security concerns
• Functions are stateless
• States of the function disappears after execution

• Functions run in an ephemeral sandbox
• Sandbox (i.e., container) provides isolation
• Ephemeral sandbox eliminates persistence of any data
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Security in Serverless Computing
• Original serverless computing has no security concerns
• Functions are stateless
• States of the function disappears after execution

• Functions run in an ephemeral sandbox
• Sandbox (i.e., container) provides isolation
• Ephemeral sandbox eliminates persistence of any data

• Cold-start overhead degrades performance
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Container Reuse in Serverless Computing
• Container reuse is a prevalent technique to mitigate the cold-start overhead
• However, container reuse raises a security problem
• Quasi-persistence [1, 2] of data
• Attack opportunities of data exfiltration, rootkit, etc.
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Container Reuse in Serverless Computing
• Container reuse is a prevalent technique to mitigate the cold-start overhead
• However, container reuse raises a security problem
• Quasi-persistence [1, 2] of data
• Attack opportunities of data exfiltration, rootkit, etc.
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Container Reuse in Serverless Computing
• Container reuse is a prevalent technique to mitigate the cold-start overhead
• However, container reuse raises a security problem
• Quasi-persistence [1, 2] of data
• Attack opportunities of data exfiltration, rootkit, etc.
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Alleviating Security Issues #1 – Fork
• fork() removes memory persistence through process isolation for each request
• The function handler process forks a child process to handle each function request
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Alleviating Security Issues #1 – Fork
• fork() removes memory persistence through process isolation for each request
• The function handler process forks a child process to handle each function request
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No attacks made effective!
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Alleviating Security Issues #2 – Checkpoint/Restore
• Groundhog (GH) [1] removes memory persistence by using checkpoint/restore
• Checkpoint a function handler process before handling any function request
• Restore a function handler process to its initial state after handling a function request
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Alleviating Security Issues #2 – Checkpoint/Restore
• Groundhog (GH) [1] removes memory persistence by using checkpoint/restore
• Checkpoint a function handler process before handling any function request
• Restore a function handler process to its initial state after handling a function request
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Problems of Previous Approaches
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• No consideration for the repeated execution of function request

• Problem #1: memory space overhead
• GH copies all data to the snapshot
     to recover initial state
• The repeated execution allows further
    optimization opportunities
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• No consideration for the repeated execution of function request

• Problem #2: repeated page fault overheads
• GH recovers modified data after request handling

• Tracking modified data requires page faults
(Linux's soft-dirty feature)

Problems of Previous Approaches
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• No consideration for the repeated execution of function request
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• No consideration for the repeated execution of function request

• Problem #2: repeated page fault overheads
• GH recovers modified data after request handling

• Tracking modified data requires page faults
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Problems of Previous Approaches
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• No consideration for the repeated execution of function request

• Problem #2: repeated page fault overheads
• GH recovers modified data after request handling

• Tracking modified data requires page faults
(Linux's soft-dirty feature)

• fork() causes copy-on-write page faults
for modified data

Problems of Previous Approaches
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• No consideration for the repeated execution of function request
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• No consideration for the repeated execution of function request
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• No consideration for the repeated execution of function request

• Problem #2: repeated page fault overheads
• GH recovers modified data after request handling

• Tracking modified data requires page faults
(Linux's soft-dirty feature)

• fork() causes copy-on-write page faults
for modified data

• New mmap()s after snapshot/fork causes overheads 
(page allocation + page faults)

àThese overheads repeat on
every function request handling

Problems of Previous Approaches
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Problems of Previous Approaches
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• Problem #3: no consideration of file persistence
• Both schemes leave files after function executions
• Files can contain privacy-sensitive data
• Remaining files can be leaked or maliciously used

File System file persistence
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Our Approach: REWIND
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• Goal: performance and memory efficient snapshot/restore
• Elimination of memory and file persistence
• Minimize memory usage for snapshot and reduce page faults
• Key idea: exploiting repeated handling of function requests

• Challenges:
• How does REWIND put only the original data of dirty pages to the snapshot?
• How does REWIND track pages to dirty without page faults?



A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Snapshot/Rewind Operations
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• snapshot()
• Take a snapshot of each page only when a page is 

about to be dirtied 
• Copy-on-write protection + buddy page table
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Snapshot/Rewind Operations
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• snapshot()
• Take a snapshot of each page only when a page is 

about to be dirtied 
• Copy-on-write protection + buddy page table
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Snapshot/Rewind Operations
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• snapshot()
• Take a snapshot of each page only when a page is 

about to be dirtied 
• Copy-on-write protection + buddy page table
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Snapshot/Rewind Operations

31

• snapshot()
• Take a snapshot of each page only when a page is 

about to be dirtied 
• Copy-on-write protection + buddy page table

• For repeated dirty pages, keep pages duplicated 
(snapshot + original)

• For zero pages, do NOT maintain in a snapshot to save 
memory
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Snapshot/Rewind Operations
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• snapshot()
• Take a snapshot of each page only when a page is 

about to be dirtied 
• Copy-on-write protection + buddy page table

• For repeated dirty pages, keep pages duplicated 
(snapshot + original)

