
A Secure, Fast, and Resource-Efficient
Serverless Platform with Function REWIND

Jaehyun Song¹, Bumsuk Kim1, Minwoo Kwak2,
Byoungyoung Lee3, Euiseong Seo1, and Jinkyu Jeong2

Sungkyunkwan University1

Yonsei University2

Seoul National University3

1

USENIX ATC '24

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Serverless Computing
• Serverless computing has gained traction in cloud computing
• Major cloud vendors adopted serverless computing
• Developers write functions, each function handles requests from multiple users

2

Function f
f(arg C)

result C

f(arg A)

result A

f(arg B) result B

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Security in Serverless Computing
• Original serverless computing has no security concerns
• Functions are stateless
• States of the function disappears after execution

• Functions run in an ephemeral sandbox
• Sandbox (i.e., container) provides isolation

3

f(arg A)

result A

Sandbox (Container)

f(arg B)

result B

Sandbox (Container)

Isolated

f Code
f Data'

...

f Data'

f Process

f Code

User-private Data

f Data

...

f Data'

f Process

...User-private Data

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Security in Serverless Computing
• Original serverless computing has no security concerns
• Functions are stateless
• States of the function disappears after execution

• Functions run in an ephemeral sandbox
• Sandbox (i.e., container) provides isolation
• Ephemeral sandbox eliminates persistence of any data

4

Ephemeral

Sandbox (Container)

Sandbox (Container)

f Process

f Process

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Security in Serverless Computing
• Original serverless computing has no security concerns
• Functions are stateless
• States of the function disappears after execution

• Functions run in an ephemeral sandbox
• Sandbox (i.e., container) provides isolation
• Ephemeral sandbox eliminates persistence of any data

• Cold-start overhead degrades performance

5

f(attack)

result

Sandbox (Container)

f(arg A)

result A

Sandbox (Container)

Isolated

f Code
f Data'

...

f Data'

f Process

f Code

User-private Data

f Data

...

f Data'

f Process

...

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Container Reuse in Serverless Computing
• Container reuse is a prevalent technique to mitigate the cold-start overhead
• However, container reuse raises a security problem
• Quasi-persistence [1, 2] of data
• Attack opportunities of data exfiltration, rootkit, etc.

6

[1] Mohamed Alzayat, Jonathan Mace, Peter Druschel, and Deepak Garg. Groundhog: Efficient request isolation in faas. In Proceedings of the Eighteenth European Conference on Computer Systems, pages 398–415, 2023.
[2] Datta, Pubali, et al. "{ALASTOR}: Reconstructing the provenance of serverless intrusions." 31st USENIX Security Symposium (USENIX Security 22). 2022.

Function Handler

from code import func
...
do

args = recv()
result = func(args)
send(result)

while keepalive == True
...

f(arg A)

result A

Container

f Code
f Data'

...

f Data'

f Process

...User-private Data

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Container Reuse in Serverless Computing
• Container reuse is a prevalent technique to mitigate the cold-start overhead
• However, container reuse raises a security problem
• Quasi-persistence [1, 2] of data
• Attack opportunities of data exfiltration, rootkit, etc.

7

[1] Mohamed Alzayat, Jonathan Mace, Peter Druschel, and Deepak Garg. Groundhog: Efficient request isolation in faas. In Proceedings of the Eighteenth European Conference on Computer Systems, pages 398–415, 2023.
[2] Datta, Pubali, et al. "{ALASTOR}: Reconstructing the provenance of serverless intrusions." 31st USENIX Security Symposium (USENIX Security 22). 2022.

Function Handler

from code import func
...
do

args = recv()
result = func(args)
send(result)

while keepalive == True
...

f(attack)

result
(data exfiltration)

Container

f Code
f Data'

...

f Data'

f Process

...User-private Data

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Container Reuse in Serverless Computing
• Container reuse is a prevalent technique to mitigate the cold-start overhead
• However, container reuse raises a security problem
• Quasi-persistence [1, 2] of data
• Attack opportunities of data exfiltration, rootkit, etc.

