USENIX ATC '24

July 10-12, 2024 SANTA CLARA, CA, USA

Scalable Billion-point Approximate Nearest Neighbor Search Using SmartSSDs

Bing Tian, Haikun Liu, Zhuohui Duan, Xiaofei Liao, Hai Jin

Huazhong University of Science and Technology

HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY

Background and Motivation

SmartANNS Design

Results

Conclusion

Background of ANNS

Approximate Nearest Neighbor Search (ANNS)

Traversal Path:

Background of ANNS

Retrieval-Augmented Generation

Traditional Computing Architecture for ANNS

CSD-empowered NDP Architecture

Large Storage Capacity

Performance scalability

Mitigate Host Resource Contention

CSD-empowered NDP Architecture

Large Storage Capacity

Using SmartSSDs to handle large-scale ANNS is promising ...

Performance scalability

Mitigate Host Resource Contention

CSD-based ANNS Solution

- Offline Index Construction
 - Split dataset
 - Construct graph for each partition
- ✤ Online Search
 - Traverse all the graph indices
 - Merge all intermediate results
 - Return top-k result

Significant Computation

Limited Resource

CSDANN [TC'22], SmartSSD-based ANNS

Opportunities of Hierarchical Indexing

- Offline Index Construction
 - Partition dataset using clustering
 - Construct graph for each shard
- Online Search
 - Prune irrelevant shards
 - Traverse closest graph of shards
 - Merge and return top-k result

Less computing overhead

3. Differences between queries

Background and Motivation

SmartANNS Design

Results

Conclusion

Lack of communication channels

Hierarchical indices in host and SmartSSDs

Load imbalance across SmartSSDs

Task scheduling based on the optimized data layout

Differences between queries

Learning-based shard pruning algorithm

Hierarchical indices

Construction Step

- Hierarchical Balanced Clustering
- Construct HNSW graph indices

For SmartSSDs

Store graph indices in SmartSSDs

For Host CPU

- Extract centroids for each shard
- Build shard-SmartSSD mapping table

"Host CPU + SmartSSDs" cooperation

Shard Pruning

Gradient Boosting Decision Trees (GBDT)

A strong predictive model combing multiple decision trees
Training Stage

Iteratively predicting the mean, computing residuals, and fitting weak decision trees to these negative gradients

Inference Stage

Assimilating weighted contributions of all individual weak models

Input Features

- The query vector
- Solution Distance between the query and the top-k nearest shards (D_k) / distance between the query and the top-1 nearest shard (D_1)
- The total number of all shards

Training Setup

Training size	One million	
Learning rate	0.05	
Iteration	500	

Lightweight and high performance

Data Access Pattern of Hierarchical Indices

Observation 1

A large portion of shards are accessed by different queries over a period of time, implying a good data locality

Observation 2

The access distribution of different shards are highly skewed

- 1. Exploiting the data locality among queries
 - 2. Placing hot shards on different SmartSSDs

Optimized Data Layout

Offering more flexibility for task scheduling

- Iteratively placing shard with highest hotness to the SmartSSD with lowest cumulative hotness
- Replicating shards from one SmartSSD to another SmartSSD once

Scheduling Steps

end

end

Scheduling Steps

end

end

Scheduling Steps

CGCL

1 3 8

9

7

6

5

1

8

Duplicate

3

Duplicate

4

Duplicate

end

Implementation

Vector Search Engine

- Separate interface for parallel reading
- Boolean array as the visited list
- Bitonic sort algorithm for lists updating
- Loop unrolling and pipelining
- Data and kernel pooling

More details: checkout our paper

- FPGA kernel details
- GBDT implementation (LAET SIGMOD'20)
- HNSW search process

SmartANNS System

* "host CPU + SmartSSDs" cooperative processing architecture

Background and Motivation

SmartANNS Design

Results

Conclusion

Experimental Setup

Hardware Platform

Server

CPU	2 * Intel Xeon Gold 5220 CPUs		
GPU	Nvidia Tesla V100 (32GB HBM)		
DRAM	128 GB DDR4		
OS	Ubuntu 20.04.4 LTS		

Computational Storage Device

Туре	Samsung SmartSSD		
FPGA	Xilinx Kintex UltraScale+KU15P		
DRAM 4 GB DDR4			
Flash	4 TB, 4 GB/s		

Datasets

Dataset	Dimension	Data Type	Base Size	Source
SIFT1B	128	Uint8	119 GB	Image
SPACEV1B	100	Int8	93 GB	Web Search
DEEP1B	96	Float32	358 GB	Image
Turing1B	100	Float32	373 GB	Web Search

Comparison with Baselines

Under different dataset

8.5-10.7X higher QPS compared with the stateof-the-art SmartSSDbased ANNS—CSDANNS

Comparison with Baselines

Under different accuracy

With SIFT1B dataset, SmartANNS achieves 5.6-9.8X higher QPS compared with CSDANNS

Comparison with Baselines

Scalability

SmartANNS achieve nearlinear performance scalability with the increase of SmartSSDS

Comparison with SSD/GPU-based ANNS

SmartANNS is more efficient than SSD-based solution and GPU-based solutions

Background and Motivation

- SmartANNS Design
- Results

Conclusion

USENIX ATC '24

July 10-12, 2024 SANTA CLARA, CA, USA

SmartANNS:

A hardware/software co-design architecture using SmartSSDs to support the large-scale and scalable ANNS service

Thanks & QA

Contact Information: tbing@hust.edu.cn

