
Scalable Billion-point Approximate Nearest
Neighbor Search Using SmartSSDs

Bing Tian, Haikun Liu, Zhuohui Duan, Xiaofei Liao, Hai Jin
Huazhong University of Science and Technology

July 10-12, 2024
SANTA CLARA, CA, USA

Outline

❖Background and Motivation

❖SmartANNS Design

❖Results

❖Conclusion

Background of ANNS

𝒚𝒚𝒐𝒐,𝒚𝒚𝟏𝟏, … ,𝒚𝒚𝑵𝑵−𝟏𝟏Query

𝒚𝒚𝒏𝒏 in database : [𝒙𝒙𝒐𝒐,𝒙𝒙𝟏𝟏, … ,𝒙𝒙𝑫𝑫−𝟏𝟏] ∈ ℝ𝑫𝑫

distance metric: argmin
n𝛜𝛜{𝟎𝟎,𝟏𝟏,…,𝐍𝐍−𝟏𝟏}

𝒒𝒒 − [𝑿𝑿]𝒏𝒏 𝟐𝟐
𝟐𝟐

𝒚𝒚𝟏𝟏,𝒚𝒚𝟓𝟓,
… ,𝒚𝒚𝒎𝒎

Top-K Results

query vector: [𝒒𝒒𝒐𝒐,𝒒𝒒𝟏𝟏, … ,𝒒𝒒𝑫𝑫−𝟏𝟏] ∈ ℝ𝑫𝑫

find K closest vector
from the database

❖ Top-K Nearest Neighbor Search (NNS)

Background of ANNS

Brute Force
Search

Hash based
Search

Tree based
Search

Graph based
Search

1

7

4
2

3

5

6

8
Q

Entry Point
Traversal Path：

1 7 3 6

Result:

3 6
Vector Data

❖ Approximate Nearest Neighbor Search (ANNS)

Background of ANNS

Billion-Scale

❖ Retrieval-Augmented Generation

Traditional Computing Architecture for ANNS

DRAM

GPU
Ctlr

SSD SSD SSD

FlashNIC

FPGA

Ctlr

Flash

Ctlr

Flash

PCIe Bus Severe Competition

Graph-based ANNS Kernel

Graph Index

CSD-empowered NDP Architecture

Host

FPGA (KU15P)SSD
Controller

FPGA
DRAM

PCIe Switch

NAND

FPGA & DRAM
Read/Write

SSD
Read/Write

P2P

SmartSSD

Ctlr

Flash

CSD

Ctlr

Flash

CSD

Ctlr

Flash

CSD

GPU

NIC

FPGA

DRAM

PCIe BusLight Competition

Large Storage Capacity

Less Data
Movement

Mitigate Host
Resource ContentionPerformance scalability

CSD-empowered NDP Architecture

Host

FPGA (KU15P)SSD
Controller

FPGA
DRAM

PCIe Switch

NAND

FPGA & DRAM
Read/Write

SSD
Read/Write

P2P

SmartSSD

Ctlr

Flash

CSD

Ctlr

Flash

CSD

Ctlr

Flash

CSD

GPU

NIC

FPGA

DRAM

PCIe BusLight Competition

Large Storage Capacity

Less Data
Movement

Mitigate Host
Resource ContentionPerformance scalability

Using SmartSSDs to handle large-scale ANNS is promising …

CSD-based ANNS Solution

❖ Offline Index Construction
❖ Split dataset
❖ Construct graph for each partition

❖ Traverse all the graph indices
❖ Online Search

❖ Merge all intermediate results

❖ Return top-k result

Original Dataset

Graph Indices for Each Partition

CSDANN [TC’22], SmartSSD-based ANNS

Significant Computation Limited Resource

Sub-optimal Performance

+

Opportunities of Hierarchical Indexing

❖ Offline Index Construction
❖ Partition dataset using clustering
❖ Construct graph for each shard