8

[1] Mohamed Alzayat, Jonathan Mace, Peter Druschel, and Deepak Garg. Groundhog: Efficient request isolation in faas. In Proceedings of the Eighteenth European Conference on Computer Systems, pages 398–415, 2023.
[2] Datta, Pubali, et al. "{ALASTOR}: Reconstructing the provenance of serverless intrusions." 31st USENIX Security Symposium (USENIX Security 22). 2022.

Function Handler

from code import func
...
do

args = recv()
result = func(args)
send(result)

while keepalive == True
...

f(arg A)

Container

f Code
f Data'

...

f Data'

f Process

...User-private Data result A

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Alleviating Security Issues #1 – Fork
• fork() removes memory persistence through process isolation for each request
• The function handler process forks a child process to handle each function request

9

Function Handler

from code import func
...
do

args = recv()
child = fork()
if (child == 0):

result = func(args)
exit(result)

else:
wait(child, &result)

send(result)
while keepalive == True
...

f(arg A)

result A

Container

f Data'
...

f Process
f Code
f Data

...

Handler Process

fork()

... ...
f Code
f Data'

User-private Data

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Alleviating Security Issues #1 – Fork
• fork() removes memory persistence through process isolation for each request
• The function handler process forks a child process to handle each function request

10

No attacks made effective!
Function Handler

from code import func
...
do

args = recv()
child = fork()
if (child == 0):

result = func(args)
exit(result)

else:
wait(child, &result)

send(result)
while keepalive == True
...

f(attack)

result

Container

f Data'
...

f Process
f Code
f Data

...

Handler Process

fork()

... ...
f Code
f Data'

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Alleviating Security Issues #2 – Checkpoint/Restore
• Groundhog (GH) [1] removes memory persistence by using checkpoint/restore
• Checkpoint a function handler process before handling any function request
• Restore a function handler process to its initial state after handling a function request

11

[1] Mohamed Alzayat, Jonathan Mace, Peter Druschel, and Deepak Garg. Groundhog: Efficient request isolation in faas. In Proceedings of the Eighteenth European Conference on Computer Systems, pages 398–415, 2023.

Function Handler

from code import func
...
do

checkpoint()
args = recv()
result = func(args)
send(result)
restore()

while keepalive == True
...

f(arg A)

result A

Container

f Data'
...

f Process
f Code
f Data

...

snapshot

restore

... ...
f Code
f Data'

User-private Data

checkpoint

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Alleviating Security Issues #2 – Checkpoint/Restore
• Groundhog (GH) [1] removes memory persistence by using checkpoint/restore
• Checkpoint a function handler process before handling any function request
• Restore a function handler process to its initial state after handling a function request

12

[1] Mohamed Alzayat, Jonathan Mace, Peter Druschel, and Deepak Garg. Groundhog: Efficient request isolation in faas. In Proceedings of the Eighteenth European Conference on Computer Systems, pages 398–415, 2023.

Function Handler

from code import func
...
do

checkpoint()
args = recv()
result = func(args)
send(result)
restore()

while keepalive == True
...

f(attack)

result

Container

f Data'
...

f Process
f Code
f Data

...

snapshot

restore

... ...
f Code
f Data'

No attacks made effective!

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Problems of Previous Approaches

13

• No consideration for the repeated execution of function request

• Problem #1: memory space overhead
• GH copies all data to the snapshot
 to recover initial state
• The repeated execution allows further
 optimization opportunities

f Process
[ro]wf code
[rw]of data [rw] f data...

Snapshot
[ro] f code

...
[rw]ommap [rw] mmap

checkpoint GH
Container

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

• No consideration for the repeated execution of function request

• Problem #2: repeated page fault overheads
• GH recovers modified data after request handling

• Tracking modified data requires page faults
(Linux's soft-dirty feature)

Problems of Previous Approaches

14

Container

f Process
[ro]wf code
[rw]of data

...

[ro] f code

[rw] f data...

