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Background of ANNS

𝒚𝒚𝒐𝒐,𝒚𝒚𝟏𝟏, … ,𝒚𝒚𝑵𝑵−𝟏𝟏Query

𝒚𝒚𝒏𝒏 in database : [𝒙𝒙𝒐𝒐,𝒙𝒙𝟏𝟏, … ,𝒙𝒙𝑫𝑫−𝟏𝟏] ∈ ℝ𝑫𝑫

distance metric: argmin
n𝛜𝛜{𝟎𝟎,𝟏𝟏,…,𝐍𝐍−𝟏𝟏}

𝒒𝒒 − [𝑿𝑿]𝒏𝒏 𝟐𝟐
𝟐𝟐

𝒚𝒚𝟏𝟏,𝒚𝒚𝟓𝟓,
… ,𝒚𝒚𝒎𝒎

Top-K Results

query vector: [𝒒𝒒𝒐𝒐,𝒒𝒒𝟏𝟏, … ,𝒒𝒒𝑫𝑫−𝟏𝟏] ∈ ℝ𝑫𝑫

find K closest vector 
from the database

❖ Top-K Nearest Neighbor Search (NNS)



Background of ANNS
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❖ Approximate Nearest Neighbor Search (ANNS)



Background of ANNS

Billion-Scale

❖ Retrieval-Augmented Generation



Traditional Computing Architecture for ANNS
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CSD-empowered NDP Architecture
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Using SmartSSDs to handle large-scale ANNS is promising …



CSD-based ANNS Solution

❖ Offline Index Construction
❖ Split dataset
❖ Construct graph for each partition

❖ Traverse all the graph indices
❖ Online Search

❖ Merge all intermediate results

❖ Return top-k result

Original Dataset

Graph Indices for Each Partition 

CSDANN [TC’22], SmartSSD-based ANNS

Significant Computation Limited Resource

Sub-optimal Performance

+



Opportunities of Hierarchical Indexing

❖ Offline Index Construction
❖ Partition dataset using clustering
❖ Construct graph for each shard

❖ Prune irrelevant shards
❖ Online Search

❖ Traverse closest graph of shards

❖ Merge and return top-k result

Original Dataset

Graph Indices for Each Partition 

Clustering

Less computing overhead



Challenges

SmartSSD

1. Lack of communication channels

× Global CoordinatorSmartSSD SmartSSD×

SmartSSD

2. Load imbalance across SmartSSDs

Tasks 
Data

SmartSSD

Data
Tasks 

SmartSSD

Data
Tasks 

3. Differences between queries

Task Scheduler

Query 1 Query 2 Query 3 OptimizerQuery 1 
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Key Designs

Lack of communication channels

Hierarchical indices in host and SmartSSDs

Load imbalance across SmartSSDs

Task scheduling based on the optimized data layout

Differences between queries

Learning-based shard pruning algorithm



Hierarchical indices

Construction Step
Original Dataset

In-SmartSSDs

❖ Hierarchical Balanced Clustering

Centroids

SmartSSD location
In-Host-Memory

For SmartSSDs

❖ Store graph indices in SmartSSDs

For Host CPU

❖ Extract centroids for each shard

❖ Build shard-SmartSSD mapping table

❖ Construct HNSW graph indices

“Host CPU + SmartSSDs” cooperation 



Shard Pruning

Gradient Boosting Decision Trees (GBDT)

Input Features
❖ The query vector

❖ Distance between the query and the top-k nearest shards (𝐷𝐷𝑘𝑘) / distance between 
the query and the top-1 nearest shard (𝐷𝐷1)

Training Setup

❖ The total number of all shards

Training size One million

Learning rate 0.05

Iteration 500

❖ A strong predictive model combing multiple decision trees

❖ Iteratively predicting the mean, computing residuals, and 
fitting weak decision trees to these negative gradients

Training Stage

❖ Assimilating weighted contributions of all individual weak models

Inference Stage

Lightweight and high performance



Task Scheduling

Data Access Pattern of Hierarchical Indices

❖ A large portion of shards are 
accessed by different queries 
over a period of time, implying 
a good data locality

Observation 1

❖ The access distribution of different 
shards are highly skewed

Observation 2

1. Exploiting the data locality among queries
2. Placing hot shards on different SmartSSDs



Task Scheduling

Optimized Data Layout

Original Layout
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❖ Iteratively placing shard with highest hotness to the SmartSSD with lowest cumulative hotness

❖ Replicating shards from one SmartSSD to another SmartSSD once

Replicating

Offering more flexibility for task scheduling



Task Scheduling
Scheduling Steps
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Task Scheduling
Scheduling Steps
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Load balancing and data reusing



Implementation

More details: checkout our paper

Vector Search Engine

❖ Separate interface for parallel reading

❖ FPGA kernel details

❖ Boolean array as the visited list

❖ Bitonic sort algorithm for lists updating

❖ Loop unrolling and pipelining

❖ Data and kernel pooling

❖ GBDT implementation (LAET SIGMOD’20)
❖ HNSW search process



SmartANNS System

Online
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❖ “host CPU + SmartSSDs” cooperative processing architecture
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Experimental Setup

CPU 2 * Intel Xeon Gold 5220 CPUs 

GPU Nvidia Tesla V100 (32GB HBM)

DRAM 128 GB DDR4

OS Ubuntu 20.04.4 LTS

Hardware Platform

Type Samsung SmartSSD

FPGA Xilinx Kintex UltraScale+KU15P

DRAM 4 GB DDR4

Flash 4 TB, 4 GB/s

Server Computational Storage Device

Datasets
Dataset Dimension Data Type Base Size Source

SIFT1B 128 Uint8 119 GB Image

SPACEV1B 100 Int8 93 GB Web Search

DEEP1B 96 Float32 358 GB Image

Turing1B 100 Float32 373 GB Web Search



Comparison with Baselines

8.5-10.7X higher QPS 
compared with the state-
of-the-art SmartSSD-
based ANNS—CSDANNS

❖Under different dataset



Comparison with Baselines

With SIFT1B dataset, 
SmartANNS achieves 5.6-
9.8X higher QPS compared 
with CSDANNS

❖Under different accuracy



Comparison with Baselines

SmartANNS achieve near-
linear performance 
scalability with the 
increase of SmartSSDS

❖Scalability



Comparison with SSD/GPU-based ANNS

SmartANNS is more efficient than SSD-based solution and GPU-based solutions
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Thanks & QA

July 10-12, 2024
SANTA CLARA, CA, USA

A hardware/software co-design architecture using SmartSSDs to 
support the large-scale and scalable ANNS service

Contact Information:   tbing@hust.edu.cn

❖ SmartANNS:
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