
Balancing Analysis Time and Bug Detection:
Daily Development-friendly

Bug Detection in Linux
Keita Suzuki*, Kenta Ishiguro+, Kenji Kono*
*Keio University, +Hosei University

1

Static bug detection in Linux is important
• Many tools has been proposed and proved to be useful

• Recommended to use these tools

2

PATA
[Li+ ASPLOS ‘22]Clang Static

Analyzer (CSA)

CppCheck

Coccinelle
[Padioleau+ EuroSys’08]

Usable from Linux Makefile

Saber
[Xie+ FSE ‘05]

And More…

Saber
[Xie+ FSE ‘05]

Static bug detection in Linux is important
• Many tools has been proposed and proved to be useful

• Recommended to use these tools

3

PATA
[Li+ ASPLOS ‘22]Clang Static

Analyzer (CSA)

CppCheck

Coccinelle
[Padioleau+ EuroSys’08]

Usable from Linux Makefile

And More…

Are these tools used enough
in practice?

Are bug detection tools used in practice?
• 40 patches did not mention any use of tools

• Customary to credit the tool if a bug is found with tools
• Suggests these bugs are found using other methods

e.g.) Manual inspection by developers

4

Keyword-based sampling for 6 bug patterns
• Out of bounds, Double free, Use-before-initialization,

Integer overflow,
Nullptr dereference, Reference Counter error

• Patches for Linux v5.9 ~ 5.11

Type Tool # of Patches
Not Specified 40
Static
Analysis

Compiler 8
Coverity 3
Clang Static Analyzer
(CSA)

1

Dynamic
Analaysis

Syzkaller 11
Abaci Fuzz 1

Total 64

Are bug detection tools used in practice?
• 40 patches did not mention any use of tools

• Customary to credit the tool if a bug is found with tools
• Suggests these bugs are found using other methods

e.g.) Manual inspection by developers

5

Keyword-based sampling for 6 bug patterns
• Out of bounds, Double free, Use-before-initialization,

Integer overflow,
Nullptr dereference, Reference Counter error

• Patches for Linux v5.9 ~ 5.11

Type Tool # of Patches
Not Specified 40
Static
Analysis

Compiler 8
Coverity 3
Clang Static Analyzer
(CSA)

1

Dynamic
Analaysis

Syzkaller 11
Abaci Fuzz 1

Total 64

Static bug detection tools
are not used much in daily development!

Tradeoff: Analysis time or Detection Capability
• Recent tools typically focus on one end of the tradeoff

6

Tradeoff: Analysis time or Detection Capability

7

😆 High bug detection capability
😱 Long analysis time
e.g.) PATA [Li+ ASPLOS ‘22]
found 454 new bugs in 33+ hours

Saber
PATA

• Recent tools typically focus on one end of the tradeoff

Saber

Tradeoff: Analysis time or Detection Capability

8

😆Short analysis time
😱 Limited bug detection
e.g.) CppCheck only requires
2.5 hours to analyze

CSA
Cpp

Check

• Recent tools typically focus on one end of the tradeoff

PATA

Goal: Daily-development friendly bug detection

• Explore approach that finds bug while achieving short analysis time
• Maintains developer’s daily development throughput

9

Our
Goal

Saber

CSA
Cpp

Check

😆 Short analysis time
😆 Can find many bugs PATA

Proposal: Finger Traceable Analysis (FiT Analysis)

• Combination of computationally less complex analysis
• Focuses on four analysis techniques

10

1. Analysis of Single Compilation Unit 2. Field offset statically determinable

3. Only requires simple alias analysis 4. No indirect function calls

Are targeting FiT Analysis Bugs impactful?
• Conduct a simple check of Linux bug fixing patches

• Target 105 patches
• Investigate its analytical characteristics

11

Single Compilation: 72 Patches
Q1. Single compilation unit?
Q2. Offset calculation static?
Q3. Alias analysis intraprocedural?
Q4. Indirect call involved?

Are targeting FiT Analysis Bugs impactful?
• Conduct a simple check of Linux bug fixing patches

• Target 105 patches
• Investigate its analytical characteristics

12

Single Compilation: 72 Patches

65 Patches

Q1. Single compilation unit?
Q2. Offset calculation static?
Q3. Alias analysis intraprocedural?
Q4. Indirect call involved?

Static offset

Are targeting FiT Analysis Bugs impactful?
• Conduct a simple check of Linux bug fixing patches

• Target 105 patches
• Investigate its analytical characteristics

13

Single Compilation: 72 Patches
Q1. Single compilation unit?
Q2. Offset calculation static?
Q3. Alias analysis intraprocedural?
Q4. Indirect call involved?

Static offset Simple Alias

71 Patches

Are targeting FiT Analysis Bugs impactful?
• Conduct a simple check of Linux bug fixing patches

• Target 105 patches
• Investigate its analytical characteristics

14

Single Compilation: 72 Patches
Static offset Simple Alias

Direct Calls

65 Patches

Q1. Single compilation unit?
Q2. Offset calculation static?
Q3. Alias analysis intraprocedural?
Q4. Indirect call involved?