Snapshot
[ro] f code

...
clear soft-dirty bits
[rw]ommap [rw] mmap

GH

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

• No consideration for the repeated execution of function request

• Problem #2: repeated page fault overheads
• GH recovers modified data after request handling

• Tracking modified data requires page faults
(Linux's soft-dirty feature)

Problems of Previous Approaches

15

Container

f(arg)

f Process
[ro]wf code
[rw]of data

...

[ro] f code

[rw] f data...

Snapshot
[ro] f code

...

[rw]of data'

page faults
[rw]ommap[rw]ommap' [rw] mmap

GH

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

• No consideration for the repeated execution of function request

• Problem #2: repeated page fault overheads
• GH recovers modified data after request handling

• Tracking modified data requires page faults
(Linux's soft-dirty feature)

Problems of Previous Approaches

16

Container

f Process
[ro]wf code
[rw]of data

[ro] f code

[rw] f data...

Snapshot
[ro] f code

...
[rw]ommap [rw] mmap

restore GH

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

• No consideration for the repeated execution of function request

• Problem #2: repeated page fault overheads
• GH recovers modified data after request handling

• Tracking modified data requires page faults
(Linux's soft-dirty feature)

Problems of Previous Approaches

17

Container

f Process
[ro]wf code
[rw]of data

...

[ro] f code

[rw] f data...

Snapshot
[ro] f code

...
clear soft-dirty bits
[rw]ommap [rw] mmap

GH

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

• No consideration for the repeated execution of function request

• Problem #2: repeated page fault overheads
• GH recovers modified data after request handling

• Tracking modified data requires page faults
(Linux's soft-dirty feature)

Problems of Previous Approaches

18

Container

f(arg)

f Process
[ro]wf code
[rw]of data

...

[ro] f code

[rw] f data...

Snapshot
[ro] f code

...

[rw]of data'

page faults
[rw]ommap[rw]ommap' [rw] mmap

GH

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

• No consideration for the repeated execution of function request

• Problem #2: repeated page fault overheads
• GH recovers modified data after request handling

• Tracking modified data requires page faults
(Linux's soft-dirty feature)

• fork() causes copy-on-write page faults
for modified data

Problems of Previous Approaches

19

Container

f(arg)

f Process
[ro]wf code
[rw]of data

...

[ro] f code

[rw] f data...

Snapshot
[ro] f code

...

[rw]of data'

page faults
[rw]ommap[rw]ommap' [rw] mmap

GH

Container

f(arg)

f Process
[ro]wf code
[rw]of data

[ro] f code

[rw]of data...

Handler Process
[ro]wf code

...

[rw]ommap [rw]ommap

Fork

fork()

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

• No consideration for the repeated execution of function request

• Problem #2: repeated page fault overheads
• GH recovers modified data after request handling

• Tracking modified data requires page faults
(Linux's soft-dirty feature)

• fork() causes copy-on-write page faults
for modified data

Problems of Previous Approaches

20

Container

f(arg)

f Process
[ro]wf code
[rw]of data

...

[ro] f code

[rw] f data...

Snapshot
[ro] f code

...

[rw]of data'

page faults
[rw]ommap[rw]ommap' [rw] mmap

GH

Container

f(arg)

f Process
[ro]wf code
[rw]of data

[ro] f code

[rw]of data...

Handler Process
[ro]wf code

...

[rw]of data'

copy-on-write page faults
[rw]ommap[rw]ommap' [rw]ommap

Fork

copy

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

• No consideration for the repeated execution of function request

• Problem #2: repeated page fault overheads
• GH recovers modified data after request handling

• Tracking modified data requires page faults
(Linux's soft-dirty feature)

• fork() causes copy-on-write page faults
for modified data

Problems of Previous Approaches

21

Container

f(arg)

f Process
[ro]wf code
[rw]of data

...

[ro] f code

[rw] f data...

Snapshot
[ro] f code

...

[rw]of data'

page faults
[rw]ommap[rw]ommap' [rw] mmap

GH

Container

[ro] f code

[rw]of data...

