
QDSR: Accelerating Layer-7 Load 
Balancing by Direct Server Return 

with QUIC

Ziqi Wei*, Zhiqiang Wang*, Qing Li✉, Yuan Yang, Cheng Luo, 
Fuyu Wang, Yong Jiang, Sijie Yang, Zhenhui Yuan

(*: co-first authors, ✉: corresponding author)



Load Balancing

• A service that distributes traffic to multiple backend real servers.
• High availability

• Elastic Scalability

• Security and stability

• Multi-protocol Forwarding

• Layer-4 Load Balancing

• Layer-7 Load Balancing



Layer-7 Load Balancing

• Usually used with L4 load balancing

• Support more flexible content-based scheduling (easily achieve sticky 
redirect)

• Multiple clusters are connected together through Layer-7 scheduling



Layer-7 Load Balancing

• More diverse usage scenarios, blurring the boundaries between load 
balancers and real servers

• The servers in the cluster are both L7 load balancers and real servers



Layer-7 Load Balancing

• Advantages of layer-7 load balancing
• Content-based scheduling

• Fault tolerance (proactive health check)

• Web application firewall (WAF)

• Disadvantages of traditional load balancing: redundant downlink forwarding
• Additional performance overhead of the load balancer

• Additional transmission delay of request

• Additional bandwidth consumption

• WAN: bandwidth fee

• LAN: congestion possibility



Direct Server Return (DSR)

• Layer-4 direct server return: Linux Virtual Server (LVS) direct routing mode
• Not support content-based scheduling

• Layer-7 direct server return: [USENIX NSDI ‘21] Prism
• Achieve DSR by serial TCP connection and TLS state hand-off between L7 load 

balancer and real servers

• Not support parallel scheduling, therefore, not applicable to HTTP/2 and QUIC



How to Support Direct Server Return in HTTP/3?

• QUIC is the transport layer protocol of HTTP/3 
• One HTTP request corresponds to one QUIC stream

• Different QUIC streams are parallel and there is no head-of-line blocking

• Challenge
• Migrate different QUIC stream to different real servers at the same time

• Multiple real servers send HTTP responses without affecting each other



Two Phase Stream Hand-Off to Achieve Parallel DSR

• Redirection phase
• Schedule: select one real server according to some strategies

• Hand off QUIC stream: transfer QUIC stream state to the real server and use this 
stream direct response client

• Transmission phase
• The real server sends a downstream response directly to the client

• The load balancer forwards control messages from the client to different servers



Redirection Phase 

• Necessary state for QUIC stream hand-off to be synchronized to the real 
server

• QUIC connection ID and it associated packet number space

• QUIC stream ID and its flow control limitation

• Negotiated TLS key 

• Client IP, Client Udp port

• L7 LB IP (usually is virtual IP), L7 LB Udp port

• Real server recovers forged connection and stream

• Real server sends response directly to the client



Forged Packet by Real Servers 

• Response header and content are encapsulated as HTTP/3 frames

• HTTP/3 frames will be split into QUIC stream frames

• QUIC stream frames should be encrypted and encapsulated as QUIC 
packets

• QUIC packets will be added with the forged IP address and UDP port



Packet Number Space Isolation

• IETF QUIC only supports one application packet number space

• One packet number space can’t support parallel multiplex sender
• Clients receive QUIC packet not in the order of packet number 

• The client's fast packet loss detection mechanism fails

• Replay packet attacks are difficult to recognized

• Introduce individual packet number space for every sender like multipath
• Isolate transmission states of different senders

• Congestion controll

• Lost detect

• TLS state

• Compatible with multipath transmission



Transmission phase

• Layer-7 load balancer: a control center to coordinate multiplex real servers
• Forward ACK frames to the real server

• Update state to real servers when QUIC connection migration

• Update key to real server when TLS key updated

• Other control information

• Real server as a transparent real sender
• Lost detection and retransmission

• Congestion control



Implement and Evaluation

• Implement
• Layer-7 load balancer: nginx

• Real server: apache traffic server

• Client: lsquic

• Baseline: Proxy-based scheme

• LAN testbed



Single Core Throughput of Layer-7 Load Balancer

• Layer-7 Load Balancer: Single CPU core 

• Enough real servers

• protocol between load balancer and real servers: TCP

• Concurrency: 8 QUIC connections and 8 streams multiplexing pre-
connection



CPU Bottleneck

• Small requested objects: the bottleneck was processing requests

• Requested objects exceeds 16K: QPS decrease and relay consumption 
increase



Performance in Lan

• Measured after clock synchronization

• Downlink one-way delay is significantly lower than proxy-based scheme
• Reduce intranet traffic



End-to-End Delay over WAN

• Simulation experiments using mahimahi

• The transaction benefits from topology of direct server return



Conclusion

• Illustrate the significance of parallel direct server return for layer-7 load 
balancing

• Design QDSR to achieve parallel direct server return without damaging 
flexibility and scalability of layer-7 load balancing

• Implement QDSR and evaluate its performance compared with traditional 
proxy-based layer-7 load balancing. The results show that the performance 
is greatly improved

• Attention to our future work
• TQUIC https://github.com/tencent/tquic

• https://edgeone.ai

• Other detail discussion: zhqiangwang@tencent.com

https://github.com/tencent/tquic
https://edgeone.ai/


Thank you


	幻灯片 1: QDSR: Accelerating Layer-7 Load Balancing by Direct Server Return with QUIC
	幻灯片 2
	幻灯片 3
	幻灯片 4
	幻灯片 5
	幻灯片 6
	幻灯片 7
	幻灯片 8
	幻灯片 9
	幻灯片 10
	幻灯片 11
	幻灯片 12
	幻灯片 13
	幻灯片 14
	幻灯片 15
	幻灯片 16
	幻灯片 17
	幻灯片 18
	幻灯片 19: Thank you