• For zero pages, do NOT maintain in a snapshot to save 
memory
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Snapshot/Rewind Operations
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• rewind()
• Restore dirty pages to original ones

• Reset pages to zero if necessary f Process
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Snapshot/Rewind Operations

34

• rewind()
• Restore dirty pages to original ones

• Reset pages to zero if necessary

• Delete memory mappings mapped after snapshot
• Keep pages and related metadata to accelerate mmap()s 

in next function execution
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Snapshot/Rewind Operations

35

• rewind()
• Restore dirty pages to original ones

• Reset pages to zero if necessary

• Delete memory mappings mapped after snapshot
• Keep pages and related metadata to accelerate mmap()s 

in next function execution
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Snapshot/Rewind Operations
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• rewind()
• Restore dirty pages to original ones

• Reset pages to zero if necessary

• Delete memory mappings mapped after snapshot
• Keep pages and related metadata to accelerate mmap()s 

in next function execution
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Snapshot/Rewind Operations
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• rewind()
• Restore dirty pages to original ones

• Reset pages to zero if necessary

• Delete memory mappings mapped after snapshot
• Keep pages and related metadata to accelerate mmap()s 

in next function execution
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Snapshot/Rewind Operations
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• rewind()
• Restore dirty pages to original ones

• Reset pages to zero if necessary

• Delete memory mappings mapped after snapshot
• Keep pages and related metadata to accelerate mmap()s 

in next function execution

• Restore files to the snapshot
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state: snapshot• Efficient kernel-level snapshot/rewind
• Introduce buddy page table for efficient snapshot management

• Copy original page table to buddy page table when snapshotting
• Enable copy-on-write protection to track dirty pages

Snapshot/Rewind Operations
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copy
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state: execution• Efficient kernel-level snapshot/rewind
• Introduce buddy page table for efficient snapshot management

• Copy original page table to buddy page table when snapshotting
• Enable copy-on-write protection to track dirty pages
• Copy a page during page fault handling to the snapshot

Snapshot/Rewind Operations
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state: execution• Efficient kernel-level snapshot/rewind
• Introduce buddy page table for efficient snapshot management

• Copy original page table to buddy page table when snapshotting
• Enable copy-on-write protection to track dirty pages
• Copy a page during page fault handling to the snapshot

• Zero (anonymous) pages allocated after snapshot
are not copied

Snapshot/Rewind Operations
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Anonymous pages are
initialized to zero at allocation * X indicates don't care
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state: execution• Efficient kernel-level snapshot/rewind
• Introduce buddy page table for efficient snapshot management

• Copy original page table to buddy page table when snapshotting
• Enable copy-on-write protection to track dirty pages
• Copy a page during page fault handling to the snapshot

• Zero (anonymous) pages allocated after snapshot
are not copied

Snapshot/Rewind Operations
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state: rewind• Efficient kernel-level snapshot/rewind
• Introduce buddy page table for efficient snapshot management

• Copy original page table to buddy page table when snapshotting
• Enable copy-on-write protection to track dirty pages
• Copy a page during page fault handling to the snapshot

• Zero (anonymous) pages allocated after snapshot
are not copied

• Rewind dirty pages to the snapshot
• Copy back snapshot pages to restore to initial state

• Allow write permission
àNo page faults on repeated execution

Snapshot/Rewind Operations
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state: rewind• Efficient kernel-level snapshot/rewind
• Introduce buddy page table for efficient snapshot management

• Copy original page table to buddy page table when snapshotting
• Enable copy-on-write protection to track dirty pages
• Copy a page during page fault handling to the snapshot

• Zero (anonymous) pages allocated after snapshot
are not copied

• Rewind dirty pages to the snapshot
• Copy back snapshot pages to restore to initial state

• Allow write permission
àNo page faults on repeated execution

• Clear anonymous pages allocated after snapshot to zero

Snapshot/Rewind Operations
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state: execution• Efficient kernel-level snapshot/rewind
• Introduce buddy page table for efficient snapshot management

• Copy original page table to buddy page table when snapshotting
• Enable copy-on-write protection to track dirty pages
• Copy a page during page fault handling to the snapshot

• Zero (anonymous) pages allocated after snapshot
are not copied

• Rewind dirty pages to the snapshot
• Copy back snapshot pages to restore to initial state

• Allow write permission
àNo page faults on repeated execution

• Clear anonymous pages allocated after snapshot to zero

Snapshot/Rewind Operations
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* X indicates don't care

No page faults!
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• Additional memory area can be allocated and used after snapshot
• mmap() followed by page fault and page allocation
• These overheads repeat on every  function request handling

Memory Area Reuse

46

f Process
[ro]w f code
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...