Handler Process
[ro]wf code

[rw]ommap

Fork

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

• No consideration for the repeated execution of function request

• Problem #2: repeated page fault overheads
• GH recovers modified data after request handling

• Tracking modified data requires page faults
(Linux's soft-dirty feature)

• fork() causes copy-on-write page faults
for modified data

Problems of Previous Approaches

22

Container

f(arg)

f Process
[ro]wf code
[rw]of data

...

[ro] f code

[rw] f data...

Snapshot
[ro] f code

...

[rw]of data'

page faults
[rw]ommap[rw]ommap' [rw] mmap

GH

Container

f(arg)

f Process
[ro]wf code
[rw]of data

[ro] f code

[rw]of data...

Handler Process
[ro]wf code

...

[rw]ommap [rw]ommap

Fork

fork()

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

• No consideration for the repeated execution of function request

• Problem #2: repeated page fault overheads
• GH recovers modified data after request handling

• Tracking modified data requires page faults
(Linux's soft-dirty feature)

• fork() causes copy-on-write page faults
for modified data

Problems of Previous Approaches

23

Container

f(arg)

f Process
[ro]wf code
[rw]of data

...

[ro] f code

[rw] f data...

Snapshot
[ro] f code

...

[rw]of data'

page faults
[rw]ommap[rw]ommap' [rw] mmap

GH

Container

f(arg)

f Process
[ro]wf code
[rw]of data

[ro] f code

[rw]of data...

Handler Process
[ro]wf code

...

[rw]of data'

copy-on-write page faults
[rw]ommap[rw]ommap' [rw]ommap

Fork

copy

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

• No consideration for the repeated execution of function request

• Problem #2: repeated page fault overheads
• GH recovers modified data after request handling

• Tracking modified data requires page faults
(Linux's soft-dirty feature)

• fork() causes copy-on-write page faults
for modified data

• New mmap()s after snapshot/fork causes overheads
(page allocation + page faults)

àThese overheads repeat on
every function request handling

Problems of Previous Approaches

24

Container

f(arg)

f Process
[ro]wf code
[rw]of data

...

[ro] f code

[rw] f data...

Snapshot
[ro] f code

...

[rw]of data'

page faults
[rw]ommap[rw]ommap' [rw] mmap
[rw]ommap'

GH

Container

f(arg)

f Process
[ro]wf code
[rw]of data

[ro] f code

[rw]of data...

Handler Process
[ro]wf code

...

[rw]of data'

[rw]ommap[rw]ommap' [rw]ommap
[rw]ommap'

Fork

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

• No consideration for the repeated execution of function request

• Problem #2: repeated page fault overheads
• GH recovers modified data after request handling

• Tracking modified data requires page faults
(Linux's soft-dirty feature)

• fork() causes copy-on-write page faults
for modified data

• New mmap()s after snapshot/fork causes overheads
(page allocation + page faults)

àThese overheads repeat on
every function request handling

Problems of Previous Approaches

25

Container

f(arg)

f Process
[ro]wf code
[rw]of data

...

[ro] f code

[rw] f data...

Snapshot
[ro] f code

...

[rw]of data'

page faults
[rw]ommap[rw]ommap' [rw] mmap
[rw]ommap'

GH

Container

f(arg)

f Process
[ro]wf code
[rw]of data

[ro] f code

[rw]of data...

Handler Process
[ro]wf code

...

[rw]of data'

[rw]ommap[rw]ommap' [rw]ommap
[rw]ommap'

Fork

[rw]ommap'

[rw]ommap'

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Problems of Previous Approaches

26

• Problem #3: no consideration of file persistence
• Both schemes leave files after function executions
• Files can contain privacy-sensitive data
• Remaining files can be leaked or maliciously used

File System file persistence

Container

f(arg)

f Process
[ro]wf code
[rw]of data

...

[ro] f code

[rw] f data...

Snapshot
[ro] f code

...

[rw]of data'

[rw]ommap[rw]ommap' [rw] mmap
[rw]ommap'

GH

f(arg)

f Process
[ro]wf code
[rw]of data

[ro] f code

[rw]of data...

Handler Process
[ro]wf code

...