❖ Prune irrelevant shards
❖ Online Search

❖ Traverse closest graph of shards

❖ Merge and return top-k result

Original Dataset

Graph Indices for Each Partition

Clustering

Less computing overhead

Challenges

SmartSSD

1. Lack of communication channels

× Global CoordinatorSmartSSD SmartSSD×

SmartSSD

2. Load imbalance across SmartSSDs

Tasks
Data

SmartSSD

Data
Tasks

SmartSSD

Data
Tasks

3. Differences between queries

Task Scheduler

Query 1 Query 2 Query 3 OptimizerQuery 1

Outline

❖Background and Motivation

❖SmartANNS Design

❖Results

❖Conclusion

Key Designs

Lack of communication channels

Hierarchical indices in host and SmartSSDs

Load imbalance across SmartSSDs

Task scheduling based on the optimized data layout

Differences between queries

Learning-based shard pruning algorithm

Hierarchical indices

Construction Step
Original Dataset

In-SmartSSDs

❖ Hierarchical Balanced Clustering

Centroids

SmartSSD location
In-Host-Memory

For SmartSSDs

❖ Store graph indices in SmartSSDs

For Host CPU

❖ Extract centroids for each shard

❖ Build shard-SmartSSD mapping table

❖ Construct HNSW graph indices

“Host CPU + SmartSSDs” cooperation

Shard Pruning

Gradient Boosting Decision Trees (GBDT)

Input Features
❖ The query vector

❖ Distance between the query and the top-k nearest shards (𝐷𝐷𝑘𝑘) / distance between
the query and the top-1 nearest shard (𝐷𝐷1)

Training Setup

❖ The total number of all shards

Training size One million

Learning rate 0.05

Iteration 500

❖ A strong predictive model combing multiple decision trees

❖ Iteratively predicting the mean, computing residuals, and
fitting weak decision trees to these negative gradients

Training Stage

❖ Assimilating weighted contributions of all individual weak models

Inference Stage

Lightweight and high performance

Task Scheduling

Data Access Pattern of Hierarchical Indices

❖ A large portion of shards are
accessed by different queries
over a period of time, implying
a good data locality

Observation 1

❖ The access distribution of different
shards are highly skewed

Observation 2

1. Exploiting the data locality among queries
2. Placing hot shards on different SmartSSDs

Task Scheduling

Optimized Data Layout

Original Layout

SmartSSD 2

SmartSSD 3

SmartSSD 1

SmartSSD 2

SmartSSD 3

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

5 8 9

1 3 7

2 4 6

SmartSSD 1

Copy Optimized Layout

Duplicate

Duplicate

Duplicate

❖ Iteratively placing shard with highest hotness to the SmartSSD with lowest cumulative hotness