Are targeting FiT Analysis Bugs impactful?
• Conduct a simple check of Linux bug fixing patches

• Target 105 patches
• Investigate its analytical characteristics

15

Single Compilation: 72 Patches
Static offset Simple Alias

Direct Calls

Q1. Single compilation unit?
Q2. Offset calculation static?
Q3. Alias analysis intraprocedural?
Q4. Indirect call involved? FiT Analysis

64 Patches

FiTx: FiT Bug Specialized Framework

• Design / Implement a proof-of-concept framework
• Conduct computationally low-cost dataflow analysis using FiT analysis
• Define bugs as typestate properties [Strom+ TSE 1986]

16

Defining the bug to be detected
• Leverage typestate property analysis [Strom+ TSE 1986]

• Express each bug using finite state machine

• Collect the state transition per compilation unit

17

FSM of Double Free

Defining the bug to be detected
• Leverage typestate property analysis [Strom+ TSE 1986]

• Express each bug using finite state machine

• Collect the state transition per compilation unit

18

FSM of Double Free

Defining the bug to be detected
• Leverage typestate property analysis [Strom+ TSE 1986]

• Express each bug using finite state machine

• Collect the state transition per compilation unit

19

FSM of Double Free

Return Code Aware State Propagation (1/2)
• Caller may expect a certain state from callee

• No consideration leads to false positive

20Sinit Sfree

Return Code Aware State Propagation (1/2)
• Caller may expect a certain state from callee

• No consideration leads to false positive

21Sinit Sfree

Expects
success state

Return Code Aware State Propagation (1/2)
• Caller may expect a certain state from callee

• No consideration leads to false positive

22Sinit Sfree

Expects
success state

Pass error
state

Sfree

Return Code Aware State Propagation (1/2)
• Caller may expect a certain state from callee

• No consideration leads to false positive

23Sinit Sfree

Expects
success state

Sd.f.
False Positive!

Return Code Aware State Propagation (2/2)
• Propagate states together with the return code

• Focus on constant return codes such as error codes
• Use Linux return convention

24

Check error
code usage

Sinit Sfree

Return Code Aware State Propagation (2/2)
• Propagate states together with the return code

• Focus on constant return codes such as error codes
• Use Linux return convention

25

Expects error
state

Sinit Sfree

Sfree

Return Code Aware State Propagation (2/2)
• Propagate states together with the return code

• Focus on constant return codes such as error codes
• Use Linux return convention

26Sinit Sfree

Sfree

Expects
success state

Sinit

Implementation
• Use LLVM compiler framework to implement the framework

• Implemented checkers for 6 bug patterns

27

Evaluation
1. What is FiTx’s bug detection capabilities?
2. How long does FiTx take to analyze the Linux?
3. How does FiTx perform compared to other tools?

• Compare with Clang Static Analyzer (CSA) and CppCheck

28
Evaluation Environment

What is FiTx’s bug detection capabilities?
• FiTx was able to find 47 new bugs

• 13 of them confirmed / fixed by developers

29

Bug Type Warnings TPs
Double Free 41 21
Use After Free 31 9
Double Lock 16 7
Double Unlock 13 5
Memory Leak 15 3
Reference Counter 5 2
Total 121 47

Data updated from original paper

Found Bug: Double free in AMD GPU driver
• Confirmed / fixed by developers

• Existed from 2016

30

How long does FiTx take to analyze Linux?
• Took 2hr 33 min in total to analyze Linux

31
CDF of Analysis Time per source file

Only required 0.99 seconds
for 90% of source files

How does FiTx perform compared to other tools?

• Compare with Clang Static Analyzer (10.0.1) and CppCheck (1.9)
• What is the analysis time?
• Can the tools find the bugs?
• What is the false positive rate?

32

Source File LoC # of Bugs
drivers/platform/ chrome/chromeos_laptop.c 958 2
drivers/media/dvb-core/dvbdev.c 1,084 1
kernel/trace/trace_events_hist.c 6,113 6
drivers/gpu/drm/amd/pm/ powerplay/si_dpm.c 7,127 2
drivers/scsi/qla2xxx/qla_os.c 8,216 2
Total 13

Analyze developer confirmed bugs

Analyze entire Linux

Comparison: Analysis Time

33

Comparison: Bug detection capabilities
• CSA and CppCheck did not find the bugs

34

Source File FiTx CSA CppCheck
drivers/platform/ chrome/chromeos_laptop.c 2 0 0
drivers/media/dvb-core/dvbdev.c 1 0 0
kernel/trace/trace_events_hist.c 6 0 0
drivers/gpu/drm/amd/pm/ powerplay/si_dpm.c 2 0 0
drivers/scsi/qla2xxx/qla_os.c 2 0 0
Total 13 0 0

Comparison: False Positives
• Compare the false positive rate when analyzing entire Linux
• FiTx generates less false positive compared to CSA and CppCheck

35
*Reported in [Li+ ASPLOS ʻ22]

FP Rate
FiTx 61.2 %
CppCheck 83.4%*
CSA 83.0%*

FP rate when analyzing entire Linux

Summary
• FiTx’s Goal: Daily development friendly bug detection

• Combination of four low computational analysis

• Found 47 new bugs in Linux kernel version 5.15
• 13 bugs confirmed by developers
• 0.99 sec of analysis time for 90% of source file
• Outperformed CSA / CppCheck

36

Thank you!

37
Artifact here!

https://github.com/sslab-keio/FiTx

https://github.com/sslab-keio/FiTx