[rw]of data'

[rw]ommap[rw]ommap' [rw]ommap
[rw]ommap'

Fork

[rw]ommap'

[rw]ommap'

File System file persistence

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Our Approach: REWIND

27

• Goal: performance and memory efficient snapshot/restore
• Elimination of memory and file persistence
• Minimize memory usage for snapshot and reduce page faults
• Key idea: exploiting repeated handling of function requests

• Challenges:
• How does REWIND put only the original data of dirty pages to the snapshot?
• How does REWIND track pages to dirty without page faults?

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Snapshot/Rewind Operations

28

• snapshot()
• Take a snapshot of each page only when a page is

about to be dirtied
• Copy-on-write protection + buddy page table

Container

f Process
[ro] f code
[rw] f data

[rw] mmap

Snapshot

...

snapshot

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Snapshot/Rewind Operations

29

• snapshot()
• Take a snapshot of each page only when a page is

about to be dirtied
• Copy-on-write protection + buddy page table

Container

f Process
[ro] f code
[rw] f data

[rw] mmap

Snapshot

...
CoW protection

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Snapshot/Rewind Operations

30

• snapshot()
• Take a snapshot of each page only when a page is

about to be dirtied
• Copy-on-write protection + buddy page table

Container

f(arg)

f Process
[ro] f code
[rw] f data

[rw] mmap

Snapshot

...
page faults

copy
[rw] f data

[rw] mmap

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Snapshot/Rewind Operations

31

• snapshot()
• Take a snapshot of each page only when a page is

about to be dirtied
• Copy-on-write protection + buddy page table

• For repeated dirty pages, keep pages duplicated
(snapshot + original)

• For zero pages, do NOT maintain in a snapshot to save
memory

Container

f(arg)

f Process
[ro] f code
[rw] f data

[rw] mmap

Snapshot

[rw] f data'

[rw] mmap'
...

[rw] f data

[rw] mmap

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Snapshot/Rewind Operations

32

• snapshot()
• Take a snapshot of each page only when a page is

about to be dirtied
• Copy-on-write protection + buddy page table

• For repeated dirty pages, keep pages duplicated
(snapshot + original)

• For zero pages, do NOT maintain in a snapshot to save
memory

• Keep snapshot of files

Container

f Process
[ro] f code
[rw] f data

[rw] mmap

File System

Snapshot

Snapshot

[rw] f data'

[rw] mmap'
...

snapshot

[rw] f data

[rw] mmap

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Snapshot/Rewind Operations

33

• rewind()
• Restore dirty pages to original ones

• Reset pages to zero if necessary f Process
[ro] f code
[rw] f data

[rw] mmap

File System

Snapshot

Snapshot

...

rewind

copy

Container

[rw] f data

[rw] mmap

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Snapshot/Rewind Operations

34

• rewind()
• Restore dirty pages to original ones

• Reset pages to zero if necessary

• Delete memory mappings mapped after snapshot
• Keep pages and related metadata to accelerate mmap()s

in next function execution

f(arg)

f Process
[ro] f code
[rw] f data

[rw] mmap

File System

Snapshot

Snapshot

...[rw] mmap[rw] mmap'

Container

[rw] f data

[rw] mmap

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Snapshot/Rewind Operations

35

• rewind()
• Restore dirty pages to original ones

• Reset pages to zero if necessary

• Delete memory mappings mapped after snapshot
• Keep pages and related metadata to accelerate mmap()s

in next function execution

f Process
[ro] f code
[rw] f data

[rw] mmap

File System

Snapshot

Snapshot

Reuse Area

...

move

Container

[rw] 00

[rw] f data

[rw] mmap

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Snapshot/Rewind Operations

36

• rewind()
• Restore dirty pages to original ones

• Reset pages to zero if necessary

• Delete memory mappings mapped after snapshot
• Keep pages and related metadata to accelerate mmap()s

in next function execution

f(arg)

f Process
[ro] f code
[rw] f data

[rw] mmap

File System

Snapshot

Snapshot

Reuse Area

...

