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Static bug detection in Linux is important
• Many tools has been proposed and proved to be useful

• Recommended to use these tools
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PATA
[Li+ ASPLOS ‘22]Clang Static 

Analyzer (CSA)

CppCheck

Coccinelle
[Padioleau+  EuroSys’08]

Usable from Linux Makefile

Saber
[Xie+ FSE ‘05]

And More…
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Are these tools used enough
in practice?



Are bug detection tools used in practice?
• 40 patches did not mention any use of tools

• Customary to credit the tool if a bug is found with tools
• Suggests these bugs are found using other methods

e.g.) Manual inspection by developers
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Keyword-based sampling for 6 bug patterns
• Out of bounds, Double free, Use-before-initialization, 

Integer overflow, 
Nullptr dereference, Reference Counter error

• Patches for Linux v5.9 ~ 5.11

Type Tool # of Patches
Not Specified 40
Static 
Analysis

Compiler 8
Coverity 3
Clang Static Analyzer 
(CSA)

1

Dynamic 
Analaysis

Syzkaller 11
Abaci Fuzz 1

Total 64
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Static bug detection tools 
are not used much in daily development!



Tradeoff: Analysis time or Detection Capability
• Recent tools typically focus on one end of the tradeoff
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Tradeoff: Analysis time or Detection Capability
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😆 High bug detection capability
😱 Long analysis time
e.g.) PATA [Li+ ASPLOS ‘22] 
found 454 new bugs in 33+ hours

Saber
PATA

• Recent tools typically focus on one end of the tradeoff



Saber

Tradeoff: Analysis time or Detection Capability
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😆Short analysis time
😱 Limited bug detection
e.g.) CppCheck only requires
2.5 hours to analyze

CSA
Cpp

Check

• Recent tools typically focus on one end of the tradeoff

PATA



Goal: Daily-development friendly bug detection

• Explore approach that finds bug while achieving short analysis time
• Maintains developer’s daily development throughput
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Our 
Goal

Saber

CSA
Cpp

Check

😆 Short analysis time
😆 Can find many bugs PATA



Proposal: Finger Traceable Analysis (FiT Analysis)

• Combination of computationally less complex analysis
• Focuses on four analysis techniques
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1. Analysis of Single Compilation Unit 2. Field offset statically determinable

3. Only requires simple alias analysis 4. No indirect function calls



Are targeting FiT Analysis Bugs impactful?
• Conduct a simple check of Linux bug fixing patches

• Target 105 patches
• Investigate its analytical characteristics

11

Single Compilation: 72 Patches
Q1. Single compilation unit?
Q2. Offset calculation static?
Q3. Alias analysis intraprocedural?
Q4. Indirect call involved?
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Static offset Simple Alias
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Single Compilation: 72 Patches
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Direct Calls
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Q2. Offset calculation static?
Q3. Alias analysis intraprocedural?
Q4. Indirect call involved? FiT Analysis

64 Patches



FiTx: FiT Bug Specialized Framework

• Design / Implement a proof-of-concept framework
• Conduct computationally low-cost dataflow analysis using FiT analysis
• Define bugs as typestate properties [Strom+ TSE 1986]
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Defining the bug to be detected
• Leverage typestate property analysis [Strom+ TSE 1986]

• Express each bug using finite state machine

• Collect the state transition per compilation unit
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FSM of Double Free
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FSM of Double Free



Return Code Aware State Propagation (1/2)
• Caller may expect a certain state from callee

• No consideration leads to false positive

20Sinit Sfree
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• Caller may expect a certain state from callee

• No consideration leads to false positive

23Sinit Sfree

Expects 
success state

Sd.f.
False Positive!



Return Code Aware State Propagation (2/2)
• Propagate states together with the return code

• Focus on constant return codes such as error codes
• Use Linux return convention

24

Check error 
code usage

Sinit Sfree
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Expects error 
state

Sinit Sfree

Sfree



Return Code Aware State Propagation (2/2)
• Propagate states together with the return code

• Focus on constant return codes such as error codes
• Use Linux return convention
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Sfree

Expects 
success state

Sinit



Implementation
• Use LLVM compiler framework to implement the framework

• Implemented checkers for 6 bug patterns
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Evaluation
1. What is FiTx’s bug detection capabilities?
2. How long does FiTx take to analyze the Linux? 
3. How does FiTx perform compared to other tools?

• Compare with Clang Static Analyzer (CSA) and CppCheck

28
Evaluation Environment



What is FiTx’s bug detection capabilities?
• FiTx was able to find 47 new bugs

• 13 of them confirmed / fixed by developers

29

Bug Type Warnings TPs
Double Free 41 21
Use After Free 31 9
Double Lock 16 7
Double Unlock 13 5
Memory Leak 15 3
Reference Counter 5 2
Total 121 47

Data updated from original paper



Found Bug: Double free in AMD GPU driver
• Confirmed / fixed by developers

• Existed from 2016
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How long does FiTx take to analyze Linux?
• Took 2hr 33 min in total to analyze Linux

31
CDF of Analysis Time per source file

Only required 0.99 seconds 
for 90% of source files



How does FiTx perform compared to other tools?

• Compare with Clang Static Analyzer (10.0.1) and CppCheck (1.9)
• What is the analysis time?
• Can the tools find the bugs?
• What is the false positive rate?
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Source File LoC # of Bugs
drivers/platform/ chrome/chromeos_laptop.c 958 2
drivers/media/dvb-core/dvbdev.c 1,084 1
kernel/trace/trace_events_hist.c 6,113 6
drivers/gpu/drm/amd/pm/ powerplay/si_dpm.c 7,127 2
drivers/scsi/qla2xxx/qla_os.c 8,216 2
Total 13

Analyze developer confirmed bugs

Analyze entire Linux



Comparison: Analysis Time
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Comparison: Bug detection capabilities
• CSA and CppCheck did not find the bugs
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Source File FiTx CSA CppCheck
drivers/platform/ chrome/chromeos_laptop.c 2 0 0
drivers/media/dvb-core/dvbdev.c 1 0 0
kernel/trace/trace_events_hist.c 6 0 0
drivers/gpu/drm/amd/pm/ powerplay/si_dpm.c 2 0 0
drivers/scsi/qla2xxx/qla_os.c 2 0 0
Total 13 0 0



Comparison: False Positives
• Compare the false positive rate when analyzing entire Linux
• FiTx generates less false positive compared to CSA and CppCheck
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*Reported in [Li+ ASPLOS ʻ22]

FP Rate
FiTx 61.2 %
CppCheck 83.4%*
CSA 83.0%*

FP rate when analyzing entire Linux



Summary
• FiTx’s Goal: Daily development friendly bug detection

• Combination of four low computational analysis

• Found 47 new bugs in Linux kernel version 5.15
• 13 bugs confirmed by developers 
• 0.99 sec of analysis time for 90% of source file
• Outperformed CSA / CppCheck
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Thank you!
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Artifact here!

https://github.com/sslab-keio/FiTx

https://github.com/sslab-keio/FiTx