❖ Replicating shards from one SmartSSD to another SmartSSD once

Replicating

Offering more flexibility for task scheduling

Task Scheduling
Scheduling Steps

Query 1 Query 2 Query 3 Query 1 1 3 7 2 4 8 1 3 8

SmartSSD 1

SmartSSD 2

SmartSSD 3

1 2 3

4 5 6

7 8 9

5 8 9

1 3 7

2 4 6

Optimized Layout

Duplicate

Duplicate

Duplicate

1

7

1 Device 1, Device2

8 8

Task Scheduling
Scheduling Steps

Query 1 Query 2 Query 3 Query 1 1 3 7 2 4 8 1 3 8

SmartSSD 1

SmartSSD 2

SmartSSD 3

1 2 3

4 5 6

7 8 9

5 8 9

1 3 7

2 4 6

Optimized Layout

Duplicate

Duplicate

Duplicate

1

3

7

3 Device 1, Device2

2

4

8

1

3

Task Scheduling
Scheduling Steps

Query 1 Query 2 Query 3 Query 1 1 3 7 2 4 8 1 3 8

SmartSSD 1

SmartSSD 2

SmartSSD 3

1 2 3

4 5 6

7 8 9

5 8 9

1 3 7

2 4 6

Optimized Layout

Duplicate

Duplicate

Duplicate

1

3

7

1 Device 1, Device23 Device 1, Device2

2

4

8

1

3

8

Load balancing and data reusing

Implementation

More details: checkout our paper

Vector Search Engine

❖ Separate interface for parallel reading

❖ FPGA kernel details

❖ Boolean array as the visited list

❖ Bitonic sort algorithm for lists updating

❖ Loop unrolling and pipelining

❖ Data and kernel pooling

❖ GBDT implementation (LAET SIGMOD’20)
❖ HNSW search process

SmartANNS System

Online

HOST

Query
Optimization

SmartSSD 1
FLASH

Graph1

...

Requests Graph Buffer
FPGA DRAM

Request
Reordering

Vector Search
Kernel

Graph2

GraphN

Switch

Query
Result

Input

Result Buffer

On-Chip

Arraies

FPGA

Offline

High-dimensional vectors

vector 1
vector 2

...

vector n
Partitioning

S1 S2

S3

Gradient Boosting Decision Tree

 metadata

featuresquery
query

P1
P2

Pn
...

Proximity graph index

build

partition

HNSW, NSG
Kgraph

 Task
Scheduling

SmartSSD n

Control Layer Data Layer

...

Traversing

DRAM

 Metadata GBDTree Profile

CPU

1 2 3

4 5
5

❖ “host CPU + SmartSSDs” cooperative processing architecture

Outline

❖Background and Motivation

❖SmartANNS Design

❖Results

❖Conclusion

Experimental Setup

CPU 2 * Intel Xeon Gold 5220 CPUs

GPU Nvidia Tesla V100 (32GB HBM)

DRAM 128 GB DDR4

OS Ubuntu 20.04.4 LTS

Hardware Platform

Type Samsung SmartSSD

FPGA Xilinx Kintex UltraScale+KU15P

DRAM 4 GB DDR4

Flash 4 TB, 4 GB/s

Server Computational Storage Device

Datasets
Dataset Dimension Data Type Base Size Source

SIFT1B 128 Uint8 119 GB Image

SPACEV1B 100 Int8 93 GB Web Search

DEEP1B 96 Float32 358 GB Image

Turing1B 100 Float32 373 GB Web Search

Comparison with Baselines

8.5-10.7X higher QPS
compared with the state-
of-the-art SmartSSD-
based ANNS—CSDANNS

❖Under different dataset

Comparison with Baselines

With SIFT1B dataset,
SmartANNS achieves 5.6-
9.8X higher QPS compared
with CSDANNS

❖Under different accuracy

Comparison with Baselines

SmartANNS achieve near-
linear performance
scalability with the
increase of SmartSSDS

❖Scalability

Comparison with SSD/GPU-based ANNS

SmartANNS is more efficient than SSD-based solution and GPU-based solutions

Outline

❖Background and Motivation

❖SmartANNS Design

❖Results

❖Conclusion

Thanks & QA

July 10-12, 2024
SANTA CLARA, CA, USA

A hardware/software co-design architecture using SmartSSDs to
support the large-scale and scalable ANNS service

Contact Information: tbing@hust.edu.cn

❖ SmartANNS:

	Scalable Billion-point Approximate Nearest Neighbor Search Using SmartSSDs
	Outline
	Background of ANNS
	Background of ANNS
	Background of ANNS
	Traditional Computing Architecture for ANNS
	CSD-empowered NDP Architecture
	CSD-empowered NDP Architecture
	CSD-based ANNS Solution
	Opportunities of Hierarchical Indexing
	Challenges
	Outline
	Key Designs
	Hierarchical indices
	Shard Pruning
	Task Scheduling
	Task Scheduling
	Task Scheduling
	Task Scheduling
	Task Scheduling
	Implementation
	SmartANNS System
	Outline
	Experimental Setup
	Comparison with Baselines
	Comparison with Baselines
	Comparison with Baselines
	Comparison with SSD/GPU-based ANNS
	Outline
	Thanks & QA