move

[rw] mmap

Container

[rw] f data

[rw] mmap

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Snapshot/Rewind Operations

37

• rewind()
• Restore dirty pages to original ones

• Reset pages to zero if necessary

• Delete memory mappings mapped after snapshot
• Keep pages and related metadata to accelerate mmap()s

in next function execution

f(arg)

f Process
[ro] f code
[rw] f data

[rw] mmap

File System

Snapshot

Snapshot

Reuse Area

[rw] f data'

[rw] mmap'
...

no page faults saving memory

[rw] mmap[rw] mmap'

Container

[rw] f data

[rw] mmap

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Snapshot/Rewind Operations

38

• rewind()
• Restore dirty pages to original ones

• Reset pages to zero if necessary

• Delete memory mappings mapped after snapshot
• Keep pages and related metadata to accelerate mmap()s

in next function execution

• Restore files to the snapshot

f(arg)

f Process
[ro] f code
[rw] f data

[rw] mmap

File System

Snapshot

Snapshot

Reuse Area

[rw] f data'

[rw] mmap'
...

no page faults

rewind

saving memory

[rw] mmap[rw] mmap'

Container

[rw] f data

[rw] mmap

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

state: snapshot• Efficient kernel-level snapshot/rewind
• Introduce buddy page table for efficient snapshot management

• Copy original page table to buddy page table when snapshotting
• Enable copy-on-write protection to track dirty pages

Snapshot/Rewind Operations

39

Buddy
Page Table

Page Table

CD
AB

ro,wX
rw,oX

rw,oanon
ro, wX
ro, wX
rw, oX

Virtual Memory

copy

CoW protection
* X indicates don't care

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

state: execution• Efficient kernel-level snapshot/rewind
• Introduce buddy page table for efficient snapshot management

• Copy original page table to buddy page table when snapshotting
• Enable copy-on-write protection to track dirty pages
• Copy a page during page fault handling to the snapshot

Snapshot/Rewind Operations

40

Buddy
Page Table

Page Table

write

CD
AB

rw,oanon
ro,wX
ro,wX
rw,oX

ro, wX
rw, oX

Virtual Memory

AB

AB'

copy

page
faults

Snapshot

* X indicates don't care

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

state: execution• Efficient kernel-level snapshot/rewind
• Introduce buddy page table for efficient snapshot management

• Copy original page table to buddy page table when snapshotting
• Enable copy-on-write protection to track dirty pages
• Copy a page during page fault handling to the snapshot

• Zero (anonymous) pages allocated after snapshot
are not copied

Snapshot/Rewind Operations

41

Buddy
Page Table

Page Table

EF
00

CD
AB

rw,oanon
ro,wX
ro,wX
rw,oX

rw,oanon
ro, wX
ro, wX
rw, oX

Virtual Memory

AB

AB'

write

page
faults

Snapshot

Anonymous pages are
initialized to zero at allocation * X indicates don't care

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

state: execution• Efficient kernel-level snapshot/rewind
• Introduce buddy page table for efficient snapshot management

• Copy original page table to buddy page table when snapshotting
• Enable copy-on-write protection to track dirty pages
• Copy a page during page fault handling to the snapshot

• Zero (anonymous) pages allocated after snapshot
are not copied

Snapshot/Rewind Operations

42

Buddy
Page Table

Page Table

EF
00

CD
AB

rw,oanon
ro,wX
ro,wX
rw,oX

rw,oanon
ro, wX
ro, wX
rw, oX

Virtual Memory

AB

AB'

IJ'
write

page
faults

Snapshot

Anonymous pages are
initialized to zero at allocation * X indicates don't care

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

state: rewind• Efficient kernel-level snapshot/rewind
• Introduce buddy page table for efficient snapshot management

• Copy original page table to buddy page table when snapshotting
• Enable copy-on-write protection to track dirty pages
• Copy a page during page fault handling to the snapshot

• Zero (anonymous) pages allocated after snapshot
are not copied

• Rewind dirty pages to the snapshot
• Copy back snapshot pages to restore to initial state