[rw]o f data'

[rw]o mmap'

Container

Reuse Area



A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

• Additional memory area can be allocated and used after snapshot
• mmap() followed by page fault and page allocation
• These overheads repeat on every  function request handling

Memory Area Reuse

47

f Process
[ro]w f code

f(arg)

[rw]o f data

[rw]o mmap

...
Reuse Area

[rw]o mmap[rw]o mmap'

[rw]o f data'

[rw]o mmap' page faults

Container

• Memory area reuse minimizes overhead 
from page faults of new mmaps
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• Additional memory area can be allocated and used after snapshot
• mmap() followed by page fault and page allocation
• These overheads repeat on every  function request handling

Memory Area Reuse
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f Process
[ro]w f code

move

[rw]o f data

[rw]o mmap

...
Reuse Area

[rw]o mmap[rw]o mmap'

[rw]o f data'

[rw]o mmap'

Container

• Memory area reuse minimizes overhead 
from page faults of new mmaps
• Pages, page tables and associated metadata are 

reused in the next function execution
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• Additional memory area can be allocated and used after snapshot
• mmap() followed by page fault and page allocation
• These overheads repeat on every  function request handling

Memory Area Reuse
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f Process
[ro]w f code clear

[rw]o f data

[rw]o mmap

...
Reuse Area

[rw]o mmap

[rw]o f data'

[rw]o mmap'

Container

• Memory area reuse minimizes overhead 
from page faults of new mmaps
• Pages, page tables and associated metadata are 

reused in the next function execution
• Pages are cleared to zero to prevent data leakage
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• Additional memory area can be allocated and used after snapshot
• mmap() followed by page fault and page allocation
• These overheads repeat on every  function request handling

Memory Area Reuse
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f Process
[ro]w f code

move

f(arg)

[rw]o f data

[rw]o mmap

...
Reuse Area

[rw]o mmap

[rw]o f data'

[rw]o mmap'

Container

• Memory area reuse minimizes overhead 
from page faults of new mmaps
• Pages, page tables and associated metadata are 

reused in the next function execution
• Pages are cleared to zero to prevent data leakage
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• Additional memory area can be allocated and used after snapshot
• mmap() followed by page fault and page allocation
• These overheads repeat on every  function request handling

Memory Area Reuse

51

f Process
[ro]w f code

f(arg)

[rw]o f data

[rw]o mmap

...
Reuse Area

[rw]o mmap[rw]o mmap'

[rw]o f data'

[rw]o mmap'

Container

Good performance: no page faults!

• Memory area reuse minimizes overhead 
from page faults of new mmaps
• Pages, page tables and associated metadata are 

reused in the next function execution
• Pages are cleared to zero to prevent data leakage
• Reuse is limited to anonymous memory
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Remove File Persistence
• File persistence is removed by rewinding the file system from the snapshot
• User-level implementation on OverlayFS (file system used by Docker)

52

Docker REWIND

update create

Lower File System

Upper File System
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Merged File System
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Remove File Persistence
• File persistence is removed by rewinding the file system from the snapshot
• User-level implementation on OverlayFS (file system used by Docker)
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Docker REWIND

update create
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Remove File Persistence
• File persistence is removed by rewinding the file system from the snapshot
• User-level implementation on OverlayFS (file system used by Docker)
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Docker REWIND

update create

Lower File System
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Merged File System
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Evaluation
• Key questions:
• Does REWIND effectively save memory size of the snapshot? 
• How much do the snapshot/rewind operations impact function execution time?

• How much does REWIND accelerate function execution time?

• Comparison with
• Baseline – execute function with container reuse
• Fork – employ the fork() system call on the baseline
• Groundhog (GH) – create a snapshot of a function process and restore to the snapshot

55

[1] Jeongchul Kim and Kyungyong Lee. Functionbench: A suite of workloads for serverless cloud function service. In 2019 IEEE 12th International Conference on Cloud Computing (CLOUD), pages 502–504. IEEE, 2019. 
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Microbenchmark

56

• REWIND shows less overheads than Fork and GH
• 1:1 ratio of random read/write
• Increase memory working set size 128MB to 1GB

103x

114x
108x

106x

87x

97x
91x

89x

15x
17x 16x 16x

Copy of only snapshot data to dirty during rewind()
→ short restore time

No page faults during function execution
→ good function time



A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Function Latency

57

• REWIND shows better performance even than the baseline
• Real workloads – FunctionBench [1]
• Break down the latency into function time and restore time

[1] Jeongchul Kim and Kyungyong Lee. Functionbench: A suite of workloads for serverless cloud function service. In 2019 IEEE 12th International Conference on Cloud Computing (CLOUD), pages 502–504. IEEE, 2019. 

-19% -8%

VMA reuse minimizes page faults and allocation overheads! Only REWIND enforces the isolation to the file persistence!

X means no results
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Memory Consumption

58

• REWIND consumes lower memory than Fork and GH
• Real workloads – FunctionBench
• Measure peak memory usage (RSS)

22% 63%

115% 200% X means no results

REWIND makes a copy of only dirty data in the snapshot → Low memory usage 

13% 14%
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Conclusion
• REWIND: secure, fast, and resource-efficient serverless platform
• Security: remove quasi-persistence of data in containers
• Performance: provide efficient snapshot/rewind and reuse memory for next run
• Resource usage: do not copy all data to the snapshot

59

REWIND is available at:
https://github.com/s3yonsei/rewind_serverless

Thank you!

https://github.com/s3yonsei/rewind_serverless
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Backup
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