• Allow write permission
àNo page faults on repeated execution

Snapshot/Rewind Operations

43

Buddy
Page Table

Page Table

EF
00

CD
AB

rw,oanon
ro,wX
ro,wX
rw,oX

rw,oanon
ro, wX
ro, wX
rw, oX

Virtual Memory

AB

IJ'

copy

Snapshot

* X indicates don't care

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

state: rewind• Efficient kernel-level snapshot/rewind
• Introduce buddy page table for efficient snapshot management

• Copy original page table to buddy page table when snapshotting
• Enable copy-on-write protection to track dirty pages
• Copy a page during page fault handling to the snapshot

• Zero (anonymous) pages allocated after snapshot
are not copied

• Rewind dirty pages to the snapshot
• Copy back snapshot pages to restore to initial state

• Allow write permission
àNo page faults on repeated execution

• Clear anonymous pages allocated after snapshot to zero

Snapshot/Rewind Operations

44

Buddy
Page Table

Page Table

EF
00

CD
AB

rw,oanon
ro,wX
ro,wX
rw,oX

rw,oanon
ro, wX
ro, wX
rw, oX

Virtual Memory

AB

Snapshot

* X indicates don't care

clear

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

state: execution• Efficient kernel-level snapshot/rewind
• Introduce buddy page table for efficient snapshot management

• Copy original page table to buddy page table when snapshotting
• Enable copy-on-write protection to track dirty pages
• Copy a page during page fault handling to the snapshot

• Zero (anonymous) pages allocated after snapshot
are not copied

• Rewind dirty pages to the snapshot
• Copy back snapshot pages to restore to initial state

• Allow write permission
àNo page faults on repeated execution

• Clear anonymous pages allocated after snapshot to zero

Snapshot/Rewind Operations

45

Buddy
Page Table

Page Table

write

EF
00

CD
AB

rw,oanon
ro,wX
ro,wX
rw,oX

rw,oanon
ro, wX
ro, wX
rw, oX

Virtual Memory

AB

AB'

IJ'
write

copy

Snapshot

* X indicates don't care

No page faults!

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

• Additional memory area can be allocated and used after snapshot
• mmap() followed by page fault and page allocation
• These overheads repeat on every function request handling

Memory Area Reuse

46

f Process
[ro]w f code

f(arg)

[rw]o f data

[rw]o mmap

...

[rw]o f data'

[rw]o mmap'

Container

Reuse Area

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

• Additional memory area can be allocated and used after snapshot
• mmap() followed by page fault and page allocation
• These overheads repeat on every function request handling

Memory Area Reuse

47

f Process
[ro]w f code

f(arg)

[rw]o f data

[rw]o mmap

...
Reuse Area

[rw]o mmap[rw]o mmap'

[rw]o f data'

[rw]o mmap' page faults

Container

• Memory area reuse minimizes overhead
from page faults of new mmaps

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

• Additional memory area can be allocated and used after snapshot
• mmap() followed by page fault and page allocation
• These overheads repeat on every function request handling

Memory Area Reuse

48

f Process
[ro]w f code

move

[rw]o f data

[rw]o mmap

...
Reuse Area

[rw]o mmap[rw]o mmap'

[rw]o f data'

[rw]o mmap'

Container

• Memory area reuse minimizes overhead
from page faults of new mmaps
• Pages, page tables and associated metadata are

reused in the next function execution

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

• Additional memory area can be allocated and used after snapshot
• mmap() followed by page fault and page allocation
• These overheads repeat on every function request handling

Memory Area Reuse

49

f Process
[ro]w f code clear

[rw]o f data

[rw]o mmap

...
Reuse Area

[rw]o mmap

[rw]o f data'

[rw]o mmap'

Container

• Memory area reuse minimizes overhead
from page faults of new mmaps
• Pages, page tables and associated metadata are

reused in the next function execution
• Pages are cleared to zero to prevent data leakage

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

• Additional memory area can be allocated and used after snapshot
• mmap() followed by page fault and page allocation
• These overheads repeat on every function request handling

Memory Area Reuse

50

f Process
[ro]w f code

move

f(arg)

[rw]o f data

[rw]o mmap

...
Reuse Area

[rw]o mmap

[rw]o f data'

[rw]o mmap'

Container

• Memory area reuse minimizes overhead
from page faults of new mmaps
• Pages, page tables and associated metadata are

reused in the next function execution
• Pages are cleared to zero to prevent data leakage

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

• Additional memory area can be allocated and used after snapshot
• mmap() followed by page fault and page allocation
• These overheads repeat on every function request handling

Memory Area Reuse

51

f Process
[ro]w f code

f(arg)

[rw]o f data

[rw]o mmap

...
Reuse Area

[rw]o mmap[rw]o mmap'

[rw]o f data'

[rw]o mmap'

Container

Good performance: no page faults!

• Memory area reuse minimizes overhead
from page faults of new mmaps
• Pages, page tables and associated metadata are

reused in the next function execution
• Pages are cleared to zero to prevent data leakage
• Reuse is limited to anonymous memory

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Remove File Persistence
• File persistence is removed by rewinding the file system from the snapshot
• User-level implementation on OverlayFS (file system used by Docker)

52

Docker REWIND

update create

Lower File System

Upper File System

A B C D

Merged File System

C D

A C

B

C

Lower File System

Upper File System

A B

Merged File System

Snapshot

A C

B

B snapshotting

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Remove File Persistence
• File persistence is removed by rewinding the file system from the snapshot
• User-level implementation on OverlayFS (file system used by Docker)

53

Docker REWIND

update create

Lower File System

Upper File System

A B C D

Merged File System

C D

A C

B

C

update create

Lower File System

Upper File System

A B C D

Merged File System

Snapshot

C D

A C

B

C

B

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Remove File Persistence
• File persistence is removed by rewinding the file system from the snapshot
• User-level implementation on OverlayFS (file system used by Docker)

54

Docker REWIND

update create

Lower File System

Upper File System

A B C D

Merged File System

C D

A C

B

C

Lower File System

Upper File System

A B C

Merged File System

Snapshot

A C

B

B

rewind

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Evaluation
• Key questions:
• Does REWIND effectively save memory size of the snapshot?
• How much do the snapshot/rewind operations impact function execution time?

• How much does REWIND accelerate function execution time?

• Comparison with
• Baseline – execute function with container reuse
• Fork – employ the fork() system call on the baseline
• Groundhog (GH) – create a snapshot of a function process and restore to the snapshot

55

[1] Jeongchul Kim and Kyungyong Lee. Functionbench: A suite of workloads for serverless cloud function service. In 2019 IEEE 12th International Conference on Cloud Computing (CLOUD), pages 502–504. IEEE, 2019.

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Microbenchmark

56

• REWIND shows less overheads than Fork and GH
• 1:1 ratio of random read/write
• Increase memory working set size 128MB to 1GB

103x

114x
108x

106x

87x

97x
91x

89x

15x
17x 16x 16x

Copy of only snapshot data to dirty during rewind()
→ short restore time

No page faults during function execution
→ good function time

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Function Latency

57

• REWIND shows better performance even than the baseline
• Real workloads – FunctionBench [1]
• Break down the latency into function time and restore time

[1] Jeongchul Kim and Kyungyong Lee. Functionbench: A suite of workloads for serverless cloud function service. In 2019 IEEE 12th International Conference on Cloud Computing (CLOUD), pages 502–504. IEEE, 2019.

-19% -8%

VMA reuse minimizes page faults and allocation overheads! Only REWIND enforces the isolation to the file persistence!

X means no results

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Memory Consumption

58

• REWIND consumes lower memory than Fork and GH
• Real workloads – FunctionBench
• Measure peak memory usage (RSS)

22% 63%

115% 200% X means no results

REWIND makes a copy of only dirty data in the snapshot → Low memory usage

13% 14%

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Conclusion
• REWIND: secure, fast, and resource-efficient serverless platform
• Security: remove quasi-persistence of data in containers
• Performance: provide efficient snapshot/rewind and reuse memory for next run
• Resource usage: do not copy all data to the snapshot

59

REWIND is available at:
https://github.com/s3yonsei/rewind_serverless

Thank you!

https://github.com/s3yonsei/rewind_serverless

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Backup

60

